最新物理选修3-5知识点总结归纳复习过程
高三物理一轮复习:教科版选修3-5知识点总结
3-5知识点总结(精华版)一.波粒二象性1、黑体辐射:黑体辐射的规律为温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动。
普朗克提出量子理论很好的解释了黑体辐射规律 2.光电效应: 光照到金属上,打出电子的现象赫兹最早发现光电效应现象,爱因斯坦引入普朗克量子理论提出了光子说,成功解释了光电效应。
(1)光电效应的规律①任何一种金属都有一个截止频率,低于这个截止频率则不能发生光电效应. ②光电子的最大初动能与入射光的强度无关,随入射光频率的增大而增大.③光电效应的发生几乎是瞬时的.④大于截止频率的光照射金属时,光电流强度与入射光强度成正比. (2)光电流与电压的关系给光电管加反向电压时,随电压的增大,光电流逐渐减小,当电压大于或等于遏止电压时,光电流为0.如图所示,给光电管加正向电压时,随电压的增大光电流逐渐增大,当电压增大到某一值时,光电流达到饱和值,再增大电压,光电流不再增加. 由由I -U 图象可以得到的信息(1)遏止电压U c :图线与横轴的交点的绝对值.(2)饱和光电流I m :电流的最大值.(3)最大初动能:E km =eU c . 3.光电效应方程(1)最大初动能与入射光子频率的关系:E k =hν-W 0.(2)若入射光子的能量恰等于金属的逸出功W 0,则光电子的最大初动能为零,入射光的频率就是金属的截止频率.此时有hνc =W 0,即νc =W 0h,可求出截止频率(极限频率,极限波长)(3)E k -ν曲线:如图所示,由E k =hν-W 0可知,横轴上的截距是金属的截止频率或极限频率,纵轴上的截距是金属的逸出功的负值,斜率为普朗克常量h .爱因斯坦光电效应方程:E k =hν-W 0. 最大初动能与遏止电压的关系:E k =eU c . 逸出功与极限频率、极限波长λ0的关系:W 0=hνc =h cλ0. 3.物质波(德布罗意波)由光的波粒二象性的思想推广到微观粒子和任何运动着的物体上去,得出物质波(德布罗意波)的概念:任何一个运动着的物体都有一种波与它对应,该波的波长λ=h p .二、原子的结构1.电子的发现:汤姆孙研究阴极射线发现了电子,并提出了原子的枣糕式模型.密立根油滴实验精确测出电子电量,进一步证实电子存在,并揭示电荷是量子化的,非连续的2.α粒子散射实验:卢瑟福和他的助手进行了用α粒子轰击金箔的实验,发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来.为了解释α粒子的大角度散射,卢瑟福提出了原子的核式结构模型:在原子中心有一个很小的核,原子全部正电荷和几乎全部的质量都集中在核里,带负电的电子在核外空间绕核旋转.3、①各种原子的发射光谱都是线状谱,说明原子只发出几种特定频率的光。
物理选修3-5知识点-总结
物理选修3-5知识点-总结物理选修3-5知识点总结一、动量守恒定律1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲)注意:内力的冲量对系统动量是否守恒没有影响,但可改变系统内物体的动量。
内力的冲量是系统内物体间动量传递的原因,而外力的冲量是改变系统总动量的原因。
2、动量守恒定律的表达式m1v1+m2v2=m1v1/+m2v2/(规定正方向)△p1=—△p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
必须注意区别总动量守恒与某一方向动量守恒。
4、碰撞(1)完全非弹性碰撞:获得共同速度,动能损失最多动量守恒,;(2)弹性碰撞:动量守恒,碰撞前后动能相等;动量守恒,;动能守恒,;特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度vmmmmvBABAA+-=,vB=02vmmmBAA+.特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度)(3)一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。
5、人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv = MV (注意:几何关系)二、量子理论的建立黑体和黑体辐射1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε= hν。
h为普朗克常数(6.63×10-34J.S)2、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。
物理选修3-5知识点总结
物理选修3-5知识点总结
物理选修3-5知识点总结
物理选修3-5主要涵盖了电磁学和光学方面的知识。
下面是该部
分的主要内容。
1. 电磁感应定律:法拉第电磁感应定律描述了磁场变化产生的
感应电动势。
磁通量的改变可以产生感应电流。
2. 洛仑兹力和洛仑兹力密度:洛仑兹力是带电粒子在磁场中受
到的力,其大小与电荷、速度和磁场强度有关。
洛仑兹力密度描述了
电流在磁场中所受的力。
3. 涡旋电场和磁场:涡旋电场是由磁场随时间变化时产生的电场。
涡旋磁场是由电荷随时间变化时产生的磁场。
4. 波动光学:包括干涉和衍射两个主要部分。
干涉是光波相互
叠加而形成明暗条纹的现象。
衍射是光波经过小孔或绕过物体时产生
弯曲或扩散的现象。
5. 偏振光:偏振光是指振动方向限制在特定方向上的光波。
通
过偏振片可以将非偏振光转化为偏振光。
6. 光的多普勒效应:当光源和观察者相对运动时,光的频率和
波长会发生变化。
对于光源接近观察者,频率增大,波长缩短;对于
光源远离观察者,频率减小,波长增加。
7. 雅克比行列式:雅克比行列式用来计算坐标变换时的雅克比
矩阵的行列式。
在电动力学和光学中经常用到。
8. 光的干涉衍射仪:光的干涉衍射仪包括双缝干涉、单缝衍射、光栅衍射等装置。
利用这些装置,可以观察到光波的干涉和衍射现象。
以上是物理选修3-5的主要知识点总结,涵盖了电磁学和光学的
相关内容。
高中物理选修3-5知识点整理
高中物理选修3-5知识点梳理一、动量 动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式P = mv 。
单位是s m kg .动量是矢量,其方向就是瞬时速度的方向。
因为速度是相对的,所以动量也是相对的。
2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。
②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。
③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。
④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。
⑤动量守恒定律也可以应用于分动量守恒的情况。
有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。
⑥动量守恒定律有广泛的应用范围。
只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。
系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。
3、动量与动能、动量守恒定律与机械能守恒定律的比较。
动量与动能的比较:①动量是矢量, 动能是标量。
②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。
物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版
物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中物理选修3-5知识点梳理一、动量动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式P = mv。
单位是skg .动量是矢量,其方向就是瞬时速度的方向。
因为速度是相对的,所以m动量也是相对的。
2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。
②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。
③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。
④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。
⑤动量守恒定律也可以应用于分动量守恒的情况。
有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。
⑥动量守恒定律有广泛的应用范围。
只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。
系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。
3、动量与动能、动量守恒定律与机械能守恒定律的比较。
动量与动能的比较:①动量是矢量, 动能是标量。
高中物理选修3-5知识点总结
高中物理选修3-5 知识点总结高中物理选修3-5 知识点总结动量守恒定律①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式P=mv。
单位是。
动量是矢量,其方向就是瞬时速度的方向。
因为速度是相对的,所以动量也是相对的。
2、动量守恒定律当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。
②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。
③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。
④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。
⑤动量守恒定律也可以应用于分动量守恒的情况。
有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。
⑥动量守恒定律有广泛的应用范围。
只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。
系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。
3、动量与动能、动量守恒定律与机械能守恒定律的比较。
动量与动能的比较:①动量是矢量, 动能是标量。
②动量是用来描述机械运动互相转移的物理量,而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究高中物理选修3-5 知识点总结碰撞过程改变成内能的机械能则要用动能为损失去计算了。
(完整版)高中物理选修3-5知识点汇总.docx
高中物理 3-5 知识点汇编第一章动量1.冲量物体所受外力和外力作用时间的乘积;矢量;过程量;I=Ft ;单位是N· s。
2.动量物体的质量与速度的乘积;矢量;状态量; p=mv;单位是 kg ·m/s;1kg ·m/s=1 N ·s。
3.动量守恒定律一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
(内力:系统内物体之间的相互作用;外力:系统外物体对系统内物体的作用力)4.动量守恒定律成立的条件①系统不受外力或者所受外力的矢量和为零;②内力远大于外力;③如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。
5.动量定理物体所受合外力的冲量等于动量的变化;I=mv 末-mv 初。
6.反冲:在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。
7.碰撞物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。
8.弹性碰撞如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。
物体 m1以速度 v0与静止的物体m2发生弹性碰撞,碰撞后两物体的速度分别为v1m1m2v0v22m1v0m1m2m1 m29.非弹性碰撞碰撞过程中需要计算损失的动能的碰撞;如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞。
第二章波粒二象性1.热辐射一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。
2.黑体如果某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物质就是绝对黑体,简称黑体。
3.黑体辐射黑体辐射的电磁波的强度按波长分布,只与黑体的温度有关。
4.黑体辐射规律一方面随着温度升高各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。
5.能量子普朗克认为振动着的带电粒子的能量只能是某一最小能量的整数倍,这个不可再分的最小能量值叫做能量子;并且=h,是电磁波的频率,h为普朗克常量,h=6.63 10 34 J· s;光子的能量为h。
高中物理选修3-5知识点整理
高中物理選修3-5知識點梳理一、動量 動量守恆定律 1、動量:可以從兩個側面對動量進行定義或解釋:①物體的品質跟其速度的乘積,叫做物體的動量。
②動量是物體機械運動的一種量度。
動量的運算式P = mv 。
單位是s m kg .動量是向量,其方向就是瞬時速度的方向。
因為速度是相對的,所以動量也是相對的。
2、動量守恆定律:當系統不受外力作用或所受合外力為零,則系統的總動量守恆。
動量守恆定律根據實際情況有多種運算式,一般常用等號左右分別表示系統作用前後的總動量。
運用動量守恆定律要注意以下幾個問題: ①動量守恆定律一般是針對物體系的,對單個物體談動量守恆沒有意義。
②對於某些特定的問題, 例如碰撞、爆炸等,系統在一個非常短的時間內,系統內部各物體相互作用力,遠比它們所受到外界作用力大,就可以把這些物體看作一個所受合外力為零的系統處理, 在這一短暫時間內遵循動量守恆定律。
③計算動量時要涉及速度,這時一個物體系內各物體的速度必須是相對於同一慣性參照系的,一般取地面為參照物。
④動量是向量,因此“系統總動量”是指系統中所有物體動量的向量和,而不是代數和。
⑤動量守恆定律也可以應用於分動量守恆的情況。
有時雖然系統所受合外力不等於零,但只要在某一方面上的合外力分量為零,那麼在這個方向上系統總動量的分量是守恆的。
⑥動量守恆定律有廣泛的應用範圍。
只要系統不受外力或所受的合外力為零,那麼系統內部各物體的相互作用,不論是萬有引力、彈力、摩擦力,還是電力、磁力,動量守恆定律都適用。
系統內部各物體相互作用時,不論具有相同或相反的運動方向;在相互作用時不論是否直接接觸;在相互作用後不論是粘在一起,還是分裂成碎塊,動量守恆定律也都適用。
3、動量與動能、動量守恆定律與機械能守恆定律的比較。
動量與動能的比較: ①動量是向量, 動能是標量。
②動量是用來描述機械運動互相轉移的物理量而動能往往用來描述機械運動與其他運動(比如熱、光、電等)相互轉化的物理量。
高中物理选修3-5知识重点归纳
高中物理选修3-5知识重点归纳高中物理选修3-5知识重点归纳高中物理这门自然科学课程比较比较难学,很多理科生都比较头疼这门科目,不管是必修课本,还是选修课本,都要求掌握。
下面是店铺为大家整理的高中物理必备的知识,希望对大家有用!高中物理选修3-5知识波粒二象性一、量子论1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。
2.量子论的主要内容①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。
②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。
3.量子论的发展①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。
②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。
③到1925年左右,量子力学最终建立。
二、黑体和黑体辐射1.热辐射现象任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。
这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。
①物体在任何温度下都会辐射能量。
②物体既会辐射能量,也会吸收能量。
物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。
辐射和吸收的能量恰相等时称为热平衡。
此时温度恒定不变。
实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。
2.黑体物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领。
黑体是指在任何温度下,全部吸收任何波长的辐射的物体。
3.实验规律:①随着温度的升高,黑体的辐射强度都有增加;②随着温度的升高,辐射强度的极大值向波长较短方向移动。
高中物理重点知识机械运动机械运动:一物体相对其它物体的位置变化。
1.参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);2.质点:只考虑物体的质量、不考虑其大小、形状的物体;(1)质点是一理想化模型;(2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;如:研究地球绕太阳运动,火车从北京到上海;3.时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;例:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;4.位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;(1)位移为零、路程不一定为零;路程为零,位移一定为零;(2)只有当质点作单向直线运动时,质点的位移才等于路程;(3)位移的国际单位是米,用m表示5.位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;(1)匀速直线运动的位移图像是一条与横轴平行的直线;(2)匀变速直线运动的位移图像是一条倾斜直线;(3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;6.速度是表示质点运动快慢的物理量(1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的`速度叫平均速度;(2)速率只表示速度的大小,是标量;7.加速度:是描述物体速度变化快慢的物理量;(1)加速度的定义式:a=vt-v0/t(2)加速度的大小与物体速度大小无关;(3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;(4)速度改变等于末速减初速。
高中物理选修35学习知识点整理.doc
高中物理选修3-5 知识点梳理一、动量动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式P =mv。
单位是kg m s.动量是矢量,其方向就是瞬时速度的方向。
因为速度是相对的,所以动量也是相对的。
2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。
②对于某些特定的问题,例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相, 互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理在这一短暂时间内遵循动量守恒定律。
③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。
④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。
⑤动量守恒定律也可以应用于分动量守恒的情况。
有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。
⑥动量守恒定律有广泛的应用范围。
只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。
系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。
3、动量与动能、动量守恒定律与机械能守恒定律的比较。
动量与动能的比较:①动量是矢量,动能是标量。
②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动 ( 比如热、光、电等 ) 相互转化的物理量。
高中物理选修3-5知识点汇总
高中物理选修3-5知识点汇总第一章动量动量是物体的质量和速度的乘积,是一个矢量,单位为kg·m/s。
冲量是物体所受外力和外力作用时间的乘积,也是一个矢量,单位为N·s。
动量守恒定律指出,一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
内力是系统内物体之间的相互作用,而外力是系统外物体对系统内物体的作用力。
动量守恒定律成立的条件包括:①系统不受外力或者所受外力的矢量和为零;②内力远大于外力;③如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。
动量定理指出,物体所受合外力的冲量等于动量的变化。
反冲是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化。
碰撞是指物体间相互作用持续时间很短,而物体间相互作用力很大的现象,系统动量守恒。
弹性碰撞是指如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。
非弹性碰撞是指碰撞过程中需要计算损失的动能的碰撞,如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞。
第二章波粒二象性热辐射是指一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。
绝对黑体是指某种物体能够完全吸收入射的各种波长的电磁波而不发生反射的物质。
黑体辐射的电磁波的强度按波长分布,只与黑体的温度有关。
黑体辐射规律指出,随着温度升高各种波长的辐射强度都有增加,而辐射强度的极大值向波长较短的方向移动。
能量子是指振动着的带电粒子的能量只能是某一最小能量的整数倍,这个不可再分的最小能量值叫做能量子,能量子等于普朗克常量h乘以电磁波的频率。
光电效应是指照射到金属表面的光使金属中的电子从表面逸出的现象,逸出的电子称为光电子,电子脱离某种金属克服阻力所做功的最小值叫逸出功。
爱因斯坦光电效应方程指出,光电子的最大初动能等于能量子乘以光的频率减去逸出功。
和谱线每个原子都有一系列能级,能级之间的跃迁会产生特定的光谱线;光谱分为连续谱和线谱两类,线谱又分为吸收谱和发射谱。
高中物理选修3-5重要知识点总结
选修 3-5 知识汇总一、动量1. 动量: p = mv {方向与速度方向相同}2. 冲量: I = Ft {方向由 F 决定}3. 动量定理: I = p 或 Ft = mv – mv {p: 动量变化 p = mv –mv ,是矢量式 }toto4. 动量守恒定律: p = p 或 p = p ’也能够是 m 1v 1 m 2v 2//前总 后总 m 1v 1m 2v 25. ( 1)弹性碰撞: 系统的动量和动能均守恒m 1v 1 m 2v 2'' 1 2121 '21 ' 2m 1v1m 2v 2①m 1v 12 m 2v 2m 1v 1m 2v 2 ②222此中:当 v 2 =0 时,为一动一静碰撞,此时v 1' m 1 m 2 v 1 v 2' 2m 1 v 1m 1 m 2 m 1 m 2( 2)非弹性碰撞:系统的动量守恒,动能有损失 m 1v 1 m 2 v 2 m 1v 1' m 2v 2'( 3)完整非弹性碰撞:碰后连在一同成一整体m 1v 1 m 2 v 2 (m 1 m 2 )v 共 ,且动能损失最多6. 人船模型——两个本来静止的物体(人和船)发生互相作用时,不受其余外力,对这两个物体构成的系统来说,动量守恒,且任一时辰的总动量均为零,由动量守恒定律,有mv1 = MV2 (注意:几何关系)注: (1) 正碰又叫对心碰撞,速度方向在它们“中心”的连线上 ;(2) 以上表达式除动能外均为矢量运算, 在一维状况下可取正方向化为代数运算;( 3 )系统动量守恒的条件 : 合外力为零或系统不受外力, 则系统动量守恒 (碰撞问题、 爆炸问题、 反冲问题等) ;(4) 碰撞过程 ( 时间极短,发生碰撞的物体构成的系统) 视为动量守恒 , 原子核衰变时动量守恒 ;(5) 爆炸过程视为动量守恒,这时化学能转变为动能,动能增添;思虑 1:利用动量定理和动量守恒定律解题的步骤是什么? 思虑 2:动量变化 p 为正当,动量必定增大吗?(不必定)思虑 3:两个物体构成的系统动量守恒,此中一个物体的动量增大, 另一个物体的动量必定减小吗?动能呢?(不必定)思虑 4:两个物体碰撞过程按照的三条规律分别是什么?思虑 5:一动一静两个小球正碰撞,入射球和被撞球的速度范围如何计算?思虑 6:有哪些模型可视为一动一静弹性碰撞?有哪些模型可视为人船模型?人船模型存在哪些特别规律? 思虑 7:相同是动量守恒,碰撞,爆炸,反冲三者有何不一样?(有弹簧的弹性势能或火药的化学能,或许人体内 的化学能转变为动能的状况下,总动能增大) 二、波粒二象性1、1900年普朗克能量子假说,电磁波的发射和汲取是不连续的,而是一份一份的 E=hv2、赫兹发现了光电效应,1905 年,爱因斯坦量解说了光电效应,提出光子说及光电效应方程3、光电效应① 每种金属都有对应的c 和 W 0,入射光的频次一定大于这类金属极限频次才能发生光电效应② 光电子的最大初动能与入射光的强度没关,光随入射光频次的增大而增大( E Km hW 0 )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的动量守恒。
必须注意区别总动量守恒与某一方向动量守恒。
4、碰撞(1)完全非弹性碰撞:获得共同速度,动能损失最多动量守恒,;(2)弹性碰撞:动量守恒,碰撞前后动能相等;动量守恒,;动能守恒,;特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,vmmmmvBABAA+-=2vmmmBAA+(3)一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。
5、人船模型统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有(注意:几何关1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε= hν。
h为普朗克常数(6.63×10-34J.S)2、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。
3、黑体辐射:黑体辐射的规律为:温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长(1)光的电磁说使光的波动理论发展到相当完美的地步,但是它并不能解释光电效应的现象。
在光(包括不可见光)的照射下从物体发射出电子的现象叫做光电效应,发射出来的电子叫光电子。
(实验图在课本)(2)光电效应的研究结果:新教材:①存在饱和电流,这表明入射光越强,单位时间内发射的光电子数越多;②存在遏止电压:;③截止频率:光电子的能量与入射光的频率有关,而与入射光的强弱无关,当入射光的频率低于截止频率时不能发生光电效应;④效应具有瞬时性:光电子的发射几乎是瞬时的,一般不超过10-9s。
老教材:①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率................,才能产生光电效应;低于这个频率的光不能产生光电效应;②光电子的最大初动能与入射光的强度无关..................,只随着入射光频率的增大..而增大..;③入射光照到金属上时,光电子的发射几乎是瞬时的............,一般不超过10-9s;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。
(3)光电管的玻璃泡的内半壁涂有碱金属作为阴极K(与电源负极相连),是因为碱金属有较小的逸出功。
2、光子说:光本身就是由一个个不可分割的能量子组成的,频率为ν的光的能量子为hν。
这些能量子被成为光子。
3(掌握Ek/Uc—ν图象的物理意义)同时,hυ截止= W O(Ek是光电子的最大..直接飞出的光电子克服正电荷引力所做的功。
)年康普顿(美)在研究石墨对X射线的散射时发现:光子在介质中和物质微粒相互作用,可以使光的传播方向发生改变,这种现象叫光的散射。
2、在光的散射过程中,有些散射光的波长比入射光的波长略大.,这种现象叫康普顿效应。
1、光的波粒二象性:干涉、衍射和偏振..........又用无........以无可辩驳的事实表明光是一种波;光电效应和康普顿效应可辩驳的事实表明光是一种粒子,由于光既有波动性,又有粒子性,只能认为光具有波粒二象性。
但不可把光当成宏观观念中的波,也不可把光当成宏观观念中的粒子。
少量的光子表现出粒子性,大量光子运动表现为波动性;光在传播时显示波动性,与物质发生作用时,往往显示粒子性;频率小波长大的波动性显著,频率大波长小的粒子性显著。
(P41 电子干涉条纹对概率波的验证)2、光子的能量E=hν,光子的动量p=h/λ表示式也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ。
由以上两式和波速公式c=λν还可以得出:E = p c。
3、物质波:1924运动..着的物体都有一(P38 电子的衍射图样;电子显微镜的分辨率为何远远高于光学显微镜)4、概率波:从光子的概念上看,光波是一种概率波。
5、不确定关系:,△x表示粒子位置的不确定量,△p表示粒子在x方向上的动量的不确定量。
(为何粒子位置的不确定量△x越小,粒子动量的不确定量△p越大,用单缝衍射进行解释?P431、1897年汤姆生(英)发现了电子...........,提出原子的枣糕模型,揭开了研究原子结构的序幕。
(谁发现了阴极射线?)2、1909年起英国物理学家卢瑟福做了α粒子轰击金箔的实验,即α粒子散射实验(实验装置见必修本P257)得到出乎意料的结果:绝大多数...粒子却发生了较大的偏....α粒子穿过金箔后仍沿原来的方向前进,少数α转,并且有极少数α粒子偏转角超过了90°,有的甚至被弹回.....,偏转角几乎达到180°。
(P53 图)3、卢瑟福在1911年提出原子的核式结构学说:在原子的中心有一个很小的核,叫做原子核,原子的全部..正电荷.....都集中在原子核里,带负电的电子在核外空间里绕着核旋转。
...和几.乎全部质量按照这个学说,可很好地解释α粒子散射实验结果,α粒子散射实验的数据还可以估计..原子核的大-15原子序数=核电荷数=质子数=核外电子数。
1、光谱的种类:(1)发射光谱:物质发光直接产生的光谱。
炽热的固体、液体及高温高压气体发光产生连续光谱;稀薄气体发光产生线状谱,不同元素的线状谱线不同,又称特征谱线。
(2)吸收光谱:连续谱线中某些频率的光被稀薄气体吸收后产生的光谱,元素能发射出何种频率的光,就相应能吸收何种频率的光,因此吸收光谱也可作元素的特征谱线。
2、氢原子的光谱是线状的(这些亮线称为原子的特征谱线),即辐射波长是分立的。
利用元素的特征谱线(线状谱或吸收光谱)鉴别物质的分析方法。
卢瑟福的原子核式结构学说跟经典的电磁理论发生矛盾(矛盾为:a、原子是不稳定的;b、原子光谱是连续谱),1913年玻尔(丹麦)在其基础上,把普朗克的量子理论运用到原子系统上,提出玻尔理论。
2、玻尔理论的假设:(1)原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量,这些状态叫做定态。
氢原子的各个定态的能量值,叫做它的能级。
原子处于最低能级时电子在离核最近的轨道上运动,这种定态叫做基态..;原子处于较高能级时电子在离核较远的轨道上运动的这些定态叫做激发态。
(2)原子从一种定态(设能量为E n)跃迁到另一种定态(设能量为E m)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即(能级图见3-5第64页)(3)原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
原子的定态是不连续...的,因此电子的可能轨道的分布也是不连续...的。
3、玻尔计算公式:r n =n2 r1 , E n = E1/n2 (n=1,2,3⋯⋯)r1 =0.53⨯10-10 m , E1 = -13.6eV ,分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量。
(选定离核无限远处的电势能为零,电子从离核无限远处移到任一轨道上,都是电场力做正功,电势能减少,所以在任一轨道上,电子的电势能都是负值,而且离核越近,电势能越小。
)4、加热的方法,使分子热运动加剧,分子间的相互碰撞可以传递能量)。
原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。
5、一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为N= 。
6、玻尔模型的成功之处在于它引入了量子概念(提出了能级和跃迁的概念,能解释气体导电时发光的机理、氢原子的线状谱),局限之处在于它过多地保留了经典理论(经典粒子、轨道等),无法解释复杂原子的光谱。
7、现代量子理论认为电子的轨道只能用电子云来描述。
8、光谱测量发现原子光谱是线状谱和夫兰克—赫兹实验证实了原子能量的量子化(即原子中分立能级的存发现质子即氢原子核。
核反应方程______________。
2、卢瑟福预想到原子内存在质量跟质子相等的不带电的中性粒子,即中子。
查德威克经过研究,证明:用天α射线轰击铍时,会产生一种看不见的贯穿能力很强(10-20厘米的铅板)的不带电粒子,用其轰击石蜡时,竟能从石蜡中打出质子,此贯穿能力极强的射线即为设想中的中子。
核反应方程___ ______________。
3、质子和中子统称核子,原子核的电荷数等于其质子数,原子核的质量数等于其质子数与中子数的和。
具有相同质子数的原子属于同一种元素;具有相同的质子数和不同的中子数的原子互称同位素。
4、天然放射现象(1)人类认识原子核有复杂结构和它的变化规律...............,是从天然放射现象开始的。
(2)1896年贝克勒耳发现放射性,在他的建议下,玛丽·居里和皮埃尔·居里经过研究发现了新元素钋和镭。
(3)用磁场来研究放射线的性质(图见3-5第74页):①α射线带正电,偏转较小,α粒子就是氦原子核,贯穿本领很小,电离作用很强,使底片感光作用很强;②β射线带负电,偏转较大,是高速电子流,贯穿本领很强(几毫米的铝板),电离作用较弱;③γ射线中电中性的,无偏转,是波长极短的电磁波,贯穿本领最强(几厘米的铅板),电离作用很1、原子核由于放出某种粒子而转变为新核的变化叫做原子核的衰变。
在衰变中电荷数和质量数都是守恒的(注意:质量并不守恒。
)。
γ射线是伴随...处于..α射线或β射线产生的,没有单独的γ衰变(γ衰变:原子核较高能级....,辐射光子后跃迁到低能级。
)。
α衰变举例;β衰变举例。
2、半衰期:放射性元素的原子核有半数发生衰变...本身的因..........需要的时间。
放射性元素衰变的快慢是由核内部素决定,与原子所处的物理状态或化学状态无关,它是对大量原子的统计规律..........。
N= ,1、放射性同位素的应用:a、利用它的射线(贯穿本领、电离作用、物理和化学效应);b、做示踪原子。
2、放射性同位素的防护:过量的射线对人体组织有破坏作用,这些破坏往往是对细胞核的破坏,因此,在使1、由于核子间存在着强大的核力(核子之间的引力,特点:①核力与核子是否带电无关②短程力,其作用范围为m 10100.2-⨯,只有相邻的核子间才发生作用),所以核子结合成原子核(例_______________________)或原子核分解为核子(例_______ _____)时,都伴随着巨大的能量变化。
核子结合为原子核时释放的能量或原子核分解为核子时吸收的能量叫原子核的结合能,亦称核能。
2、我们把核子结合生成原子核,所生成的原子核的质量比生成它的核子的总质量要小些,这种现象叫做质量亏损。
爱因斯坦在相对论中得出物体的质量和能量间的关系式_________________,就是著名的质能联系方程,简称质能方程。
1u=_____________kg 相当于____________MeV (此结论在计算中可直接应。