精密与超精密磨削技术
精密和超精密加工
1、精密和超精密加工的三大领域:超精密切削、精密和超精密磨削研磨、精密特种加工。
2、金刚石刀具进行超精密切削时,适合加工铝合金、无氧铜、黄铜、非电解镍等有色金属和某些非金属材料。
3、最硬的刀具是天然单晶金刚石刀具。
金刚石刀具的的寿命用切削路程的长度计算。
4、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境条件等直接相关。
5、影响超精密切削极限最小切削厚度最大的参数是切削刃钝圆半径r n。
6、金刚石晶体有3个主要晶面,即(100)、(110)、(111),(100)晶面的摩擦因数曲线有4个波峰和波谷,(110)晶面有2个波峰和波谷,(111)晶面有3个波峰和波谷。
以摩擦因数低的波谷比较,(100)晶面的摩擦因数最低,(111)晶面次之,(110)晶面最高。
比较同一晶面的摩擦因数值变化,(100)晶面的摩擦因数差别最大,(110)次之,(111)晶面最小。
7、实际金刚石晶体的(111)晶面的硬度和耐磨性最高。
推荐金刚石刀具的前面应选(100)晶面。
8、(110)晶面的磨削率最高,最容易磨;(100)晶面的磨削率次之,(111)晶面磨削率最低,最不容易磨。
9、金刚石的3个主要晶面磨削(研磨)方向不同时,磨削率相差很大。
现在习惯上把高磨削率方向称为“好磨方向”,把低磨削率方向称为“难磨方向”。
10、金刚石磨损本质是微观解离的积累;破损主要产生于(111)晶面的解离。
11、金刚石晶体定向方法:人工目测定向、X射线晶体定向、激光晶体定向。
其中激光晶体定向最常用。
12、金刚石的固定方法有:机械夹固、用粉末冶金法固定、使用粘结或钎焊固定。
13、精密磨削机理包括:微刃的微切削作用,微刃的等高切削作用,微刃的滑挤、摩擦、抛光作用。
14、超硬磨料砂轮修整的方法有:车削法、磨削法、滚压挤轧法、喷射法、电加工法、超声波振动修整法。
电解在线修锐法(ELID—electrolytic in—process dressing),原理是利用电化学腐蚀作用蚀出金属结合剂。
常用精密加工和超精密加工方法
常用精密加工和超精密加工方法(1)钻削加工:是将工件上的金属材料在刀具作用下进行来回转动,把车削面旋转出来,是加工圆柱形、锥形、凹形孔和凹陷、螺纹等零部件表面等的单一机床加工方法。
(2)车削加工:是指加工零件时借助车刀切削,用于加工外螺纹、花键、形状方程式曲面及其他复杂曲面等外形精密零部件。
(3)铣削加工:是指利用滚筒式或刀片式的刀具的移动和旋转,把工件表面形成各种曲面的一种机床加工方法,主要用于加工工件体上的平面、槽、沟等工件表面。
(4)磨削加工:是指采用研磨轮加工工件表面,采用悬磨或抛光技术将其加工精度提高,使其表面光洁度、粗糙程度达到要求的一种机床加工方法。
(5)拉铆加工:是指拉铆头将两个工件紧固在一起,从而使两个工件处于相对固定的位置,而不受旋转影响的一种加工方法,是将机械元件拉铆加工的技术。
(1)水切削加工:是将工件表面由削刀削成薄片,然后由水冲刷把薄片去除,达到精密加工表面粗糙度和平整度要求的一种加工方法。
(2)气刀加工:是将刀具用空气喷射动力使得刀具旋转,切削工件的加工方法,可以实现高速、大功率的切削,适用于切削金属界面、铸件、钢材等表面加工。
(3)超声波加工:是指使用超声波让工件表面产生振动,来切削、拉分和焊接工件表面等加工方法,可以达到更高的精度和更小的表面粗糙度,并且可以实现连续加工。
(4)电火花加工:是一种快速高效的切削方法,主要是通过产生火花后,再通过冲击脉冲和热能来融化微小部份表面材料,从而实现准确切削的一种加工方法。
(5)激光加工:是通过产生强大的激光能,对工件表面进行破碎溶解而实现加工的一种加工方法,可以获得极高的切削精度、平整度和极好的加工质量,和小尺寸孔、槽加工。
第七讲精密加工和超精密加工
工艺过程的优化
五、游离磨料的高效加工
(一)超声研磨工艺
• 超声研磨是一种采用游离磨料(研磨膏或研磨液)进 行切削的加工方法。磨料通过研磨工具的振动产生切 削功能,从而把研磨头(工具)的形状传递到工件 上。 • 超声研磨正是利用脆性材料的这一特点。有目的有控 制地促进材料表层的断裂和切屑的形成。
二、金刚石车削技术及其应用
1. 金刚石车床的技术关键
• 除了必须满足很高的运动平稳性外,还必须具有很高 的定位精度和重复精度。镜面铣削平面时,对主轴只 需很高的轴向运动精度,而对径向运动精度要求较 低。金刚石车床则须兼备很高的轴向和径向运动精 度,才能减少对工件的形状精度和表面粗糙度的影 响。 • 目前市场上提供的金刚石车床的主轴大多采用气体静 压轴承,轴向和径向的运动误差在50nm以下,个别主 轴的运动误差已低于25nm。金刚石车床的滑台在90年 代以前绝大部分采用气体静压支承,荷兰的Hembrug 公司则采用液体静压支承。进入90年代以来,美国的 Pneumo公司(现已与Precitech公司合并)的主要产品 Nanoform600和250也采用了具有高刚性、高阻尼和高
(二)超声研磨加工玻璃
• 在玻璃上钻孔时,超声加工已经可以与金刚石钻削竞 争,优化后的超声钻孔已经达到金刚石钻削时的材料 切除速度。根据孔径和孔深的不同,超声钻孔时的进 钻速度可也达到20~40mm/min。 • 用金刚石钻削玻璃上的孔时,需要从两面进刀,以免 钻透时出现玻璃崩裂,采用超声钻孔时,则可从一侧 直接钻通,工具出口时不会出现玻璃的崩裂。从而可 以省去金刚石钻孔时的校正和倒角等加工工序。 • 在玻璃上钻小孔时,超声研磨的作用变得更为重要。 普通的金刚石钻孔,最小孔径大约在2mm左右。超声 钻孔时的最小孔径几乎没有任何限制,目前在实验室 中进行的实验表明,用超声研磨可在3mm厚的玻璃上 钻出直径为0.5~1.0mm的小孔
精密和超精密加工技术
1、通常将加工精度在0.1-1um、加工表面粗糙度R在0.02-0.1um之间的加工方法称为精密加工。
而将加工精度高于0.1um、加工表面粗糙度R小于0.01um的加工方法称为超精密加工。
2、提高加工精度的原因:提高制造精度后可提高产品的性能和质量,提高其稳定性和可靠性;促进产品的小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。
3、精密和超精密加工目前包含三个领域:超精密切削;精密和超精密磨削研磨‘精密特种加工。
4、金刚石刀具的超精密切削加工技术,主要应用于两个方面:单件的大型超精密零件的切削加工和大量生产的中小型零件的超精密切削加工技术。
5、金刚石刀具有两个比较重要的问题:晶面的选择;切削刃钝圆半径。
6、超稳定环境条件主要是指恒温、防振、超净和恒湿五个方面的条件。
7、我国应开展超精密加工技术基础的研究,其主要内容包括以下四个方面:1)超精密切削、磨削的基本理论和工艺。
2)超精密设备的关键技术、精度、动特性和热稳定性。
3)超精密加工的精度检测、在线检测和误差补偿。
4)超精密加工的环境条件。
5)超精密加工的材料。
8、超精密切削实际选择的切削速度,经常是根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。
9、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境等都直接有关。
10、为实现超精密切削,刀具应具有如下性能:1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和很高的尺寸耐用度。
2)切削刃钝圆能磨得极其锋锐,切削刃钝圆半径r值极小,能实现超薄切削厚度。
3)切削刃无缺陷,切削时刃形将复印在加工表面上,能得到超光滑的镜面。
4)和工件材料的抗粘结性好、化学亲和性小、摩擦因素低,能得到极好的加工表面完整性。
11、SPDT——金刚石刀具切削和超精密切削。
12、晶体受到定向的机械力作用时,可以沿平行于某个平面平整地劈开的现象称为解理现象。
精密与超精密磨削关键技术探讨
进 给单 元 是评 价精 密及超 精 密磨床 性 能 的重 要指 标之 一 ,也是 使砂 轮保 持正 常工作 的必 要 条件 。在精
密和超精密磨削加工中,进给单元是影 响精度的重要
磨削在晶粒内进行 ,要使磨削顺利进行 ,必须使磨削
力 大大超 过 晶粒 的结合 力 ,甚至 可 以达 到材 料 的剪切 强 度 L 。同时 ,磨 粒 在 磨 削 时 产 生 高 温 和 高压 ,因 2 ] 此磨 粒 材料要选 取 高温性 能好 、硬 度 大的材 料 ,如金 。 刚石 、立方氮 化硼 等 。 ( ) 连续 磨 削 。 在磨 削 初 始 阶段 ,砂 轮 与 工 件 2
轴 器直 接相 联 。现在 ,大 多数 高精 度高 速机 床采 用 了 内装 式 电主 轴 的结构 形式 ,即将变 频 电机 和机床 主轴 合 为一体 ,而 主轴 的变速完 全 通过 控制 交流 电 的频率 来 完成 。 国内外 用于 高精 度高速 加 工 的机 床 主轴轴 系 的轴 承 主要 有 陶瓷球轴 承 、动静 压轴 承 、静 压轴 承 、气 浮
究。
对 于超精 密磨 削加 工而 言 , 由于要 求 主轴单 元 系 统具 有 刚性好 、精 度高 、加 工稳 定性好 、散热好 、故 障 少等特 点 ,因此 在成 本适 中 的条件下 ,对主 轴 的制 造精 度 、主 轴 轴 承 结 构 方 式 、 主轴 的 润 滑 和 冷 却 系 统 、底座 及 主轴 刚度等 提 出了更 高 的要 求 ,主轴 单元 的静 刚度 和工 作精 度对磨 床精 密 加工性 能有 很 大 的影 响 。磨床 主轴 单元 的动 态性 能在很 大程 度上 决定 了机
《精密和超精密加工技术(第3版)》第3章精密磨削和超精密磨削
2018/3/11
第1节 概述
二、精密和超精密砂轮磨料磨具
磨料及其选择
超硬磨料制作的磨具在以下几方面能够满足精密加工和超精密加工 的要求,因此使用广泛。
1)磨具在形状和尺寸上易于保持,使用寿命高,磨削精度高。
2)磨料本身磨损少,可较长时间保持切削性,修整次数少,易于保持精度。
3)磨削时,一般工件温度较低,因此可以减小内应力、裂纹和烧伤等缺
磨具的形状和尺寸及其基体材料
根据机床规格和加工情况选择磨具的 形状和尺寸。 基体材料与结合剂有关。
2018/3/11
第1节 概述
三、精密和超精密涂覆磨具
涂覆磨具分类
根据涂覆磨具的形状、基底材料和工作条件与用途等,分类见下表
涂 覆 磨 具
工 作 条 件
基 底 材 料
形 状
耐 水 (N)
2018/3/11
精密砂带磨削:砂带粒度F230~F320,加
工精度1μm,Ra0.025; 超精密砂带磨削:砂带粒度W28~W3,加工精 度0.1μm,Ra0.025~0.008μm。
2018/3/11
第1节 概述
一、精密和超精密加工分类
游离磨料加工
磨料或微粉不是固结在一起, 而是成游离状态。 传统方法:研磨和抛光 新方法:磁性研磨、弹性发射 加工、液体动力抛光、液中研 抛、磁流体抛光、挤压研抛、 喷射加工等。
第3章 精密磨削和超精密磨削 3.1 概述
3.2 精密磨削 3.3 超硬磨料砂轮磨削
3.4 超精密磨削
3.5 精密和超精密砂带磨削
2018/3/11
第1节 概述
精密和超精密磨料加工是利用细粒度的磨粒和 微粉对黑色金属、硬脆材料等进行加工,得到高 加工精度和低表面粗糙度值。对于铜、铝及其 合金等软金属,用金刚石刀具进行超精密车削是 十分有效的,而对于黑色金属、硬脆材料等,用 精密和超精密磨料加工在当前是最主要的精密 加工手段。
第5章 精密、超精密加工技术
• 和表面粗糙度的检验,而且要测量加工设备 的精度和基础零部件的精度。 • 高精度的尺寸和几何形状可采用分辨率为 0.1~0.01µ m,的电子测微计、分辨率为 0.01~0.001µ m的电感测微仪或电容测微仪来 测量。圆度还可以用精度为0.01µ m的圆度仪 来测量。
加工设备必须具有高精度的主轴系统、进给 系统(包括微位移装臵),现在的超精密车 床,其主轴回转精度可达0.02µ m,导轨直线 度可达1000000:0.025,定位精度可达 0.013µ m,进给分辨率可达0.005µ m。其回转 零件应进行精密的动平衡。
• 2)高刚度
• 包括静刚度和动刚度,不仅要注意零件本身
• 精密和超精密磨料加工是利用细粒度的磨粒 和微粉主要对黑色金属、硬脆材料等进行加 工,按具体地加工方法分为精密和超精密磨 削,加工精度可达5~0.5µ m,表面粗糙度 Ra0.05~0.008µ m);精密和超精密研磨(加 工精度可达10~0.1µ m,表面粗糙度 Ra0.01~0.008µ m);
合金等刀具进行精密和超精密切削,这些刀
具材料的切削效果不如金刚石,但能加工黑
色金属。对黑色金属等硬脆材料的精密加工
和超精密加工,一般多采用磨削、研磨、抛
光等方法。
• 精密和超精密磨削时,通常采用粒度240#~W7
或更细的白刚玉或铬刚玉磨料和树脂结合剂
制成的紧密组织砂轮,经金刚石精细修整后
• 进行加工。
• 出现了精密电火花加工、精密电解加工、精
密超声波加工、分子束加工、电子束加工、
离子束加工、原子束加工、激光加工、微波
加工、等离子体加工、光刻、电铸及变形加
工等。
• 4.复合加工
• 复合加工是将几种加工方法叠合在一起,发 挥各种加工方法的长处,达到高质量(加工
精密和超精密加工技术的发展
精密和超精密加工技术的发展我国目前已是一个“制造大国”,制造业规模名列世界第四位,仅次于美国、日本和德国,近年来在精密加工技术和精密机床设备制造方面也取得了不小进展。
但我国还不是一个“制造强国”,与发达国外相比仍有较大差距。
目前国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。
为了使我国的国防和科技发展不受制于人,我们必须投入必要的人力物力,自主发展精密和超精密加工技术,争取尽快将我国的精密和超精密加工技术水平提升到世界先进水平。
下面对国内外精密和超精密加工技术的最新发展情况介绍如下。
精密机床技术的发展精密机床是精密加工的基础。
当今精密机床技术的发展方向是:在继续提高精度的基础上,采用高速切削以提高加工效率,同时采用先进数控技术提高其自动化水平。
瑞士DIXI公司以生产卧式坐标镗床闻名于世,该公司生产的DHP40高精度卧式高速镗床已增加了多轴数控系统,成为一台加工中心;同时为实现高速切削,已将机床主轴的最高转速提高到24000r/min。
瑞士MIKROM公司的高速精密五轴加工中心的主轴最高转速为42000r/min,定位精度达5μm,已达到过去坐标镗床的精度。
从这两台机床的性能可以看出,现在的加工中心与高速切削机床之间已不再有严格的界限划分。
使用金刚石刀具的超精密切削技术超精密切削技术的进展金刚石刀具超精密切削技术是超精密加工技术的一个重要组成部份,不少国防尖端产品零件:如陀螺仪、各种平面及曲面反射镜和透镜、精密仪器仪表和大功率激光系统中的多种零件等:都需要利用金刚石超精密切削来加工。
使用单晶金刚石刀具在超精密机床上进行超精密切削,可以加工出光洁度极高的镜面。
超精密切削的切削厚度可极小,最小切削厚度可至1nm。
超精密切削使用的单晶金刚石刀具要求刃口极为锋锐,刃口半径在0.5,0.01μm。
因刃口半径甚小,过去对刃口的测量极为困难,现在已可用原子力显微镜:AFM:方便地进行测量。
发展精密和超精密加工技术的重要性
发展精密和超精密加工技术的重要性精密和超精密加工代表了加工精度发展的不同阶段,通常,按加工精度划分,可将机械加工分为一般加工,精密加工,超精密加工三个阶段精密加工;加工精度在0.1 -1um,讲表面粗糙度在Ra 0.02-0.1um之间的加工方法称为精密加工超精密加工;加工精度高于0.1um,加工表面粗糙度小于Ra 0.01um的加工方法称为超精密加工。
(微细加工、超微细加工、光整加工、精整加工等)二提高加工精度的原因提高制造精度后可提高产品的性能和质量,提高产品稳定性和可靠性;促进产品小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。
三发展超精密加工的重要性1 超精密加工是国家制造工业水平的重要标志之一超精密加工所能达到的精度、表面粗糙度、加工尺寸范围和几何形状是一个国家制造技术水平的重要标志之一。
金刚石刀具切削刃钝圆半径的大小是金刚石刀具超精密切削的一个关键技术参数,日本声称已达到2nm,而我国尚处于亚微米水平,相差一个数量级(国际上公认0.1nm~100nm为纳米尺度空间,100nm~1000nm为亚微米体系,小于1个纳米为原子团簇);金刚石微粉砂轮超精密磨削在日本已用于生产,使制造水平有了大幅度提高,突出地解决了超精密磨削磨料加工效率低的问题。
2 精密和超精密加工是先进制造技术的基础和关键计算机工业的发展不仅要在软件上,还要在硬件上,即在集成电路芯片上有很强的能力,我国集成电路的制造水平约束了计算机工业的发展。
美国制造工程研究者提出的汽车制造业的“两毫米工程”(车身尺寸变动量控制在2mm以内)使汽车质量赶上欧、日水平,其中的举措都是实实在在的制造技术。
3 国防工业上的需求陀螺仪的加工涉及多项超精密加工,导弹系统的陀螺仪质量直接影响其命中率,1kg的陀螺转子,其质量中心偏离其对称轴0.0005μm,则会引起100m的射程误差和50m的轨道误差。
大型天体望远镜的透镜、直径达 2.4m,形状精度为0.01μm,如著名的哈勃太空望远镜,能观察140亿光年的天体(六轴CNC研磨抛光机)(图)。
精密磨削和超精密磨削概述
精密磨削和超精密磨削概述精密磨削和超精密磨削是现代机械加工中的高级技术,主要用于高精度、高效率的零件加工。
以下是关于这两种磨削技术的概述:1. 精密磨削:精密磨削是一种采用高精度磨具和磨削液,在精确控制磨削条件下进行的磨削工艺。
其目的是在保持高效率的同时,实现高精度、低表面粗糙度的磨削效果。
精密磨削的主要特点包括:* 高精度:磨削后的零件尺寸精度和表面粗糙度要求较高,通常达到微米甚至纳米级别。
* 高效率:精密磨削可实现高速磨削和高进给速度,提高生产效率,降低加工成本。
* 低损伤:磨具材质和磨削工艺能够减小对工件表面的损伤,延长零件使用寿命。
* 环保:精密磨削通常采用干式磨削和绿色制造技术,减少加工过程中的环境污染。
精密磨削广泛应用于航空航天、汽车、电子、光学等领域,特别适用于难加工材料和高精度零件的加工。
2. 超精密磨削:超精密磨削是一种在极高的工艺精度和极低的表面粗糙度下进行的磨削工艺。
它通过采用先进的磨具制造技术、高精度磨床和环境控制技术,实现微米甚至亚微米级别的加工精度和纳米级别的表面粗糙度。
超精密磨削的主要特点包括:* 高精度:超精密磨削的加工精度可达到微米甚至亚微米级别,满足高精度零件的加工要求。
* 超低表面粗糙度:超精密磨削能够实现纳米级别的表面粗糙度,提高零件的表面完整性,延长零件使用寿命。
* 高材料去除率:超精密磨削可实现高速磨削和高进给速度,提高材料去除率,缩短加工时间。
* 高度集成:超精密磨削技术通常与其他先进制造技术相结合,实现零件的高效制造和整体集成。
超精密磨削技术在航空航天、汽车制造、微电子、光学等领域具有广泛应用前景。
它特别适用于高效制造高精度零件,如精密轴承、齿轮、高速电机等。
总之,精密磨削和超精密磨削是现代机械加工中的重要技术,能够实现高精度、高效率、低损伤的零件制造。
随着制造业的不断发展,这些技术将在未来发挥更加重要的作用,为先进制造和高精度零件的生产提供有力支持。
磨削加工技术
微磨削加工技术微磨削加工技术主要分为精密和超精密磨削技术。
1 精密与超精密磨削的机理精密磨削一般使用金刚石和立方氮化硼等高硬度磨料砂轮,主要靠对砂轮的精细修整,使用金刚石修整刀具以极小而又均匀的微进给(1O一15 mm/min),获得众多的等高微刃,加工表面磨削痕迹微细,最后采用无火花光磨,由于微切削、滑移和摩擦等综合作用,达到低表面粗糙度值和高精度要求。
超精密磨削采用较小修整导程和吃刀量修整砂轮,靠超微细磨粒等高微刃磨削作用进行磨削u J。
精密与超精密磨削的机理与普通磨削有一些不同之处。
1)超微量切除。
应用较小的修整导程和修整深度精细修整砂轮,使磨粒细微破碎而产生微刃。
一颗磨粒变成多颗磨粒,相当于砂轮粒度变细,微刃的微切削作用就形成了低粗糙度。
2)微刃的等高切削作用。
微刃是砂轮精细修整而成的,分布在砂轮表层同一深度上的微刃数量多,等高性好,从而加工表面的残留高度极小。
3)单颗粒磨削加工过程。
磨粒是一颗具有弹性支承和大负前角切削刃的弹性体,单颗磨粒磨削时在与工件接触过程中,开始是弹性区,继而是塑性区、切削区、塑性区,最后是弹性区,这与切屑形成形状相符合。
超精密磨削时有微切削作用、塑性流动和弹性破坏作用,同时还有滑擦作用。
当刀刃锋利,有一定磨削深度时,微切削作用较强;如果刀刃不够锋利,或磨削深度太浅,磨粒切削刃不能切人工件,则产生塑性流动、弹性破坏以及滑擦。
4)连续磨削加工过程。
工件连续转动,砂轮持续切人,开始磨削系统整个部分都产生弹性变形,磨削切人量(磨削深度)和实际工件尺寸的减少量之间产生差值即弹性让刀量。
此后,磨削切人量逐渐变得与实际工件尺寸减少量相等,磨削系统处于稳定状态。
最后,磨削切入量到达给定值,但磨削系统弹性变形逐渐恢复为无切深磨削状态引。
2 精密与超精密磨床的发展精密磨床是精密磨削加工的基础。
当今精密磨床技术的发展方向是高精度化、集成化、自动化。
英国Cranfield大学精密工程公司(CUPE)是较早从事超精研制成功的OAGM2500大型超精密磨床是迄今为止最大的超精密磨削加工设备,主要用于光学玻璃等硬脆材料的超精密磨削加工 J。
2.3精密和超精密加工技术
现代制造技术
2. 非机械超精密加工技术——特种精密加工方法
包括精密电火花加工、精密电解加工、精密超声加工、
电子束加工、离子束加工、激光束加工等一些非传统加工方 法;
3. 复合超精密加工方法
传统加工方法的复合 特种加工方法的复合 传统加工方法和特种加工方法的复合
(例如机械化学抛光、精密电解磨削、精密超声珩磨等)。
1~0.1 0.1~ 0.001 0.1~ 0.01 1~0.1 1~0.1 5 5 1~0.1
0.025~ 0.008 0.025~ 0.008 0.025~ 0.008 0.01 0.01 0.01 0.01~ 0.02 0.01~ 0.008
黑色金属、铝合金 黑色金属、非金属 材料 黑色金属、非金属 材料、有色金属 黑色金属、非金属 材料 黑色金属、非金 属材料、有色金属 黑色金属等 黑色金属等 黑色金属、非金属 材料、有色金属
发展:超精密磨削应用比较成熟的首推金刚石微粉砂轮 超精密磨削。
现代制造技术 1)金刚石微粉砂轮 采用粒度为F240~F1000的金刚石微粉作为磨料,树脂、 陶瓷、金属为结合剂烧结而成;也可采用电铸法和气相沉积 法制作。 用筛选法分级,粒度号以磨粒通过的筛网上每英寸长度 内的孔眼数来表示。如60 # 的磨粒表示其大小刚好能通过每 英寸长度上有60孔眼的筛网。对于颗粒尺寸小于40 μ m的磨 料,称为微粉。 • 用显微测量法分级,用W和后面的数字表示粒度号,其W后 的数值代表微粉的实际尺寸。如W20表示微粉的实际尺寸为 20 μ m
• 精密加工是指加工精度达到1~0.1μm,表面粗
糙度Ra在0.1~0.01μm的加工工艺。
• 超精加工则是指加工尺寸精度高于0.1μm,表 面粗糙度Ra小于0.025μm的精密加工方法。
对精密和超精密加工技术的认识
对精密和超精密加工技术的认识一、引言精密加工技术是一种高精度、高效率的制造方法,广泛应用于电子、航空航天、医疗器械等领域。
而超精密加工技术则是在精密加工技术的基础上进一步提高了加工的精度和表面质量。
本文将对精密和超精密加工技术进行深入的探讨和分析。
二、精密加工技术的概念和应用精密加工技术是一种通过在加工过程中控制和调整各种工艺参数,使加工零件达到高精度要求的加工方法。
它主要包括数控加工、激光加工、电火花加工等多种技术手段。
精密加工技术在电子领域的应用尤为广泛,如半导体芯片加工、PCB板制造等。
三、精密加工技术的特点和优势1. 高精度:精密加工技术可以实现亚微米甚至纳米级别的加工精度,满足对零件精度要求极高的应用领域。
2. 高效率:精密加工技术采用自动化控制和高速切削等方法,加工效率高,能够大大提高生产效率和产品质量。
3. 灵活性:精密加工技术具有灵活性强的特点,可以根据不同产品的要求进行个性化加工,满足市场需求的多样化。
四、超精密加工技术的概念和原理超精密加工技术是在精密加工技术的基础上,通过进一步提高加工设备的精度和加工工艺的控制精度,实现更高精度加工的一种技术手段。
超精密加工技术主要包括超精密车削、超精密磨削、超精密拓扑等方法。
五、超精密加工技术的应用领域超精密加工技术在光学仪器、航空航天、精密仪器等领域具有广泛的应用。
例如,在光学仪器领域,超精密加工技术可以用于制造高精度的光学元件,提高光学系统的分辨率和成像质量。
六、精密和超精密加工技术的发展趋势随着科技的进步和工业制造的需求,精密和超精密加工技术也在不断发展和创新。
未来的发展趋势主要包括以下几个方面:1. 加工精度的提高:随着需求的增加,对加工精度的要求也越来越高,未来的精密和超精密加工技术将进一步提高加工的精度和表面质量。
2. 加工效率的提高:随着自动化技术和智能化技术的发展,精密和超精密加工技术将更加高效,加工速度更快,生产效率更高。
精密和超精密加工技术
《精密和超精密加工技术》学习总结11机械1班 2011411011070. 引言精密和超精密加工技术不仅直接影响尖端技术和国防工业的发展,还影响着国家的机械制造业的国际竞争力,因此,全球各国对此十分重视!本文就从超精密切削、精密和超精密磨削、精密研磨与抛光、精密加工的机床设备和外部支撑环境、微纳加工技术等相关的超精密加工技术进行研究与总结。
1. 超精密切削超精密切削是国防和尖端技术中的重要部分,受到了各国的重视和发展。
一、超精密切削的切削速度选择超精密切削所使用的刀具是天然单晶金刚石刀具,它是目前自然界硬度最高的物质,具有耐磨性好、热传导系数高和有色金属间摩擦系数小。
因此,在加工有色金属时,切削温度低,刀具寿命很高,亦可使用1000-2000m/min的高速切削。
而这一点(切削速度并不受刀具寿命的制约)是和普通切削规律不同的。
超精密切削的速度选择是根据所使用的超精密机床的动特性和切削系统的动特性所决定的,即选择振动最小的转速。
换而言之,要高效地切削出高质量的加工表面,就应该选择动特性好,振动小条件下最高转速的超精密机床。
例如沈阳第一机厂圣工场的SI-255液体静压主轴的超精密车床在700-800r/min时振动最大,故要避开该转速范围,选择低于或者高于该速度范围进行切削,则可得到较好的加工表面。
二、超精密切削时刀具的磨损和寿命天然单晶金刚石刀具超精密切削应用于加工铝合金、无氧铜、黄铜、非电解镍等有色金属和某些非金属材料,比如激光反射镜、雷达的波导管内腔、计算机磁盘等。
判断金刚石刀具是否破损或磨损而不能继续使用的标准是根据工件加工的表面粗糙度有无超过规定值。
而金刚石刀具的切削路程的长度则是其寿命长短的标志。
倘若切削条件正常,刀具的耐用度可达数百千米。
但是在实际使用中,金刚石刀具常是达不到这个耐用度,因为加工过程中切削刃会产生微小崩刃而不能继续使用,而这主要是由于切削时的振动或切削刃的碰撞引起的。
因此,金刚石刀具只能使用在机床主轴转动非常平稳的高精度机床上,而刀具的维护对机床的要求亦是如此。
04精密与超精密加工技术
微量进给装置二
压电陶瓷式微进给装置
1—刀夹 2—机座 3—压电陶瓷 4—后垫块 5—电感测头 6—弹性支承
五、精密加工环境
超精密加工必须在超稳定的环境下进 行。 超稳定环境:恒温、超净和防振。
六、超精密加工精度的在线检测及计量测试
对加工误差进行在线检测,实时建模与 动态分析预报,再根据预报数据对误差 源进行补偿,从而消除或减少加工误差。
1、去除加工(分离加工)
从工件上去除一部分材料。
超精密切削加工形面示例 (图为各种镜面切削加工的形面)
2、结合加工
利用物理和化学方法,将不同材料结合在一起。 利用物理和化学方法,将不同材料结合在一起。按结合的 机理、方法、强弱等,分为附着、注入和连接三种。 机理、方法、强弱等,分为附着、注入和连接三种。
3、变形加工(流动加工)
利用力、热、分子运动等手段,使工件 产生变形,改变其尺寸、形状和性能。
3.3.2 超精密切削加工
超精密切削对刀具的要求 • 极高的硬度、极高的耐用度和极高的弹性模量,保证 刀具寿命和尺寸耐用度; • 刃口能磨得极其锋锐,刃口半径ρ值极小,能实现超 薄的切削厚度; • 刀刃无缺陷,避免刃形复印在加工表面; • 抗粘结性好、化学亲和性小、摩擦系数低、能得到极 好的加工表面完整性。
3、精密与超精密加工的应用与进展
美国是研究最早的国家,处于世界领先地位,以 民品应用为主要对象 英国的克兰菲尔德精密工程研究所有较高声誉 日本起步较晚,发展最快,以发展国防尖端技术 为主要目标。 我国在70年代末期有长足进步,80年代中期出现 了具有世界水平的超精密机床和部件
二、 超精密加工方法
六、超精密加工精度的在线检测及计量测试
大距离的测量仪器:双频激光干涉仪 小距离的测量仪器:电容式、电感式测微仪、 光纤测微仪 更小测量范围的测量仪器:扫描隧道显微 镜 、扫描电子显微镜、原子力显微镜
精密和超精密加工,精密加工的技术手段有什么?
精密和超精密加工,精密加工的技术手段有什么?制造业是一个国家或地区国民经济的重要支柱,所谓先进制造技术,就是将机械工程技术、电子信息技术(包括微电子、光电子、计算机软硬件、现代通信技术)和自动化技术,以及材料技术、现代管理技术综合集成的生产技术。
先进制造技术追求的目标就是实现优质、精确、省料、节能、清洁、高效、灵活生产,满足社会需求。
精密加工技术是为适应现代高技术需要而发展起来的先进制造技术,是其它高新技术实施的基础。
精密加工技术的发展也促进了机械、液压、电子、半导体、光学、传感器和测量技术以及材料科学的发展。
精密和超精密加工通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。
目前,精密加工是指加工精度为1~0.1µ;m,表面粗糙度为Ra0.1~0.01µ;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。
精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。
超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程。
当前的超精密加工是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。
超精密加工包括微细加工、超微细加工、光整加工、精整加工等加工技术。
微细加工技术是指制造微小尺寸零件的加工技术;超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对值来表示,而不是用所加工尺寸与尺寸误差的比值来表示。
光整加工一般是指降低表面粗糙度和提高表面层力学机械性质的加工方法,不着重于提高。
超精密磨削PPT课件
.
13
普通磨料磨具的标志
普通磨料固结磨具的标志按国标GB2484-84规定,其书写顺序为: 磨具形状、尺寸、磨料、力度、组织、结合剂、最高工作线速度。
国标GB2484-84
国际标准ISO
.
14
超硬磨料磨具的标志
书写顺序为:形状、尺寸、磨料、粒度、结合 剂和浓度等。平行砂轮标志示例如下:
.
15
.
12
(7)磨具形状和尺寸及其选择
普通磨料固结磨具主要有砂轮、磨头、油石和沙瓦等,有关名称、代号、 形状及基本用途等可查阅国家标准GB2484-84和GB4127-84。磨头的代号为 M,油石的代号为W。
对于砂轮,其系列及其代号有:平行系列(P)、筒形系列(N)、碟形系 列(D)、专用系列(J)。
W5,W3,W0.5
选择
普通磨料 超硬磨料
.
7
(3)结合剂及其选择
结合剂的作用是将磨粒粘合在一起,形 成一定形状,并有一定强度的磨具。常 用结合剂:
陶瓷结合剂-V
树脂结合剂—B
金属结合剂—M
结合剂选择影响砂轮结合强度、自锐性、 化学稳定性和修整方法等。
.
8
(4)组织和浓度及其选择
普通磨具:磨粒的含量用组 织表示,反映了磨粒、结合 剂和气孔的比例关系。
以磨粒率表示的磨具组织及其应用范围 根据国标CB 2484—84
组织号 0 1 2 3 4 5 6 7 8 9 10 11 12 13
14
磨粒率 62 60 58 56 54 52 50 48 46 44 42 40 38 36
超硬磨具:超硬磨料耐磨性好、比较昂贵,硬度一般较高。在标 志中,无硬度项。
磨具硬度等级名称及其代号
精密磨削和超精密磨削
五、超硬磨料砂轮的平衡
静平衡 力矩平衡,用于窄砂轮的平衡,是在一个平面上的平衡。 (1)机外静平衡架上平衡 (2)机上动态平衡 (3)机外动态平衡
动平衡
力偶平衡,用于宽砂轮和多砂轮轴的平衡,是在一个有一 定长度的体上进行力偶平衡。 一般在动平衡机上进行。
2016/6/6
超精密磨削
一、超精密磨削和镜面磨削
开式砂带磨削
闭式砂带削
砂带磨削分类: 按砂带与工件接触形式 分为接触轮式、支承板 (轮)式、自由浮动接 触式和自由接触式。 按加工表面类型分为外 圆、内圆、平面、成形 表面等磨削方式。
开式砂带磨削
一、砂带磨削方式、特点和应用
砂带磨削特点
1)砂带与工件是柔性接触,磨粒载荷小而均匀,砂带磨削 工件表面质量高,表 面粗糙度可达Ra 0.05~0.01μm,砂带磨削又称“弹性”磨削。 2)砂带制作时,用静电植砂法易于使磨粒有方向性,力、热作用小,有较好的 切削性,有效地减小了工件变形和表面烧伤。工件的尺寸精度可达5~0.5μm, 平面度可达1μm。砂带磨削又有“冷态” 磨削之称。 3)砂带磨削效率高,无需修整,有“高效”磨削之称。 4)砂带制作简单方便,无烧结、动平衡等问题,价格也便 宜,砂带磨削设备结 构简单,有“廉价”磨削之称。 5)砂带磨削有广阔的工艺性和应用范围、很强的适应性,有“万能”磨削之称。
磨削效率高。
综合成本低。
二、超硬磨料砂轮修整(修整过程)
整形
对砂轮进行微量切削,使砂轮达到所要求 的几何形状精度,并使磨料尖端细微破碎, 形成锋利的磨削刃。
修锐
去除磨粒间的结合剂,使磨粒间有一定的容 屑空间,并使磨刃突出于结合剂之外(一般 是磨粒尺寸的1/3左右),形成切削刃。
二、超硬磨料砂轮修整(修整方法) 车削法 磨削法
精密和超精密磨削机理
精密和超精密磨削机理摘要阐述了精密磨削与超精密磨削的机制,介绍了近年来精密与精密磨床的发展概况以及精密与超精密磨削技术的研究现状。
在分析了精密磨削与超精密磨削的发展趋势基础上提出了研究应关注的几个热点问题,如超精密磨削的基本理论和工艺研究、研制高精度的驱动导向机构、ELID 镜面磨削技术的攻关以及适用于超精密加工的新型材料。
关键词超精密磨削原理发展精密加工是指在一定发展时期中,加工精度和表面质量相对于一般加工能够达到较高程度的加工工艺,当前是指被加工零件的加工尺寸精度为1~0.1μm、Ra为0.2~0.01μm的加工技术;超精密加工是指加工精度和表面质量达到最高程度的精密加工工艺,当前是指被加工零件的尺寸精度高于0.1μm、Ra≤0.025μm的加工技术。
因此,一般加工、精密加工和超精密加工会随着科技的不断发展像更精密的方向发展。
随着电子技术、计算机技术以及航天技术的飞速发展,对加工质量的要求越来越高,故而使精密和超精密加工占有十分重要的地位。
一超精密磨削技术的内涵精密磨削主要靠对砂轮的精细修整,使用金刚石修整工具以极小而又均匀的微进给(10~15μm/ min)获得众多的等高微刃,加工表面磨削痕迹微细,最后采用无火花光磨。
由于微切削、滑移和摩擦等综合作用,达到低表面粗糙度值和高精度要求。
高精密磨削的切屑很薄,砂轮磨粒承受很高的应力,磨粒表面受高温、高压作用,一般使用金刚石和立方氮化硼等高硬度磨料砂轮磨削。
高精密磨削除有微切削作用外,还可能有塑性流动和弹性破坏等作用。
光磨时的微切削、滑移和摩擦等综合作用更强。
超精密磨削是当代能达到最低磨削表面粗糙度值和最高加工精度的磨削方法。
超精密磨削去除量最薄,采用较小修整导程和吃刀量来修整砂轮,是靠超微细磨粒等高微刃磨削作用,并采用较小的磨削用量磨削。
超精密磨削要求严格消除振动,并保证恒温及超净的工作环境。
超精密磨削的光磨微细摩擦作用带有一定的研抛作用性质。
精密和超精密磨削技术PPT课件
固结磨具
涂覆磨具 精密研磨 精密抛光
精密砂 轮磨削
油石研磨 精密珩磨
精密超 精加工
砂带磨削 砂带研磨
精密砂轮磨削:砂轮的粒度60 #~80#,加工精度1μm, Ra0.025μm; 超精密砂轮磨削:砂轮的粒度 W40~W50,加工精度0.1μm, Ra0.025~0.008μm。
精密砂带磨削:砂带粒度W63~ W28,加工精度1μm,Ra0.025; 超精密砂带磨削:砂带粒度 W28~W3,加工精度0.1μm, Ra0.025~0.008μm。
✓ 金属:金属结合剂砂轮耐磨耗性强,磨粒保持力大,砂轮寿命长,砂 轮自砺性差。
8
2、超硬磨料砂轮及修整
➢ 超硬磨料砂轮的修整
✓ 砂轮修整:用修整工具将砂轮修整成形或修去磨钝的表层的过程。 ✓ 修整方法
磨削修整 滚压挤扎 喷砂修锐 超声波振动修整 电解修整 电火花修整 激光修整 高压水喷射修整
✓ 超精密磨削中,微切削作用、塑性流动、 弹性破坏作用和滑擦作用依切削条件的变 化而顺序出现。
6
2、超硬磨料砂轮及修整
➢ 磨料、砂轮类型
✓ 普通磨料 AI2O3、SiC
✓ 超硬磨料 金刚石、立方碳化硼
金刚石砂轮
CBN砂轮 7
2、超硬磨料砂轮及修整
➢ 超硬磨料砂轮组成
✓ 磨料层:人造金刚石磨粒和结合剂 组成,厚度1.5~5mm31、精密和超精密磨削加基础➢ 切削和磨削的比较
4
1、精密和超精密磨削加工基础
➢ 精密磨削机理
(1) 微刃的微切削作用 (2) 微刃的等高切削作用 (3) 微刃的滑挤、摩擦、抛光作用
(a)砂轮
(b)磨粒 磨粒具有微刃性和等高性
(c) 微刃 (锐利、半钝化、钝化)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精密与超精密磨削技术一、精密与超精密磨削技术国内外都采用超精密磨削、精密修整、微细磨料磨具进行亚微米级以下切深磨削研究,以获得亚微米级尺寸精度。
微细磨料磨削,用于超精密镜面磨削树脂结合剂砂轮金刚石磨粒平均直径可小至4μm。
日本用激光研磨过人造单晶金刚石上切出大量等高性一致微小切刃,对硬脆材料进行精密磨削加工,效果很好。
超硬材料微粉砂轮超精密磨削主要用于磨削难加工材料,精度可达0.025μm。
日本开发了电解线修整(ELID)超精密镜面磨削技术,使得用超细微(或超微粉)超硬磨料制造砂轮成为可能,可实现硬脆材料高精度、高效率超精密磨削。
作平面研磨运动双端面精密磨削技术,其加工精度、切除率都比研磨高得多,且可获得很高平面度,工具模具制造,磨削保证产品精度质量最后一道工序。
技术关键除磨床本身外、磨削工艺也起决定性作用。
磨削脆性材料时,由于材料本身物理特性,切屑形成多为脆性断裂,磨剂后表面比较粗糙。
某些应用场合如光学元件,这样粗糙表面必须进行抛光,它虽能改善工件表面粗糙度,但由于很难控制形状精度,抛光后经常会降低。
为了解决这一矛盾,80年代末日本欧美众多公司研究机构相继推回了两种新磨削工艺:塑性磨削(Ductile Grinding)镜面磨削(Mirror Grinding)。
1.塑性磨削它主要针对脆性材料而言,其命名来源出自该种工艺切屑形成机理,即磨削脆性材料时,切屑形成与塑性材料相似,切屑通过剪切形式被磨粒从基体上切除下来。
所以这种磨削方式有时也被称为剪切磨削(Shere Mode Grindins)。
由此磨削后表面没有微裂级形成,也没有脆必剥落时元规则凹凸不平,表面呈有规则纹理。
塑性磨削机理至今不十分清楚切屑形成由脆断向逆性剪切转变为塑断,这一切削深度被称为临界切削深度,它与工件材料特性磨粒几何形状有关。
一般来说,临界切削深度100μm以下,因而这种磨削方法也被称为纳米磨削(Nanogrinding)。
根据这一理论,有些人提出了一种观点,即塑性磨削要靠特殊磨床来实现。
这种特殊磨床必须满足如下要求:(1)极高定位精度运动精度。
以免因磨粒切削深度超过100μm时,导致转变为脆性磨削。
(2)极高刚性。
因为塑性磨削切削力远超过脆性磨削水平,机床刚性太低,会因切削力引起变形而破坏塑性切屑形成条件。
2.镜面磨削顾名思义,它关心不切屑形成机理而磨削后工件表面特性。
当磨削后工件表面反射光能力达到一定程度时,该磨削过程被称为镜面磨削。
镜面磨削工件材料不局限于脆性材料,它也包括金属材料如钢、铝钼等。
为了能实现镜面磨削,日本东京大学理化研究所NakagawaOhmori教授发明了电解线修整磨削法ELID(Electrolytic In-Process Dressing)。
镜面磨削基本出发点:要达到境面,必须使用尽可能小磨粒粒度,比如说粒度2μm乃至0.2μm。
ELID发明之前,微粒度砂轮工业上应用很少,原因微粒度砂轮极易堵塞,砂轮必须经常进行修整,修整砂轮辅助时间往往超过了磨削工作时间。
ELID首次解决了仅用微粒度砂轮时,修整与磨削时间上矛盾,从而为微粒度砂轮工业应用创造条件。
ELID(Electrolytic In-Process Dressing)磨削磨削过程,利用非线性电解修整作用金属结合剂超硬磨料砂轮表层氧化物绝缘层对电解抑制作用动态平衡,对砂轮进行连续修锐修整,使砂轮磨粒获得恒定突出量,从而实现稳定、可控、最佳磨削过程,它适用于硬脆材料进行超精密镜面磨削。
ELID磨削技术以其效率高、精度高、表面质量好、加工装置简单及加工适应性广等特点,日本已较广泛用于电子、机械、光学、仪表、汽车等领域。
ELID磨削原理金属结合剂超硬磨料砂轮与电源正极相接做阳极,工具电极做阴极,砂轮电极间隙通过电解磨削液,利用电解过程阳极溶解效应,对砂轮表层金属基体进行电解去除,从而逐渐露出崭新锋利磨粒,形成对砂轮修整作用:同时形成一层钝化膜附着于砂轮表面,抑制砂轮过度电解,从而使砂轮始终以最佳磨削状态连续进行磨削加工。
所以该技术将砂轮修整与磨削过程结合一起,利用金属基砂轮进行磨削加工同时利用电解方法对砂轮进行修整,从而实现对硬脆材料连续超精密镜面磨削。
ELID镜面磨削过程可分为准备阶段、电解预修锐阶段、线电解修整动态磨削阶段光磨阶段。
准备阶段主要对砂轮进行动平衡精密整形,减小砂轮圆度圆柱度误差:预修锐阶段使砂轮获得适当出刃高度合理容屑空间,并形成一层钝化膜:动态磨削阶段形成加工表面:光磨阶段则进一步提高表面质量。
ELID磨削去除材料机理与其他镜面加工有所不同。
通常镜面加工通过磨削、研磨抛光来获得。
研磨抛光以柔性研磨盘把磨料压材料表面并产生相对运动,磨料借助研磨盘压力以滚动方式使材料破碎,以滑动滚动方式去除破碎后材料。
而ELID磨削,一方面由于磨粒固着结合剂,对于单颗粒固着磨粒而言,其有效磨削尺寸只有磨粒尺寸1/3,磨粒主要以微切削方式去除材料,所以造成破碎区要小得多:另一方面,砂轮表面形成具有一定厚度弹性且容纳有脱落磨料钝化膜,成为一种具有良好柔性研磨膜。
精磨时,由于进给量很小,钝化膜厚度远大于磨料出刃高度,使砂轮基体表层磨料磨削不可能直接与工件接触,砂轮上覆盖这层钝化膜将代替金属基砂轮参与真正磨削过程。
当电解作用完全抑制时,钝化膜对工件进行光磨。
所以ELID磨削实际上一种将磨、研、抛合为一体复合式精密镜面加工技术,其磨粒主要以滑动方式去除工件材料ELID磨削技术对金属结合剂超硬磨料砂轮线修整、修锐复合磨削技术,它有别于电解磨削、电火花磨削,精密加工领域独树一帜,具有自身一些显著特点。
磨削过程具有良好稳定性可控性,易于实现磨削过程最优化:加工精度高,表面裂纹少,表面质量好:适应性广泛,磨削效率高:装置简单,成本低,推广性强等。
尽管ELID磨削技术我国发展落后于一些工业发达国家,但ELID磨削技术国内研究应用基础已经具备。
特别该技术显著特点,尤其适合我国国情。
随着该技术进一步普及推广,相信有越来越多专家学者认识到这项技术重要性它潜经济价值,越来越多企业重视并采用该技术,从而促进我国传统产业改造高新技术发展。
ELID磨削技术作为一种新型镜面加工方法,具有广阔应用前景很大实用价值。
二、砂带磨削技术国外砂带磨削发展非常迅速,自20世纪60年代以来,特别静电植砂及涂附磨具技术出现及发展,欧、美、日等工业发达国家砂带制造技术砂带磨床技术上都取得了巨大成就。
国内砂带磨削技术20世纪70年代末才得以真正发展,随着国内改革开放,砂带磨削技术日益引起了各行业、研究单位企业重视,加之砂带制造技术提高及品种增加,使得砂带磨削设备研究生产也得到了较大发展。
砂带磨削设备开发与生产厂家有新乡机床厂、上海机床厂、北京二机等十来家企业;有包括郑州三磨所、湖南大学、东北大学、广东工业大学、广西大学、重庆大学等内多家科研院所高校近年来,国外将砂带磨削用于精密、超精密加工,精度已达微米级,表面粗糙度已达到Ra(0.01~0.025)μm;而国产320#砂带磨削精度只能达到20~10μm。
原因有两方面,一方面国内机床切深微进给精度较低,普通机床最小微进给10~20μm,某些数控机床微进给可控制到5μm,这对利用现有机床进行砂带磨削、提高精度产生了一定影响;另一方面,砂带磨削为弹性加工,由于弹性变形使得砂带磨削精度降低,因此对磨削深度微量控制问题解决提高砂带磨削精度先决条件。
砂带磨削总趋势正向着强力、高速、高效精密方向发展。
磨床结构方面,从单一磨头向大型、组合(多磨头、多功能、多工位)形式发展。
加工工艺方面,与特种加工相结合复合加工方法砂带磨削很有前途发展方向之一,如与超声振动结合可形成超声砂带精密磨削;与电化学加工结合可形成电解砂带磨削。
另一方面自动化砂带磨削应用,尤其数控砂带磨床及自适应控制技术应用,使得砂带磨削加工效率精度有了很大提高,已经使得砂带磨削精度已经进入精密超精密加工行列。
尽管砂带磨削被称为“冷态”磨削,但所谓“冷态”相对于砂轮磨削而言,这因为磨削砂带磨粒锐利,因而与工件摩擦较小,而且大多数情况下砂带周长较大,容易散热,容易获得空气冷却效果。
因此切削余量不大、零件尺寸较大、表面粗糙度不高情况下,可采用干磨方式。
但,带磨削很多情况下要采用湿磨,因为这有利于控制磨削温度,改善表面粗糙度,并可加大进给量,提高效率,延长砂带寿命。
三、磨削自动化随着加工过程自动化不断升温,为顺应市场不断变化着需求,磨床制造企业开始将关注焦点从产量、品种转向磨床制造技术与自动化加工融合,以及如何采用数字化手段进一步提高磨床精度。
一般来说,磨削加工机械加工保证最终工艺尺寸精度精密加工,这就要求磨床具有很高制造装配精度。
但现代制造业对磨床要求还不仅限于此,还要求磨床有很高自动化程度,但如果有人问磨床具备什么样功能才能称得上自动化磨床,因为磨削工艺千差万别,所以不能一概而论。
目前自动化无非分为四种:首先,自动化以达到人工(或者说非熟练技工)不能达到精度;其次,自动化以达到人工不能达到产品精度一致性;再其次,自动化以达到人工所难以达到效率;最后,自动化以缩短人工所带来设置、调整装卡时间。
但追求自动化过程,首先应该清楚一点,实现自动化要达到目什么?答案无非保证质量同时,最大化地降低生产成本。
这主要应考虑两个因素,一机床本身,二加工工艺。
自动化实现程度对机床本身要求非常高,不所有设备都具有这些功能。
机床需要具有一个模块化设计,可以满足不同用户需求,来进行柔性化加工。
除此之外,机床还需要具有非常高运算速度,以及非常广泛接口以增强与自动化系统之间匹配。
另外,加工工艺对自动化系统来说也同样重要。
自动化要实现一种无人化操作,从送料到加工完成,其间各个步骤都需要借助人工去实时检测。
如果没有达到预期目标,如何干预机床做出调整呢?一般磨削工艺分为磨前、磨磨后,目就能够进行稳定、可靠生产,任何一个环节出现问题,都不能实现机床自动化加工。
CNC用来磨削冲头。
由机床本身自动上下料系统组成,可进行无人化操作。
它高自动化体现几个方面:全自动无人化操作;自动上下料系统,机器人自动存放工件仓库一次可存放一个星期工件;自动测量系统,工件磨削前后可进行测量;高精度,高效率,低损耗伺服电机驱动自动修整系统,具有自动补偿功能。
砂带磨削装备柔性化及自动化方面,要求机床控制系统数字伺服驱动系统控制精度,动态响应特性都很高,因此加强对高精度数控系统伺服驱动系统研发,通过对磨削加工过程自动实时监控系统研究,解决磨削过程信号识别、信息采集、数据处理、反馈控制等技术,从而实现高效、高精度磨削砂带磨床自动化。
此基础上进行砂带磨削设备系统化设计与制造,开发CNC砂带磨削机床、砂带磨削机器人、并联机构数控砂带磨床、砂带磨削FMS等,实现我国砂带磨削设备柔性化及自动化。