共线向量的坐标运算
高一数学人教B版必修4课件:2-2-3 用平面向量坐标表示向量共线条件
[解析]
由已知得:ka+b=(k-3,2k+2),
a-3b=(10,-4),∵ka+b 与 a=3b 平行, 1 ∴(k-3)×(-4)-10(2k+2)=0,解得 k=-3. 1 2 1 此时 ka+b=(-3-3,-3+2)=-3(a-3b), 1 ∴当 k=-3时,ka+b 与 a-3b 平行,并且反向.
2x+2=-3x 所以 2y-4=-6-3y
,
2 x=-5 解得 y=-2 5 故D
.
2 2 点坐标为-5,-5.
(2)要注意用坐标表示两向量平行的条件, a1b2-a2b1=0 具 a1 a2 有一般性,而 = 只有当 b1≠0,b2≠0 时才适用. b1 b2
• [例1] 已知a=(1,2),b=(-3,2),当k为
何值时,ka+b与a-3b平行?平行时它们 是同向还是反向? • [分析] 由a,b可以用坐标表示ka+b,a -3b,然后由向量共线的条件便可以求出 k的值.而向量是否同向,可以由λ的符号 确定.
• 2.2.3 用平面向量坐标表示
向量共线条件
• 1.向量共线条件的坐标表示: • 选择基底{e1,e2},如果a=(a1,a2),b=
b2- (b1,b2),a a1∥ ba ,则有 ; 2b1=0 a∥b a1b2-a2b1=0,则 反之,若 . • 当b不与坐标轴平行时,条件a1b2-a2b1=0 可化为 ,即两个向量平行的条 件是相应坐标成比例. • 2.向量长度的坐标表示 • 设a=(a1,a2)的位置向量 ,则由两点 间距离公式有|a|=| |= .
,
[例 4]
已知 a=(2,3),b=(-1,2),若 ma+b 与 a-2b
平行,则 m=________. 9 A.- 10 1 C.2 2 B. 11 1 D.-2
高中数学人教B版必修四讲义:第二章 2.1 2.1.5 向量共线的条件与轴上向量坐标运算 Word版含答案
向量的线性运算2.1.5向量共线的条件与轴上向量坐标运算预习课本P90~93,思考并完成以下问题(1)平行向量基本定理是怎样表述的?(2)轴上向量的坐标是怎样表示的?(3)轴上向量的坐标运算法则是什么?[新知初探]1.平行向量基本定理(1)平行向量基本定理如果a=λb,则a∥b;反之,如果a∥b,且b≠0,则一定存在唯一一个实数λ,使得a =λb.(2)单位向量.给定一个非零向量a,与a同方向且长度等于1的向量,叫做向量a的单位向量,如果a的单位向量记作a0,则a=|a|a0或a0=a |a|.[点睛]对定理两个方面的说明(1)第一个方面“若a=λb,则a∥b”中没有b≠0的要求,当b=0时a=0对任意的实数λ都能使a∥b.(2)第二方面“若a∥b且b≠0,则存在唯一一个实数λ使a=λb”中必须有b≠0,否则a =0时λ不唯一,a≠0时,λ不存在.2.轴上向量的坐标及其运算(1)轴上向量的坐标(2)轴上向量的坐标运算|AB [点睛]AB是一个向量,既有大小,也有方向.而AB表示AB的坐标,它是一个实数.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)平行向量基本定理,条件b≠0可以去掉.()(2)若|a|-|b|=|a-b|,则a与b是共线向量.()(3)若a与b共线,则存在唯一实数λ,使b=λa成立.答案:(1)×(2)√(3)×2.数轴上三点A,B,C的坐标分别为-1,2,5,则()A.AB=-3B.BC=3C.AC=6 D.AB=3 答案:B3.在四边形ABCD中,若AB=-12CD,则此四边形是()A.平行四边形B.菱形C.梯形D.矩形答案:C4.已知A,B,C三点在数轴上,且点B的坐标x B=3,AB=5,AC=2,则点C的坐标为________.答案:0轴上向量的坐标运算[典例]已知数轴上A,B两点的坐标为x1,x2,根据下列题中的已知条件,求点A的坐标x1.(1)x2=-5,BA=-3;(2)x2=-1,|AB|=2.[解](1)因为BA=x1-(-5)=-3,所以x1=-8.(2)因为|AB|=|-1-x1|=2,所以x1=1或x1=-3.轴上向量的坐标及长度计算的方法(1)轴上向量的坐标的求法:先求出(或寻找已知)相应点的坐标,再计算向量的坐标.(2)轴上向量的长度的求法:先求出向量的坐标,再计算该向量的长度.[活学活用]已知数轴上三点A,B,C的坐标分别是-8,-3,7,求AB,BC,CA的坐标和长度.解:AB=(-3)-(-8)=5,|AB|=|5|=5;BC=7-(-3)=10,|BC|=|10|=10;CA=(-8)-7=-15,|CA|=|-15|=15.共线向量定理的应用题点一:判断或证明点共线1.已知两个非零向量a 与b 不共线,AB =a +b ,BC =2a +8b ,CD =3(a -b ),求证:A ,B ,D 三点共线.证明:∵AB =a +b ,BC =2a +8b ,CD =3(a -b ),∴BD =BC +CD =2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB . ∴AB ,BD 共线,又∵它们有公共点B ,∴A ,B ,D 三点共线. 题点二:利用向量共线确定参数2.设两个不共线的向量e 1,e 2,若a =2e 1-3e 2,b =2e 1+3e 2,c =2e 1-9e 2,问是否存在实数λ,μ,使d =λa +μb 与c 共线?解:d =λ(2e 1-3e 2)+μ(2e 1+3e 2)=(2λ+2μ)e 1+(3μ-3λ)e 2, 要使d 与c 共线,则存在实数k ,使得d =kc , 即(2λ+2μ)e 1+(-3λ+3μ)e 2=2ke 1-9ke 2.由⎩⎪⎨⎪⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ. 故存在实数λ和μ,使得d 与c 共线,此时λ=-2μ. 题点三:几何图形形状的判定3.如图所示,正三角形ABC 的边长为15,AP =13AB +25AC ,BQ =15AB +25AC . 求证:四边形APQB 为梯形.证明:因为PQ =PA +AB +BQ =-13AB -25AC +AB +15AB +25AC =1315AB ,所以PQ ∥AB .又|AB |=15,所以|PQ |=13,故|PQ |≠|AB |,于是四边形APQB 为梯形.用向量共线的条件证明两条直线平行或重合的思路(1)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行;(2)若b =λa (a ≠0),且b 与a 所在的直线有公共点,则这两条直线重合.例如,若向量AB=λAC ,则AB ,AC 共线,又AB 与AC 有公共点A ,从而A ,B ,C 三点共线,这是证明三点共线的重要方法.层级一 学业水平达标1.已知数轴上两点M ,N ,且|MN |=4.若x M =-3,则x N 等于( ) A .1 B .2 C .-7D .1或-7解析:选D |MN |=|x N -(-3)|=4, ∴x N -(-3)=±4,即x N =1或-7.2.已知O 是△ABC 所在平面内一点,D 为边BC 的中点,且2OA +OB +OC =0,则( )A .AO =ODB .AO =2ODC .AO =3ODD .2AO =OD解析:选A ∵在△ABC 中,D 为边BC 的中点,∴OB +OC =2OD ,∴2(OA +OD )=0,即OA +OD =0,从而AO =OD .3.点P 满足向量OP =2OA -OB ,则点P 与AB 的位置关系是( ) A .点P 在线段AB 上 B .点P 在线段AB 的延长线上 C .点P 在线段AB 的反向延长线上 D .点P 在直线AB 外解析:选C ∵OP =2OA -OB ,∴OP -OA =OA -OB , ∴AP =BA ,∴点P 在线段AB 的反向延长线上,故选C.4.在△ABC 中,点P 是AB 上一点,且CP =23CA +13CB ,又AP =t AB ,则t 的值为( )A.13 B.23 C.12D.53解析:选A 由题意可得AP =CP -CA =23CA +13CB -CA =13(CB -CA )=13AB ,又AP =t AB ,∴t =13.5.设e 1,e 2不共线,b =e 1+λe 2与a =2e 1-e 2共线,则实数λ的值为( ) A.12 B .-12C .1D .-1解析:选B 设a =kb (k ∈R), 则2e 1-e 2=ke 1+kλe 2.∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧k =2,kλ=-1,∴λ=-12.6.在数轴x 上,已知OA =-3e (e 为x 轴上的单位向量),且点B 的坐标为3,则向量AB ―→的坐标为________.解析:由OA =-3e ,得点A 的坐标为-3, 则AB =3-(-3)=6,即AB 的坐标为6. 答案:67.下列向量中a ,b 共线的有________(填序号). ①a =2e ,b =-2e ;②a =e 1-e 2,b =-2e 1+2e 2; ③a =4e 1-25e 2,b =e 1-110e 2;④a =e 1+e 2,b =2e 1-2e 2.解析:①中,a =-b ;②中,b =-2e 1+2e 2=-2(e 1-e 2)=-2a ;③中,a =4e 1-25e 2=4⎝⎛⎭⎫e 1-110e 2=4b ;④中,当e 1,e 2不共线时,a ≠λb .故填①②③. 答案:①②③8.已知M ,P ,N 三点在数轴上,且点P 的坐标是5,MP =2,MN =8,则点N 的坐标为________.解析:设点M ,N 的坐标分别为x 1,x 2,∵点P 的坐标是5,MP =2,MN =8,∴⎩⎪⎨⎪⎧ 5-x 1=2,x 2-x 1=8,解得⎩⎪⎨⎪⎧x 1=3,x 2=11.故点N 的坐标为11. 答案:119.已知数轴上A ,B ,C 三点.(1)若AB =2,BC =3,求向量AC ―→的坐标; (2)若AB =BC ,求证:B 是AC 的中点.解:(1)AC =AB +BC =5,即向量AC ―→的坐标为5. (2)∵AB =BC ,∴b -a =c -b , ∴b =a +c 2,故B 是AC 的中点.10.已知:在四边形ABCD 中,AB =a +2b ,BC =-4a -b ,CD =-5a -3b ,求证:四边形ABCD 为梯形.证明:如图所示.∵AD =AB +BC +CD =(a +2b )+(-4a -b )+(-5a -3b ) =-8a -2b =2(-4a -b ), ∴AD =2BC .∴AD 与BC 共线,且|AD |=2|BC |. 又∵这两个向量所在的直线不重合, ∴AD ∥BC ,且AD =2BC .∴四边形ABCD 是以AD ,BC 为两条底边的梯形.层级二 应试能力达标1.已知向量AB =a +3b ,BC =5a +3b ,CD =-3a +3b ,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线解析:选B BD =BC +CD =2a +6b =2(a +3b )=2AB ,由于BD 与AB 有公共点B ,因此A ,B ,D 三点共线.2.在平行四边形ABCD 中,AC 与BD 相交于点O ,E 是线段OD 的中点,AE 的延长线交DC 于点F ,若AB =a ,AD =b ,则AF =( )A.13a +b B.12a +bC .a +13bD .a +12b解析:选A 由已知条件可知BE =3DE ,∴DF =13AB ,∴AF =AD +DF =AD +13AB =13a +b .3.已知向量a ,b 不共线,若AB =λ1a +b ,AC =a +λ2b ,且A ,B ,C 三点共线,则关于实数λ1,λ2一定成立的关系式为( )A .λ1=λ2=1B .λ1=λ2=-1C .λ1λ2=1D .λ1+λ2=1解析:选C ∵A ,B ,C 三点共线,∴AB =k AC (k ≠0). ∴λ1a +b =k (a +λ2b )=ka +kλ2b . 又∵a ,b 不共线,∴⎩⎪⎨⎪⎧λ1=k ,1=kλ2,∴λ1λ2=1. 4.已知△ABC 的三个顶点A ,B ,C 及平面内一点P 满足PA +PB +PC =0,若实数λ满足AB +AC =λAP ,则λ的值为( )A .2 B.32C .3D .6解析:选C 如图,取BC 的中点为D ,则PB +PC =2PD . 又PA +PB +PC =0,∴2PD =-PA ,∴A 、P 、D 三点共线且|PA |=2|PD |, ∴AP =23AD .又∵AB +AP =2AD ,∴AB +AP =3AP ,即λ=3.5.已知向量a ,b 是两个不共线的向量,且向量ma -3b 与a +(2-m )b 共线,则实数m 的值为________.解析:因为向量ma -3b 与a +(2-m )b 共线且向量a ,b 是两个不共线的向量,所以存在实数λ,使得ma -3b =λ[a +(2-m )b ],即(m -λ)a +(mλ-2λ-3)b =0,因为a 与b 不共线,所以⎩⎪⎨⎪⎧m =λ,mλ-2λ-3=0,解得m =-1或m =3. 答案:-1或36.设e 1,e 2是两个不共线的向量,若向量ke 1+2e 2与8e 1+ke 2方向相反,则k =______. 解析:∵ke 1+2e 2与8e 1+ke 2共线, ∴ke 1+2e 2=λ(8e 1+ke 2)=8λe 1+λke 2. ∴⎩⎪⎨⎪⎧k =8λ,2=λk ,解得⎩⎪⎨⎪⎧ λ=12,k =4或⎩⎪⎨⎪⎧λ=-12,k =-4.∵ke 1+2e 2与8e 1+ke 2反向, ∴λ=-12,k =-4.答案:-47.已知数轴上四点A ,B ,C ,D 的坐标分别是-4,-2,c ,d . (1)若AC =5,求c 的值; (2)若|BD |=6,求d 的值;(3)若AC =-3AD ,求证:3CD =-4AC . 解:(1)∵AC =5,∴c -(-4)=5,∴c =1. (2)∵|BD |=6,∴|d -(-2)|=6, 即d +2=6或d +2=-6, ∴d =4或d =-8.(3)证明:∵AC =c +4,AD =d +4,又AC =-3AD ,∴c +4=-3(d +4),即c =-3d -16. 3CD =3(d -c )=3d -3c =3d -3(-3d -16)=12d +48, -4AC =-4c -16=-4(-3d -16)-16=12d +48, ∴3CD =-4AC .8.如图,已知△OCB 中,点A 是BC 的中点,D 是将OB 分成2∶1的一个内分点,DC 和OA 交于点E ,设OA =a ,OB =b .(1)用a ,b 表示向量 OC ,DC ; (2)若OE =λOA ,求λ的值.解:(1)由A 是BC 的中点,则有OA =12(OB +OC ),从而OC =2OA -OB =2a -b .由D 是将OB 分成2∶1的一个内分点,得OD =23OB ,从而DC =OC -OD =(2a -b )-23b =2a -53b .(2)由于C ,E ,D 三点共线,则EC =μDC , 又EC =OC -OE =(2a -b )-λa =(2-λ)a -b ,DC =2a -53b ,从而(2-λ)a -b =μ⎝⎛⎭⎫2a -53b , 又a ,b 不共线,则⎩⎪⎨⎪⎧2-λ=2μ,1=53μ,解得λ=45.。
向量的坐标运算和共线
向量的数乘运算
总结词
数乘运算是指用一个实数乘以一个向量,得到一个新的向量。
详细描述
数乘运算可以通过向量坐标的对应分量乘以一个实数来实现。假设有一个向量 $overset{longrightarrow}{A} = (a_1, a_2, a_3)$和一个实数$k$,则数乘后的向量 $koverset{longrightarrow}{A} = (ka_1, ka_2, ka_3)$。
02
CHAPTER
向量的坐标运算
向量的加法运算
总结词
向量的加法运算是指将两个向量首尾相接,形成一个 新的向量。
详细描述
向量的加法运算可以通过向量坐标的对应分量相加来实 现。假设有两个向量$overset{longrightarrow}{A} = (a_1, a_2, a_3)$和$overset{longrightarrow}{B} = (b_1, b_2, b_3)$,则它们的和向量 $overset{longrightarrow}{C} = overset{longrightarrow}{A} + overset{longrightarrow}{B} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$。
向量内积判定法
如果向量a和向量b的内积为0,并且其中一个向量的模长为0,则向量a和向量b 共线。
共线的性质
共线向量的模长比例
共线向量的线性组合
如果向量a和向量b共线,那么它们的 模长之比为λ,其中λ为非零实数。
如果向量a和向量b共线,那么它们的 线性组合也是唯一的。
共线向量的方向
共线的两个向量具有相同的方向或相 反的方向。
向量的点乘运算
高中数学向量共线的条件与轴上向量坐标运算
高中数学向量共线的条件与轴上向量坐标运算教学目标:理解向量共线的条件与轴上向量坐标运算教学重点:向量共线的条件与轴上向量坐标运算教学过程一、复习引入:1. 向量的表示方法2. 向量的加法,减法及运算律3.实数与向量的乘法二、讲解新课:1.若有向量a (a ≠0)、b ,实数λ,使b =λa 则由实数与向量积的定义知:a 与b 为共线向量若a 与b 共线(a ≠0)且|b |:|a |=μ,则当a 与b 同向时b =μa , 当a 与b 反向时b =-μa从而得:向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ使b =λa2.若存在两个不全为0的实数μλ,使得0=+b a μλ,那么a 与b 为共线向量,零向量与任意向量共线3.与向量a 同方向的a 的单位向量为||a a e = 4.数轴上的基向量e 的概念5、轴上向量的坐标:轴上向量a ,一定存在一个实数x ,使得e x a =,那么x 称为向量a 的坐标6、设点A 、B 是数轴上的两点其坐标分别为1x 和2x ,那么向量AB 的坐标为12x x AB -=由此得两点A 、B 之间的距离为||||21x x AB -=7.例子例1 三角形两边中点的连线平行与第三边并且等与第三边的一半。
已知:如图3-1,ABC ∆中,D ,E 分别是边AB ,AC 的中点。
求证:BC DE //且BC DE 21=。
证明:因为D ,E 分别是边AB ,AC 的中点, 所以−→−−→−=AB AD 21,−→−−→−=AC AE 21。
所以−→−−→−−→−−→−−→−−→−=-=-=BC AB AC AD AE DE 21)(21, 再由D ,B 不共点,故BC DE //且BC DE 21=。
例2 如图3-2,平行四边形OACB 中,BC BD 31=,OD 与BA 相交于E 。
求证:BA BE 41=。
证明:设E ’是线段BA 上的一点,且BA BE 41'=,只要证E ,E ’重合即可。
2018学年高中数学人教B版必修4课件:2-1-5 向量共线的条件与轴上向量坐标运算 精品
向量共线问题
[探究共研型]
探究1 已知m,n是不共线向量,a=3m+4n,b=6m-8n,判断a与b是否 共线?
【提示】 要判断两向量是否共线,只需看是否能找到一个实数λ,使得a= λb即可.
若a与b共线,则存在λ∈R,使a=λb,即3m+4n=λ(6m-8n). ∵m,n不共线,∴6-λ=8λ3=,4. ∵不存在λ同时满足此方程组,∴a与b不共线.
【解】
(1)根据向量求和的多边形法则,有
→ AD
= A→B + B→C +
→ CD
=(e+2f
)+
(-4e-f )+(-5e-3f )=(1-4-5)e+(2-1-3)f =-8e-2f .
(2)证明:因为A→D=-8e-2f =2(-4e-f )=2B→C,即A→D=2B→C.
所以A→D∥ B→C,且A→D的长度为B→C 的长度的2倍,所以在四边形ABCD中,AD
【自主解答】 (1)∵AC=5, ∴c-(-4)=5,∴c=1. (2)∵|BD|=6,∴|d-(-2)|=6, 即d+2=6或d+2=-6, ∴d=4或d=-8.
(3)因为C→D=C→A+A→D=-A→C+A→D, 而A→C=-3AD, 所以C→D=-(-3A→D)+A→D=4A→D,所以3C→D=12A→D, 又-4A→C=-4×(-3A→D)=12A→D, 故3C→D=-4A→C.
4.向量 A→B 的坐标常用AB表示,则 A→B =ABe. A→B 表示向量,而AB表示数量,且 有AB+BA=0.
5.轴上向量的坐标:在数轴x上,已知点A的坐标为x1,点B的坐标为x2,则AB = x2-x1 ,即轴上向量的坐标等于向量终点的坐标减去始点的坐标.
6.数轴上两点的距离公式:在数轴x上,点A的坐标为x1,点B的坐标为x2,则 |AB|= |x2-x1| .
直线上向量的坐标及其运算
(1)a=3e,b=-6e;
解:
3,-6
(2)a=− ������e,b=2e;
������
− ������ ,2
��ቤተ መጻሕፍቲ ባይዱ���
2.设数轴上两点A,B的坐标分别为-1,3,求: (1)向量������������的坐标,以及A及B的距离; (2)线段AB中点的坐标。
解: (1)������������的坐标为4,AB之间距离为4.
������
������=− ������ ������,求 ������ , ������ , ������ + ������ , ������������ − ������������ .
������
解:
������ =������, ������ =������,因为a+b=������ ������ + − ������ ������ = − ������ ������,所以 ������ + ������ = ������ ;
������
������
������
������
������
������
又因为2a-3b=2* ������ ������-3* − ������ ������ = ������������ ������,所以 ������������ − ������������ = ������������
新人教B版必修二
第六章 平面向量
主讲人:姜妍
复习提问
共线向量基本定理的内容:
如果������ ≠ 0且a∥b,则存在唯一的实数������,使得b=������a
新课讲解
1.直线上向量的坐标
直线上的向量特指始点和终点都在这条直线上的向量
空间向量的正交分解及其坐标表示坐标运算
量OA,OB,OC 表示OP和OQ.
解:OQ OM MQ 1 OA 1 MN 1 OA 1 (ON OM)
23
2 3O
1 OA 1 (ON 1 OA)
23 2 1 OA 1 1 (OB OC)
M
3 32
Q
1 OA 1 OB 1 OC 36 6
A
P
C
B
N
练习 2.已知空间四边形 OABC 的四条边及 AC 、BD 的长都等于 1 ,点 M 、N 、P 分别是 OA、BC 、OC 的 中点,且 OA a , OB b , OC c , ⑴用 a 、b 、c 表示 MN , MP ; ⑵求 MN MP .
(1)当 cos a , b 1时,a 与 b 同向; (2)当 cos a , b 1时,a 与 b 反向;
(3)当cos a , b 0 时, a b 。
思考:当0 cos a , b 1及 1 cos a , b 0时, 夹角在什么范围内?
练习一:
1.求下列两个向量的夹角的余弦:
a b (a1b1,a2 b2 ,a3 b3 );
a (a1,a2,a3),( R) ; a b a1b1 a2b2 a3b3 ;
a // b a1 b1,a2 b2 ,a3 b3 ( ;R)
a1 / b1 a2 / b2 a2 / b2 . a b a1b1 a2b2 a3b3 0 ;
a, b, c都叫做基向量
特别提示:对于基底{a,b,c},除了应知道 a,b,c不共面,还应明确:
(1)任意不共面的三个向量都可做为空间 的一个基底.
(2 ) 由于可视0为与任意一个非零向量共线, 与任意两个非零向量共面,所以三个向量不共 面,就隐含着它们都不是 0 .
高一数学人必修课件向量共线的条件与轴上向量坐标运算
计算分子间的相互作用力
03
利用向量的点积等运算,可以计算分子间的相互作用力,如范
德华力、氢键等。
向量在经济学中应用
描述经济变量的变化趋势
向量可以表示经济变量的变化趋势,如价格、产量等的变化方向 和幅度。
进行经济预测和决策分析
利用向量的运算和分析方法,可以对经济变量进行预测和决策分析 ,如回归分析、时间序列分析等。
轴的正方向。
03
标记坐标
空间中的任意一点P可以用一个有序实数组(x, y, z)来表示,其中x、y、
z分别称为点P的横坐标、纵坐标和竖坐标。
空间向量在坐标系中表示方法
确定向量的起点和终点
在空间直角坐标系中,向量可以用起点和终点两个点来确定。起点为向量的始点 ,终点为向量的终点。
向量的表示方法
向量可以用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向 表示向量的方向。同时,向量也可以用坐标形式来表示,即向量的坐标等于终点 坐标减去起点坐标。
案例二
已知向量a=(2, 1, -1)和向量b=(1, -2, 3),求向量a与向量b的和。根据空间向量的加法运算规则,可 得a+b=(2+1, 1+(-2), (-1)+3)=(3, -1, 2)。
04
向量共线与坐标运算综合 应用
平面向量与空间向量关系
平面向量是二维空间中的向量,可以 用有序数对表示,而空间向量是三维 空间中的向量,可以用有序三元组表 示。
高一数学人必修课件
向量共线的条件与轴
上向量坐标运算 汇报人:XX
20XX-01-21
目录
• 向量共线条件及性质 • 轴上向量坐标运算方法 • 空间向量在坐标系中表示方法 • 向量共线与坐标运算综合应用
两向量共线坐标关系
两向量共线坐标关系
设a=(x1,y1),b=(x2,y2),如果x2/x1=y2/y1,也就是x1y2=x2y1,则共线。
分四种情况:
①横坐标都为0的两个向量共线。
②纵坐标都为0的俩个向量共线。
③0向量(横、纵坐标都是0)与任何向量共线。
④横坐标之比等于纵坐标之比的两个向量共线(其中,比值为正则同向,比值为负则反向)。
平面向量:a=(a1,a2),b=(b1,b2),
则a//b <=> a1b2 = a2b1 。
空间向量:a=(a1,a2,a3),b=(b1,b2,b3),
则a//b <=> 存在实数x、y 使xa = yb ,用坐标写出来就是a1/b1 = a2/b2 = a3/b3 。
当然这个成比例是有一个前提,就是它们非零。
如果有0,则对应的也为0
扩展资料
向量的线性运算、向量的数量积与向量积的计算方法:
向量的加法向量的加法满足平行四边形法则和三角形法则。
向量的加法OB+OA=OC.向量的减法如果a、b是互为相反的向量。
那么a=-b,b=-a,a+b=0.0的反向量为0向量的数量积定义:
已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π。
平面向量共线
人教A版必修四·新课标·数学
版块导航
4.已知向量 a,b 不共线,c=ka+b(k∈R),d=a-b, 如果 c∥d,那么( )
A.k=1 且 c 与 d 同向 B.k=1 且 c 与 d 反向 C.k=-1 且 c 与 d 同向 D.k=-1 且 c 与 d 反向
解析:∵c∥d,∴存在实数 λ,使 c=λd,即 ka+b=λ(a -b),
答案:C
人教A版必修四·新课标·数学
版块导航
3.已知向量 a=(1,1),b=(2,x),若 a+b 与 4b-2a 平
行,则实数 x 的值是( )
A.-2
B.0
C.1
D.2
解析:因为 a=(1,1),b=(2,x),所以 a+b=(3,x+1), 4b-2a=(6,4x-2),因为 a+b 与 4b-2a 平行,所以 3(4x- 2)-6(x+1)=0,解得 x=2.故选 D.
2.证明三点共线的方法 设 A(x1,y1)、B(x2,y2)、C(x3,y3), 只要证明 向量共线 ,便可证得 A、B、C 三点 共线.
3.线段的中点坐标 设 P1(x1,y1),P2(x2,y2),则 P1P2 的中点 P 的坐标为 x1+2 x2,y1+2 y2.
想一想
人教A版必修四·新课标·数学
版块导航
解:∵a=(1,1),b=(x,1), ∴u=(1,1)+2(x,1)=(1,1)+(2x,2)=(2x+1,3); v=2(1,1)-(x,1)=(2-x,1). (1)u=3v⇔(2x+1,3)=3(2-x,1)⇔(2x+1,3)=(6-3x,3) ⇔2x+1=6-3x. 解之,得 x=1.
A.x=-1 C.x=92
B.x=3 D.x=51
平面向量的坐标表示运算共线
03 平面向量的共线
共线的定义与性质
共线的定义
如果存在一个非零实数$k$,使得向量$overset{longrightarrow}{a} = koverset{longrightarrow}{b}$,则向量 $overset{longrightarrow}{a}$和$overset{longrightarrow}{b}$共线。
数乘
实数$k$与向量$overset{longrightarrow}{AB}$的数乘 $koverset{longrightarrow}{AB} = (kx_1, ky_1)$。
02 平面向量的基本定理
线性无量$vec{a}$和$vec{b}$不共线,则它们是线性无关的 。这意味着它们不能被对方线性表示。
唯一性
向量在基底下的坐标是唯一的,即如果存在另外一组基底$vec{a'}$和$vec{b'}$,使得$vec{v} = x'vec{a'} + y'vec{b'}$,则$x = x'$和$y = y'$。
向量坐标的运算性质
• 运算性质:向量的加法、数乘和向量的数量积运算不会改变其 在基底下的坐标。即如果$\vec{v} = x\vec{a} + y\vec{b}$, $\vec{w} = m\vec{a} + n\vec{b}$,则$\vec{v} + \vec{w} = (x+m)\vec{a} + (y+n)\vec{b}$,$k\vec{v} = kx\vec{a} + ky\vec{b}$,$(\vec{v} \cdot \vec{w}) = (x,y) \cdot (m,n) = xm + yn$。
高三数学平面向量坐标运算试题答案及解析
高三数学平面向量坐标运算试题答案及解析1.若向量则()A.B.C.D.【答案】B【解析】∵∴.【考点】向量的运算.2.(2013•重庆)OA为边,OB为对角线的矩形中,,,则实数k= _________.【答案】4【解析】由于OA为边,OB为对角线的矩形中,OA⊥AB,∴=0,即==(﹣3,1)•(﹣2,k)﹣10=6+k﹣10=0,解得k=4,故答案为 43.向量a=(-1,1)在向量b=(3,4)方向上的投影为________.【答案】【解析】设向量a=(-1,1)与b=(3,4)的夹角为θ,则向量a在向量b方向上的投影为|a|·cos θ===.4.已知两点,,若,则点的坐标是 .【答案】【解析】设点的坐标是,则由得即点的坐标是.【考点】向量坐标运算5.已知=(3,4),=(2,3),=(5,0),则||•()=()A.(12,3)B.(7,3)C.(35,15)D.(6,2)【答案】C【解析】∵=(3,4),=(2,3),=(5,0),∴||=5,+=(7,3),∴||•()=5(7,3)=(35,15)故选C.6.已知向量=(2,1),=10,|+|=,则||=()A.B.C.5D.25【答案】C【解析】∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.7.在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,]B.(,]C.(,]D.(,]【答案】D【解析】因为⊥,所以可如图建立直角坐标系,设O(x,y),||=a,||=b,因为=+,所以P(a,b)因为||=||=1,所以由知,点O在以点(a,0)为圆心,1为半径的圆上,所以同理由得,.所以.又由得,而由可得,,即,所以.综上所述,即.8.已知向量若,则m=______.【答案】-3【解析】根据向量加法的坐标运算得,,因为,故,故填-3【考点】向量加法向量共线9.已知平面向量,,那么等于()A.B.C.D.【答案】B【解析】,所以,故选B.【考点】平面向量的坐标运算10.若向量a=(2,3),b=(x,-9),且a∥b,则实数x=________.【答案】-6【解析】a∥b,所以2×(-9)-3x=0,解得x=-6.11.已知A(-2,4)、B(3,-1)、C(-3,-4)且=3,=2,求点M、N及的坐标.【答案】(9,-18).【解析】∵ A(-2,4)、B(3,-1)、C(-3,-4),∴=(1,8),=(6,3),∴=3=(3,24),=2=(12,6).设M(x,y),则有=(x+3,y+4),∴ M点的坐标为(0,20).同理可求得N点的坐标为(9,2),因此=(9,-18).故所求点M、N的坐标分别为(0,20)、(9,2),的坐标为(9,-18).12.在△ABC中,已知a、b、c分别为内角A、B、C所对的边,S为△ABC的面积.若向量p=(4,a2+b2-c2),q=(1,S)满足p∥q,则C=________.【答案】【解析】由p=(4,a2+b2-c2),q=(1,S)且p∥q,得4S=a2+b2-c2,即2abcosC=4S=2absinC,所以tanC=1.又0<C<π,所以C=.13.平面向量,,满足,,,,则的最小值为.【答案】【解析】设,,,,,,由得:,最小值是.【考点】1.向量的坐标表示;2.向量的代数公式;3.二次函数求最值.14.若向量,,且与垂直,则实数的值为.【答案】或【解析】由已知得:.【考点】平面向量.15.设向量,,则向量在向量上的投影为 .【答案】【解析】向量在向量上的投影为.【考点】向量运算.16.如图,已知圆,四边形ABCD为圆的内接正方形,E,F分别为边AB,AD的中点,当正方形ABCD绕圆心转动时,的取值范围是()A.B.C.D.【答案】B【解析】因为圆的半径为2,所以正方形的边长为.因为.所以==.所以.故选B.【考点】1.向量的和差.2.向量的数量积.3.由未知线段转化为已知线段.4.化归思想.17.在平面直角坐标系中,点,,若向量,则实数_____.【答案】4【解析】,因为,故,即,解得.【考点】1、向量的坐标运算;2、向量垂直.18.向量,,且,则锐角的余弦值为()A.B.C.D.【答案】D【解析】.【考点】1、平行向量;2、三角函数的求值.19.在平面直角坐标系中,已知向量若,则x=( ) A.-2B.-4C.-3D.-1【答案】D【解析】∵,∴,则,所以,又,∴,.【考点】1、向量的坐标运算;2、向量共线的坐标表示.20.已知正方体的棱长为,,点N为的中点,则()A.B.C.D.【答案】A【解析】以为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则A(0,0,a),N(a,0,),(a,a,0),设M(x,y,z),因为,所以(x-0,y-0,z-a)=(a-x,a-y,0-z)即,解得,即M(,,),所以=,故选A.【考点】空间向量的坐标运算和向量的模.21.若向量,,则___________.【答案】【解析】.【考点】平面向量的坐标运算22.已知正边长等于,点在其外接圆上运动,则的最大值是 .【答案】【解析】可以考虑建立如图所示的平面直角坐标系,则,所以,显然,所以的最大值是.【考点】平面向量综合运算.23.已知,且与共线,则y= .【答案】【解析】因为与共线,所以,解得.【考点】平面向量共线的坐标运算24.已知,且与共线,则y= .【答案】【解析】因为与共线,所以,解得.【考点】平面向量共线的坐标运算25.已知向量,且,则实数的值为( )A.B.C.D.【答案】C【解析】因为,向量,且,所以,,选C.【考点】平面向量的坐标运算,共线向量.26.在平面直角坐标系中,已知点,若,则实数的值为( )A.B.C.D.【答案】C【解析】因为,在平面直角坐标系中,点,所以,,又,所以,,选C.【考点】平面向量的概念,共线向量.27.已知是正三角形,若与向量的夹角大于,则实数的取值范围是__________.【答案】【解析】建立如图所示坐标系,不妨设,则,所以,,由与向量的夹角大于,得,即,故答案为.【考点】平面向量的坐标运算,平面向量的数量积、夹角、模.28.设,,若,则实数________.【答案】【解析】因为,又,所以,答案,.【考点】平面向量坐标运算、平面向量数量积.29.平行四边形中,=(1,0),=(2,2),则等于()A.4B.-4C.2D.-2【答案】A【解析】由,所以.故选A.【考点】1.向量的加减运算;2.向量的数量积30.已知向量,,则与夹角的余弦值为()A.B.C.D.【答案】B【解析】,,解得,,所以,,,,故选B.【考点】1.平面向量的坐标运算;2.平面向量的数量积31.已知向量,向量,则的最大值和最小值分别为()A.B.C.D.【答案】B【解析】,所以;.【考点】本小题主要考查平面向量坐标运算,求向量的模.32.设,向量且,则= .【答案】【解析】由,得,所以.【考点】向量垂直的坐标表示.33.若向量,则向量与的夹角的余弦值为 .【答案】【解析】,,两向量的夹角的余弦为.【考点】向量的加、减、数量积运算.34.在ΔABC中,=600,O为ΔABC的外心,P为劣弧AC上一动点,且(x,y∈R),则x+y的取值范围为_____.【答案】[1,2]【解析】如图建立直角坐标系,O为坐标原点,设C(1,0),,,则,,,即,,解得,,又,,.【考点】向量坐标运算、三角函数.35.已知向量,,若,则=()A.-4B.-3C.-2D.-1【答案】B【解析】∵,∴.∴,即,∴.故选B.【考点】向量的坐标运算36.如图,AB是圆O的直径,C、D是圆O上的点,∠CBA=60°,∠ABD=45°,则()A. B. C. D.【答案】A【解析】设圆的半径为1,以作为坐标原点建立坐标系,则,,,,,,,,因为,所以,所以,,所以.【考点】向量运算点评:本题关键是建立坐标系,求出向量坐标,利用向量相等解题是关键,属中档题.37.已知:为单位向量,,且,则与的夹角是()A.B.C.D.【答案】D【解析】由已知得,且,所以与的夹角是,故选D。
高中数学必修四 第2章 平面向量课件 2.3.4 平面向量共线的坐标表示
类型二 利用向量共线求参数 【例2】 已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b 平行?平行时它们是同向还是反向? [思路探索] 先求ka+b,a-3b的坐标,再由向量共线的充要条件 列方程组求k. 解 法一 ka+b=k(1,2)+(-3,2)=(k-3,2k+2), a-3b=(1,2)-3(-3,2)=(10,-4). 当ka+b与a-3b平行时,存在唯一的实数λ, 使ka+b=λ(a-3b), 即(k-3,2k+2)=λ(10,-4),
∴-6(x-2)+2(6-y)=0.② 解①②组成的方程组,得x=3,y=3, ∴点P的坐标为(3,3). [规律方法] 求解直线或线段的交点问题,常规方法为写出直线 或线段对应的直线方程,建立方程组求解,而利用向量方法借助 共线向量的充要条件可减少运算量,且思路简单明快.
【活学活用3】 平面上有A(-2,1),B(1,4),D(4,-3)三点,
新知导学 平面向量共线的坐标表示
前提条件
a=(x1,y1),b=(x2,y2),其中b≠0
结论 当且仅当 x1y2-x2y1=0 时,向量a,b(b≠0)共线
温馨提示:平面向量共线的坐标表示的记忆策略
互动探究 探究点1 如果两个非零向量共线,你能通过它们的坐标判断它们 同向还是反向吗? 提示 当两个向量的对应坐标同号或同为零时,同向;当两个向 量的对应坐标异号或同为零时,反向.例如,向量(1,2)与(-1, -2)反向;向量(1,0)与(3,0)同向;向量(-1,2)与(-3,6)同向;向 量(-1,0)与(3,0)反向等. 探究点2 若a∥b,a=(x1,y1),b=(x2,y2),则必有yx11=xy22吗? 提示 不一定,两个向量中,若有与坐标轴(x轴)平行的向量或 零向量,则不能写成比例式.
6.2平面向量共线定理的坐标表示
授课主题平面向量共线的坐标表示 教学目标 1.理解向量共线定理.2.掌握两个向量平行(共线)的坐标表示和会应用其求解有关两向量共线问题.教学内容1.向量共线定理1)向量a 与非零向量b 共线的条件是当且仅当存在实数λ,使a =λb2)为什么要规定b 为非零向量?答:若向量b =0,则由向量a ,b 共线得a =λb =0,但向量a 不一定为零向量.2.两个向量平行(共线)的坐标表示1)设非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 等价于x 1y 2-x 2y 1=02)设非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1x 2=y 1y 2要满足什么条件? 答:a ∥b ⇔x 1x 2=y 1y 2的适用范围是x 2≠0,y 2≠0,这与要求b 是非零向量是等价的.题型一 平面向量共线的坐标运算例1 若向量a =()2,-1,b =()x ,2 ,c =()-3,y ,且a ∥b ∥c ,求x ,y 的值.分析:由平面向量共线的坐标运算可得.解析:∵a ∥b ∥c ,由向量共线的坐标表示得∴⎩⎪⎨⎪⎧ 4+x =0,2y -3=0,解得⎩⎪⎨⎪⎧ x =-4,y =32.点评:记住已知a =()x 1,y 1,b =()x 2,y 2,则a ∥b ⇔x 1y 2-x 2y 1=0.巩 固 已知a =(1,0),b =(2,1),当实数k 为何值时,向量k a -b 与a +3b 平行?并确定此时它们是同向还是反向.分析:先求出向量k a -b 与a +3b 的坐标,然后根据向量共线条件可求解.解析:∵ a =(1,0),b =(2,1),∴k a -b =k ()1,0-()2,1=()k -2,-1,a +3b =()1,0+3()2,1=()7,3.∵向量k a -b 与a +3b 平行,∴3()k -2+7=0,解得k =-13. ∵k =-13,k a -b =-13(a +3b ), 所以向量k a -b 与a +3b 反向.题型二 平面向量共线的证明例2 已知A (-1,-1),B (1,3),C (2,5),求证A 、B 、C 三点共线.分析:证向量AB →与AC →共线.证明:∵ A (-1,-1),B (1,3),C (2,5),∴AB →=()2,4,AC →=()3,6.∴AB →=23AC →. ∵AB →,AC →有公共点A ,∴A 、B 、C 三点共线.点评: 通过证有公共点的两向量共线,从而证得三点共线.巩 固 已知OA →=()k ,12,OB →=()4,5,OC →=()10,k ,当k 为何值时,A 、B 、C 三点共线?分析:由A 、B 、C 三点共线,可得AB →与BC →共线.解析:∵OA →=()k ,12,OB →=()4,5,OC →=()10,k ,∴AB →=()4-k ,-7,BC →=()6,k -5.∵A 、B 、C 三点共线,∴()4-k ()k -5+42=0.解得k =11或k =-2.题型三 用共线向量的性质求坐标例3 若M ()3,-2,N ()-5,-1, 且 MP →=12MN →,则P 点的坐标是________. 分析:设P ()x ,y ,由MP →=12MN →可求解. 解析:设P ()x ,y ,则MN →=()-8,1,MP →=()x -3,y +2.∵ MP →=12MN →,∴()x -3,y +2=12()-8,1=⎝⎛⎭⎫-4,12⇒x =-1,y =-32. ∴P ⎝⎛⎭⎫-1,-32. 答案:⎝⎛⎭⎫-1,-32 点评:把求点的坐标转化为向量共线问题.巩 固 若M ()3,-2,N ()-5,-1,且MP →=-2MN → , 则P 点的坐标是________.解析:设P ()x ,y ,则MN →=()-8,1,MP →=()x -3,y +2.∵ MP →=-2MN →,∴()x -3,y +2=-2()-8,1=(16,-2).解得P ()19,-4.答案:()19,-4题型四 共线向量的综合应用例4 如果向量AB →=i -2j ,BC →=i +m j ,其中i 、j 分别是x 轴、y 轴正方向上的单位向量,试确定实数m 的值使A 、B 、C 三点共线.分析:把向量AB →=i -2j 和BC →=i +m j 转化为坐标表示,再根据向量共线条件求解.解析:∵AB →=i -2j ,BC →=i +m j ,∴AB →=()1,-2,BC →=()1,m .∵ A 、B 、C 三点共线,即向量AB →与BC →共线,∴m +2=0,解得m =-2.点评:向量共线的几何表示与代数表示形式不同但实质一样,在解决问题时注意选择使用.巩 固 已知A ()1,1,B ()3,-1,C ()a ,b .(1)若A 、B 、C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解析:(1)AB →=()2,-2,AC →=()a -1,b -1,∵A 、B 、C 三点共线,∴AB →与AC →共线.∴2()b -1+2()a -1=0,即a +b =2.(2)∵AC →=2AB →,∴()a -1,b -1=2()2,-2⇒a =5,b =-3.∴C ()5,-3.1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( )A .6B .5C .7D .8答案:C2.已知点M 是线段AB 上的一点,点P 是平面上任意一点,PM →=35P A →+25PB →,若AM →=λMB →,则λ等于( ) A.35 B.25 C.32 D.23解析:用P A →,PB →表示向量AM →,MB →.∵AM →=AP →+PM →=AP →+35P A →+25PB →=-25P A →+25PB →,MB →=MP →+PB →=-PM →+PB →=-35P A →+25PB →+PB →=-35P A →+35PB →,∴AM →=23AB →. 答案:D3.已知▱ABCD 四个顶点的坐标为A (5,7),B (3,x ),C (2,3),D (4,x ),则x =__________.答案:54.已知两点A (1,3)、B (4,-1),则与向量AB →同向的单位向量是( )A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 解析:AB →=(3,-4),则与其同方向的单位向量e =AB →|AB →|=15(3,-4)=⎝⎛⎭⎫35,-45. 答案:A5.已知A ()-2,-3,B ()2,1,C ()1,4,D ()-7,-4,判断AB →与CD →是否共线.解析:∵AB →=(4,4),CD →=(-8,-8),∴AB →=-12CD →. ∴AB →与CD →共线.6.已知A (-1,-1),B (1,3),C (1,5) ,D (2,7) ,向量AB →与CD →平行吗?直线AB 平行于直线CD 吗?解析:AB →=()2,4,CD →=()1,2,AB →=2CD →,所以向量AB →与CD →平行,即直线AB 平行于直线CD .7.已知点A (x,0),B (2x,1),C (2,x ),D (6,2x ).(1)求实数x 的值,使向量AB →与CD →共线.解析:AB →=()x ,1,CD →=()4,x ,∵向量AB →与CD →共线,∴x 2-4=0,解得x =±2.(2)当向量AB →与CD →共线时,点A ,B ,C ,D 是否在一条直线上?解析:x =2时,不在同一条直线上;x =-2时,在同一条直线x +2y +2=0上.8.△AB C 的顶点A 、B 、C 分别对应向量a =()x 1,y 1,b =()x 2,y 2,c =()x 3,y 3其重心为G ,对应的向量为g =()x 0,y 0.求证:x 0=x 1+x 2+x 33,y 0=y 1+y 2+y 33. 证明:设AD 为BC 边的中线,O 为坐标原点.则OG →=OA →+AG →=OA →+23AD →=OA →+13()AB →+AC →=OA →+13()OB →-OA →+OC →-OA →=13()OA →+OB →+OC →. ∵A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),G (x 0,y 0)∴x 0=x 1+x 2+x 33,y 0=y 1+y 2+y 33. 9.已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.分析:(1)只需证明a ·b =0即可;(2)由已知条件得到cos α+cos β,sin α+sin β的值,然后再利用诱导公式得到α,β间的关系即可求得α,β的值.(1)证明:由题意得|a -b |2=2,即(a -b )2=a 2-2a ·b +b 2=2.又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)解析:因为a +b =(co s α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0, sin α+sin β=1, 由此得,cos α=cos ()π-β,由0<β<π,得0<π-β<π.又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6.。
空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
平面向量及运算法则
平面向量及运算法则1、向量:(1)概念:既有 又有 的量叫做向量(2)表示:可以用有向线段来表示,包含三个要素: 、 和 ;记为AB 或 a (3)模:AB 的长度叫向量的模,记为||AB 或 ||a(4)零向量:零向量的方向是任意的单位向量是____________的向量.(5)相等向量: 的向量叫相等向量;(6)共线向量: 的向量叫平行向量,也叫共线向量 2、向量运算的两个法则: 加法法则:(1)平行四边形法则,要点是:统一起点; (2)三角形法则,要点是:首尾相接;减法法则:向量减法运算满足三角形法则,要点是统一起点,从 指向 。
3、实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作a λ ,其长度与方向规定如下:(1)||a λ = ||||a λ;(2)λ> 0 时,a λ与a 同向;λ< 0 时,a λ与a 反向;(3)λ= 0 时,a λ=04、向量的线性运算满足: (1)()a λμ=(2)(λμ+)a = (3)()a b λ+=5、//a b (0)b a a λ⇔=≠其中R λ∈且唯一随堂练习1.给出下列命题:①向量AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上; ②两个单位向量是相等向量; ③若a =b, b=c,则a=c ;④若一个向量的模为0,则该向量的方向不确定; ⑤若|a |=|b |,则a =b 。
错误!未找到引用源。
若a 与b 共线, b 与c 共线,则a 与c 共线 其中正确命题的个数是( )DBAA .1个B .2个C .3个D .4个2、如图所示,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则DB AF -=( )A. B.C.FED.BE3、在平行四边形ABCD 中,下列各式中成立的是( ) A .+=AB BC CA B .+=AB AC BC C .+=AC BA AD D .+=AC AD DC4.下面给出的四个式子中,其中值不一定为0的是( ) A.AB BC CA ++ B.OA OC BO CO +++ C.AB AC BD CD -+- D.NQ QP MN MP ++-5.在平行四边形ABCD 中,若AB AD AB AD +=-则必有 ( ) A. 0AD = B. 00AB AD ==或 C. ABCD 是矩形 D. ABCD 是正方形6、如图所示,OADB 是以向量=,=为边的平行四边形,又BM=31BC ,CN=31CD .试用,表示OM ,ON ,.7、设两个非零向量1e 、2e 不是平行向量(1)如果AB =1e +2e ,BC =21e +82e ,CD =3(21e e -),求证A 、B 、D 三点共线; (2)试确定实数k 的值,使k 1e +2e 和1e +k 2e 是两个平行向量.OADBCMN变式: 已知OA 、OB 不共线,OP =a OA +b OB . 求证:A 、P 、B 三点共线的充要条件是a +b =1.1.平面向量的基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a = (2)平面向量的坐标运算: 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差;一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。
向量的坐标表示及其运算
1向量的坐标表示及其运算一、知识点(一)向量及其表示:1.平面向量的有关概念:(1)向量的定义:既有大小又有方向的量叫做向量.(2)表示方法:用有向线段来表示向量.有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示.对于平面直角坐标系内的任意一个向量a ,我们都能将它正交分解为基本单位向量,i j 的线性组合吗?如下图左.显然,如上图右,我们一定能够以原点O 为起点作一位置向量OA ,使OA a =.于是,可知:在平面直角坐标系内,任意一个向量a 都存在一个与它相等的位置向量OA .由于这一点,我们研究向量的性质就可以通过研究其相应的位置向量来实现.由于任意一个位置向量都可以正交分解为基本单位向量,i j 的线性组合,所以平面内任意的一个向量a 都可以正交分解为基本单位向量,i j 的线性组合.即:a =OA =xi y j +上式中基本单位向量,i j 前面的系数x,y 是与向量a 相等的位置向量OA 的终点A 的坐标.由于基本单位向量,i j 是固定不可变的,为了简便,通常我们将系数x,y 抽取出来,得到有序实数对(x,y ).可知有序实数对(x,y )与向量a 的位置向量OA 是一一对应的.因而可用有序实数对(x,y )表示向量a ,并称(x,y )为向量a 的坐标,记作:a =(x,y )[说明](x,y )不仅是向量a 的坐标,而且也是与a 相等的位置向量OA 的终点A 的坐标!当将向量a 的起点置于坐标原点时,其终点A 的坐标是唯一的,所以向量a 的坐标也是唯一的.这样,我们就将点与向量、向量与坐标统一起来,使复杂问题简单化.显然,依上面的表示法,我们有:(1,0),(0,1),0(0,0)i j ===.(3)模:向量的长度叫向量的模,记作|a|或|AB|.(4)零向量:长度为零的向量叫做零向量,记作0;零向量的方向不确定.(5)单位向量:长度为1个长度单位的向量叫做单位向量.(6)共线向量:方向相同或相反的向量叫共线向量,规定零向量与任何向量共线.(7)相等的向量:长度相等且方向相同的向量叫相等的向量.2向量坐标的有关概念(1)基本单位向量(2)位置向量(3)向量的正交分解我们称在平面直角坐标系中,方向与x轴和y轴正方向分别相同的的两个单位向量叫做基本单位向量,分别记为,i j,如图,称以原点O为起点的向量为位置向量,如下图左,OA即为一个位置向量.如上图右,设如果点A的坐标为(),x y,它在小x轴,y轴上的投影分别为M,N,那么向量OA能用向量OM与ON来表示吗?(依向量加法的平行四边形法则可得OA OM ON=+),OM与ON 能用基本单位向量,i j来表示吗?(依向量与实数相乘的几何意义可得,OM xi ON y j==),于是可得:OA OM ON xi y j=+=+由上面这个式子,我们可以看到:平面直角坐标系内的任一位置向量OA都能表示成两个相互垂直的基本单位向量,i j的线性组合,这种向量的表示方法我们称为向量的正交分解.向量的坐标运算:设),(),(),(),,(1121212211yxayyxxbayxbyxaλλλλ=±±=±ℜ∈==,,3.向量的摸:22yxa+=(二)向量平行的充要条件:1向量共线定理:向量b与非零向量a共线的充要条件是有且仅有一个实数λ,使得b=λa,即b∥a⇔b=λa(a≠0).2设a=(x1,y1),b=(x2,y2)则b∥a⇔1221yxyx=练习2:1.已知向量(2,3)a =,(,6)b x =,且//a b ,则x 为_________;2.设a =(x 1,y 1),b =(x 2,y 2),则下列a 与b 共线的充要条件的有( ) ① 存在一个实数λ,使a =λb 或b =λa ; ②2121y yx x =;③(a +b )//(a -b ) A 、0个 B 、1个 C 、2个 D 、3个3.设0a 为单位向量,有以下三个命题:(1)若a 为平面内的某个向量,则0a a a =⋅;(2)若a 与0a 平行,则0a a a =⋅;(3)若a 与0a 平行且1a =,则0a a =.上述命题中,其中假命题的序号为 ;问题一:已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=____ [说明] 三点共线的证明方法总结: 法一:利用向量的模的等量关系法二:若A 、B 、C 三点满足AB AC λ=,则A 、B 、C 三点共线.*法三:若A 、B 、C 三点满足OC mOA nOB =+,当1m n +=时,A 、B 、C 三点共线. 问题二:定比分点公式:设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足 12PP PP λ=,求点P 的坐标.解:由12PP PP λ= ,可知{)()(2121x x x x y y y y -=--=-λλ,因为λ≠-1, 所以⎩⎨⎧++=++=λλλλ112121x x x y y y ,这就是点P 的坐标.[说明]由定比分点公式可知λ=1 时有⎪⎩⎪⎨⎧+=+=222121x x x y y y ,此公式叫做线段21P P 的中点公式.例、已知平面上A 、B 、C 三点的坐标分别为A (),11y x , ),(22y x B , ),(33y x C ,G 是△ABC 的重心,求点G 的坐标.解:由于点G 是△ABC 的重心,因此CG 与AB 的交点D 是AB 的中点,于是点D 的坐标是(2,22121y y x x ++). 设点G 的坐标为),(y x ,且2CG GD =则由定比分点公式得 ⎪⎩⎪⎨⎧+++=+++=21222122213213x x x x y y y y ,整理得 ⎪⎩⎪⎨⎧++=++=3332121x x x x y y y y 这就是△ABC 的重心G 的坐标.例、)15,12(),0,3(),5,2(21P P P - 且有12PP PP λ=求实数λ的值. 解1: 由已知可求 1(10,10)PP =,2(15,15)PP λλ=-- 故10=λ .(-15),所以定比λ=-32.解2: 因为12PP PP λ=,所以P 1,P ,2P 三点共线,由定比分点公式得12=λλ+-⨯+1)3(2解出实数λ=-32.解3:由图形可知点P 在线段21P P 外,故λ﹤0 ,又21PP P P= 32 ,所以λ=-32 .3.向量的坐标表示的运算我们学过向量的运算,知道向量有加法、减法、实数与向量的乘法等运算,那么,在学习了向量的坐标表示以后,我们怎么用向量的坐标形式来表示这些运算呢?设λ是一个实数,1122(,),(,).a x y b x y == 由于1111(,),a x y x i y j ==+ 2222(,)b x y x i y j ==+ 所以1122(,)(,)a b x y x y ±=±()()1122x i y j x i y j =+±+()()()()()121212121212,x i x i y j y j x x i y y j x x y y =±+±=±+±=±± ()()11111111(,),a x y x i y j x i y j x y λλλλλλλ==+=+=于是有:1122(,)(,)x y x y ±()1212,x x y y =±±()1111(,),x y x y λλλ=[说明]上面第一个式子用语言可表述为:两个向量的和(差)的横坐标等于它们对应的横坐标的和(差),两个向量的和(差)的纵坐标也等于它们对应的纵坐标的和(差),可笼统地简称为:两个向量和(差)的坐标等于对应坐标的和(差);同样,第二个式子用语言可表述为:数与向量的积的横坐标等于数与向量的横坐标的积,数与向量的积的纵坐标等于数与向量的纵坐标的积,也可笼统地简称为:数与向量积的坐标等于数与向量对应坐标的积. 例.如图,平面上A 、B 、C 三点的坐标分别为()2,1、()3,2-、()1,3-.(1)写出向量,AC BC 的坐标; (2)如果四边形ABCD 是平行四边形,求D 的坐标.解:(1)()()12,313,2AC =---=- ()()()13,322,1BC =----=(2)在上图中,因为四边形ABCD 是平行四边形,所以DC AB = 设点D 的坐标为(),D D x y ,于是有()1,3D D x y AB ---= 又 ()()32,215,1AB =---=- 故 ()()1,35,1D D x y ---=- 由此可得1531D D x y --=-⎧⎨-=⎩ 解得42D D x y =⎧⎨=⎩因此点D 的坐标为()4,2.1. 如图,写出向量,,a b c 的坐标.2.已知(1,2)a =-,若其终点坐标是(2,1),则其起点的坐标是 ;DC(-1,3)A(2,1)B(-3,2)yxO若其起点坐标是(2,1),则其终点的坐标是 . 3.已知向量()2,3a =-与()1,5b =-,求3a b -及3b a -的坐标.解:1.由题意:()()()()()()2,1,1,1,2,11,121,1(1)1,2a b c ==-=--=---=2.设起点的坐标是(x,y),则(2,1)-(x,y)=(-1,2),解得:(x,y)=(3,-1),即起点的坐标是(3,-1);设终点的坐标是(x,y),则(x,y)-(2,1) =(-1,2),解得:(x,y)=(1,3),即起点的坐标是(1,3).3. 3a b -=3()7,14---()()1,57,14-=- 3b a -=()1,5--3()2,3-()7,14=-[另法]:3b a -=()3a b --=()7,14--()7,14=-二、典型例题例1若向量b a ,. 满足.b a b a -=+,则b a 与所成角的大小为多少?例2 下列哪些是向量?哪些是标量?(1)浓度 (2)年龄 (3)风力 (4) 面积 (5)位移 (6)人造卫星速度 (7)向心力 (8)电量 (9)盈利 (10)动量 例3. ∆ABC 中,A (1,1),B (-3,5), C (8,-3),G 是ABC ∆重心,求GA 的坐标例4. 已知A ()()()()3,2,2,3,1,2,2,1--D C B ()反向的单位向量求与AB 1 ()()的坐标,求点,若E BE 522-= ()3若a BD AC a 求,-=()三点不共线,,求证:C B A 4 ()CD BD AD AC AB ++来表示,以5()()坐标三点共线,求点,,且若P P B A x P 3,6()如图7所示,若点M 分BA 的比λ为3:1,点N 在线段BC 上,且ABC AMNC S S ∆=32,求点N 点的坐标例5若ABCD 为正方形,E 是CD 的中点,且AB =a ,AD =b ,则BE 等于 A.b +21a B.b -21a C.a +21b D.a -21b 例6.e 1、e 2是不共线的向量,a =e 1+k e 2,b =k e 1+e 2,则a 与b 共线的充要条件是实数k 等于 A.0 B.-1 C.-2 D.±1例7.若a =“向东走8 km ”,b =“向北走8 km ”,则|a +b |=_______,a +b 的方向是_______.例8 已知向量a 、b 满足|a |=1,|b |=2,|a -b |=2,则|a +b |等于 A.1B.2C.5D.6. 例11若a 、b 是两个不共线的非零向量(t ∈R ).(1)若a 与b 起点相同,t 为何值时,a 、t b 、31(a +b )三向量的终点在一直线上?(2)若|a |=|b |且a 与b 夹角为60°,那么t 为何值时,|a -t b |的值最小?例12.若a 、b 为非零向量,且|a +b |=|a |+|b |,则有A.a ∥b 且a 、b 方向相同B.a =bC.a =-bD.以上都不对例13.设四边形ABCD 中,有DC =21AB 且|AD |=|BC |,则这个四边形是 A.平行四边形 B.矩形 C.等腰梯形 D.菱形例15.设两向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围..例16已知向量a =2e 1-3e 2,b =2e 1+3e 2,其中e 1、e 2不共线,向量c =2e 1-9e 2.问是否存在这样的实数λ、μ,使向量d =λa +μb 与c 共线?例17.如图所示,D 、E 是△ABC 中AB 、AC 边的中点,M 、N 分别是DE 、BC 的中点,已知BC =a ,BD =b ,试用a 、b 分别表示DE 、CE 和MN .AB CDMN E例18在△ABC 中,AM ∶AB =1∶3,AN ∶AC =1∶4,BN 与CM 交于点E ,AB =a ,AC =b ,用a 、b 表示AE .A BCMNE1.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于 A.(-3,6) B.(3,-6)C.(6,-3)D.(-6,3) 2.已知向量a =(3,4),b =(sin α,cos α),且a ∥b ,则tan α等于A.43 B.-43 C.34D.-343已知平面向量a =(3,1),b =(x ,-3)且a ⊥b ,则x 等于 A.3 B.1 C.-1 D.-31.如图,已知四边形ABCD 是梯形,AB ∥CD ,E 、F 、G 、H 分别是AD 、BC 、AB 与CD 的中点,则EF 等于( )A .BC AD +B .DC AB +C .DH AG +D .GH BG +2.下列说法正确的是 ( ) A .方向相同或相反的向量是平行向量 B .零向量的长度为0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( )A .OB .MD 4C .MF 4D .ME 4 4.已知向量b a 与反向,下列等式中成立的是( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+5.在 ABCD 中,设d BD c AC b AD a AB ====,,,,则下列等式中不正确的是( ) A .c b a =+ B .d b a =-C .d a b =-D .b a c =- 6.下列各量中是向量的是( ) A .质量 B .距离C .速度D .电流强度7.在矩形ABCD 中,O 是对角线的交点,若OC e DC e BC 则213,5=== ( )A .)35(2121e e + B .)35(2121e e - C .)53(2112e e - D .)35(2112e e - 8.若),,(,,,R o b a b a ∈=+μλμλ不共线则( )A .o b o a ==,B .o o a ==μ,C .o b o ==,λD .o o ==μλ, 9.化简)]24()82(21[31b a b a --+的结果是( )A .b a -2B .a b -2C .a b -D .b a -10.下列三种说法:①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底 ②一个平面内有无数对不共线向量可作为该平面的所有向量的基底 ③零向量不可作为基底中的向量.其中正确的是 ( )A .①②B .②③C .①③D .①②③ 11.若2121,,PP P P b OP a OP λ===,则OP 等于 ( )A .b a λ+B .b a +λC .b a )1(λλ-+D .b a λλλ+++111 12.对于菱形ABCD ,给出下列各式: ①BC AB =②||||BC AB =③||||BC AD CD AB +=-④||4||||22AB BD AC =+ 2其中正确的个数为( )A .1个B .2个C .3个D .4个二、填空题(每小题4分,共16分,答案填在横线上)13.21,e e 不共线,当k= 时,2121,e k e b e e k a +=+=共线. 14.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 . 15.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 .16.已知c b a ,,的模分别为1、2、3,则||c b a ++的最大值为 .三、解答题(本大题共74分,17—21题每题12分,22题14分)17.设21,e e 是两个不共线的向量,2121212,3,2e e CD e e CB e k e AB -=+=+=,若A 、 B 、D 三点共线,求k 的值.19.已知向量,,32,32212121e e e e b e e a 与其中+=-=不共线向量,9221e e c -=,问是否存在这样的实数,,μλ使向量c b a d 与μλ+=共线?20.如图,在△ABC 中,P 是BC 边上的任一点,求证:存在,1)1,0(,2121=+∈λλλλ且使AC AB AP 21λλ+=.1.已知(2,0),(1,3),a b ==-则a b +与a b -的坐标分别为( ) (A)(3,3),(3,-3) (B)(3,3),(1,-3) (C)(1,3),(3,3) (D)(1,3),(3,-3)2.若点A 坐标为(2,-1),AB 的坐标为(4,6),则B 点的坐标为( ) (A)(-2,-7) (B)(2,7) (C)(6,5) (D)(-2,5)3.已知(,4),(3,2).a x b y ==-若1,2a b =则x= ,y= . 4.已知AB (1)i x j +-=(2-x),且AB 的坐标所表示的点在第四象限,则x 的取值范围是.5.已知A(5,-2),B(2,-5),C(7,4),D(4,1),求证:AB=CD .6.已知(1,2),(3,1),(11,7),a b c =-=-=-并且.c xa yb =+求x,y 的值.7.已知22(,2),(5,)a m n b mn =+=,且.a b =求,.m n 的值.。
平面向量基本定理及坐标表示
5.已知▱ABCD的顶点A(-1,-2),B(3,-1),C(5,6),则顶点D的坐 标为_(_1_,_5)__. 设 D(x,y),则由A→B=D→C,得(4,1)=(5-x,6-y), 即41= =56- -xy, , 解得xy==15,.
题型一 平面向量基本定理的应用
例1 在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点, AE的延长线与CD交于点F. 若A→C=a,B→D=b,则A→F等于
∴y=27, 故选 A.
题型三 向量共线的坐标表示
命题点1 利用向量共线求向量或点的坐标 例3 已知点A(4,0),B(4,4),C(2,6),则AC与OB的交点P的坐标为_(_3_,3_)_.
方法一 由 O,P,B 三点共线,可设O→P=λO→B=(4λ,4λ), 则A→P=O→P-O→A=(4λ-4,4λ). 又A→C=O→C-O→A=(-2,6),
(2)已知四边形 ABCD 的三个顶点 A(0,2),B(-1,-2),C(3,1),且B→C=2A→D,
则顶点 D 的坐标为
A.(2,72)
B.(2,-12)
C.(3,2)
D.(1,3)
设 D(x,y),A→D=(x,y-2),B→C=(4,3),
又B→C=2A→D,∴34==22xy,-2, x=2,
考点自测
1.设e1,e2是平面内一组基底,那么 A.若实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0 B.空间内任一向量a可以表示为a=λ1e1+λ2e2(λ1,λ2为实数) C.对实数λ1,λ2,λ1e1+λ2e2不一定在该平面内 D.对平面内任一向量a,使a=λ1e1+λ2e2的实数λ1,λ2有无数对
A.(4,0)
B.(0,4)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上的一点, 例 3:设点 P 是线段 P1 P2 上的一点, P1 , P2的坐标分 别是 ( x1 , y1 ), ( x 2 , y 2 ). 的中点时, (1)当点 P 是线段 P1 P2的中点时,求点 P ; 的一个三等分点时, ( 2 )当点 P 是线段 P1 P2的一个三等分点时,求 点 P 。
例 2 : 已知 A = ( − 1, − 1), B = (1, 3 ), C = ( 2 ,5 ), 试 判断 A , B , C 三点之间的位置关系 .
练习: 练习:判断下列各组点 哪些共线 (1) P ( 0,0 ), Q ( 2,3 ), R ( 3,0 ) ( 2 ) P ( − 1,− 2 ), Q ( 3,4 ), R (1,1) 1 ( 3 ) P ( 8, ), Q ( 9,2 ), R (1,− 3 ) 2 ( 4 ) P (1,2 ), Q ( − 3,4 ), R ( 5,6 )
探究: 探究:平面向量共线的坐标表示 共线, 思考1 如果向量 a , b( b ≠ 0)共线,那么向量 a , 思考1:
b满足什么关系? 满足什么关系?
a , b共线,当且仅当存在实 数 λ ,使 a = λ b 共线,
思考2 如果向量 a = ( x1 , y1 ), b = ( x 2 , y 2 ), a , b共 思考2:
线,那么向量 a, b的坐标之间满足什么 关系? 关系?
a , b(b ≠ 0)共线
பைடு நூலகம்
a = λb
x1 y2 − x2 y1 = 0
例1 : 已知 a = ( 4 , 2 ), b = ( 6 , y ), 且 a // b , 求 y .
练习: 练习: (1)已知 a = (1, m ), b = ( 3 m ,2 m + 1), 若 a // b , 求 m . ( 2)若 P( x ,1)在 A(2,-4), B(5,11) 这两点的连线上,求 x. 这两点的连线上, ( 3)已知向量 a = (3,4), b = (sin α , cosα ), 且 a // b , 求 tan α .
例4:已知点 A(2,3), B(5,4), C(7,10), 若 AP = AB + λ AC (1)λ为何值时,点 P在直线 y = x的图像上? 为何值时, 的图像上? (1)设点 P在第三象限,求 λ的范围。 在第三象限, 的范围。
为正实数, 例 5:已知向量 a = (1,2 ), b = ( − 2,1), k , t为正实数, 1 1 2 x = a + ( t + 1)b , y = a + b , 问是否存在 k , t,使 x// y , k t 若存在,求出 k的范围 ; 若不存在,请说明理由 。 若存在, 若不存在,