制动器的选型和计算
制动器的设计计算
制动器的设计计算制动器是用来减速和停止运动物体的一种装置。
在设计制动器时,需要考虑以下几个因素:制动力的大小、制动距离的要求、制动器材料的选型、热力学效应以及制动器的结构设计等等。
首先,要确定所需的制动力大小。
制动力是指制动器施加在运动物体上的力,它的大小决定了物体的减速度和停止的时间。
根据实际需求和应用场景,可以通过以下公式计算制动力:制动力=质量×减速度其中,质量是指运动物体的质量,减速度是要达到的减速度。
根据这个制动力,可以选择适当的制动器结构和材料。
其次,要确定制动距离的要求。
制动距离是指从开始制动到停止的距离,它的大小决定了制动器制动的效果和占用的空间。
制动距离可以通过以下公式计算:制动距离=初始速度²/(2×减速度)其中,初始速度是运动物体开始制动时的速度,减速度是物体的减速度。
根据这个制动距离,可以调整制动器结构和制动参数的设计。
然后,要选择适当的制动器材料。
制动器材料需要具备一定的强度、硬度和耐磨性,以保证制动效果和使用寿命。
常见的制动器材料包括金属、陶瓷和复合材料等。
选择合适的材料还需要考虑制动温度的影响,因为制动过程中会产生大量的热量,可能导致制动器材料的热膨胀、软化或者燃烧。
最后,要进行制动器的结构设计。
制动器的结构设计包括选择合适的制动器类型(如摩擦制动器、液力制动器和电磁制动器等),确定制动器的安装位置和方式,设计制动器的摩擦面积和接触面形状等。
结构设计需要考虑制动器的尺寸、重量和安装方便性,以保证制动器能够稳定可靠地工作。
在制动器设计的过程中,还需要考虑一些其他的因素,如制动器的可靠性、维修性以及制动器和运动物体之间的适配性。
制动器的设计是一个综合考虑各种因素的过程,需要进行合理的计算和模拟分析,并结合实际的试验验证。
制动器设计及计算实例
制动器设计及计算实例制动器是一种用于车辆或机械设备上的重要安全装置,用于减速、停止或保持其运动状态。
其设计和计算涉及到多个方面的因素,包括制动力的大小、刹车盘的尺寸和材料、制动液的压力等。
下面将通过一个实例来介绍制动器的设计及计算。
假设我们需要设计一个汽车的制动器,首先我们需要确定以下几个参数:1. 汽车的质量:假设汽车的质量为1500kg;2.最大限制加速度:假设最大限制加速度为4m/s^2;3.停车的时间:假设停车的时间为3秒。
基于以上参数,我们可以计算出汽车需要的制动力:制动力=汽车质量×最大限制加速度= 1500kg × 4m/s^2=6000N接下来,我们需要设计制动盘的尺寸和材料。
制动盘的直径和厚度会影响其散热性能和制动力的传递效果。
一般而言,制动盘的直径越大,制动力就越好,但也会增加重量和成本。
制动盘的材料通常选择具有良好耐磨性和散热性能的金属材料,如铸铁或复合材料。
假设我们选择了铸铁制动盘,并给定以下参数:1. 制动盘的直径:假设制动盘的直径为300mm;2. 制动盘的厚度:假设制动盘的厚度为40mm;根据制动盘的直径和厚度,我们可以计算制动盘的转动惯量:转动惯量=(1/2)×制动盘的质量×(制动盘的直径/2)^2=(1/2)×制动盘的质量×(0.15m)^2根据实际情况,制动盘的质量需要根据制动盘的材料、直径和厚度来选择。
为了方便计算,假设制动盘的质量为20kg。
转动惯量= (1/2) × 20kg × (0.15m)^2= 0.45kg·m^2接下来,我们需要选择适当的制动液和计算所需的制动液压力。
制动液在制动器中起到传递力和控制制动器放松的作用。
制动液需要具有良好的抗压性、稳定性和耐高温性能。
假设我们选择了常用的DOT4制动液,并给定以下参数:1.制动液的抗压性比:假设制动液的抗压性比为10:1;2.需要的制动力:假设需要的制动力为6000N。
制动器的选择
6 制动器选择及运行打滑验算6.1概述制动器是用于机构或机器减速或使其停止的装置。
有时也用于调节或限制机构或机器的运动速度。
它是保证机构或机器正常安全工作的重要部件。
制动器类型的选择应考虑以下几点:①对于水平运行的起重机机械的运行,为了控制动转矩的大小以便准确停车,则应多采用常开式制动器。
②应充分注意制动器的任务。
对于安全性有高度要求的机构,需装设双重制动器。
③应考虑应用的场所。
例如安装制动器的地点有足够的空间时,则可选择外抱式制动器,空间受限制处,则可采用内蹄式﹑带式或盘式制动器。
④运行机构的制动器,应安装在电动机的轴端。
这是因为车体质量和惯性大,制动时高速轴能起一部分缓冲作用,以减少制动时的冲击。
6.2制动器的计算运行机构的制动器根据起重机满载、顺风和下坡运行制动工况选择,制动器应使起重机在规定的时间内停车,制动转距按下式计算:2121()2000()()[0.975]()9.55IIIZ P W W zD T F F F i m m t k J J n mQ G v N m nηη=+-+''+++式(6.1)式中:IIW F ——风阻力(N ),按工作状态最大计算风压II q ,因为是室内起重机故其为0;1m F ——为摩擦阻力 m '——制动器个数;z t ——制动时间,参考下表选取;pF ——坡道阻力,计算公式是()pF QG i =+,i 值与起重机类型有关。
桥式起重机为0.001;D ——为车轮踏面直径(mm ); v ——为运行机构的稳定运行速度(2m s);η——为机械传动效率;k ——考虑其他传动件飞轮矩影响系数,折算到电动机轴上可取k=1.1~1.21J ——电动机转子转动惯量(2kg m);2J ——电动机轴上制动轮和联轴器的转动惯量(2kg m);n ——电动机额定转速(m inr );m ——电动机个数。
代入数据得:22000.91(2613)20000.001224.2260001.440.91.1(99102)9402[0.975]9409.55210()z T N m =-+++≈式(6.2)运行机构加(减)速度a 及相应加(减)速度时间t 的推荐值如下表:6.3制动器型号的选择通过对以上数据的计算综合各方面因素决定选用如下制动器型号:表6.2 制动器型号及性能特征6.4 大车运行机构打滑验算为了保证起重机运行时可靠的起动和制动,防止驱动轮在轨道上打滑,而避免影响起重机的正常工作和加剧车轮的磨损,应分别对驱动轮作起动和制动的打滑验算。
制动单元正确选型和制动电阻计算公式
制动单元正确选型和制动电阻计算公式制动单元正确选型和制动电阻在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。
当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。
电机再生的电能经续流二极管全波整流后反馈到直流电路。
由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。
过高的直流电压将使各部分器件受到损害。
因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。
处理再生能量的方法:能耗制动和回馈制动.能耗制动的工作方式能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动。
这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。
制动单元制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。
制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。
从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。
制动电阻制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。
通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。
制动参数选择及计算
第一章制动参数选择及计算第一节汽车参数(符号以汽车设计为准)制动器设计中需要的重要参量:汽车轴距:L=1370mm车轮滚动半径:r r =295 mm汽车满载质量:m a=4100Kg汽车空载质量:m o=2600Kg满载时轴荷的分配:前轴负荷39%,后轴负荷61% 空载时轴荷的分配:前轴负荷47%,后轴负荷53% 满载时质心高度:hg =745mm空载时质心高度:hg'=850mm质心距前轴的距离:L1 =835mm L1'=726mm 质心距后轴的距离:L2 =535mm L2'=644mm 对汽车制动性有影响的重要参数还有:制动力及其分配系数、同步附着系数、制动强度、附着系数利用率、最大制动力矩与制动因数等。
第二节制动器的设计与计算一制动力与制动力矩分配系数0 水平路面满载行驶时,前、后轴的负荷计算对于后轴驱动的移动机械和车辆,在水平路面满载行驶时前后轴的最大负荷按下式计算(g=9.8N/kg)前轴的负荷F1=Ga(L2-ϕhg)/(L-ϕhg)=3830.8N后轴的负荷F2=GaL1/(L-ϕhg)=36349.2Nϕ--- 附着系数,沥青.混凝土路面,取0.6轴荷转移系数:前轴:m,1= F Z1/G1=0.24后轴:m,2= F Z1/G2=1.481、(汽车理论108页)水平路面满载行驶制动时,地面对前后车轮的法向反作用力(满载)F Z1= GL (L2+ϕgh)=4100×9.8÷1.370×(0.535+0.6×0.745)=28800.55NF Z2=GL (L1-ϕgh)=4100×9.8÷1.370×(0.835-0.6×0.745)=11379.45N 式中: G-- 汽车所受重力;L-- 汽车轴距;1L--汽车质心离前轴距离;L2--汽车质心离后轴距离;2B F和汽车的回转质量的惯性力矩,则任何角速度ω﹥0的车轮,其力矩平衡方程为Mμ-F b EMBED Equation.DSMT4 ϕ式中:Mμ--制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋转方向相反,N﹒m;F b--地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称地面制动力,其方向与汽车行驶方向相反,N;R e--车轮有效半径,m令 F B=Mμ/R e并称之为制动器的制动力,它是在轮胎周缘克服制动器的摩擦力矩所需的力,因此又称为制动周缘力。
制动器选择计算公式
制动器选择计算公式在车辆制动系统中,制动器是至关重要的组成部分。
它们负责将车辆的动能转化为热能,从而减速或停止车辆。
因此,选择适当的制动器对于车辆的性能和安全性至关重要。
在选择制动器时,需要考虑诸多因素,包括车辆的重量、速度、使用环境等。
本文将介绍制动器选择的计算公式,帮助工程师们更好地选择适合的制动器。
首先,我们需要了解一些基本的概念。
制动器的性能通常由制动力和制动力矩来描述。
制动力是指制动器施加在车轮上的力,而制动力矩则是制动器施加在车轮上的力乘以制动器半径。
制动器的选择计算公式将涉及到这些参数。
1. 制动力计算公式。
制动力的计算公式可以表示为:F = μ m g。
其中,F为制动力,μ为摩擦系数,m为车辆的质量,g为重力加速度。
摩擦系数是指制动器和车轮之间的摩擦系数,它取决于制动器和车轮的材料。
一般来说,摩擦系数越大,制动力越大。
2. 制动力矩计算公式。
制动力矩的计算公式可以表示为:T = F r。
其中,T为制动力矩,F为制动力,r为制动器半径。
制动力矩是制动器施加在车轮上的力乘以制动器半径,它反映了制动器对车轮的制动能力。
3. 动能计算公式。
在选择制动器时,还需要考虑车辆的动能。
动能的计算公式可以表示为:E = 0.5 m v^2。
其中,E为动能,m为车辆的质量,v为车辆的速度。
动能是车辆的速度和质量的函数,它反映了车辆在运动过程中所具有的能量。
综合考虑以上几个公式,我们可以得出制动器选择的计算公式:T = μ m g r。
根据这个计算公式,我们可以计算出所需的制动力矩,从而选择适合的制动器。
需要注意的是,实际的制动器选择还需要考虑到制动器的类型、材料、散热能力等因素,这些因素将对制动器的性能产生重要影响。
除了上述的计算公式外,还有一些其他因素需要考虑。
例如,制动器的热容量、制动器的响应时间、制动器的耐久性等。
这些因素将对制动器的选择产生重要影响,工程师们在选择制动器时需要综合考虑这些因素。
制动器的结构型式及选择
汽车制动系统设计§0 概述汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。
随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。
也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。
汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置;重型汽车或经常在山区行驶的汽车要增设应急制动装置及辅助制动装置;牵引汽车应有自动制动装置。
行车制动装置用作强制行驶中的汽车减速或停车,并使汽车在下短坡时保持适当的稳定车速。
其驱动机构常采用双回路或多回路结构,以保证其工作可靠。
驻车制动装置用于使汽车可靠而无时间限制地停驻在一定位置甚至斜坡上,它也有助于汽车在坡路上起步。
驻车制动装置应采用机械式驱动机构而不用液压或气压式的,以免其产生故障。
应急制动装置用于当行车制动装置意外发生故障而失效时,则可利用应急制动装置的机械力源(如强力压缩弹簧)实现汽车制动。
应急制动装置不必是独立的制动系统,它可利用行车制动装置或驻车制动装置的某些制动器件。
应急制动装置也不是每车必备,因为普通的手力驻车制动器也可以起应急制动的作用。
辅助制动装置用于山区行驶的汽车上,利用发动机排气制动、电涡流或液力缓速器等辅助制动装置,则可使汽车下长坡时长时间而持续地减低或保持稳定车速并减轻或解除行车制动器的负荷。
通常,在总质量为5t以上的客车上和12t以上的载货汽车上装备这种辅助制动减速装置。
自动制动装置用于当挂车与牵引汽车连接的制动管路渗漏或断开时,能使挂车自动制动。
任何一套制动装置均由制动器和制动驱动机构两部分组成。
制动器有鼓式与盘式之分。
行车制动是用脚踩下制动踏板操纵车轮制动器来制动全部车轮,而驻车制动则多采用手制动杆操纵,且具有专门的中央制动器或利用车轮制动器进行制动。
中央制动器位于变速器之后的传动系中,用于制动变速器第二轴或传动轴。
制动参数选择及计算
第一章制动参数选择及计算第一节汽车参数(符号以汽车设计为准)制动器设计中需要的重要参量:汽车轴距:L=1370mm车轮滚动半径:r r =295 mm汽车满载质量:m a=4100Kg汽车空载质量:m o=2600Kg满载时轴荷的分配:前轴负荷39%,后轴负荷61% 空载时轴荷的分配:前轴负荷47%,后轴负荷53% 满载时质心高度:hg =745mm空载时质心高度:hg'=850mm质心距前轴的距离:L1 =835mm L1'=726mm 质心距后轴的距离:L2 =535mm L2'=644mm 对汽车制动性有影响的重要参数还有:制动力及其分配系数、同步附着系数、制动强度、附着系数利用率、最大制动力矩与制动因数等。
第二节制动器的设计与计算一制动力与制动力矩分配系数0 水平路面满载行驶时,前、后轴的负荷计算对于后轴驱动的移动机械和车辆,在水平路面满载行驶时前后轴的最大负荷按下式计算(g=9.8N/kg)前轴的负荷F1=Ga(L2-ϕhg)/(L-ϕhg)=3830.8N后轴的负荷F2=GaL1/(L-ϕhg)=36349.2Nϕ--- 附着系数,沥青.混凝土路面,取0.6轴荷转移系数:前轴:m,1= F Z1/G1=0.24后轴:m,2= F Z1/G2=1.481、(汽车理论108页)水平路面满载行驶制动时,地面对前后车轮的法向反作用力(满载)F Z1= GL (L2+ϕgh)=4100×9.8÷1.370×(0.535+0.6×0.745)=28800.55NF Z2=GL (L1-ϕgh)=4100×9.8÷1.370×(0.835-0.6×0.745)=11379.45N 式中: G-- 汽车所受重力;L-- 汽车轴距;1L--汽车质心离前轴距离;L2--汽车质心离后轴距离;2B F和汽车的回转质量的惯性力矩,则任何角速度ω﹥0的车轮,其力矩平衡方程为Mμ-F b EMBED Equation.DSMT4 ϕ式中:Mμ--制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋转方向相反,N﹒m;F b--地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称地面制动力,其方向与汽车行驶方向相反,N;R e--车轮有效半径,m令 F B=Mμ/R e并称之为制动器的制动力,它是在轮胎周缘克服制动器的摩擦力矩所需的力,因此又称为制动周缘力。
制动器的设计与计算(图片高清)
第四节制动器的设计与计算一、鼓式制动器的设计计算1.压力沿衬片长度方向的分布规律除摩擦衬片因有弹性容易变形外,制动鼓、蹄片和支承也有变形,所以计算法向压力在摩擦衬片上的分布规律比较困难。
通常只考虑衬片径向变形的影响,其它零件变形的影响较小而忽略不计。
制动蹄有一个自由度和两个自由度之分。
首先计算有两个自由度的紧蹄摩擦衬片的径向变形规律。
如图8—8a所示,将坐标原点取在制动鼓中心O点。
y I坐标轴线通过蹄片的瞬时转动中心A1点。
制动时,由于摩擦衬片变形,蹄片一面绕瞬时转动中心转动,同时还顺着摩擦力作用的方向沿支承面移动。
结果蹄片中心位于O1点,因而未变形的摩擦衬片的表面轮廓(E1E1线),就沿OO1方向移动进入制动鼓内。
显然,表面上所有点在这个方向上的变形是一样的。
位于半径OB l上的任意点B1的变形就是B1B’1线段,所以同样一些点的径向变形δ1为δ1=B1C1≈B1B’1cosψ1考虑到ψ1≈(φ1+α1—90º)和B1B’1=001=δ1max所以对于紧蹄的径向变形δ1和压力p1为:式中,α1为任意半径OB l和y1轴之间的夹角;Ψl为半径OBi和最大压力线001之间的夹角;φ1为х1轴和最大压力线001之间的夹角。
其次计算有一个自由度的紧蹄摩擦衬片的径向变形规律。
如图8—8b 所示,此时蹄片在张开力和摩擦力作用下,绕支承销A 1转动d γ角。
摩擦衬片表面任意点B l 沿蹄片转动的切线方向的变形就是线段B 1B ’1,其径向变形分量是这个线段在半径OB 1延长线上的投影,即为B 1C 1线段。
由于d γ很小,可认为∠A 1B 1B ’1=90º,故所求摩擦衬片的变形应为δ1=B 1C 1=B 1B’1sin γ1=A 1B 1sin γ1d γ考虑到OA l ~OB 1=R.那么分析等腰三角形A l OB 1,则有A 1月l /sin α=R /sin7,所以表面的径向变形和压力为γαδd R sin 1=αsin max 1p p = (8—2)综上所述可知,新蹄片压力沿摩擦衬片长度的分布符合正弦曲线规律,可用式(8—1)和式(8—2)计算。
制动系统选择与计算
制动系统选择与计算制动系统对于车辆的安全性和性能至关重要。
选择合适的制动系统并进行正确的计算是设计车辆制动系统的关键步骤。
本文将介绍制动系统选择的因素和制动系统计算的方法。
制动系统选择因素选择适合的制动系统需要考虑以下因素:1. 车辆类型:不同类型的车辆需要不同类型的制动系统。
例如,乘用车通常采用液压制动系统,而大型货车可能采用气压制动系统。
2. 车辆质量:车辆的质量将影响制动系统的选择。
较重的车辆可能需要更强大的制动系统来确保安全和效果。
3. 驾驶样式:驾驶员的驾驶样式也是制动系统选择的考虑因素之一。
一些驾驶员可能采用急刹车的方式驾驶,这将需要更高性能的制动系统。
4. 驾驶环境:不同的驾驶环境也需要不同类型的制动系统。
例如,山区驾驶可能需要更强大的制动系统来应对陡峭的坡道。
制动系统计算方法制动系统计算的目标是确定合适的制动力和制动装置。
以下是一些常用的计算方法:1. 制动力计算:根据车辆的质量和设计要求,计算所需的制动力。
制动力通常以车辆质量的百分比来表示。
2. 制动装置计算:根据制动力和制动功率的要求,选择合适的制动装置。
制动装置包括制动盘、制动片、制动液等。
3. 制动力分配:根据车辆的重心位置和轮胎的附着力,将制动力分配到各个轮胎上,以保证车辆的稳定性和安全性。
4. 制动系统参数计算:根据车辆的设计要求和制动装置的特性,计算出制动系统的参数,例如制动管路的直径、制动盘的尺寸等。
总结制动系统选择与计算是设计车辆制动系统的重要步骤。
合适的制动系统选择和正确的计算有助于提高车辆的安全性和性能。
在选择制动系统和进行计算时,需要考虑车辆类型、车辆质量、驾驶样式和驾驶环境等因素,并使用合适的计算方法来确定制动力和制动装置。
制动器的设计计算资料
制动器的设计计算资料制动器是控制机械设备的停止和稳定的主要装置之一,是重要的机械工程设计内容之一、制动器设计计算资料主要包括制动器类型选择、制动器工作原理、主要性能参数计算、热弹性计算和其他相关计算等。
一、制动器类型选择根据工作原理和应用需求,可以选择摩擦制动器、电磁制动器、液压制动器等不同类型的制动器。
制动器的类型选择应根据具体的工作条件、负荷情况、速度要求、空间限制等因素进行合理选择。
二、制动器工作原理制动器工作原理主要包括静摩擦制动、动摩擦制动、电磁制动、液压制动等。
根据具体应用要求,选择合适的工作原理,确保制动器的稳定性和可靠性。
三、主要性能参数计算1.制动力矩计算:根据所需的制动力矩和工作条件,通过力矩平衡计算或摩擦因数计算等方法,确定制动器所需的力矩大小和设计参数。
2.制动器转矩计算:根据所需的转矩大小和工作条件,通过摩擦副转矩平衡计算或材料强度计算等方法,确定制动器所需的转矩大小和设计参数。
3.制动器制动时间计算:根据物体的质量、速度、制动距离和制动器的工作特性等参数,通过运动学方程和力学方程计算,确定制动器的制动时间。
4.制动器制动压力计算:根据制动器的工作特性、制动力矩和材料强度等参数,通过流体力学原理和弹性力学原理计算,确定制动器所需的制动压力。
四、热弹性计算在制动器工作过程中,由于摩擦产生的热量会引起制动器温升,并且制动器会受热膨胀的影响。
为确保制动器的稳定性和可靠性,需要进行热弹性计算,包括热传导计算、热膨胀计算和热应力计算等。
五、其他相关计算除了上述主要计算外,还需要进行其他相关的计算,如制动器的材料选择和强度计算、制动器的寿命估算和可靠性分析等。
总之,制动器的设计计算资料包括制动器类型选择、制动器工作原理、主要性能参数计算、热弹性计算和其他相关计算等内容。
制动器的设计应根据具体的工作条件和要求,经过合理的计算和分析,确保制动器的性能稳定和可靠性,满足机械设备的工作要求。
汽车制动系统的传感器及执行元件的选型和计算
汽车制动系统的传感器及执行元件的选型和计算
汽车制动系统的传感器主要包括刹车踏板传感器、车速传感器、压力传感器和角度传感器等。
执行元件主要包括刹车液压装置和ABS控制器等。
选型时需要考虑以下因素:
1. 适用性:传感器和执行元件应能够适应特定车辆型号和制动系统的要求。
2. 精度:传感器和执行元件的精度应足够高,能够准确测量和执行相应的参数。
3. 可靠性:传感器和执行元件应具有高可靠性,能够在恶劣环境下正常工作。
4. 抗干扰性:传感器和执行元件应具有良好的抗干扰能力,能够有效抵抗外界干扰信号。
5. 成本:选型时还需要考虑传感器和执行元件的成本,确保满足性价比要求。
计算方面,常见的计算包括刹车踏板力的计算、车速计算、刹车液压压力的计算等。
这些计算通常需要根据具体的传感器和执行元件规格以及制动系统的工作原理来进行。
涉及到的公式和计算方法可以根据实际需求进行分析和推导,或者参考相关的技术资料和标准。
制动器选择计算公式
制动器选择计算公式制动器是车辆中非常重要的一个部件,它能够帮助车辆减速和停止,保证了行车的安全。
在选择制动器时,需要考虑车辆的重量、速度、使用环境等因素,以确保制动器的性能能够满足车辆的需求。
在选择制动器时,可以通过一些计算公式来帮助确定最合适的制动器类型和规格。
一、制动力计算公式。
制动力是制动器的一个重要性能指标,它表示制动器在工作时产生的制动力大小。
制动力的大小取决于制动器的摩擦系数、制动器半径、制动器数量等因素。
制动力的计算公式如下:F = μ N。
其中,F表示制动力,单位为牛顿(N);μ表示摩擦系数;N表示制动器所受的垂直载荷,单位为牛顿(N)。
根据这个公式,可以通过摩擦系数和制动器所受的垂直载荷来计算出制动力的大小。
在选择制动器时,需要根据车辆的重量和速度来确定所需的制动力大小,以确保制动器能够满足车辆的制动需求。
二、制动器热量计算公式。
制动器在工作时会产生大量的热量,如果热量无法及时散发,会导致制动器失效,影响行车安全。
因此,需要通过计算来确定制动器在工作时产生的热量大小,以选择合适的散热方式和散热器规格。
制动器热量的计算公式如下:Q = F r V。
其中,Q表示制动器产生的热量,单位为焦耳(J);F表示制动力;r表示制动器的半径,单位为米(m);V表示车辆速度,单位为米/秒(m/s)。
根据这个公式,可以通过制动力、制动器半径和车辆速度来计算出制动器产生的热量大小。
在选择制动器时,需要根据车辆的使用环境和工况来确定制动器所需的散热能力,以确保制动器能够有效散热,避免因热量过大而导致失效。
三、制动器尺寸计算公式。
制动器的尺寸也是选择制动器时需要考虑的一个重要因素。
制动器的尺寸大小会影响制动器的制动效果和散热效果,因此需要通过计算来确定最合适的制动器尺寸。
制动器尺寸的计算公式如下:D = 2 (F r) / (μ P)。
其中,D表示制动器的直径,单位为米(m);F表示制动力;r表示制动器的半径,单位为米(m);μ表示摩擦系数;P表示制动器所受的压力,单位为帕斯卡(Pa)。
制动参数选择及计算共15页
第一章制动参数选择及计算第一节汽车参数(符号以汽车设计为准)制动器设计中需要的重要参量:汽车轴距:L=1370mm车轮滚动半径:r r =295 mm汽车满载质量:m a=4100Kg汽车空载质量:m o=2600Kg满载时轴荷的分配:前轴负荷39%,后轴负荷61% 空载时轴荷的分配:前轴负荷47%,后轴负荷53% 满载时质心高度:hg =745mm空载时质心高度:hg'=850mm质心距前轴的距离:L1 =835mm L1'=726mm 质心距后轴的距离:L2 =535mm L2'=644mm 对汽车制动性有影响的重要参数还有:制动力及其分配系数、同步附着系数、制动强度、附着系数利用率、最大制动力矩与制动因数等。
第二节制动器的设计与计算一制动力与制动力矩分配系数0 水平路面满载行驶时,前、后轴的负荷计算对于后轴驱动的移动机械和车辆,在水平路面满载行驶时前后轴的最大负荷按下式计算(g=9.8N/kg)前轴的负荷F1=Ga(L2-ϕhg)/(L-ϕhg)=3830.8N后轴的负荷F2=GaL1/(L-ϕhg)=36349.2Nϕ--- 附着系数,沥青.混凝土路面,取0.6轴荷转移系数:前轴:m,1= F Z1/G1=0.24后轴:m,2= F Z1/G2=1.481、(汽车理论108页)水平路面满载行驶制动时,地面对前后车轮的法向反作用力(满载)F Z1= GL (L2+ϕgh)=4100×9.8÷1.370×(0.535+0.6×0.745)=28800.55NF Z2=GL (L1-ϕgh)=4100×9.8÷1.370×(0.835-0.6×0.745)=11379.45N 式中: G-- 汽车所受重力;L-- 汽车轴距;1L--汽车质心离前轴距离;L2--汽车质心离后轴距离;gh--汽车质心高度;g --重力加速度;(取9.80N/kg)2 (汽车理论8,22)汽车制动时,如果不记车轮的滚动阻力矩和汽车的回转质量的惯性力矩,则任何角速度ω﹥0的车轮,其力矩平衡方程为Mμ-F b⨯R e=0 (4-2)式中:Mμ--制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋转方向相反,N﹒m;F b--地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称地面制动力,其方向与汽车行驶方向相反,N;R e--车轮有效半径,m令 F B=Mμ/R e并称之为制动器的制动力,它是在轮胎周缘克服制动器的摩擦力矩所需的力,因此又称为制动周缘力。
制动系统设计计算分析
制动系统计算分析一制动技术条件:1. 行车制动:2. 应急制动:3. 驻车制动:在空载状态下,驻车制动装置应能保证机动车在坡度20%(对总质量为整备质量的1.2倍以下的机动车为15%),轮胎与地面的附着系数不小于0.7的坡道上正反两个方向上保持不动,其时间不应少于5分钟。
二制动器选型1.最大制动力矩的确定根据同步附着系数和整车参数,确定前后轴所需制动力矩的范围,最大制动力是汽车附着质量被完全利用的条件下获得的,设良好路面附着系数φ=0.7。
满载情况下,确定前后轴制动器所需要的最大制动力矩。
为:前轴Mu1=G*φ(b+φ*h g)*r e /L (N.m)后轴Mu2=G*φ(a-φ*h g)*r e /L (N.m)或者Mu1=β/(1-β)* Mu2 【β=(φ*h g+b)/L】其中r e -轮胎有效半径a-质心到前轴的距离b-质心到后轴的距离h g -质心高度L-轴距φ-良好路面附着系数G-满载总重量(N;g=9.8m/s2)同理:空载亦如此。
前轴;Mu11 后轴:Mu21根据满载和空载的情况,确定最大制动力矩,此力满足最大值。
所以:前轮制动器制动力矩(单个)≥Mu1或Mu11/2后轮制动器制动力矩(单个)≥Mu2或Mu21/22.行车制动性能计算(满载情况下)已知参数:前桥最大制动力矩Tu1(N.m) 单个制动器后桥最大制动力矩Tu2(N.m) 单个制动器满载整车总质量M(kg)①整车制动力Mu1= Tu1*φ*2 (N.m)Mu2= Tu2*φ*2 (N.m)Fu= (Mu1+ Mu2)/r e (N)②制动减速度a b=Fu/M (m/s2)③制动距离S= U a0*(t21+ t211 /2)/3.6+ U a02 /25.92* a b其中:U a0 (km/h)-制动初速度,t21+ t211 /2 为气压制动系制动系作用时间(一般在0.3-0.9s)3.驻车制动性能计算满载下坡停驻时后轴车轮的附着力矩:MfMf=M*g*φ(a*cosα/L -h g*sinα/L)*r e (N.m)其中附着系数φ=0.7 坡度20%(α=11.31o)在20%坡上的下滑力矩:M滑M滑=M*g*sinα*r e (N.m)驻车度α=11.31o则Mf>M滑时,满足驻车要求。
[整理版]制动器的选型和计算
1 引言目前市场上变频器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。
变频器属于不可控整流电压源型的变频器,其制动方式属于能耗制动和直流制动。
能耗制动是变频器让生产机械在运动过程中快速地减速或停车的主要形式;直流制动则在电机运转准备时刻输出一直流电流产生转矩迫使电机停止,以得到平稳的启动特性,或者当变频器停止时刻输出一直流电流产生转矩迫使电机停止,以确保电机已准确停车。
在使用台达变频器的变频调速系统中,减速的方法就是通过逐步降低给定频率来实现的。
在频率下降过程中,电动机将处于再生制动状态(发电机状态),使得电动机的转速迅速地随频率的下降而下降。
在制动过程中,泵生电压的产生会导致直流母线上的电压升高,此时变频器会控制刹车单元通过刹车电阻把升高的电压以热能的方式消耗掉。
为了使得系统平稳降速,需要设置适当的减速时间,同时选择合适的制动电阻和制动单元才能满足需要。
目前关于制动电阻的计算方法有很多种,从工程的角度来讲要精确的计算制动电阻的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。
目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。
本文所介绍的计算方法仅仅是供参考,具体的情况要根据每一个现场的使用情况来进行分析计算。
2 制动电阻的介绍制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。
通常在工程上选用较多的是波纹电阻和铝合金电阻两种:波纹电阻采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;铝合金电阻易紧密安装、易附加散热器,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。
3 制动电阻的阻值和功率计算3.1刹车使用率ED%制动使用率ED%,也就是说明书中的刹车使用率ED%。
制动器的初步选型
制动器的初步选型及其分析计算1.制动器滑差功率的确定磁粉制动器主要用于对链轮的制动,故磁粉制动器的滑差功率等于链轮的工作功率。
链轮扭矩:T = F.R链轮转速:n = V/(2π)*RF--- 注入头最大上提力,R--- 链轮半径,V--- 连续管被上提时的速度,由功率公式260P M n =´´π,得60F VP ´=又 V = 20 m/min , 链轮半径 R = 0.2074m ,n = 15.3r/min F =380 KN,则 制动器所需滑差功率为 105.6KW 。
2.单个磁粉制动器的选型及其分析计算(1)出于对寿命的考虑,磁粉制动器/离合器的工作转矩、相对滑差转速和滑差功率的合适范围为额定值得20% ~ 80%,最高可达90%,结合已有的磁粉制动器产品,合适的有:型号额定转矩额定转速滑差功率冷却方式N.m r/min KWFZ 30000.J/Y 30000 300 132 双水冷FZ 50000.J/Y 50000 250 160 双水冷(2)选型计算首先解释两个名词,①滑差转速:磁粉离合器为输入轴与输出轴之间的转速差,磁粉制动器为输入轴的转速;②滑差功率:磁粉制动器/离合器在传递转矩时,因为有滑差转速而产生的功率。
260P M n F V=´´=´π式中,P—滑差功率(W ) M—工作转矩(N.m ) n—滑差转速(r/min ) F—工作张力(N ) V—线速度(m/s )以磁粉制动器FZ 50000.J/Y 为例,滑差功率为160KW ,额定转矩为50000N.m ,许用转速为250r/min.当其在额定转矩工作时,允许的最高转速为:609.551600009.5530.56/min 250000P P n r M M ´´===´=´π当其在最高滑差转速工作时,允许的最大转矩为:609.551600009.556112.2250P P M N mn n ´´===´=´π 因FZ 50000.J/Y 的额定转矩高达50000N.m ,制动器工作时的工作转矩几乎不会这么高,故不考虑工作在额定转矩下的工况。
制动器的类型、选择及应用实例
制动器的类型、选择及应用实例1 制动器的功用制动器工作原理是利用摩擦副中产生的摩擦力矩来实现制动作用,或者利用制动力与重力的平衡,使机器运转速度保持恒定。
为了减小制动力矩和制动器的尺寸,通常将制动器配置在机器的高速轴上。
2 制动器的类型及特点按用途:停止式--起停止和支持运动物体的作用;调速式--除上述作用外,还可调节物体运动速度。
按结构特征:块式、带式和盘式。
按操纵方式:手动、自动和混合式。
按工作状态:常开式--经常处于松闸状态,必须施加外力才能实现制动;常闭式--经常处于合闸即制动状态,只有施加外力才能解除制动状态。
起重机械中的提升机构常采用常闭式制动器,而各种车辆的主制动器则采用常开式。
常用制动器简介短行程电磁铁双瓦块式制动器的工作原理如图所示。
在图示状态中,电磁铁线圈5断电,主弹簧8将左、右两制动臂4收扰,两个瓦块3同时闸紧制动轮10,此时为制动状态。
当电磁铁线圈通电时,电磁铁6绕O点逆时针转动,迫使推杆7向右移动,于是主弹簧8被压缩,左、右两制动臂4的上端距离增大,两瓦块3离开制动轮10,制动器处于开启状态。
将两个制动臂对称布置在制动轮两侧,并将两个瓦块铰接在其上,这样可使两瓦块下的正压力相等及两制动臂上的合闸力相等,从而消除制动轮上的横向力。
将电磁铁装在制动臂上,可使制动行程较短(小于5mm)。
主弹簧的压力可由位于其端部、装在推杆7上的螺母来调节。
两制动臂的张开程度由限位螺钉2调节限定。
短行程电磁铁双瓦块制动器这种制动器的优点是:制动和开启迅速,尺寸小、重量轻,更换瓦块、电磁铁方便,并易于调整瓦块和制动轮之间间隙。
缺点是:制动时冲击力较大,开启时所需的电磁铁吸引力大,电磁铁的尺寸和电能消耗也因此较大。
带式制动器是由包在制动轮上的制动带与制动轮之间产生的摩擦力矩来制动的,图示为简单的带式制动器。
在重锤3的作用下,制动带1紧包在制动轮2上,从而实现制动。
松闸时,则由电磁铁4或人力提升重锤来实现。
制动系统选择与计算
制动系统选择与计算.txt制动系统选择与计算简介制动系统是车辆安全性能的关键部件之一,选择适当的制动系统对于车辆的性能和安全至关重要。
本文将介绍制动系统的选择和计算方法。
制动系统选择选择适合车辆的制动系统需要考虑以下几个因素:1. 车辆类型:不同车辆类型需要不同类型的制动系统。
例如,乘用车通常采用盘式制动系统,而卡车多采用鼓式制动系统。
2. 驾驶样式:驾驶员的驾驶样式对制动系统的选择也很重要。
例如,如果驾驶员惯于急刹车,那么需要选择具有更高性能的制动系统。
3. 道路状况:车辆在不同的道路状况下对制动系统的要求也不同。
在山区或湿滑的路面上行驶时,需要选择具有较好防滑性能的制动系统。
4. 预算:制动系统的类型和性能也会对价格产生影响。
根据预算的限制,选择适合的制动系统。
制动系统计算在设计车辆制动系统时,需要进行一些基本的计算,以确保制动系统的安全性和有效性。
1. 制动力计算:根据车辆的重量,速度以及制动系数等参数,计算所需的制动力大小。
2. 制动系统布置计算:根据车辆的重心位置、工作空间和制动器类型等因素,计算出合理的制动器布置方案。
3. 制动器选择计算:根据所需的制动力和车辆的性能要求,选择合适的制动器类型。
4. 制动系统配套计算:根据车辆的速度等参数,计算制动系统所需的液压力和液压泵的工作参数。
总结正确选择和计算制动系统对于车辆的性能和安全至关重要。
通过考虑车辆类型、驾驶样式、道路状况和预算等因素,我们可以选择适合的制动系统。
在设计制动系统时,进行力学计算以确定制动力、制动器布置和配套参数的选择。
通过以上的选择和计算,我们可以设计出安全可靠的制动系统,提升车辆的性能和驾驶的安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引言
目前市场上变频器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。
变频器属于不可控整流电压源型的变频器,其制动方式属于能耗制动和直流制动。
能耗制动是变频器让生产机械在运动过程中快速地减速或停车的主要形式;直流制动则在电机运转准备时刻输出一直流电流产生转矩迫使电机停止,以得到平稳的启动特性,或者当变频器停止时刻输出一直流电流产生转矩迫使电机停止,以确保电机已准确停车。
在使用台达变频器的变频调速系统中,减速的方法就是通过逐步降低给定频率来实现的。
在频率下降过程中,电动机将处于再生制动状态(发电机状态),使得电动机的转速迅速地随频率的下降而下降。
在制动过程中,泵生电压的产生会导致直流母线上的电压升高,此时变频器会控制刹车单元通过刹车电阻把升高的电压以热能的方式消耗掉。
为了使得系统平稳降速,需要设置适当的减速时间,同时选择合适的制动电阻和制动单元才能满足需要。
目前关于制动电阻的计算方法有很多种,从工程的角度来讲要精确的计算制动电阻的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。
目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。
本文所介绍的计算方法仅仅是供参考,具体的情况要根据每一个现场的使用情况来进行分析计算。
2 制动电阻的介绍
制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。
通常在工程上选用较多的是波纹电阻和铝合金电阻两种:波纹电阻采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;铝合金电阻易紧密安装、易附加散热器,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。
3 制动电阻的阻值和功率计算
3.1刹车使用率ED%
制动使用率ED%,也就是说明书中的刹车使用率ED%。
刹车使用率ED%定义为减速时间T1除以减速的周期T2,制动刹车使用率主要是为了能让制动单元和刹车电阻有充分的时间来散除因制动而产生的热量;当刹车电阻发热时,电阻值将会随温度的上升而变高,制动转矩亦随之减少。
刹车使用率ED%=制动时间/刹车周期=T1/T2*100%。
(图1)
图1刹车使用率ED%定义
现在用一个例子来说明制动使用率的概念:10%的制动频率可以这样理解,如果制动电阻在10秒钟能够消耗掉100%的功率,那么制动电阻至少需要90秒才能把产生的热量散掉。
3.2 制动单元动作电压准位
当直流母线电压大于等于制动电压准位(甄别阈值)时,刹车单元动作进行能量消耗。
台达制动电压准位如表1所示。
3.3 制动电阻设计
(1)工程设计。
实践证明,当放电电流等于电动机额定电流的一半时,就可以得到与电动机的额定转矩相同的制动转矩了,因此制动电阻的粗略计算是:
其中:
UD制动电压准位
IMN电机的额定电流。
为了保证变频器不受损坏,强制限定当流过制动电阻的电流为额定电流时的电阻数值为制动电阻的最小数值。
选择制动电阻的阻值时,不能小于该阻值。
根据以上所叙,制动电阻的阻值的选择范围为:
制动电阻的耗用功率
当制动电阻R在直流电压为UD 的电路工作时,其消耗的功率为:
耗用功率的含义:如果电阻的功率按照此数值选择的话,该电阻可以长时间的接入在电路里工作。
现场中使用的电阻功率主要取决于刹车使用率ED%。
因为系统的进行制动时间比较短,在短时间内,制动电阻的温升不足以达到稳定温升。
因此,决定制动电阻容量的原则是,在制动电阻的温升不超过其允许数值(即额定温升)的前提下,应尽量减小容量,粗略算法如下:
λ 为制动电阻的降额系数
R为实际的选用电阻阻值
PB为制动电阻的功率
(2)设计举例。
根据以上的公式我们可以大致的推算出来我们需要的制动电阻的阻值和功率。
以台达VFD075F43A变频器驱动7.5KW的电机作为例来说明,7.5KW电机额定电流是18A,输入电压AC460,则有:
因此制动电阻的阻值取值范围:
44.4 < R ≤ 88.9
选择电阻阻值要选择市场上能够买到的型号和功率段为宜,选择阻值75欧。
根据实际的情况可以在计算的数值功率上适当的扩大。
4 结束语
制动电阻的阻值和功率的计算都是从工程的角度来考虑的,因此在实际的应用时需要结合现场的具体情况进行适当的该动,最终形成一个经济适用的选择方案。