第三章 线性控制系统的能控性和能观性
第三章 线性系统的能控性与能观测性
。 显见第二、三行元素相同。 rank Qk 2 3 故不能控。
例6 桥式电路图中,若取电感L的电流 i及电容 L C的电压 v 为状态变量,取 为输出变量,则系 iL c 统方程为:
R R 1 R R iL ( 1 2 3 4 ) d L R1 R2 R3 R4 1 dt ( R2 R4 ) vC C R1 R2 R3 R4 1 R3 1 R1 ( ) iL L R1 R2 R3 R4 L u 1 1 1 ( ) vC 0 C R1 R2 R3 R4
1 0 ~ 2 A n 0 中,输入矩阵
~ b11 ~ ~ b21 , B ~ bn1
~ b12 ~ b21 ~ bn 2
~ b1r ~ b2r ~ bnr
(3.4)
.
表明: 状态变量 , x1 都可通过选择输入u而 x2 由始点 终点完全能控。 输出y只能反映状态变量 ,所以 不能观测。 x x
2
1
完全能控,不完全能观系统!
例3: 桥式电路如图所示, 选取电感L的电流为 为 状态变量, i (t ) x(t )
u (t ) 为电桥输 入,输出
量为 y (t ) 。 解: 从电路可以直观看出,如果 x(t 0 ) 0 u (t ,则不论 如何 ) 选取,对于所有 ,有 t 0 ,即ut(t)不能控制x(t)的变化, x( ) 0 t 故系统状态为不能控。 若u(t)=0,则不论电感L上的 x(t 0 ) 初始电流 取为多少, 对所有时刻 t 都恒有y(t)=0,即状态x(t)不能由输出y(t)反映,故 t0 系统是状态不能观测的。 该电路为状态既不能控,也不能观测系统。
第三章 线性控制系统的能控性和能观性PPT课件
.
1
在现代控制理论中,能控性和能观性是两个重 要的概念,是卡尔曼(Kalman)在1960年首先提出 来的,它是最优控制和最优估计的设计基础。
现代控制理论是建立在用状态空间描述的基 础上的。状态方程描述了输入u(t)引起状态x(t)的 变化过程;输出方程则描述了由状态变化引起的输 出y(t)的变化。
可以看出,系统中某一状态的能控和系统的 状态完全能控在含义上是不同的。
.
7
几点说明:
1) 在线性定常系统中,为简便计,可以假定初始 时刻t0=0,初始状态为x(0),而任意终端状态就指 定为零状态,即 x(tf )0
2) 也可以假定x(t0)=0,而x(tf)为任意终端状态, 换句话说,若存在一个无约束控制作用u(t),在 有限时间[t0, tf]能将x(t)由零状态驱动到任意x(tf)。 在这种情况下,称为状态的能达性。
.
13
b b 1b 2b n T
为简明起见,下面举三个具有上述类型的二阶 系统,对能控性加以剖析。
x 0 1 0 2 x b 0 2 u ; yc1 c2x
(3-3)
x 0 1 1 1 x b 0 2 u; yc1 c2x
(3-4)
x 0 1 1 1 x b 0 1 u; yc1 c2x
具有约旦标准型系统矩阵的单输入系统,状态
方程为
x Λ b xu
(3-1)
或
x J b xu
(3-2)
1
0
2
Λ
3
0
n
12 3 n 即n个根互异
.
12
1 1
1 1
0
0
1
1
m 1
0
第三章 线性系统的能控性
的变换矩阵将原系统方程变换成不同的规范形。
1 搜索线性无关的列(行)的两种方案
以从Qc中找寻线性无关的列或行为例。
系统完全能控,rank Qc=n.Qc中有且最多仅有n个线性无关的列。 如何找出它们?用格栅图表示。 方案 I 列搜索
第三章 线性系统的能控性和能观测性
3.1 能控性和能观测性的定义
• 能控性
– 状态点的能控性 对t0,x0, 存在t1>t0 和容许控制u(t), t属于[t0,t1], 使系统状态从x0→x(t1)=0 称此x0在t0时刻能控。
– 系统的能控性 状态空间中的所有x0 ,在t0时刻都能控,则称系统在t0时刻完全 能控。
该搜索方法的特点是, Ai bi 是其左边的向量的线性组合。
方案II 行搜索
先找[b1,b2, ,b p ]中的线性无关列; 再找[Ab1, Ab2, , Ab p ]中的线性无关列;
直到找够n个线性无关列。 找够后, 再排列成如下形式
{b1,
Ab1, , A11b1;
b
,
2
Ab2, ,
A2 1b2; ;
e11 e12 e1v1 ; ; el1 el2 elvl
的表达。 而B的第1列b1就是e1v1 , 所以其表达为
0 0 1; ; 0 0 0T
余类推。 所以,Bc的形式如前所示。
3 龙伯格规范形
3.8 线性系统的结构分解
• 能控性和能观测性在线性非奇异变换下保持不变。 • 线性定常系统按能控性的结构分解
Q
np
B p
AB p
A 1B p
p
第三章线性系统的可控性与可观性2
第 三章 线性控制系统式的可控性和可观测性
若满足下列条件,则称 1 与 2 是互为对偶的。
A2 A1T , B2 C1T , C 2 B1T
式中
x1 , u1 , y1 , A1 , B1 , C1 , x2 u2 y2 A2 B2 C2
——n维状态矢量; ——各为r维与m维控制矢量; ——各为m 维与r维输出矢量; —— n n 系统矩阵; ——各为n×r 维与n×m维控制矩阵; ——各为n×m 维与n×r维输出矩阵;
第 三章 线性控制系统式的可控性和可观测性
非奇异变换不改变系统的自然模态及能控性, 能观性,而且只有系统完全能控(能观)才能 化成能控(能观)标准型,对于一个传递函数 为
bn 1 s n 1 bn 2 s n 2 b1 s b0 W ( s) n s a n 1 s n 1 a1 s a 0
第 三章 线性控制系统式的可控性和可观测性
两个n维系统 S1(A1 B1 CI)、S2(A2 B2 C2) 若满足下列关系 A2=A1T B2=C1T C2=B1T 则称S1与S2是对偶系统.
式中
x1 , u1 , y1 , A1 , B1 , C1 , x2 u2 y2 A2 B2 C2
——n维状态矢量; ——各为r维与m维控制矢量; ——各为m 维与r维输出矢量; —— n n 系统矩阵; ——各为n×r 维与n×m维控制矩阵; ——各为n×m 维与n×r维输出矩阵;
第 三章 线性控制系统式的可控性和可观测性
如果∑1 和 ∑2 互为对偶系统,那么: 1.如果将∑1模拟结构图中将信号线反向;输入 端变输出端,输出端变输入端;信号综合点变信 号引出点,信号引出点变信号综合点,那么形成 的就是∑2的模拟结构图,如下图所示。
现代控制理论-线性控制系统的能控性与能观性例题精选全文完整版
如果线性定常系统: y Cx 是状态不完全能控的, 它的能控性判别矩阵的秩
rankM n1 n
则存在非奇异变换:x Rcxˆ
将状态空间描述变换为:
xˆ y
Aˆ xˆ Cˆ xˆ
Bˆ u
n1 n n1
其中:
xˆ
xˆ1
xˆ
2
n1
n n1
Aˆ
R c1AR c
Aˆ 11 0
3.6.1 线性系统的对偶关系
线性系统1、2如下:
1:yx 11
A1x1 C1x1
B1u1
2:
x 2 y 2
A2x2 C2x2
B2u2
如果满足如下关系
A2 A1T , B2 C1T , C2 B1T
则称两系统是互为对偶的.
u1(t) B
x1(t)
x1(t)
++
∫
y1(t) C
A
y2(t) BT
0
A 0 1 0 , b 0, c 1 1 1
1 4 3
1
解: 能控性矩阵
0 1 4
M b Ab A2b 0 0
0
1 3 8
rankM 2 n1 dim A n 3 不能控
构造变换矩阵
0 1 0 Rc 0 0 1
1 3 0
✓与前2个列向量 线性无关; ✓尽可能简单
结构分解
u
co
y
co
依据能控能观 性,将系统分解
co
为四个子系统
co
x Ax Bu
y Cx Du
特殊的线性变换
x xTco xTco xTco xTco
分解步骤:
1、将系统分解成能控与不能控子系统;
第三章线性控制系统的能控性和能观性(1)
概述(5/5)
现代控制理论中着眼于对表征MIMO系统内部特性和动态 变化的状态进行分析、优化和控制。
➢ 状态变量向量的维数一般比输入向量的维数高,这里存 在多维状态能否由少维输入控制的问题。
➢ 此外,状态变量是表征系统动态变化的一组内部变量,有 时并不能直接测量或间接测量,故存在能否利用可测量 或观测的输出输出的信息来构造系统状态的问题。
代数判据(7/18)—判据定理证明
➢ 再证必要性(结论条件)。 ✓ 即证明,若系统状态能控,则e-AtB的各行函数线性独 立。
➢ 用反证法证明。 ✓ 设e-AtB的各行函数线性相关,但状态能控。
➢ 必要性反证法的思路为:
e-AtB的 各行函 数线性 相关
存在非零常 数向量与
e-AtB垂直, 即与能控
第三章 线性控制系统的能控性和能观性
概述(1/5)
概述
本章讨论线性定常系统的定性分析--结构性问题和系统综 合问题,主要内容有: ➢ 结构性问题--能控性、能观性、对偶原理 ➢ 结构分解 ➢ 能控标准形和能观标准形 ➢ 系统实现 ➢ 系统综合问题--状态反馈和状态观测器
概述(2/5)
动态系统的能控性和能观性是揭示动态系统不变的本质特 征的两个重要的基本结构特性。
➢ 因此,给定输入,则一定会存在唯一的输出与之对应。
✓ 反之,对期望输出信号,总可找到相应的输入信号 (即控制量)使系统输出按要求进行控制,不存在能 否控制的问题。
➢ 此外,输出一般是可直接测量,不然,则应能间接测量。
✓ 否则,就无从对进行反馈控制和考核系统所达到的 性能指标。
✓ 因此,在这里不存在输出能否测量(观测)的问题。
现代控制理论第三章线性系统的能控性和能观测性
1 x1 u x 2 2 x2 u x y x x 1 2
1 x
u
1 s 1 s
2
x1
y
x2
2 x
由于状态变量x1、x2都受控于输入u,所以系统 是能控的;输出y能反映状态变量x1,又能反映状 态变量x2的变化,所以系统是可观测的。 即状态变量x1能控、可观测;状态变量x2能控、 可观测。
任意初态 x(t0 ) x 零终态 x(t f ) 0
状态完全能控
Байду номын сангаас
第 三章 线性控制系统式的能控性和能观测性
②把系统的初始状态规定为状态空间的原点, 即 x(t 0 ) 0,终端状态规定为任意非零有限点, 则可达定义表述如下: 对于给定的线性定常系统
Ax Bu ,如果 x
存在一个分段连续的输入 u (t ),能在 [t 0 , t f ] 有限时间间隔内,将系统由零初始状态 x(t 0 ) 转移 到任一指定的非零终端状态 x(t f ) ,则称此系统 是状态完全可达的,简称系统是可达的(能达的)。 任意初态 x(t0 ) 0 零终态 x(t f ) x 状态完全可达
第 三章 线性控制系统式的能控性和能观测性
1. 直接由A,B矩阵的结构判断系统的能控性 定理: 系统
( A, B )
即
A(t )x B(t )u x y C (t )x D(t )u
状态完全能控的充分必要条件是其能控性矩阵
Qk [ B AB A2 B An1 B]
一、线性定常连续系统状态能控性的定义 定义3.1(状态能控性定义):
Ax Bu,如果存在一个 对于线性定常系统 x 分段连续的输入u(t),能在有限时间间隔[t0,tf]内, 使得系统从某一初始状态x(t0)转移到指定的任一 终端状态x(tf) ,则称此状态是能控的。若系统的 所有状态都是能控的,则称此系统是状态完全能 控的,简称系统是能控的。
(整理)控制系统的能控性和能观测性
第三章 控制系统的能控性和能观测性3-1能控性及其判据 一:能控性概念定义:线性定常系统(A,B,C),对任意给定的一个初始状态x(t 0),如果在t 1> t 0的有限时间区间[t 0,t 1]内,存在一个无约束的控制矢量u(t),使x(t 1)=0,则称系统是状态完全能控的,简称系统是能控的。
可见系统的能控性反映了控制矢量u(t)对系统状态的控制性质,与系统的内部结构和参数有关。
二:线性定常系统能控性判据设系统动态方程为:x 2不能控y2则系统不能控,若2121,C C R R ==⎩⎨⎧+=+=DuCx y Bu Ax x设初始时刻为t 0=0,对于任意的初始状态x(t 0),有: 根据系统能控性定义,令x(t f )=0,得:即:由凯莱-哈密尔顿定理:令 上式变为:对于任意x(0),上式有解的充分必要条件是Q C 满秩。
判据1:线性定常系统状态完全能控的充分必要条件是:⎰-+=ft f f f d Bu t x t t x 0)()()0()()(τττφφ⎰⎰---=--=-ff t f f t f f d Bu t t d Bu t t x 01)()()()()()()0(τττφφτττφφ⎰--=f t d Bu x 0)()()0(τττφ∑-=-==-1)()(n k kk A A eτατφτ∑⎰⎰∑-=-=-=-=101)()()()()0(n k t k k t n k k k ff d u B A d Bu A x ττταττταkt k u d u f=⎰)()(ττταUQ u u u u B A B A AB B Bu A x c k n n k kk -=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=--=∑ 321121],,,[)0(能控性矩阵Q C =[B ,AB ,A 2B ,…A n-1B]满秩。
对于单输入系统,Q C =[b ,Ab ,A 2b ,…A n-1b] 如果系统是完全能控的,称(A 、B )或(A 、b )为能控对。
第3章_线性控制系统的能控性和能观性
证明 定理3.3-1
y(t1) 0(t1)Im 1(t1)Im n1(t1)Im C
y(t2) 0(t2)Im
1(t2)Im
n1(t2)ImC
A x(0)
y(tf)
0(tf)Im
1(tf)Im
n1(tf)ImCnA 1
上式表明,根据在(0,tf)时间间隔的测量值 y(t1),y(t2),…,y(tf),能将初始状态x(0)唯一地 确定下来的充要条件是能观测性矩阵N满秩。
4)不可控
18
3.1.2 线性定常系统的能控性判别
3.可控性约当型判据
J1
设
x AxBu
J2
xu
Jk
若 A为约当型,则状态完全可控的充要条件是:
每一个约当块的最后一行相应的 阵中所有的行 元素不全为零。(若两个约当块有相同特征值,此
结论不成立。)
精选可编辑ppt
19
3.1.2 线性定常系统的能控性判别
➢本章结构
• 第3章 线性控制系统的能控性和能观性 ✓3.1 能控性 ✓3.2 能观性 ✓3.3 能控性与能观性的对偶关系 ✓3.4 零极点对消与能控性和能观性的关系
精选可编辑ppt
1
引言
状态空间模型建立了输入、状态、输出之间的关系
u
x
y x Ax Bu
y Cx Du
状态方程反映了控制输入对状态的影响;输出方程 反映系统输出对控制输入和状态的依赖
10
3.1 能控性
3.1.2 线性定常系统的能控性判别
证明 定理3.1-1
n1
x(0) AkBk B AB A2B k0
0
An1B1
n1
若系统是能控的,那么对于任意给定的初始状态x(0)都
第3章 能控性和能观性
t 0, t 1
0
W (0, t1 ) 奇异,
与已知条件矛盾
rank W n
说明:1.
在应用格拉姆矩阵判据时计算矩阵指数
函数以及积分的计算量非常大,所以这一判据主要 用在理论分析中。 2. 矩阵W可以利用Matlab函数ctrb(A,B)来计算, 不过其计算在数值上容易导致病态,所以建议使用
1.2 可观性
[例]电路 ((信息)观测的可能性)
如果 u 0,不管电容储存了多少电荷, 由于 y 0 无法知道状态(信息) 图 假定输入恒为0
u
R
R C R
y
R
(信息)观测的可能性
y ce At x0 (未知量
有输入时
At t
(u 0) x0 )
y y ce
0
y ce x0 ce A(t )bu( )d
, T An1B 0
B AB
T
系统不可控。
n1 T A B W 0 rank W n
充分性:证明过程与上相反。
所以输入维数增加 那么特征值 i 不可控。 约当标准形判据 线性定常系统可控的充分必要条件是 系统可控的可能性增加。
T i T i
t 0 A( t )
bu ( )d 可将它看做输出
已知
可观性的直观意义和定义
所谓系统可观是指通过观测系统的外部变量即输 入输出变量就能正确地知道系统的内部状态。 定义 如果基于有限长的输入输出数据:
u(t ), y(t ),
0 t T
能唯一地确定系统的初始状态 x0 ,则称点 x0 可观 测。进一步,如果状态空间中任意的初始状态 x0 都可观测,则称系统可观测。
第三章线性系统的能控性与能观性2
Hale Waihona Puke .解:Sc [b Ab]
Sc b Ab b1 b2
1b1 b1b2 (2 1 ) 2b2
0
如果rank Sc =2, 则必须要求 b1 0, b2
4. 定理3:设 x Ax Bu , 若A为约当标准形,且每个约当块所 对应的特征值均不相同,则状态完全能控 的充要条件是:
且
ri1 ri 2 rii i
由 Bik (k 1,2,, i ) 的最后一行组 成的矩阵:
bri1 r bri 2 对i 1, 2, , l均为行线性无关 Bi bri i 则系统能控
例:设 x Ax Bu ,已知
第三章 线性系统的能控性和能观性
3.1 能控性的定义 3.2 线性定常系统的能控性判别 3.3 线性定常连续系统的能观性 3.4 离散时间系统的能控性与能观性 3.5 时变系统的能控性与能观性 3.6 能控性与能观性的对偶关系 3.7 状态空间表达式的能控标准型与能观标准型 3.8 线性定常系统结构分解 3.9 传递函数矩阵的实现 3.10传递函数中零极点对消与状态能控性、能观性之间 的关系
定理2:若
x Ax Bu
若A为对角型,且对角线上的元素均不相同, 则状态完全能控的充要条件为: B中没有任意一行的元素全为零.
x1 1 x1 b11u1b12u2 b1 pu p
x2 2 x2 b21u1b22u2 b2 pu p
例:线性系统的状态方程为 x Ax bu 其中: 1 0 b1 A b 0 2 b2
Ci C1i1 C1i2 C1ii
线性系统能观性能控性判定
rank[ λi I − A ⋮ B ] = n ( i = 1, 2 , ⋯ , n ) 证明略) (证明略)
(10) )
定理3 互异, 定理3-4 (2)式的线性定常系统的矩阵 A 的特征值 λ i 互异, )
( i = 1, 2 , ⋯ , n ) 将系统经过非奇异线性变换变换成对角阵
0 λ1 λ2 x + Bu (11) ) ɺ x= ⋱ 0 λn 中不包含元素全为零的行。 则系统能控的充分必要条件是矩阵 B 中不包含元素全为零的行。
y 电路如下图所示。 为输入量, 为输出量, 例3-3 电路如下图所示。选取 u (t ) 为输入量, (t )为输出量,两个电 感上的电流分别作为状态变量, 感上的电流分别作为状态变量,则系统方程为
- 2 1 1 ɺ x = Ax + Bu = x + u 1 - 2 0
y = Cx = [0 1]x
系统状态转移矩阵为
0 x (0) = 如果初始状态为 0
e At
1 e −t + e −3t = − t − 3t 2 e − e
e −t − e −3t −t − 3t e +e
系统状态方程的解为 1 t −(t − τ ) x(t ) = ∫ e u(τ ) d τ 0 1 可见, 可见,不论加入什么样的 输入信号, 输入信号,总是有 x1 = x2
对于不能观测的系统,其不能观测的状态分量与 既无直接关系, 对于不能观测的系统,其不能观测的状态分量与y 既无直接关系, 又无间接关系。状态是否能观测不仅取决于C,还与A 有关。 又无间接关系。状态是否能观测不仅取决于 ,还与 有关。
3.2 能控性及其判据
第三章线性控制系统的能控性和能观性
第三章 线性控制系统的能控性和能观性在现代控制理论中,能控性和能观性是卡尔曼(Kalman )在1960年首先提出来的,它是最优控制和最优估值的设计基础。
能控性和能观性是分别分析)(t u 对状态)(t x 的控制能力以及输出)(t y 对状态)(t x 的反映能力。
§3-1 能控性的定义能控性所研究的只是系统在控制作用)(t u 的作用下,状态矢量)(t x 的转移情况,而与输出)(t y 无关。
矢量的线性无关与线性相关:如果0x x x x 332211=++++n n C C C C 式中的常数n C C C 21,满足0321====n C C C C ,则把向量n x x ,x 21 叫做线性无关。
例如向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0102x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1003x 便是线性无关。
若向量n x x ,x 21 中有一个向量i X 为其余向量的线性组合,即:∑≠==nij j jj i C 1x x 则称向量n x x ,x 21 为线性相关。
例如向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3211x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1012x⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=4223x 便是线性相关。
又例如在式中213x x x +=,0x 3x x 321=++式中系数并不全为零。
故为线性相关。
具有约旦标准型系统的能控性判据 1.单输入系统先将线性定常系统进行状态变换,把状态方程的A 阵和B 阵化为约旦标准型)ˆ,ˆ(B A,再根据B 阵确定系统的能控性。
具有约旦标准型系统矩阵的单输入系统,状态方程为bu x x+=λ ,或bu Jx x+= 。
其中:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n λλλλλ 00321,各根互异。
其中:(特征值有重根的)⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=++n m m J λλλλλλ010010121111 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n b b b b 21 下面列举两个二阶系统,对其能控性加以剖析。
线性系统的能控性和能观性
例3.4 判断下列系统的能控性
(1)、A
2
0
0 1 1, B 0
(2)、A
2
0
0 1 1, B 1
(3)、A
1
0
01B
1 1
3 1 0 0 0
(4)、A
0
3 0, B 2 1
0 0 1 0 3
4 1 0 0
(5)、A
0
4
0 , B 1
0 0 4 2
所以A为约旦阵,但有两个相同特征值的约旦块 对应b虽为最后一行全为0的元素行,仍不能控, 可算出rank[M]<3.
,t0)
tf t0
(
t
f
, )B()u()d
x(t0 )
tf t0
(
t
0
,
)B()u
()d
意义:系统状态x(t0)能控,即[t0,tf]区间上受 u(t)控制。
(三)能控性判据 [定理3.1]系统∑(A(t),B(t),C(t))在t0时刻或[t0,tf]
完全能控的充要条件是矩阵Φ(t0,t)*B(t)是行 线性无关的(满秩的、非奇异的)
例:x
1
0
-
-
02x 10u, y 1 1x
分析: 1、x1与输入u无关,不能 控,x2能控, x1, x2不完 全能控。 2、y= x1+ x2 , x1或x2 都能对y产生影响,通 过y能确定x1或x2 ,能 观测。
3、能控能观是最优制和 最优估计的设计基础。
3.1 线性连续系统的能控性
)d
x(t f ) (t f )x(0) 0t f (t f )B( )u( )d x(0) 0t f ( )Bu( )d
(完整word版)现代控制理论习题解答(第三章)
第三章 线性控制系统的能控性和能观性3-3-1 判断下列系统的状态能控性。
(1)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=01,0101B A (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=111001,342100010B A (3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=020011,100030013B A (4)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1110,0000000011111B A λλλλ【解】: (1)[]2,1011==⎥⎦⎤⎢⎣⎡-==n rankU AB BU c c ,所以系统完全能控。
(2)[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==7111111010012B A ABBU c 前三列已经可使3==n rankU c ,所以系统完全能控(后续列元素不必计算)。
(3)A 为约旦标准型,且第一个约旦块对应的B 阵最后一行元素全为零,所以系统不完全能控。
(4)A 阵为约旦标准型的特殊结构特征,所以不能用常规标准型的判别方法判系统的能控性。
同一特征值对应着多个约旦块,只要是单输入系统,一定是不完全能控的。
可以求一下能控判别阵。
[]2,111321031211312113121121132=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==c c rankU B A BA AB BU λλλλλλλλλλλ,所以系统不完全能控。
3-3-2 判断下列系统的输出能控性。
(1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=xy u x x 011101020011100030013 (2) []⎪⎪⎩⎪⎪⎨⎧=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=x y u x x 0011006116100010【解】: (1)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=020011,100030013B A ,⎥⎦⎤⎢⎣⎡-=011101C ,⎥⎦⎤⎢⎣⎡=0000D []⎥⎦⎤⎢⎣⎡--=111300002B CA CABCB D前两列已经使[]22==m B CA CAB CB D rank ,所以系统输出能控。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-
1
在现代控制理论中,能控性和能观性是两个重 要的概念,是卡尔曼(Kalman)在1960年首先提出 来的,它是最优控制和最优估计的设计基础。
现代控制理论是建立在用状态空间描述的基 础上的。状态方程描述了输入u(t)引起状态x(t)的 变化过程;输出方程则描述了由状态变化引起的输 出y(t)的变化。
1.单输入系统
具有约旦标准型系统矩阵的单输入系统,状态
方程为
x Λ x bu
(3-1)
或
x J xbu
(3-2)
1
0
2
Λ
3
0
n
12 3 n 即n个根互异
-
12
1 1
1 1
0
0
1
1
m 1
0
J
0
m
0
1
m
m 1
0
0
0
0
n
(m-l)个1重根, l个m重根,其余为互异根。
-
10
§3-2 线性定常系统能控性判别
线性定常系统能控性判别准则有两种形式
➢ 一种是先将系统进行状态变换,把状态方程化 为约旦标准型 (Aˆ, Bˆ,) 再根据 阵Bˆ ,确定系统的能控 性; ➢ 另一种方法是直接根据状态方程的A阵和B阵, 确定其能控性。
-
11
一、具有约旦标准型系统的能控性判别
-
5
上述定义可以在二阶系统的状态平面上来说 明(如图3-1所示)。
假定状态平面中的 P点能在输入的作用下 被驱动到任一指定状态 P1, P2, P3,, Pn,那么 状态平面控状态“充满”整个状态空间,即对 于任意初始状态都能找到相应的控制输入u(t),使 得在有限的时间区间[t0, tf]内,将状态转移到状态 空间的任一指定状态,则该系统称为状态完全能 控。
最后在系统结构分解的基础上介绍传递函数 的最小实现。
-
3
§3-1 能控性的定义
能控性所考察的只是系统在控制作用u(t)的控 制下,状态矢量x(t)的转移情况,与输出y(t)无关, 所以只需从系统的状态方程研究出发即可。
-
4
一、线性连续定常系统的能控性定义
线性连续定常系统
x A x Bu
如果存在一个分段连续的输入u(t),能在有 限时间区间[t0, tf]内,使系统由某一初始状态x(t0), 转移到指定的任一终端状态x(tf),则称此状态是 能控的。若系统的所有状态都是能控的,则称此 系统是状态完全能控的,或简称系统是能控的。
可以看出,系统中某一状态的能控和系统的 状态完全能控在含义上是不同的。
-
7
几点说明:
1) 在线性定常系统中,为简便计,可以假定初始 时刻t0=0,初始状态为x(0),而任意终端状态就指 定为零状态,即 x(tf )0
2) 也可以假定x(t0)=0,而x(tf)为任意终端状态, 换句话说,若存在一个无约束控制作用u(t),在 有限时间[t0, tf]能将x(t)由零状态驱动到任意x(tf)。 在这种情况下,称为状态的能达性。
(3-5)
-
14
x 0 1
0 0
2 x b 2 u;
yc1
c2x
1) 对式(3-3)的系统,系统矩阵A为对角线型,其 标量微分方程形式为
x 11x1
x 22x2b 2 u
(3-6) (3-7)
从式(3-7)可知,x2可以受控制量u的控制, 从式(3-6)又知,x1与u无关, 即不受u控制。
x (k 1 ) G (k ) x H (k )u
其中u(k)是标量控制作用,在(k, k+1)区间内是个常值。
能控性定义为: 若存在控制作用序列u(k), u(k+1), u(l-1)能将
第k步的某个状态x(k)在第l步上到达零状态,即: x(l)=0,其中l是大于k的有限数,那么就称此状态 是能控的。若系统在第k步上的所有状态x(k)都是 能控的,那么此系统是状态完全能控的,称为能控 系统。
-
13
b b 1 b 2 b n T
为简明起见,下面举三个具有上述类型的二阶 系统,对能控性加以剖析。
x 0 1 0 2 x b 0 2 u ; yc1 c2x
(3-3)
x 0 1 1 1 x b 0 2 u; yc1 c2x
(3-4)
x 0 1 1 1 x b 0 1 u; yc1 c2x
因而只有一个特殊状态
x(t)
0 x2(t)
是能控状态,故为状态不完全能控的,因而为不能
控系统。
-
15
就状态空间而言,如图3-2所示。
能控部分是图中 粗线所示的一条线, 它属于能控状态子空 间,除此子空间以外 的整个空间,都是不 能控的状态子空间。
-
16
式(3-3)系统的方块结构图如图3-3所示。
能 控 性 和 能 观 性 正 是 分 别 分 析 u(t) 对 状 态 x(t) 的控制能力以及输出y(t)对状态x(t)的反映能力。
-
2
本章将在详细讨论能控性和能观性定义的基 础上,介绍有关判别系统能控性和能观性的准则, 以及能控性与能观性之间的对偶关系。
然后介绍如何通过非奇异变换把能控系统和 能观系统的动力学方程化成能控标准型和能观标 准型,把不完全能控系统和不完全能观系统的动 力学方程进行结构分解。
在线性定常系统中,能控性与能达性是可以 互逆的,即能控系统一定是能达系统,能达系统 一定是能控系统。
-
8
3) 在讨论能控性问题时,控制作用从理论上说是 无约束的,其取值并非唯一的,因为我们关心的只 是它能否将x(t0)驱动到x(tf)而不计较x的轨迹如何。
-
9
三、离散时间系统
只考虑单输入的n阶线性定常离散系统
第三章 线性控制系统的能控性和能观性
§3-1 能控性的定义 §3-2 线性定常系统能控性判别 §3-3 线性连续定常系统能观性 §3-4 离散时间系统的能控性与能观性 §3-6 能控性与能观性的对偶关系 §3-7 状态空间表达式的能控标准型与能观标准型 §3-8 线性系统的结构分解 §3-9 传递函数矩阵的实现问题 §3-10 传递函数中零极点对消与状态能控性和
它是一个并联型 的结构,而对应x1(t) 这个方块而言, 是一 个 与 u(t) 无 联 系 的 孤 立部分,而状态x2(t) 受 u(t) 影 响 , 故 x1(t) 不能控的。
-
17
x 0 1
1 0
1 x b 2 u;
yc1
c2x
2) 对于式(3-4)的系统,系统矩阵A为约旦型,微分