2. 2.1 圆的标准方程课件(北师大版必修二)

合集下载

2.2.1 圆的标准方程 课件(北师大必修2)

2.2.1 圆的标准方程 课件(北师大必修2)


写出圆的标准方程.
3.点到圆的位置关系的判断 给出点M(x0,y0)和圆C:(x-a)2+(y-b)2=r2,通 过比较点到圆心的距离和半径的大小关系,得到: (1)点M在圆C上⇔(x0-a)2+(y0-b)2=r2;
(2)点M在圆C外⇔(x0-a)2+(y0-b)2>r2;
(3)点M在圆C内⇔(x0-a)2+(y0-b)2<r2.
∴点 A 在圆内.
∵|BM|=
1-02+8-12= 50=r,
∴点 B 在圆上. ∵|CM|= 6-02+5-12= 52>r,
∴点 C 在圆外.
[一点通]
求圆的方程,只需确定圆心和半径就可
以写出其标准方程;判定点与圆的位置关系,可以判定 该点与圆心的距离和圆的半径的大小关系,也可将该点 坐标代入圆的方程判断.
[例1]
求满足下列条件的圆的标准方程.
(1)圆心为(2,-2),且过点(6,3). (2)过点A(-4,-5),B(6,-1)且以线段AB为直径. (3)圆心在直线x=2上且与y轴交于两点A(0,-4),
B(0,-2).
[思路点拨] 首先确定圆心坐标和半径大小,然后再
写出圆的标准方程.
[精解详析](1)由两点间距离公式,得r= 6-22+3+22= 41, ∴所求圆的标准方程为(x-2)2+(y+2)2=41. (2)圆心即为线段AB的中点,为(1,-3). 又|AB|= -4-62+-5+12=2 29,
1 7 即圆心坐标为C(-4,4). 又∵圆的半径r=|OC|= 12 72 -4 +4 = 25 8,
12 7 2 25 ∴所求的圆的方程为(x+4) +(y-4) = 8 .
[一点通]
求圆的标准方程一般有两种思路:一是

2-2-1圆的标准方程课件(北师大版必修二)

2-2-1圆的标准方程课件(北师大版必修二)

确定圆心的位置是解决本题的切入点, 同时, 本题易 漏掉圆心在直线 y=-2x 上这种情况.纠正错误的关键是弄清 距离的概念,审题时要做到滴水不漏。
单击此处进入
活页限时训练

自学导引 1.确定圆的条件 一个圆的 圆心 位置和 半径 一旦给定,这个圆就确定了,如 图所示.
2.圆的标准方程 (1)圆的定义:到定点的距离等于 定长 的点的集合叫圆,定点 叫做圆的 圆心 ,定长 称为圆的半径. (2)方程:圆心为 C(a,b),半径为 r 的圆的标准方程
(x-a)2+(y-b)2=r2 . 是
2.几种特殊位置的圆的方程
条 件 圆心在原 点
方程形式
x2+y2=r2(r≠0)
(x-a)2+(y-b)2=a2+ b2(a2+b2≠0) (x-a)2+y2=r2(r≠0)
过原点
圆心在x 轴上 圆心在y 轴上 圆心在x 轴
x2+(y-b)2=r2(r≠0)
(x-a)2+y2=a2(a≠0)
3.确定圆的方程的方法 (1)确定圆的方程的主要方法是待定系数法.如果选择标准式, 即列出 a、b、r 的方程组,求 a、b、r 或直接求出圆心(a,b) 和半径 r,一般步骤为: ①根据题意,设所求的圆的标准方程为(x-a)2+(y-b)2=r2; ②根据已知条件,建立关于 a、b、r 的方程组; ③解方程组,并把它们代入所设的方程中去,整理后就得到所 求.
∴圆 C 的方程为(x-2)2+(y-4)2=17.
本题出错原因在于没有理解题意,错将圆心到 x、y 轴的距离直接当成圆心(a,b)中 a、b 的值,这是错误的.而事 实上,圆心到 x、y 轴距离应该是|a|、|b|,从而圆心在直线 y= 2|x|上. [正解] 由圆心到 x 轴的距离是它到 y 轴的距离的 2 倍可知,圆 心必在直线 y=2x 或 y=-2x 上. 又∵圆过点 A(1,0),B(3,0), ∴圆心必在线段 AB 的垂直平分线 x=2 上. 从而可知圆心 C 为(2,4)或(2,-4). 又 r2=|AC|2=17, ∴圆的方程为(x-2)2+(y-4)2=17 或(x-2)2+(y+4)2=17.

2. 2.1 圆的标准方程课件(北师大版必修二)

2.  2.1   圆的标准方程课件(北师大版必修二)

5.若点(3, a )在圆x2+y2=16的外部,则a的取值范围 是________.
解析:∵(3, a)在圆x2+y2=16的外部, ∴9+( a)2>16, ∴a>7.
答案:(7,+∞)
6.判断四点A(4,2),B(5,0),C(3,2),D(3,6)是否在同 一个
圆上. 解:∵BC的中点为(4,1),kBC=-1,
解:(1)代入圆的标准方程得 (x+3)2+(y-4)2=5. (2)∵半径r= 8-52+-3-12=5. 所以圆的标准方程为: (x-8)2+(y+3)2=25.
[例2]
一圆过原点O和点P(1,3),圆心在直线y=
x+2上,求此圆的标准方程.
[思路点拨] 利用代数法,构造方程求解a、b、r,
x2+y2=r2 .
1.根据圆的定义,确定圆的条件是两个:即圆
心和半径,只需确定了这两者,圆就被唯一确定了.
2.圆的标准方程中具有三个参变量a,b,r, 因此确立圆的方程需三个独立的条件,根据条件列出 以a,b,r为变量的方程组,解方程组求出a,b,r的 值即能写出圆的标准方程.
3.点到圆的位置关系的判断 给出点M(x0,y0)和圆C:(x-a)2+(y-b)2=
r2,通过比较点到圆心的距离和半径的大小关系,得
到:
(1)点M在圆C上⇔(x0-a)2+(y0-b)2=r2;
(2)点M在圆C外⇔(x0-a)2+(y0-b)2>r2;
(3)点M在圆C内⇔(x0-a)2+(y0-b)2<r2.
[例1]
求满足下列条件的圆的标准方程.
(1)圆心为(2,-2),且过点(6,3). (2)过点A(-4,-5),B(6,-1)且以线段AB为 直径. (3)圆心在直线x=2上且与y轴交于两点A(0,-4),

2. 2.1 圆的标准方程课件(北师大版必修二)

2.  2.1   圆的标准方程课件(北师大版必修二)

a=2, 解此方程组,得b=-3, r2=25, ∴△ABC的外接圆的方程是(x-2)2+(y+3)2=25.
4.求过点A(2,-3),B(-2,-5)且圆心C在直线x

2y-3=0上的圆的方程. 解:法一:因为A(2,-3),B(-2,-5),
1 所以AB中点D(0,-4),kAB=2, AB的垂直平分线方程为y-(-4)=-2(x-0), 即2x+y+4=0.
∴半径r= 29. ∴所求圆的标准方程为(x-1)2+(y+3)2=29.
(3)由圆的几何意义知圆心坐标(2,-3), 半径r= 2-02+-3+22= 5,
∴圆的方程为(x-2)2+(y+3)2=5.
[一点通]
直接法求圆的标准方程,就是
根据题设条件,直接求圆心坐标和圆的半径这两 个几何要素,然后代入标准方程.
(y-2)2=1. x-12+y-22=1,化简得(x-1)2+
问题3:方程
x-22+y2=4表示的几何意义是什么?
提示:方程表示(x,y)到(2,0)的距离等4.
1.确定圆的条件 (1)几何特征:圆上任一点到圆心的距离等于 定长 . (2)确定圆的条件:圆心和半径. 2.圆的标准方程 (1)以C(a,b)为圆心,半径为r的圆的标准方程为 . (x-a)2+(y-b)2=r2 (2)当圆心在坐标原点时,半径为r的圆的标准方程为
[例3]
已知两点P(-5,6)和Q(5,-4),求以P、
Q为直径端点的圆的标准方程,并判断点A(2,2), B(1,8),C(6,5)是在圆上,在圆内,还是在圆外.
[思路点拨] 确定圆心、半径,写出圆的标准方
程,求出点到圆心的距离,作出判断.
[精解详析] 由已知条件及圆的性质可知,圆心 M 在直 径 PQ 的中点处,∴圆心 M 的坐标为(0,1). 1 1 半径 r= |PQ|= × -5-52+6+42=5 2 2 ∴圆的标准方程为 x2+(y-1)2=50. ∵|AM|= 2-02+2-12= 5<r, 2.

2-2-1圆的标准方程课件(北师大版必修二)

2-2-1圆的标准方程课件(北师大版必修二)

(3)当圆心是坐标原点时,有 a=b=0,那么圆的方程 为
x2+y2=r2
.
想一想:圆(x-1)2+(y-2)2=a2 的半径为 a 吗? 提示 由于 a 的正负性不知,故该圆的半径为|a|.
名师点睛 1.点与圆的位置关系 点与圆的位置关系有点在圆内、圆上、圆外三种.其判断方法 是:由两点间的距离公式求出该点到圆心的距离,再与圆的半 径比较大小或利用点与圆的方程来判定. 设点 M(x0,y0)到圆 C:(x-a)2+(y-b)2=r2 的圆心 C 的距离为 d,则 d=|MC|= x0-a2+y0-b2,
解 设圆心 C(a,b),半径长为 r,则由 C 为 P1P2 的中点,得 a 3+5 8+4 = 2 =4,b= 2 =6,即圆心坐标为 C(4,6), ∴r=|CP1|= 4-32+6-82= 5. 故所求圆的方程为(x-4)2+(y-6பைடு நூலகம்2=5. 分别计算点 M、N、P 到圆心 C 的距离: |CM|= 4-52+6-32= 10> 5, |CN|= 4-32+6-42= 5, |CP|= 3-42+5-62= 2< 5, 所以点 M 在此圆外,点 N 在此圆上,点 P 在此圆内.
5 的取值范围是-∞,-2,.
题型三 圆的标准方程的应用 【例 3】 (12 分)已知圆心在 x 轴上的圆 C 与 x 轴交于两点 A(1,0), B(5,0), (1)求此圆的标准方程; (2)设 P(x,y)为圆 C 上任意一点,求 P(x,y)到直线 x-y+1=0 的距 离的最大值和最小值. 审题指导 针对这个类型的题目一般考虑所求式子的几何意义,然后 利用数形结合的方法求出其最值. 根据题意 求出圆心 画直线 【解题流程】 → → 画出图形 和半径 x-y+1=0 得到P点到直线 → 的距离的最值

2.2.1 圆的标准方程 课件(北师大必修2)

2.2.1 圆的标准方程 课件(北师大必修2)
2x+y+4=0, 由方程组 x-2y-3=0, x=-1, 得 y=-2.
即圆心为(-1,-2). r=|CA|= -1-22+-2+32= 10. 故所求圆的方程为(x+1)2+(y+2)2=10.
法二:设所求圆的圆心坐标为(a,b),半径为r, 则方程为(x-a)2+(y-b)2=r2. 2-a2+-3-b2=r2, 2 2 2 由已知条件得-2-a +-5-b =r , a-2b-3=0,
提示: (y-2)2=1. x-12+y-22=1,化简得(x-1)2+
问题3:方程
x-22+y2=4表示的几何意义是什么?
提示:方程表示(x,y)到(2,0)的距离等4.
1.确定圆的条件 (1)几何特征:圆上任一点到圆心的距离等于 定长 . (2)确定圆的条件:圆心和半径. 2.圆的标准方程 (1)以C(a,b)为圆心,半径为r的圆的标准方程为
∴半径r= 29. ∴所求圆的标准方程为(x-1)2+(y+3)2=29.
(3)由圆的几何意义知圆心坐标(2,-3), 半径r= 2-02+-3+22= 5,
∴圆的方程为(x-2)2+(y+3)2=5.
[一点通]
直接法求圆的标准方程,就是根据
题设条件,直接求圆心坐标和圆的半径这两个几 何要素,然后代入标准方程.
2.对于特殊位置的圆的方程
条件 过原点,圆心为(a,b) 圆心在x轴上 圆心在y轴上 方程形式 (x-a)2+(y-b)2=a2+b2
(a2+b2≠0)
(x-a)2+y2=r2(r≠0) x2+(y-b)2=r2(r≠0)
圆心在x轴上且过原点
圆心在y轴上且过原点
(x-a)2+y2=a2(a≠0)
x2+(y-b)2=b2(b≠0)

2. 2.1 圆的标准方程课件(北师大版必修二)

2.  2.1   圆的标准方程课件(北师大版必修二)

1.确定圆的标准方程的方法 (1)直接法:直接确定圆和半径,适合易确定圆心 和半径的圆; (2)待定系数法:大部分求圆方程的题目均可以使 用; (3)几何法:充分利用平面几何的知识,结合交点
问题和距离公式求解.
2.对于特殊位置的圆的方程
条件 过原点,圆心为(a,b) 圆心在x轴上 圆心在y轴上 圆心在x轴上且过原点 圆心在y轴上且过原点 方程形式 (x-a)2+(y-b)2=a2+b2
B(0,-2).
[思路点拨] 首先确定圆心坐标和半径大小,然后 再写出圆的标准方程.
[精解详析](1)由两点间距离公式,得r= 6-22+3+22= 41, ∴所求圆的标准方程为(x-2)2+(y+2)2=41. (2)圆心即为线段AB的中点,为(1,-3). 又|AB|= -4-62+-5+12=2 29,
5.若点(3, a )在圆x2+y2=16的外部,则a的取值范围 是________.
解析:∵(3, a)在圆x2+y2=16的外部, ∴9+( a)2>16, ∴a>7.
答案:(7,+∞)
6.判断四点A(4,2),B(5,0),C(3,2),D(3,6)是否在同 一个
圆上. 解:∵BC的中点为(4,1),kBC=-1,
或者利用几何法找出圆的圆心和半径.
[精解详析]
法一:∵圆心在直线y=x+2上,
∴设圆心坐标为(a,a+2),半径为r,则圆的方 程为(x-a)2+(y-a-2)2=r2. ∵点O(0,0)和P(1,3)在圆上,
0-a2+0-a-22=r2, ∴ 1-a2+3-a-22=r2,
世界上较大的摩天轮中坐落于泰晤士河畔的 英航伦敦眼(BA London Eye),距地总高达135m. 然而,由于伦敦眼属于观景摩天轮结构,有些人认为其在 排行上应该与重力式的Femis Wheel分开来计算,因此世 界上最大的重力式摩天轮应是位于日本福冈的天空之梦福

【数学】 2.2.1 圆的标准方程 课件(北师大必修2)

【数学】 2.2.1 圆的标准方程 课件(北师大必修2)

Y
P(x,y)
A (-r,0)
O 0
一、建立适当的 直角坐标系,如 右图所示:以圆 B (r,0) X 心O为原点。
二、取圆上任意一点 P(x,y),则:OP=r
即:
( x 0) ( y 0) r
2 2
所以此圆的方程为:
即:x 2 y 2 r 2
求:圆心是C(a,b),半径是r的圆的方程 设P(x,y)是圆上任意一点, y
问:若此圆C的圆心为(2,
1),且与X轴相切,它的 方程是什么??
0
C(2,1) C(2,1)
X
x 2
2
y 1 1
2
X
下列方程分别表示什么 图形 ? (1) x 2 y 2 0; (3) y 1 x 2 (2)(x 1) 2 8 ( y 2) 2 (4) x 1 y 2
车高于隧道高度,故货车不能驶入此隧道。
练习:如图是某圆拱桥的一孔圆拱的示意图。该圆拱跨度AB=20m, 拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱A2P2的长 y 度(精确到0.01m)
解:建立如图所示的坐标 系,设圆心坐标是(0,b) 圆的半径是r ,则圆的方程是 x2+(y-b)2=r2 。
2
y 3 13
2
(4)以点A(-4,-1),B(6,-1)为 直径的圆的方程。 (分析:线段AB为直径,则圆心为线段 AB的中点,半径为线段AB的一半。) 解:以中点坐标公式有:圆心坐标 为(1,-1),又以两点距离公式 有:AB 6 4 2 1 12 10 所以圆的半径为5 2 2 故圆的方程为: x 1 y 1 25

2. 2.1 圆的标准方程课件(北师大版必修二)

2.  2.1   圆的标准方程课件(北师大版必修二)

a=2, 解此方程组,得b=-3, r2=25, ∴△ABC的外接圆的方程是(x-2)2+(y+3)2=25.
4.求过点A(2,-3),B(-2,-5)且圆心C在直线x

2y-3=0上的圆的方程. 解:法一:因为A(2,-3),B(-2,-5),
1 所以AB中点D(0,-4),kAB=2, AB的垂直平分线方程为y-(-4)=-2(x-0), 即2x+y+4=0.
世界上较大的摩天轮中坐落于泰晤士河畔的 英航伦敦眼(BA London Eye),距地总高达135m. 然而,由于伦敦眼属于观景摩天轮结构,有些人认为其在 排行上应该与重力式的Femis Wheel分开来计算,因此世 界上最大的重力式摩天轮应是位于日本福冈的天空之梦福
冈(Sky Dream Fukuoka, SDF),是座轮身直径112m,离
r2,通过比较点到圆心的距离和半径的大小关系,得
到:
(1)点M在圆C上⇔(x0-a)2+(y0-b)2=r2;
(2)点M在圆C外⇔(x0-a)2+(y0-b)2>r2;
(3)点M在圆C内⇔(x0-a)2+(y0-b)2<r2.
[例1]
求满足下列条件的圆的标准方程.
(1)圆心为(2,-2),且过点(6,3). (2)过点A(-4,-5),B(6,-1)且以线段AB为 直径. (3)圆心在直线x=2上且与y轴交于两点A(0,-4),
x2+y2=r2 .
1.根据圆的定义,确定圆的条件是两个:即圆
心和半径,只需确定了这两者,圆就被唯一确定了.
2.圆的标准方程中具有三个参变量a,b,r, 因此确立圆的方程需三个独立的条件,根据条件列出 以a,b,r为变量的方程组,解方程组求出a,b,r的 值即能写出圆的标准方程.

2.2.1 圆的标准方程 课件(北师大必修2)

2.2.1 圆的标准方程 课件(北师大必修2)

(x-a)2+(y-b)2=r2 .
(2)当圆心在坐标原点时,半径为r的圆的标准方程为
x2+y2=r2
.
1.根据圆的定义,确定圆的条件是两个:即圆心
和半径,只需确定了这两者,圆就被唯一确定了.
2.圆的标准方程中具有三个参变量a,b,r,因此 确立圆的方程需三个独立的条件,根据条件列出以a,
b,r为变量的方程组,解方程组求出a,b,r的值即能
1 a=-4, 解得 r2=25. 8 12 7 2 25 ∴所求的圆的方程为(x+4) +(y-4) = 8 .
法二:由题意,圆的弦OP所在直线的斜率为3,中 1 3 点坐标为(2,2), 3 1 1 ∴弦OP的垂直平分线方程为y-2=-3(x-2), 即x+3y-5=0. ∵圆心在直线y=x+2上,且圆心在弦OP的垂直平 分线上, 1 y=x+2, x=-4, ∴由 解得 x+3y-5=0, y=7, 4
(3)原方程可化为(x-3)2+(y-0)2=b2(b≠0). 所以圆心为(3,0),半径r=|b|. (4)原方程化为[x-(-3)]2+[y-(-4)]2=(2 所以圆心为(-3,-4),半径r=2 3. 3)2.
2.写出下列圆的标准方程. (1)圆心在C(-3,4),半径长是 5. (2)圆心在C(8,-3),且经过点M(5,1).
写出圆的标准方程.
3.点到圆的位置关系的判断 给出点M(x0,y0)和圆C:(x-a)2+(y-b)2=r2,通 过比较点到圆心的距离和半径的大小关系,得到: (1)点M在圆C上⇔(x0-a)2+(y0-b)2=r2;
(2)点M在圆C外⇔(x0-a)2+(y0-b)2>r2;
(3)点M在圆C内⇔(x0-a)2+(y0-b)2<r2.

2-2-1圆的标准方程课件(北师大版必修二)

2-2-1圆的标准方程课件(北师大版必修二)

自学导引 1.确定圆的条件 一个圆的 圆心 位置和 半径 一旦给定,这个圆就确定了,如 图所示.
2.圆的标准方程 (1)圆的定义:到定点的距离等于 定长 的点的集合叫圆,定点 叫做圆的 圆心 ,定长 称为圆的半径. (2)方程:圆心为 C(a,b),半径为 r 的圆的标准方程
(x-a)2+(y-b)2=r2 . 是
2.几种特殊位置的圆的方程
条 件 圆心在原 点
方程形式
x2+y2=r2(r≠0)
(x-a)2+(y-b)2=a2+ b2(a2+b2≠0) (x-a)2+y2=r2(r≠0)
过原点
圆心在x 轴上 圆心在y 轴上 圆心在x 轴
x2+(y-b)2=r2(r≠0)
(x-a)2+y2=a2(a≠0)
3.确定圆的方程的方法 (1)确定圆的方程的主要方法是待定系数法.如果选择标准式, 即列出 a、b、r 的方程组,求 a、b、r 或直接求出圆心(a,b) 和半径 r,一般步骤为: ①根据题意,设所求的圆的标准方程为(x-a)2+(y-b)2=r2; ②根据已知条件,建立关于 a、b、r 的方程组; ③解方程组,并把它们代入所设的方程中去,整理后就得到所 求.
故可设圆心坐标为(a,3a-2).又∵|CA|=|CB|, 故 a-32+3a-2-12= a+12+3a-2-32, 解得 a=2,∴圆心为(2,4),半径 r=|CA|= 10. 故所求圆的方程为(x-2)2+(y-4)2=10.
规律方法
求圆的标准方程一般有两种思路:①由圆的几何性
§ 圆与圆的方程 2 2.1 圆的标准方程
【课标要求】 1.掌握确定圆的几何要素. 2.掌握圆的标准方程,会根据不同条件求圆的标准方程. 3.能根据圆的标准方程求它的圆心和半径. 【核心扫描】 1.掌握圆的标准方程的形式.(重点) 2.利用待定系数法求圆的标准方程.(难点) 3.准确把握方程与曲线间的对应关系.(疑点)

2.2.1 圆的标准方程 课件(北师大必修2)

2.2.1 圆的标准方程 课件(北师大必修2)
y=x-3, 由 y=4, x=7, 得 y=4.
可得经过B、C、D三点的圆的方程为(x-7)2+(y -4)2=20. ∵(4-7)2+(2-4)2=13≠20, ∴A不在此圆上,因此A、B、C、D四点不在同一 个圆上.
1.确定圆的标准方程的方法 (1)直接法:直接确定圆和半径,适合易确定圆心和半 径的圆; (2)待定系数法:大部分求圆方程的题目均可以使用; (3)几何法:充分利用平面几何的知识,结合交点问 题和距离公式求解.
地总高120m的摩天轮.
中国最高的摩天轮“南昌之星”位于江西省南昌市红谷 滩新区红角洲赣江边上的赣江市人民公园,是南昌市标志 性建筑.该摩天轮总高度为160m,转盘直径为153m,比 位于英国泰晤士河边的135m高的“伦敦之眼”摩天轮还要 高,成为世界上较高的摩天轮之一.如何写出圆的方程呢?
问题1:在平面直角坐标系中,确定圆的几何要素是 什么? 提示:圆心和半径. 问题2:圆是到定点的距离等于定长的点的集合,到 点(1,2)的距离等于1的点(x,y)的集合怎样用方程表示?
[例1]
求满足下列条件的圆的标准方程.
(1)圆心为(2,-2),且过点(6,3). (2)过点A(-4,-5),B(6,-1)且以线段AB为直径. (3)圆心在直线x=2上且与y轴交于两点A(0,-4),
B(0,-2).
[思路点拨] 首先确定圆心坐标和半径大小,然后再
写出圆的标准方程.
[精解详析](1)由两点间距离公式,得r= 6-22+3+22= 41, ∴所求圆的标准方程为(x-2)2+(y+2)2=41. (2)圆心即为线段AB的中点,为(1,-3). 又|AB|= -4-62+-5+12=2 29,
[例3]
已知两点P(-5,6)和Q(5,-4),求以P、Q为

2.2.1 圆的标准方程 课件(北师大必修2)

2.2.1 圆的标准方程 课件(北师大必修2)

(3)原方程可化为(x-3)2+(y-0)2=b2(b≠0). 所以圆心为(3,0),半径r=|b|. (4)原方程化为[x-(-3)]2+[y-(-4)]2=(2 所以圆心为(-3,-4),半径r=2 3. 3)2.
2.写出下列圆的标准方程. (1)圆心在C(-3,4),半径长是 5. (2)圆心在C(8,-3),且经过点M(5,1).
2.对于特殊位置的圆的方程
条件 过原点,圆心为(a,b) 圆心在x轴上 圆心在y轴上 方程形式 (x-a)2+(y-b)2=a2+b2
(a2+b2≠0)
(x-a)2+y2=r2(r≠0) x2+(y-b)2=r2(r≠0)
圆心在x轴上且过原点
圆心在y轴上且过原点
(x-a)2+y2=a2(a≠0)
x2+(y-b)2=b2(b≠0)
或者利用几何法找出圆的圆心和半径.
[精解详析]
法一:∵圆心在直线y=x+2上,
∴设圆心坐标为(a,a+2),半径为r,则圆的方 程为(x-a)2+(y-a-2)2=r2. ∵点O(0,0)和P(1,3)在圆上,
0-a2+0-a-22=r2, ∴ 1-a2+3-a-22=r2,
解:(1)代入圆的标准方程得 (x+3)2+(y-4)2=5. (2)∵半径r= 8-52+-3-12=5. 所以圆的标准方程为: (x-8)2+(y+3)2=25.
[例2]
一圆过原点O和点P(1,3),圆心在直线y=x+2
上,求此圆的标准方程. [思路点拨] 利用代数法,构造方程求解a、b、r,
1 a=-4, 解得 r2=25. 8 12 7 2 25 ∴所求的圆的方程为(x+4) +(y-4) = 8 .
法二:由题意,圆的弦OP所在直线的斜率为3,中 1 3 点坐标为(2,2), 3 1 1 ∴弦OP的垂直平分线方程为y-2=-3(x-2), 即x+3y-5=0. ∵圆心在直线y=x+2上,且圆心在弦OP的垂直平 分线上, 1 y=x+2, x=-4, ∴由 解得 x+3y-5=0, y=7, 4

2.2.1 圆的标准方程 课件(北师大必修2)

2.2.1 圆的标准方程 课件(北师大必修2)

[悟一法] 直接法求圆的标准方程,关键是确定圆心坐
标与半径,结合圆的几何性质可简化计算过程.
[通一类]
1.求满足下列条件的圆的标准方程.
(1)圆心为(2,-2),且过点(6,3); (2)过点A(-4,-5),B(6,-1)且以线段AB为直径; (3)圆心在直线x=2上且与y轴交于两点A(0,-4), B(0,-2).
§
[读教材·填要点]
1.圆的定义
平面内与 定点 距离等于 定长 的点的集合(轨迹)是 圆, 定点 就是圆心, 定长 就是半径. 2.圆的标准方程 (1)圆心为(a,b),半径是r,圆的标准方程是 (x-a) +(y-b)2=r2 . (2)当圆心在原点时,圆的方程为
3.中点坐标 x1+x2 y1+y2 A(x1,y1),B(x2,y2)的中点坐标为( , ). 2 2
∴所求圆的方程为(x-1)2+(y-4)2=8. ∵(2-1)2+(2-4)2=5<8, (5-1)2+(0-4)2=32>8,(3-1)2+(2-4)2=8, ∴点M在圆内,点N在圆外,点Q在圆上.
[悟一法]
判定点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2的位
置关系,即比较|MC|与r的关系:
[研一题] [例3] 求圆心在直线l:2x-y-3=0上,且过点A(5,
2)和点B(3,-2)的圆的方程.
[自主解答] 法一:设圆的方程为
(x-a)2+(y-b)2=r2,则 2a-b-3=0, 2 2 2 5-a +2-b =r , 3-a2+-2-b2=r2, a=2, 解得b=1, r= 10.
a-b=0, 解方程组 5a-3b=8, a=4, 得 b=4, a=1, 或 b=-1.

高中数学 2.2.1 圆的标准方程课件 北师大版必修2

高中数学 2.2.1 圆的标准方程课件 北师大版必修2

• 5.若坐标原点在圆(x-a)2+(y-a)2=4的外 部(wàibù),则实数a的取值范围是 __[答__案_]__a>_.2或 a<- 2
[解析] ∵坐标原点在圆(x-a)2+(y-a)2=4 的外部, ∴(0-a)2+(0-a)2>4. ∴a2>2,即 a> 2或 a<- 2.
第十二页,共41页。
第十九页,共41页。
• 待定系数(xìshù)法求圆的标准 方程
求圆心在直线 5x-3y=8 上,且圆与两坐标轴都 相切的圆的方程.
• [思路分析(fēnxī)] 先设出圆的标准方程,由 题设列出关于a,b,r的关系式,组成方程组, 解方程组求出a,b,r的值代入即得圆的方 程.
第二十页,共41页。
[规律总结] 点与圆的位置关系的判断方法: (1)几何法:根据圆心到该点的距离 d 与圆的半径 r 的大小 关系; (2)代数法:直接利用下面的不等式判定: ①(x0-a)2+(y0-b)2>r2,点在圆外; ②(x0-a)2+(y0-b)2=r2,点在圆上; ③(x0-a)2+(y0-b)2<r2,点在圆内.
• [思路分析] 首先确定圆心坐标(zuòbiāo)和 半径大小,然后再写出圆的标准方程.
第十四页,共41页。
[ 规范 解答 ] (1) 由两 点间距 离 公式, 得 圆的半 径 r = 6-22+3+22= 41,
∴所求圆的标准方程为(x-2)2+(y+2)2=41. (2)圆心即为线段 AB 的中点,为(1,-3). 又|AB|= -4-62+-5+12=2 29, ∴半径 r= 29. ∴所求圆的标准方程为(x-1)2+(y+3)2=29.
第三十二页,共41页。
[规律总结] 通过坐标系,把点与坐标、曲线与方程联系 起来,实现空间形式与数量关系的结合,是解决几何问题的重 要方法.其中要特别注意选择适当的坐标系,选择恰当可以使 解题过程简化.在通常情况下,使图形中某些线段在坐标轴上, 线段的端点或中点在原点,遇到图形中有两条互相垂直的线段, 常常选这两条线段所在直线为坐标轴;如果遇到轴对称图形, 常常选它的对称轴为坐标轴;如果遇到中心对称图形,常常选 它的对称中心为原点.

2.2.1 圆的标准方程 课件(北师大必修2)

2.2.1 圆的标准方程 课件(北师大必修2)

[悟一法] 用待定系数法求圆的标准方程的一般步骤:
①设出圆的标准方程.
②根据条件得关于a,b,r的方程组,并解方程组 得a,b,r的值. ③代入标准方程,得出结果.
[通一类] 3.求圆心在直线5x-3y=8上,且圆与两坐标轴都相
切的圆的方程.
解:设所求圆方程为(x-a)2+(y-b)2=r2. ∵圆与两坐标轴相切, ∴圆心满足 a-b=0 或 a+b=0, 又圆心在直线 5x-3y=8 上,∴5a-3b=8.
∴圆的方程为(x-2)2+(y-1)2=10.
法二:∵圆过A(5,2),B(3,-2)两点, ∴圆心一定在线段AB的垂直平分线上, 1 线段AB的垂直平分线方程为y=- (x-4), 2 2x-y-3=0, x=2, 由 解得 1 y=1. y=-2x-4, 即圆心C的坐标为(2,1). ∴r=|CA|= 5-22+2-12= 10. ∴所求圆的方程为(x-2)2+(y-1)2=10.
2
x2+y2=r2
.
[小问题·大思维] 1.若圆的标准方程为(x+a)2+(y+b)2=t2(t≠0),那么圆 心坐标是什么?半径呢?
提示:圆心坐标为(-a,-b),半径为|t|.
2.由圆的标准方程可以得到圆的哪些几何特征? 提示:由圆的标准方程可以直接得到圆的圆心坐标和 半径.
[研一题] [例1] 写出下列各圆的标准方程.
已知实数x,y满足(x-2)2+y2=3,求x2+y2的最大
值和最小值.
[巧思]
x2+y2可以看成圆(x-2)2+y2=3上的点到
原点的距离的平方.
[妙解]
方程(x-2)2+y2=3 表示以(2,0)为圆心, 3
为半径的圆,x2+y2 表示圆上的点到原点距离的平方,由 平面几何知识知在原点与圆心连线与圆的两个交点处分 别取得最大值和最小值, 又圆心到原点的距离为 2,半径为 3, 故(x2+y2)max=(2+ 3)2=7+4 3. (x2+y2)min=(2- 3)2=7-4 3.

2. 2.1 圆的标准方程课件(北师大版必修二)

2.  2.1   圆的标准方程课件(北师大版必修二)

1 7 即圆心坐标为C(-4,4). 又∵圆的半径r=|OC|= 12 72 -4 +4 = 25 8,
12 7 2 25 ∴所求的圆的方程为(x+4) +(y-4) = 8 .
[一点通]
求圆的标准方程一般有两种思路:一是
用待定系数法,二是几何法.
1.用待定系数法求圆的标准方程的一般步骤是: ①根据题意,设所求的圆的标准方程为(x-a)2+ (y-b)2=r2; ②根据已知条件,建立关于a,b,r的方程组;
1.写出下列方程表示的圆的圆心和半径.
(1)x2+y2=4;(2)x2+(y-2)2=a2(a≠0);
(3)(x-3)2+y2=b2(b≠0);
(4)(x+3)2+(y+4)2=12.
解:(1)原方程化为(x-0)2+(y-0)2=22. 所以圆心(0,0),半径r=2. (2)原方程可化为(x-0)2+(y-2)=
(y-2)2=1. x-12+y-22=1,化简得(x-1)2+
问题3:方程
x-22+y2=4表示的几何意义是什么?
提示:方程表示(x,y)到(2,0)的距离等4.
1.确定圆的条件 (1)几何特征:圆上任一点到圆心的距离等于 定长 . (2)确定圆的条件:圆心和半径. 2.圆的标准方程 (1)以C(a,b)为圆心,半径为r的圆的标准方程为 . (x-a)2+(y-b)2=r2 (2)当圆心在坐标原点时,半径为r的圆的标准方程为
③解方程组,求出a,b,r的值,并把它们代入所设
的方程中,得到圆的方程. 2.几何法主要是根据已知条件,抓住圆的性质,构 造几何图形确定圆心和半径.
3.△ABC的三个顶点的坐标分别是A(5,1),B(7,-3),
C(2,-8),求它的外接圆的方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

或者利用几何法找出圆的圆心和半径.
[精解详析]
法一:∵圆心在直线y=x+2上,
∴设圆心坐标为(a,a+2),半径为r,则圆的方 程为(x-a)2+(y-a-2)2=r2. ∵点O(0,0)和P(1,3)在圆上,
0-a2+0-a-22=r2, ∴ 1-a2+3-a-22=r2,
a2+b2-4a+6b=r2-13, 2 2 2 即a +b +4a+10b=r -29, a-2b-3=0. a=-1, ∴b=-2, r2=10. ∴所求圆的方程为(x+1)2+(y+2)2=10.
法三:设圆心C为(2b+3,b), 因为有|AC|=|BC|, 所以 2b+3-22+b+32 = 2b+3+22+b+52. 解得b=-2,所以圆心为(-1,-2), 半径r=|AC|= 10. 故所求圆的方程为(x+1)2+(y+2)2=10.
r2,通过比较点到圆心的距离和半径的大小关系,得
到:
(1)点M在圆C上⇔(x0-a)2+(y0-b)2=r2;
(2)点M在圆C外⇔(x0-a)2+(y0-b)2>r2;
(3)点M在圆C内⇔(x0-a)2+(y0-b)2<r2.
[例1]
求满足下列条件的圆的标准方程.
(1)圆心为(2,-2),且过点(6,3). (2)过点A(-4,-5),B(6,-1)且以线段AB为 直径. (3)圆心在直线x=2上且与y轴交于两点A(0,-4),
1.写出下列方程表示的圆的圆心和半径.
(1)x2+y2=4;(2)x2+(y-2)2=a2(a≠0);
(3)(x-3)2+y2=b2(b≠0);
(4)(x+3)2+(y+4)2=12.
解:(1)原方程化为(x-0)2+(y-0)2=22. 所以圆心(0,0),半径r=2. (2)原方程可化为(x-0)2+(y-2)=
(y-2)2=1. x-12+y-22=1,化简得(x-1)2+
问题3:方程
x-22+y2=4表示的几何意义是什么?
提示:方程表示(x,y)到(2,0)的距离等4.
1.确定圆的条件 (1)几何特征:圆上任一点到圆心的距离等于 定长 . (2)确定圆的条件:圆心和半径. 2.圆的标准方程 (1)以C(a,b)为圆心,半径为r的圆的标准方程为 . (x-a)2+(y-b)2=r2 (2)当圆心在坐标原点时,半径为r的圆的标准方程为
1.确定圆的标准方程的方法 (1)直接法:直接确定圆和半径,适合易确定圆心 和半径的圆; (2)待定系数法:大部分求圆方程的题目均可以使 用; (3)几何法:充分利用平面几何的知识,结合交点
问题和距离公式求解.
2.对于特殊位置的圆的方程
条件 过原点,圆心为(a,b) 圆心在x轴上 圆心在y轴上 圆心在x轴上且过原点 圆心在y轴上且过原点 方程形式 (x-a)2+(y-b)2=a2+b2
解:(1)代入圆的标准方程得 (x+3)2+(y-4)2=5. (2)∵半径r= 8-52+-3-12=5. 所以圆的标准方程为: (x-8)2+(y+3)2=25.
[例2]
一圆过原点O和点P(1,3),圆心在直线y=
x+2上,求此圆的标准方程.
[思路点拨] 利用代数法,构造方程求解a、b、r,
[例3]
已知两点P(-5,6)和Q(5,-4),求以P、
Q为直径端点的圆的标准方程,并判断点A(2,2), B(1,8),C(6,5)是在圆上,在圆内,还是在圆外.
[思路点拨] 确定圆心、半径,写出圆的标准方
程,求出点到圆心的距离,作出判断.
[精解详析] 由已知条件及圆的性质可知,圆心 M 在直 径 PQ 的中点处,∴圆心 M 的坐标为(0,1). 1 1 半径 r= |PQ|= × -5-52+6+42=5 2 2 ∴圆的标准方程为 x2+(y-1)2=50. ∵|AM|= 2-02+2-12= 5<r, 2.
∴半径r= 29. ∴所求圆的标准方程为(x-1)2+(y+3)2=29.
(3)由圆的几何意义知圆心坐标(2,-3), 半径r= 2-02+-3+22= 5,
∴圆的方程为(x-2)2+(y+3)2=5.
[一点通]
直接法求圆的标准方程,就是
根据题设条件,直接求圆心坐标和圆的半径这两 个几何要素,然后代入标准方程.
∴BC的垂直平分线方程为y=x-3. CD的垂直平分线方程为y=4.
y=x-3, 由 y=4, x=7, 得 y=4.
可得经过B、C、D三点的圆的方程为(x-7)2+(y -4)2=20. ∵(4-7)2+(2-4)2=13≠20, ∴A不在此圆上,因此A、B、C、D四点不在同一 个圆上.
1 a=-4, 解得 r2=25. 8 12 7 2 25 ∴所求的圆的方程为(x+4) +(y-4) = 8 .
法二:由题意,圆的弦OP所在直线的斜率为3,中 1 3 点坐标为(2,2), 3 1 1 ∴弦OP的垂直平分线方程为y-2=-3(x-2), 即x+3y-5=0. ∵圆心在直线y=x+2上,且圆心在弦OP的垂直平 分线上, 1 y=x+2, x=-4, ∴由 解得 x+3y-5=0, y=7, 4
5.若点(3, a )在圆x2+y2=16的外部,则a的取值范围 是________.
解析:∵(3, a)在圆x2+y2=16的外部, ∴9+( a)2>16, ∴a>7.
答案:(7,+∞)
6.判断四点A(4,2),B(5,0),C(3,2),D(3,6)是否在同 一个
圆上. 解:∵BC的中点为(4,1),kBC=-1,
1 7 即圆心坐标为C(-4,4). 又∵圆的半径r=|OC|= 12 72 -4 +4 = 25 8,
12 7 2 25 ∴所求的圆的方程为(x+4) +(y-4) = 8 .
[一点通]
求圆的标准方程一般有两种思路:一是
用待定系数法,二是几何法.
1.用待定系数法求圆的标准方程的一般步骤是: ①根据题意,设所求的圆的标准方程为(x-a)2+ (y-b)2=r2; ②根据已知条件,建立关于a,b,r的方程组;
a=2, 解此方程组,得b=-3, r2=25, ∴△ABC的外接圆的方程是(x-2)2+(y+3)2=25.
4.求过点A(2,-3),B(-2,-5)且圆心C在直线x

2y-3=0上的圆的方程. 解:法一:因为A(2,-3),B(-2,-5),
1 所以AB中点D(0,-4),kAB=2, AB的垂直平分线方程为y-(-4)=-2(x-0), 即2x+y+4=0.
∴点 A 在圆内.
∵|BM|=
1-02+8-12= 50=r,
∴点 B 在圆上. ∵|CM|= 6-02+5-12= 52>r,
∴点 C 在圆外.
[一点通]
求圆的方程,只需确定圆心和半径
就可以写出其标准方程;判定点与圆的位置关系,可以 判定该点与圆心的距离和圆的半径的大小关系,也可将 该点坐标代入圆的方程判断.
世界上较大的摩天轮中坐落于泰晤士河畔的 英航伦敦眼(BA London Eye),距地总高达135m. 然而,由于伦敦眼属于观景摩天轮结构,有些人认为其在 排行上应该与重力式的Femis Wheel分开来计算,因此世 界上最大的重力式摩天轮应是位于日本福冈的天空之梦福
冈(Sky Dream Fukuoka, SDF),是座轮身直径112m,离
(a2+b2≠0)
(x-a)2+y2=r2(r≠0) x2+(y-b)2=r2(r≠0) (x-a)2+y2=a2(a≠0) x2+(y-b)2=b2(b≠0)
条件
与x轴相切 与y轴相切
方程形式
(x-a)2+(y-b)2=b2(b≠0) (x-a)2+(y-b)2=a2(a≠0) (x-a)2+(y-b)2=a2
与两坐标轴都相切
(|a|=|b|≠0) 直径的两端点为 (x1,y1),(x2,y2) (x-x1)(x-x2)+(y-y1)· (y-y2)=0两个:即圆
心和半径,只需确定了这两者,圆就被唯一确定了.
2.圆的标准方程中具有三个参变量a,b,r, 因此确立圆的方程需三个独立的条件,根据条件列出 以a,b,r为变量的方程组,解方程组求出a,b,r的 值即能写出圆的标准方程.
3.点到圆的位置关系的判断 给出点M(x0,y0)和圆C:(x-a)2+(y-b)2=
2x+y+4=0, 由方程组 x-2y-3=0, x=-1, 得 y=-2.
即圆心为(-1,-2). r=|CA|= -1-22+-2+32= 10. 故所求圆的方程为(x+1)2+(y+2)2=10.
法二:设所求圆的圆心坐标为(a,b),半径为r, 则方程为(x-a)2+(y-b)2=r2. 2-a2+-3-b2=r2, 2 2 2 由已知条件得-2-a +-5-b =r , a-2b-3=0,
地总高120m的摩天轮.
中国最高的摩天轮“南昌之星”位于江西省南昌市红谷 滩新区红角洲赣江边上的赣江市人民公园,是南昌市标志 性建筑.该摩天轮总高度为160m,转盘直径为153m,比 位于英国泰晤士河边的135m高的“伦敦之眼”摩天轮还要 高,成为世界上较高的摩天轮之一.如何写出圆的方程呢?
问题1:在平面直角坐标系中,确定圆的几何要 素是什么? 提示:圆心和半径. 问题2:圆是到定点的距离等于定长的点的集合, 到点(1,2)的距离等于1的点(x,y)的集合怎样用方程表 示? 提示:
③解方程组,求出a,b,r的值,并把它们代入所设
的方程中,得到圆的方程. 2.几何法主要是根据已知条件,抓住圆的性质,构 造几何图形确定圆心和半径.
3.△ABC的三个顶点的坐标分别是A(5,1),B(7,-3),
C(2,-8),求它的外接圆的方程.
解:设所求圆的方程是 (x-a)2+(y-b)2=r2,① 因为A(5,1),B(7,-3),C(2,-8)都在圆上,所以它 们的坐标都满足方程①.于是 5-a2+1-b2=r2, 7-a2+-3-b2=r2, 2-a2+-8-b2=r2,
相关文档
最新文档