八年级初二数学第二学期勾股定理单元 易错题难题专题强化试卷学能测试试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级初二数学第二学期勾股定理单元 易错题难题专题强化试卷学能测试试
卷
一、解答题
1.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .
2.阅读下列一段文字,然后回答下列问题.
已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离
()()22121212PP x x y y =-+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂
直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y .
(1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.
已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;
(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.
(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标及PD PF +的最短长度.
3.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD 30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .
(1)求点A的坐标;
(2)判断DF与OE的数量关系,并说明理由;
的周长.
(3)直接写出ADG
4.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题
问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC,其顶点A,B,C都在格点上,同时构造长方形CDEF,使它的顶点都在格点上,且它的边EF经过点A,ED经过点B.同学们借助此图求出了△ABC的面积.
(1)在图(1)中,△ABC的三边长分别是AB=,BC=,AC=.△ABC 的面积是.
(2)已知△PMN中,PM=17,MN=25,NP=13.请你根据启航小组的思路,在图(2)中画出△PMN,并直接写出△RMN的面积.
5.如图,点A是射线OE:y=x(x≥0)上的一个动点,过点A作x轴的垂线,垂足为B,过点B作OA的平行线交∠AOB的平分线于点C.
(1)若OA=2,求点B的坐标;
(2)如图2,过点C作CG⊥AB于点G,CH⊥OE于点H,求证:CG=CH.
(3)①若点A的坐标为(2,2),射线OC与AB交于点D,在射线BC上是否存在一点P 使得△ACP与△BDC全等,若存在,请求出点P的坐标;若不存在,请说明理由.
②在(3)①的条件下,在平面内另有三点P122),P2(2,2),P3
(2+2,2﹣2),请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)
6.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.
(1)求CD 的长.
(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.
①若当2v =时,CP BQ =,求t 的值.
②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.
7.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .
(1)求证:CED ADB ∠=∠;
(2)若=8AB ,=6CE . 求BC 的长 .
8.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E .
(1)根据题意用尺规作图补全图形(保留作图痕迹);
(2)设,BC m AC n ==
①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由.
②若线段2AD EC =,求m n
的值.
9.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.
小明为解决上面的问题作了如下思考:
作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可. 请根据小明的思考,写出该问题完整的证明过程.
(2)参照(1)中小明的思考方法,解答下列问题:
如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.
10.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.
(1)此时梯子顶端离地面多少米?
(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?
11.如图,将一长方形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C ,动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23
秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.
设点E 的运动时间为t :(秒)
(1)OE =_________,OF =___________(用含t 的代数式表示)
(2)当1t =时,将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标及直线DE 的解析式;
(3)在(2)的条件下,点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,设MBN ∆的面积为S ,求S 与b 之间的函数关系式.
12.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .
(1)判断AE 与BD 的数量关系和位置关系;并说明理由.
(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由.