《结构力学》作业答案
结构力学作业及答案
A
B
C
D
E
F
G
*
3-19(b)
q=1k N/m
A
C
D
F
D
A
*
4.5
A
B
C
D
E
F
G
4.5
H
M图
I
A
B
C
F
G
FN图
-12k N
0
6k N
9k N
6k N
3k N
D
A
B
C
H
FQ图
I
*
3-21
FP
4m
4m
4m
4m
f=4m
A
B
C
D
E
x
y
FP
A
B
C
D
E
y
(a)
*
A
D
186次
B
y
FP
C
(b)
E
*
4-2
01
01
A
02
3a
03
K
*
5-8(a)用积分法求图中梁的跨中挠度(忽略剪切变形的影响)。
A
B
q
EI
l
A
B
A
B
q
*
A
A
B
186次
B
A
l/2
F
B
l/2
5-8(b)用积分法求图中梁的跨中挠度(忽略剪切变形的影响)。
EI P
*
5-11试求图示结构结点C的水平位移 ,设各杆的EA相等。
A
B
C
D
a
a
结构力学(1)阶段性作业4
结构力学(1)阶段性作业4一、单选题1. 静定结构因支座移动_____。
(7分)(A) 会产生内力,但无位移 (B) 会产生位移,但无内力 (C) 内力和位移均不会产生(D) 内力和位移均会产生参考答案:B2.用图乘法求位移的必要条件之一是_____。
(7分) (A) 单位荷载下的弯矩图为一直线; (B) 所有杆件EI 为常数且相同; (C) 结构可分为等截面直杆段;(D) 结构必须是静定的。
参考答案:C3.图示简支梁右端转角位移等于_____。
(7分)(A) :(顺时针) (B) : (顺时针) (C) :(逆时针) (D) : (逆时针)参考答案:D4.图示虚设的单位力系是为计算_____。
(7分)(A) B 、C 两点的相对水平线位移 (B) B 、C 两点的相对竖向线位移 (C) B 、C 两点的相对线位移 (D) B 、C 两点的绝对线位移参考答案:C5. 图示桁架在力P 作用下C 点的竖向位移_____。
(6分)(A) :(B) : (C) : (D) :参考答案:A6. 利用虚位移原理计算未知力,实质上是用_____方法解决_____问题。
(6分) (A) 几何、几何 (B) 几何、平衡 (C) 平衡、几何 (D) 平衡、平衡 参考答案:B二、判断题1. 对静定结构,支座移动或温度改变会产生内力。
(6分) 正确 错误参考答案:错误 解题思路:2. 功的互等定理成立的条件是小变形和线弹性。
(6分) 正确 错误参考答案:正确 解题思路:3. 图乘法可以用来计算曲杆。
(6分)正确错误参考答案:错误解题思路:4. 仅有支座位移的静定结构位移计算,如果单位广义力引起的反力均与支座位移同向,则所求位移必为正。
(6分)正确错误参考答案:错误解题思路:5. 结构的变形是由于某种外因的作用使结构产生应力和应变引起的。
(6分)正确错误参考答案:正确解题思路:6. 静定结构在温度改变、材料收缩和制造误差等因素的影响下不仅产生变形,同时产生内力。
结构力学(一)平时作业参考答案
1.叙述结构力学在实际工程领域中的作用。
答:该题涉及甚广,无标准答案,答题要求能联系教学内容列举一二,且叙述过程做到有理有据即可。
2.简单列举平面体系机动分析的基本方法,并举例说明其中一种方法的使用方法。
答:大体分为两刚片法和三刚片法,其中无多余约束的几何不变体系具有下述特征:1.一个刚片与两根链杆通过3个铰相连,且3个铰不在一直线上。
2.两个刚片用一个铰和一根链杆相联结,且3个铰不在同一直线上。
3.三个刚片用3个铰相连,且3个铰不在同一直线上。
4.两个刚片用3根链杆相连,且链杆不交于同一点。
此外,对于桁架也可尝试从计算自由度,零载法等进行分析,举例只需与其中一种方法相适应,且无原则性错误即可。
3.举例说明截面法和结点法计算静定桁架内力的基本方法。
答:结点法:以桁架结点为分析对象,利用平面汇交力系的基本平衡条件,首先计算支座力,再依次计算各杆内力。
截面法:用截面切断拟求内力的杆件,从桁架中截出一部分为隔离体,利用平面任意力系的基本平衡条件,计算各杆中的未知轴力。
如未知轴力只有三个,既不相交也不平行,则截面法可直接求出未知轴力。
举例要求能正确辨别分析对象,并建立相应的平衡方程。
4.举例说明对称性对简化结构力学分析的作用。
答:对称性通常对于结构形式和加载形式而言。
通常对于对称荷载下的对称结构、反对称荷载下的对称结构、任意荷载下的对称结构的几种典型的情况,均可在很大程度上简化问题,可降低结构的复杂性、减少计算的维数、使问题更加便于求解。
举例无标准答案,要求说明上述1种情况,并指出对称性的效用即可。
5.叙述何为三铰拱的合理轴线。
答:当三铰拱的轴线与压力线重合,各截面的弯矩和剪力都为零,此时轴线即为三铰拱的合理轴线。
6.简述梁、刚架结构在受力与变形方面的区别。
答:在外力作用下,梁承受弯矩和剪力的作用,其变形受制于弯矩和剪力,但通常以弯曲变形为主;刚架结构除了承受弯矩和剪力,可能还抵抗轴力的作用,其变形受制于弯矩、剪力以及轴力,同样地,通常也以弯曲变形为主,但还需要考虑刚架结构的几何形式,因此刚架结构的变形较梁复杂得多。
结构力学课后习题答案
结构⼒学课后习题答案附录B 部分习题答案2 平⾯体系的⼏何组成分析2-1 (1)× (2)× (3)√ (4)× (5)× (6)×。
2-2 (1)⽆多余约束⼏何不变体系;(2)⽆多余约束⼏何不变体系;(3)6个;(4)9个;(5)⼏何不变体系,0个;(6)⼏何不变体系,2个。
2-3 ⼏何不变,有1个多余约束。
2-4 ⼏何不变,⽆多余约束。
2-5 ⼏何可变。
2-6 ⼏何瞬变。
2-7 ⼏何可变。
2-8 ⼏何不变,⽆多余约束。
2-9⼏何瞬变。
2-10⼏何不变,⽆多余约束。
2-11⼏何不变,有2个多余约束。
2-12⼏何不变,⽆多余约束。
2-13⼏何不变,⽆多余约束。
2-14⼏何不变,⽆多余约束。
5-15⼏何不变,⽆多余约束。
2-16⼏何不变,⽆多余约束。
2-17⼏何不变,有1个多余约束。
2-18⼏何不变,⽆多余约束。
2-19⼏何瞬变。
2-20⼏何不变,⽆多余约束。
2-21⼏何不变,⽆多余约束。
2-22⼏何不变,有2个多余约束。
2-23⼏何不变,有12个多余约束。
2-24⼏何不变,有2个多余约束。
2-25⼏何不变,⽆多余约束。
2-26⼏何瞬变。
3 静定梁和静定刚架3-1 (1) √;(2) ×;(3) ×;(4) √;(5) ×;(6) √;(7) √;(8) √。
3-2 (1) 2,下;(2) CDE ,CDE ,CDEF ;(3) 15,上,45,上;(4) 53,-67,105,下; (5) 16,右,128,右;(6) 27,下,93,左。
3-3 (a) 298AC M ql =-,Q 32AC F ql =;(b) M C = 50kN·m ,F Q C = 25kN ,M D = 35kN·m ,F Q D = -35kN ;(c) M CA = 8kN·m ,M CB = 18kN·m ,M B = -4kN·m ,F Q BC = -20kN ,F Q BD = 13kN ; (d) M A = 2F P a ,M C = F P a ,M B = -F P a ,F Q A = -F P ,F Q B 左 = -2F P ,F Q C 左 = -F P 。
结构力学课后习题答案
习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。
题3-1图3-2 试不计算反力而绘出梁的M 图。
题3-2图习题44-1 作图示刚架的M 、Q 、N 图。
题4-1图4-2 作图示刚架的M 图。
(b)(a)20kN40kN20kN/m40kN(b)5kN/m40kN(a)(c)(b)(a)题4-2图4-3 作图示三铰刚架的M 图。
题4-3图4-4 作图示刚架的M 图。
题4-4图4-5 已知结构的M 图,试绘出荷载。
P(e)(d)(a)(b)(c)/4kN(b)(a)(a)(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。
题4-6图习题55-1 图示抛物线三铰拱轴线方程,试求D 截面的内力。
题5-1图5-2 带拉杆拱,拱轴线方程,求截面K 的弯矩。
题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。
习题66-1 判定图示桁架中的零杆。
(e)(g)(h)P(d)(c)(a)(b)(f)x x l l fy )(42-=x x l lfy )(42-=C题6-1图6-2 用结点法计算图示桁架中各杆内力。
题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。
题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。
题6-4图6-5 用适宜方法求桁架中指定杆内力。
(c)(b)(b)(b)(a)题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。
中国农大网院《结构力学》作业答案第一套
对以下图示体系作几何组成分析。
如有多余的约束的几何不变体系,指出其多余约束的数目。
1、2、3、4、5、6、7、8、对以下图示静定结构进行内力分析,并作出内力图。
9、10、11、12、13、14、15、抛物线三铰拱轴线方程求:(1)支座反力(2)截面E内力(3)截面D点左右两侧的剪力和轴力。
16、抛物线三铰拱,铰C位于抛物线的顶点和最高点求:(1)铰C到支座A的水平距离(2)求支座反力(3)求D点处截面弯矩。
17、求指定杆件内力。
18、求指定杆件内力。
19、求指定杆件内力。
20、求指定杆件内力。
21、求B处的转角和C处的竖向位移(EI=常数)。
22、已知E=210Gpa,A=12×10-4m2,I=36×10-6m2,求A点的竖向位移。
23、求C点的竖向位移。
24、求D点的水平位移。
(1)设支座A向左移动1cm(2)设支座A下沉1cm(3)设支座B下沉1cm。
25、求C点的水平位移,设桁架各杆EA相等。
26、求C点的水平位移。
27、设三铰刚架内部升温30℃,外部温度不变,各杆截面为矩形,截面高度h相同,求C点竖向位移。
28、设柱AB由于材料收缩产生应变ε1,求B点的水平位移。
第一套作业答案1.没有多余约束的几何不变体系2.瞬变体系,没有多余约束3.没有多余约束的几何不变体系4.一个多余约束的几何不变体系5.没有多余约束的几何不变体系6.瞬变体系,没有多余约束7.没有多余约束的几何不变体系8.一个多余约束的几何不变体系。
结构力学试题及参考答案
《结构力学》作业参考答案一、判断题(将判断结果填入括弧内,以 √表示正确 ,以 × 表示错误。
)1.图示桁架结构中有3个杆件轴力为0 。
(×)2.图示悬臂梁截面A 的弯矩值是ql 2。
(×)ll3.静定多跨梁中基本部分、附属部分的划分与所承受的荷载无关。
(√ ) 4.一般来说静定多跨梁的计算是先计算基本部分后计算附属部分。
(× ) 5.用平衡条件能求出全部内力的结构是静定结构。
( √ )6.求桁架内力时截面法所截取的隔离体包含两个或两个以上的结点。
(√ ) 7.超静定结构的力法基本结构不是唯一的。
(√)8.在桁架结构中,杆件内力不是只有轴力。
(×)9.超静定结构由于支座位移可以产生内力。
(√ ) 10.超静定结构的内力与材料的性质无关。
(× ) 11.力法典型方程的等号右端项不一定为0。
(√ )12.计算超静定结构的位移时,虚设力状态可以在力法的基本结构上设。
(√)13.用力矩分配法计算结构时,汇交于每一结点各杆端分配系数总和为1,则表明分配系数的计算无错误。
(× )14.力矩分配法适用于所有超静定结构的计算。
(×)15.当AB 杆件刚度系数i S AB 3 时,杆件的B 端为定向支座。
(×)二、单项选择题(在每小题的四个备选答案中选出一个正确答案,并将其代号填在题干后面的括号内。
不选、错选或多选者,该题无分。
)1.图示简支梁中间截面的弯矩为( A )qlA.82qlB.42qlC.22qlD.2 ql2.超静定结构在荷载作用下产生的内力与刚度(B)A.无关 B.相对值有关C.绝对值有关 D.相对值绝对值都有关3.超静定结构的超静定次数等于结构中(B )A.约束的数目 B.多余约束的数目C.结点数 D.杆件数4.力法典型方程是根据以下哪个条件得到的(C)。
A.结构的平衡条件B.结构的物理条件C.多余约束处的位移协调条件D.同时满足A、B两个条件5.图示对称结构作用反对称荷载,杆件EI为常量,利用对称性简化后的一半结构为(A )。
结构力学第五版课后习题答案
结构力学第五版课后习题答案结构力学第五版课后习题答案结构力学是工程学中的一门重要学科,它研究物体在受力作用下的变形和破坏行为。
对于学习结构力学的学生来说,课后习题是巩固知识和提高能力的重要途径。
本文将为大家提供结构力学第五版课后习题的答案,希望能对大家的学习有所帮助。
第一章:引言第一章主要介绍了结构力学的基本概念和基本原理。
习题一般涉及力的分解、合成、平衡条件等内容。
以下是一道典型的习题及其答案:习题1.1:一个物体受到一个力F,该力可分解为两个力F1和F2,方向如图所示。
已知F1=3N,F2=4N,求F的大小和方向。
解答:根据力的平衡条件,可以得到F1+F2=F。
代入已知数据,得到3N+4N=F,即F=7N。
根据力的合成,可以得到F的方向与F1和F2的方向相反,即向左。
第二章:静力学基本原理第二章主要介绍了静力学的基本原理,包括力的作用点、力的大小、力的方向等。
习题一般涉及受力分析、力矩计算等内容。
以下是一道典型的习题及其答案:习题2.1:一个杆AB长2m,质量为10kg。
在杆的中点C处施加一个力P=20N,方向向上。
求杆的重力作用点与杆的中点C之间的距离。
解答:首先计算杆的重力,即重力=质量×重力加速度=10kg×9.8m/s²=98N。
由于杆是均匀杆,所以重力作用点在杆的中点C处。
因此,重力作用点与杆的中点C之间的距离为0。
第三章:平面结构的受力分析第三章主要介绍了平面结构的受力分析方法,包括平衡方程、约束条件等。
习题一般涉及平面结构的受力分析和计算等内容。
以下是一道典型的习题及其答案:习题3.1:一个桥梁由两个杆组成,杆AB和杆BC的长度分别为3m和4m。
桥梁的两端A和C分别受到一个力Fa和Fc,方向如图所示。
已知Fa=10N,Fc=15N,求桥梁的重力。
解答:根据平衡方程,可以得到力的合成关系:Fa+Fc=重力。
代入已知数据,得到10N+15N=重力,即重力=25N。
结构力学课后习题答案
结构力学课后习题答案附录B 部分习题答案2 平面体系的几何组成分析2-1 (1)×(2)×(3)√(4)×(5)×(6)×。
2-2 (1)无多余约束几何不变体系;(2)无多余约束几何不变体系;(3)6个;(4)9个;(5)几何不变体系,0个;(6)几何不变体系,2个。
2-3 几何不变,有1个多余约束。
2-4 几何不变,无多余约束。
2-5 几何可变。
2-6 几何瞬变。
2-7 几何可变。
2-8 几何不变,无多余约束。
2-9几何瞬变。
2-10几何不变,无多余约束。
2-11几何不变,有2个多余约束。
2-12几何不变,无多余约束。
2-13几何不变,无多余约束。
2-14几何不变,无多余约束。
5-15几何不变,无多余约束。
2-16几何不变,无多余约束。
2-17几何不变,有1个多余约束。
2-18几何不变,无多余约束。
2-19几何瞬变。
2-20几何不变,无多余约束。
2-21几何不变,无多余约束。
2-22几何不变,有2个多余约束。
2-23几何不变,有12个多余约束。
2-24几何不变,有2个多余约束。
2-25几何不变,无多余约束。
2-26几何瞬变。
3 静定梁和静定刚架3-1 (1) √;(2) ×;(3) ×;(4) √;(5) ×;(6)√;(7) √;(8) √。
3-2 (1) 2,下;(2) CDE ,CDE ,CDEF ;(3) 15,上,45,上;(4) 53,-67,105,下;(5) 16,右,128,右;(6) 27,下,93,左。
3-3 (a) 298ACM ql =-,Q 32ACF ql =; (b) M C = 50kN·m ,F Q C = 25kN ,M D = 35kN·m ,F Q D = -35kN ;(c) M CA = 8kN·m ,M CB = 18kN·m ,M B =-4kN·m ,F Q BC = -20kN ,F Q BD = 13kN ; (d) M A = 2F P a ,M C = F P a ,M B = -F P a ,F Q A = -F P ,F Q B 左 = -2F P ,F Q C 左 = -F P 。
结构力学课后习题答案
结构力学课后习题答案结构力学是一门研究结构在外力作用下的内力、变形和稳定性的学科。
课后习题是帮助学生巩固理论知识和提高解题技巧的重要环节。
以下是一些结构力学课后习题的参考答案,供学习者参考:第一章:结构力学基础1. 静定结构与超静定结构的区别:静定结构是指在已知外力作用下,其内力和位移可以通过静力平衡方程和几何关系唯一确定的结构。
超静定结构则是指静力平衡方程和几何关系不足以唯一确定其内力和位移的结构。
2. 弯矩图的绘制方法:绘制弯矩图首先需要确定结构的支反力,然后通过截面平衡条件,逐步求出各截面的弯矩值,并将其绘制成图形。
第二章:静定梁的内力分析1. 简支梁的内力计算:对于简支梁,可以通过静力平衡条件和截面平衡条件来计算梁的内力,包括剪力和弯矩。
2. 悬臂梁的内力计算:悬臂梁的内力计算需要考虑梁端的外力和力矩,通过静力平衡条件求解。
第三章:静定桁架的内力分析1. 节点法的应用:节点法是通过在桁架的节点上施加平衡条件来求解节点的反力,进而求得杆件的内力。
2. 截面法的应用:截面法是通过选取桁架的某一截面,对该截面进行平衡分析,求得截面两侧杆件的内力。
第四章:静定拱的内力分析1. 三铰拱的内力计算:三铰拱的内力计算通常需要利用静力平衡条件和几何关系,计算出拱的反力和弯矩。
2. 双铰拱和无铰拱的内力特点:双铰拱和无铰拱的内力计算更为复杂,需要考虑更多的平衡条件和几何关系。
第五章:超静定结构的内力分析1. 力法的应用:力法是通过建立力的平衡方程来求解超静定结构的内力,通常需要引入多余未知力。
2. 位移法的应用:位移法是通过建立位移的平衡方程来求解超静定结构的内力,通常需要引入位移未知数。
第六章:结构的稳定性分析1. 欧拉临界载荷的计算:欧拉临界载荷是指细长杆件在轴向压力作用下失稳的临界载荷,可以通过欧拉公式计算。
2. 非线性稳定性分析:对于非线性问题,稳定性分析需要考虑材料的非线性特性和几何非线性,通常需要采用数值方法求解。
《结构力学习题》(含答案解析)
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M k M p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
a a9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
a a a 10kN/m12、求图示结构E 点的竖向位移。
EI = 常数 。
l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m 3m 3m14、求图示刚架B 端的竖向位移。
ql15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
q16、求图示刚架中D点的竖向位移。
EI =常数。
l/217、求图示刚架横梁中D点的竖向位移。
EI=常数。
18、求图示刚架中D点的竖向位移。
E I = 常数。
qll l/219、求图示结构A、B两截面的相对转角,EI=常数。
l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。
ll21、求图示结构B点的竖向位移,EI = 常数。
《结构力学》课后习题答案__重庆大学出版社
第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。
( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。
( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。
( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。
()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。
(2)错误。
0W 是使体系成为几何不变的必要条件而非充分条件。
(3)错误。
(4)错误。
只有当三个铰不共线时,该题的结论才是正确的。
(5)错误。
CEF 不是二元体。
(6)错误。
ABC 不是二元体。
(7)错误。
EDF 不是二元体。
习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。
习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。
习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。
结构力学第二版课后习题答案
结构力学第二版课后习题答案结构力学第二版课后习题答案结构力学是一门研究物体受力情况和力学性质的学科,它在工程领域中有着广泛的应用。
结构力学的学习不仅需要理论的掌握,还需要通过实际的习题来加深对知识的理解和运用。
本文将为大家提供《结构力学》第二版课后习题的答案,希望能够帮助大家更好地学习和应用结构力学知识。
第一章弹性力学基础1.1 弹性力学的基本概念1. 弹性力学是研究物体在外力作用下发生形变时,恢复到原来形态的力学学科。
2. 牛顿第二定律:物体所受合外力等于物体质量乘以加速度。
3. 弹性体:在外力作用下,物体发生形变,当外力消失后,物体能够完全恢复到原来的形态。
4. 弹性力学的基本假设:线弹性假设、小变形假设、平面假设。
1.2 应力和应变1. 应力:单位面积上的力,即单位面积上的力的大小。
2. 应变:物体在外力作用下发生的形变程度。
3. 线弹性假设下的应力-应变关系:胡克定律,即应力与应变成正比。
4. 应力张量:描述物体内部各点上的应力状态,是一个二阶张量。
1.3 弹性体的本构关系1. 本构关系:描述物体应力和应变之间的关系。
2. 弹性体的本构关系:胡克定律。
3. 弹性模量:描述物体对应力的敏感程度。
4. 剪切模量:描述物体对剪切应力的敏感程度。
第二章弹性力学的基本方程2.1 平衡方程与应力平衡方程1. 平衡方程:描述物体在力的作用下的平衡状态。
2. 应力平衡方程:描述物体在外力作用下的应力分布情况。
2.2 应变平衡方程1. 应变平衡方程:描述物体在外力作用下的应变分布情况。
2.3 弹性力学基本方程1. 弹性力学基本方程:包括平衡方程、应力平衡方程和应变平衡方程。
第三章弹性体的力学性质3.1 弹性体的应力分析1. 弹性体的平面应力问题:在一个平面上受力的弹性体。
2. 弹性体的平面应变问题:在一个平面上发生应变的弹性体。
3.2 弹性体的弯曲1. 弹性体的弯曲:在外力作用下,物体发生弯曲变形。
2. 弯曲方程:描述弯曲变形的关系。
中南大学《结构力学》课程作业一及参考答案(可编辑)
中南大学《结构力学》课程作业一及参考答案一单选题1图示桁架结点A处水平位移不等于零的有()。
AabBacCbcDabc参考答案:A2图示体系的几何组成是()。
A 无多余约束的几何不变体系B 几何可变体系C 有多余约束的几何不变体系D 瞬变体系参考答案:A3图示体系的几何组成是()。
A 无多余约束的几何不变体系B 几何可变体系C 有多余约束的几何不变体系D 瞬变体系参考答案:D4对于图示结构,下面结论是正确的是()。
A 该结构为桁架结构。
B 该结构是组合结构,其中只有杆57是受拉或受压杆(桁杆)。
C 杆123的内力只有轴力。
D 除杆34外,其余各杆均为桁杆。
参考答案:B5图示线弹性梁上先加F1,A、B两点挠度分别为、,再加F2,A、B两点挠度分别增加、,则F1做的总功为()。
ABCD参考答案:D6已知图a中A端转角,则图b中中梁的B端弯矩及A端转角为()。
ABCD参考答案:D7图示体系的几何组成是()。
A 无多余约束的几何不变体系B 几何可变体系C 有多余约束的几何不变体系D 瞬变体系参考答案:D8图示刚架,BC杆的B端弯矩为()。
A 25kN.m上拉B 25kN.m下拉C 10kN.m上拉D 10kN.m下拉参考答案:B9图示各体系中,几何不变且无多余约束的体系是()。
A 图aB 图bC 图cD 图d参考答案:D10图示有一切口的圆,外侧降温,内侧升温,切口处水平相对位移、铅直相对位移和相对转角的符号为(设虚力状态分别为图a、图b和图c)()。
A 大于0、小于0,等于0B 大于0、等于0,小于0C 等于0、小于0,大于0参考答案:C11对图示结构,结论正确的是()。
AB ,C ,D ,参考答案:B12图示结构A截面转角为(顺时针转为正)()。
ABCD参考答案:C13图示结构,B截面转角方向是()。
A 顺时针B 逆时针C 等于0参考答案:B14图示结构杆1的轴力以拉为正为()。
A 0BCD 2F参考答案:B15对比图(a)、(b)所示同一结构两种外因作用情况下C点的挠度和弯矩,下面结论成立的是()。
结构力学第四版习题及答案
结构力学第四版习题及答案习题1:一个弹簧的刚度系数为k,长度为L,在其两端分别施加力F1和
F2,求弹簧的形变量。
答案:根据胡克定律,弹簧的形变量与施加的力成正比,即x = (F1 - F2) / k。
习题2:一个悬臂梁的长度为L,截面为矩形,宽度为b,高度为h,材料的弹性模量为E,梁上的集中力为P,求梁的最大弯矩。
答案:悬臂梁的最大弯矩发生在集中力作用点,即Mmax = P * L。
习题3:一根悬臂梁的长度为L,截面为矩形,宽度为b,高度为h,材料的弹性模量为E,梁上均匀分布的荷载为q,求梁的最大挠度。
答案:悬臂梁的最大挠度发生在梁的自由端,即δmax = (5qL^4) /
(384Ebh^3)。
习题4:一根梁上有两个集中力,分别为P1和P2,作用点距离为a,梁的长度为L,求梁的反力。
答案:根据力的平衡条件,可以得到反力F1和F2的表达式: F1 = (P1 * a + P2 * L) / L F2 = (P1 * (L - a) + P2 * L) / L
习题5:一根悬臂梁的长度为L,截面为矩形,宽度为b,高度为h,材料的弹性模量为E,梁上均匀分布的荷载为q,求梁的最大剪力。
答案:悬臂梁的最大剪力发生在梁的支点处,即Vmax = qL / 2。
《结构力学》习题解答(内含解答图)
习题2-13试对图示体系进行几何组成分析。
习题2-13图习题2-13解答图
解:将原图结点进行编号,并将支座6换为单铰,如图(b)。取基础为刚片Ⅰ,△134为刚片Ⅱ,△235为刚片Ⅲ,由规则一知,三刚片用三个不共线的铰联结组成几何不变体。在此基础上增加二元体674、785,而杆38看作多余约束。杆910由铰联结着链杆10,可看作二元体,则整个体系为有一个多余约束的几何不变体系。
习题2-7试对图示体系进行几何组成分析。
习题2-7图习题2-7解答图
解:将题中的折杆用直杆代替,如图(b)所示。杆CD和链杆1由铰D联结构成二元体可以去掉;同理,去掉二元体杆CE和链杆2,去掉二元体ACB,则只剩下基础,故整个体系为几何不变体系,且无多余约束。
另外也可用基础与杆AC、杆BC是由不共线的三个铰联结,组成几何不变体,在此几何不变体上增加二元体杆CD和链杆1、杆CE和链杆2的方法分析。,
习题2-8试对图示体系进行几何组成分析。
习题2-8图习题2-8解答图
解:为了便于分析,对图中的链杆和刚片进行编号,分析过程见图2-21(b)。首先去掉二元体NMI、JNI,然后分析剩余部分。杆AD由固定支撑与基础联结形成一体,构成几何不变体,在此基础上增加二元体DEB、EFC、EHF形成刚片Ⅰ(注意固定铰支座与铰相同);铰结△GIJ为刚片Ⅱ;刚片I与刚片Ⅱ之间用不交于一点的杆DI、杆GI、杆HJ相连,组成几何不变体。
习题2-18试对图示体系进行几何组成分析。
解:将原图结点进行编号,并将固定铰支座换为单铰,如图(b)。折杆AD上联结杆EF,从几何组成来说是多余约束;同理,折杆CD上联结杆EF也是多余约束。取基础为刚片Ⅰ,折杆AD为刚片Ⅱ,折杆CD为刚片Ⅲ。刚片Ⅰ与刚片Ⅱ是由链杆A和杆BD相连,刚片Ⅰ与刚片Ⅲ是由链杆C相连,注意,杆BD只能使用一次。由规则二知,体系为几何可变体系。
结构力学习题答案
附录B 部分习题答案2 平面体系的几何组成分析2-1 (1)× (2)× (3)√ (4)× (5)× (6)×。
2-2 (1)无多余约束几何不变体系 ;(2)无多余约束几何不变体系;(3)6个;(4)9个 ; (5)几何不变体系,0个;(6)几何不变体系,2个。
2-3 几何不变,有1个多余约束。
2-4 几何不变,无多余约束。
2-5 几何可变。
2-6 几何瞬变。
2-7 几何可变。
2-8 几何不变,无多余约束。
2-9几何瞬变。
2-10几何不变,无多余约束。
2-11几何不变,有2个多余约束。
2-12几何不变,无多余约束。
2-13几何不变,无多余约束。
2-14几何不变,无多余约束。
5-15几何不变,无多余约束。
2-16几何不变,无多余约束。
2-17几何不变,有1个多余约束。
2-18几何不变,无多余约束。
2-19几何瞬变。
2-20几何不变,无多余约束。
2-21几何不变,无多余约束。
2-22几何不变,有2个多余约束。
2-23几何不变,有12个多余约束。
2-24几何不变,有2个多余约束。
2-25几何不变,无多余约束。
2-26几何瞬变。
3 静定梁和静定刚架3-1 (1) √;(2) ×;(3) ×;(4) √;(5) ×;(6) √;(7) √;(8) √。
3-2 (1) 2,下;(2) CDE ,CDE ,CDEF ;(3) 15,上,45,上;(4) 53,-67,105,下; (5) 16,右,128,右;(6) 27,下,93,左。
3-3 (a) 298AC M ql =-,Q 32AC F ql =;(b) M C = 50kN·m ,F Q C = 25kN ,M D = 35kN·m ,F Q D = -35kN ;(c) M CA = 8kN·m ,M CB = 18kN·m ,M B = -4kN·m ,F Q BC = -20kN ,F Q BD = 13kN ; (d) M A = 2F P a ,M C = F P a ,M B = -F P a ,F Q A = -F P ,F Q B 左 = -2F P ,F Q C 左 = -F P 。
(完整版)结构力学-习题集(含答案)
A.绝对不可; B.可以,但不必; C.一定条件下可以; D.必须。
33. 计算刚架时,位移法的基本结构是( C )。
A.单跨静定梁的集合体;
B.静定刚架;
C.单跨超静定梁的集合体; D.超静定铰结体。
34. 在位移法基本方程中,kij 代表( A )。
A.只有⊿j=1 时,由于⊿j=1 在附加约束 i 处产生的约束力;
54. 下图所示结构的超静定次数是 n=8。( X )
55. 超静定结构在荷载作用下的内力计算与各杆刚度相对值有关。( √ ) 56. 超静定结构在支座移动、温度变化影响下会产生内力。( √ ) 57. 超静定结构中的杆端力矩只取决于杆端位移。( X ) 58. 位移法的基本结构有多种选择。( X ) 59. 位移法是计算超静定结构的基本方法,不能求解静定结构。( X ) 60. 位移法方程的物理意义是结点位移的变形协调方程。( X )
由
Fy
0
, FRB
FRA
FP 2
( )(1
分)
取 BE 部分为隔离体
ME
0 , 6FyB
6FRB
即 FyB
FP 2
( )(2 分)
由
Fx
0
得
FyA
FP 2
(
)(1
分)
三、计算题 1 61. 解:
第 14 页 共 26 页
2qa2/3
q
D 2qa2/3 C
2qa2/3
B q(2a)2/8 = qa2/2
FxB
FxA A
FyB
FyA
取整体为研究对象,由 M A 0,得
2aFyB aFxB 2qa2 0 (1)(2 分)
取 BC 部分为研究对象,由 MC 0 ,得
结构力学课后练习题+答案
2cm
A CB 2cm 2cm
42、求图示结构 A 点竖向位移(向上为正) AV 。
M EI
EI A
a
EI
EI = ∞ 1
3 EI
K = a3
a
a
43、求图示结构 C 点水平位移 CH ,EI = 常数。
M B
2l
C 6 EI k=
l3
A l
44、求图示结构 D 点水平位移 DH 。EI= 常数。
a/ 2 D
a
A
c1
A'
a
B B'
aห้องสมุดไป่ตู้
c2
35、图示结构 B 支座沉陷 = 0.01m ,求 C 点的水平位移。
C l
A
B
l/2 l/2
—— 25 ——
《结构力学》习题集
36、结构的支座 A 发生了转角 和竖向位移 如图所示,计算 D 点的竖向位移。
A
D
l
l l/ 2
37、图示刚架 A 支座下沉 0.01l ,又顺时针转动 0.015 rad ,求 D 截面的角位移。
P
P
l
l
l
l
18、用力法计算图示结构并作弯矩图。
—— 31 ——
100 kN C EI
《结构力学》习题集
100 kN D
2 EI A
2 EI
4m
B
1m
6m
1m
19、已知 EI = 常数,用力法计算并作图示对称结构的 M 图。
q
q
EA=
l
l
l
20、用力法计算并作图示结构的 M 图。EI =常数。
a
P q
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.×
13、复铰是连接三个或三个以上刚片的铰
A.√
14、结构发生了变形必然会引起位移,结构有位移必然有变形发生。
B.×
15、如果梁的截面刚度是截面位置的函数,则它的位移不能用图乘法计算。
A.√
16、一根连杆相当于一个约束。
A.√
17、单铰是联接两个刚片的铰。
A.√
B.×
30.
答:
31.几何组成分析
答:依次去掉二元体剩组成分析
答:依次去掉基础、二元体,剩下图示部分为两刚片用两个铰相联,有一个多余约束,故原体系为有一个多余约束的几何不变系。
33、简述刚架内力计算步骤。
答:(1)求支座反力。简单刚架可由三个整体平衡方程求出支座反力,三铰刚架及主从刚架等,一般要利用整体平衡和局部平衡求支座反力。(2)求控制截面的内力。控制截面一般选在支承点、结点、集中荷载作用点、分布荷载不连续点。控制截面把刚架划分成受力简单的区段。运用截面法或直接由截面一边的外力求出控制截面的内力值。(3)根据每区段内的荷载情况,利用“零平斜弯”及叠加法作出弯矩图。作刚架Q、N图有两种方法,一是通过求控制截面的内力作出;另一种方法是首先作出M图;然后取杆件为分离体,建立矩平衡方程,由杆端弯矩求杆端剪力;最后取结点为分离体,利用投影平衡由杆端剪力求杆端轴力。当刚架构造较复杂(如有斜杆),计算内力较麻烦事,采用第二种方法。(4)结点处有不同的杆端截面。各截面上的内力用该杆两端字母作为下标来表示,并把该端字母列在前面。(5)注意结点的平衡条件。
6、结构的刚度是指
C.结构抵抗变形的能力
7、桁架计算的截面法所选分离体包含几个结点
B.最少两个
8、对结构进行强度计算的目的,是为了保证结构
A.既经济又安全
9、可动铰支座有几个约束反力分量
A. 1个
10、固定支座(固定端)有几个约束反力分量
C. 3个
11、改变荷载值的大小,三铰拱的合理拱轴线不变。
A.√
34、1、结构力学的主要研究内容。
2、几何组成分析目的。
3、如何确定独立角位移数目。
4、简述刚架内力计算步骤。
5、简述计算结构位移的目的。
6、在位移法中须解决哪些问题。
答:1、结构力学的主要研究内容。
答:结构由荷载、支座移动、温度变化、制造误差引起的内力计算——称为强度计算;结构由荷载、支座移动、温度变化、制造误差引起的变形及位移计算——称为刚度计算;结构的稳定计算;结构的组成规律及计算简图的选择。“结构力学”就是研究结构在荷载作用下的内力和变形的计算问题。
4、简述刚架内力计算步骤。
答:(1)求支座反力。简单刚架可由三个整体平衡方程求出支座反力,三铰刚架及主从刚架等,一般要利用整体平衡和局部平衡求支座反力。(2)求控制截面的内力。控制截面一般选在支承点、结点、集中荷载作用点、分布荷载不连续点。控制截面把刚架划分成受力简单的区段。运用截面法或直接由截面一边的外力求出控制截面的内力值。(3)根据每区段内的荷载情况,利用“零平斜弯”及叠加法作出弯矩图。作刚架Q、N图有两种方法,一是通过求控制截面的内力作出;另一种方法是首先作出M图;然后取杆件为分离体,建立矩平衡方程,由杆端弯矩求杆端剪力;最后取结点为分离体,利用投影平衡由杆端剪力求杆端轴力。当刚架构造较复杂(如有斜杆),计算内力较麻烦事,采用第二种方法。(4)结点处有不同的杆端截面。各截面上的内力用该杆两端字母作为下标来表示,并把该端字母列在前面。(5)注意结点的平衡条件。
18、连接四个刚片的复铰相当于四个约束。
B.×
19、虚功原理中的力状态和位移状态都是虚设的。
B.×
20、带拉杆三铰拱中拉杆的拉力等于无拉杆三铰拱的水平推力。
A.√
21、瞬变体系在很小的荷载作用下会产生很大的内力,所以不能作为结构使用。
A.√
22、一个无铰封闭框有三个多余约束。
A.√
23、三铰拱的水平推力不仅与三铰的位置有关,还与拱轴线的形状有关。
B.×
24、三铰拱的主要受力特点是:在竖向荷载作用下产生水平反力。
A.√
25、两根链杆的约束作用相当于一个单铰。
B.×
26、不能用图乘法求三铰拱的位移。
A.√
27、零杆不受力,所以它是桁架中不需要的杆,可以撤除。
B.×
28、用图乘法可以求等刚度直杆体系的位移。
A.√
29、连接四个刚片的复铰相当于四个约束。
2、几何组成分析目的。
答:(1)判别某一体系是否为几何不变,从而决定它能否作为结构。(2)区别静定结构、超静定结构,从而选定相应计算方法。(3)搞清结构各部分间的相互关系,以决定合理的计算顺序。
3、如何确定独立角位移数目。
答:由于在同一结点处,各杆端的转角都是相等的,因此每一个刚结点只有一个独立的角位移未知量。在固定支座处,其转角等于零为已知量。至于铰结点或铰支座处各杆端的转角,它们不是独立的,可不作为基本未知量。这样,结构独立角位移数目就等于结构刚结点的数目。
答:(1)单跨超静定梁在杆端发生各种位移、荷载、温度等因素作用下的内力。(2)哪些结点位移作为基本未知量。(3)如何确定基本未知量(求出位移)。
35、结构力学的主要研究内容。
答:结构由荷载、支座移动、温度变化、制造误差引起的内力计算——称为强度计算;结构由荷载、支座移动、温度变化、制造误差引起的变形及位移计算——称为刚度计算;结构的稳定计算;结构的组成规律及计算简图的选择。“结构力学”就是研究结构在荷载作用下的内力和变形的计算问题。
5、简述计算结构位移的目的。
答:(1)验算结构的刚度。校核结构的位移是否超过允许限值,以防止构件和结构产生过大的变形而影响结构的正常使用。
(2)为超静定结构的内力分析打基础。超静定结构的计算要同时满足平衡条件和变形连续条件。
(3)结构制作、施工过程中也常需先知道结构的位移。
6、在位移法中须解决哪些问题。
[0729]《结构力学》
1、桁架计算的结点法所选分离体包含几个结点
A.单个
2、固定铰支座有几个约束反力分量
B. 2个
3、从一个无多余约束的几何不变体系上去除二元体后得到的新体系是
A.无多余约束的几何不变体系
4、两刚片用三根延长线交于一点的链杆相连组成
A.瞬变体系
5、定向滑动支座有几个约束反力分量
B. 2个