数据结构答案第5章

合集下载

数据结构第五章 查找 答案

数据结构第五章 查找 答案

数据结构与算法上机作业第五章查找一、选择题1、若构造一棵具有n个结点的二叉排序树,在最坏情况下,其高度不超过 B 。

A. n/2B. nC. (n+1)/2D. n+12、分别以下列序列构造二叉排序数(二叉查找树),与用其他3个序列所构造的结果不同的是 C :A. (100, 80, 90, 60, 120, 110, 130)B. (100, 120, 110, 130, 80, 60, 90)C. (100, 60, 80, 90, 120, 110, 130)D. (100, 80, 60, 90, 120, 130, 110)3、不可能生成下图所示的二叉排序树的关键字的序列是 A 。

A. 4 5 3 1 2B. 4 2 5 3 1C. 4 5 2 1 3D. 4 2 3 1 54、在二叉平衡树中插入一个结点造成了不平衡,设最低的不平衡点为A,并已知A的左孩子的平衡因子为0,右孩子的平衡因子为1,则应作 C 型调整使其平衡。

A. LLB. LRC. RLD. RR5、一棵高度为k的二叉平衡树,其每个非叶结点的平衡因子均为0,则该树共有 C 个结点。

A. 2k-1-1B. 2k-1+1C. 2k-1D. 2k+16、具有5层结点的平衡二叉树至少有 A 个结点。

A. 12B. 11C. 10D. 97、下面关于B-和B+树的叙述中,不正确的是 C 。

A. B-树和B+树都是平衡的多叉树B. B-树和B+树都可用于文件的索引结构C. B-树和B+树都能有效地支持顺序检索D. B-树和B+树都能有效地支持随机检索8、下列关于m阶B-树的说法错误的是 D 。

A. 根结点至多有m棵子树B. 所有叶子结点都在同一层次C. 非叶结点至少有m/2(m为偶数)或m/2+1(m为奇数)棵子树D. 根结点中的数据是有序的9、下面关于哈希查找的说法正确的是 C 。

A. 哈希函数构造得越复杂越好,因为这样随机性好,冲突小B. 除留余数法是所有哈希函数中最好的C. 不存在特别好与坏的哈希函数,要视情况而定D. 若需在哈希表中删去一个元素,不管用何种方法解决冲突都只要简单地将该元素删去即可10、与其他查找方法相比,散列查找法的特点是 C 。

数据结构第四五六七章作业答案

数据结构第四五六七章作业答案

数据结构第四五六七章作业答案数据结构第四、五、六、七章作业答案第四章和第五章一、填空题1.不包含任何字符(长度为0)的字符串称为空字符串;由一个或多个空格(仅空格字符)组成的字符串称为空白字符串。

2.设s=“a;/document/mary.doc”,则strlen(s)=20,“/”的位置为3。

3.子串的定位操作称为串模式匹配;匹配的主字符串称为目标字符串,子字符串称为模式。

4、串的存储方式有顺序存储、堆分配存储和块链存储5.有一个二维数组a[0:8,1:5],每个数组元素用四个相邻字节存储,内存用字节寻址。

假设存储阵列元素a[0,1]的地址为100,如果以主行顺序存储,则a[3,5]的地址为176,[5,3]的地址为208。

如果按列存储,[7,1]的地址为128,[2,4]的地址为216。

6、设数组a[1…60,1…70]的基地址为2048,每个元素占2个存储单元,若以列序为主序顺序存储,则元素a[32,58]的存储地址为8950。

7、三元素组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别表示该元素的行下标、列下标和元素值。

8、二维数组a[10][20]采用列序为主方式存储,每个元素占10个存储单元,且a[0][0]的存储地址是2000,则a[6][12]的地址是32609.已知二维数组a[20][10]按行顺序存储,每个元素占2个存储单元,a[10][5]的存储地址为1000,则a[18][9]的存储地址为116810。

已知二维数组a[10][20]按行顺序存储,每个元素占2个存储单元,a[0][0]的存储地址为1024,则a[6][18]的地址为130011,两个字符串相等。

充要条件是长度相等,相应位置的字符相同。

12、二维数组a[10][20]采用列序为主方式存储,每个元素占一个存储单元,并且a[0][0]的存储地址是200,则a[6][12]的地址是200+(12*10+6)=326。

数据结构第五章参考答案

数据结构第五章参考答案

习题51.填空题(1)已知二叉树中叶子数为50,仅有一个孩子的结点数为30,则总结点数为(___________)。

答案:129(2)3个结点可构成(___________)棵不同形态的二叉树。

答案:5(3)设树的度为5,其中度为1~5的结点数分别为6、5、4、3、2个,则该树共有(___________)个叶子。

答案:31(4)在结点个数为n(n>1)的各棵普通树中,高度最小的树的高度是(___________),它有(___________)个叶子结点,(___________)个分支结点。

高度最大的树的高度是(___________),它有(___________)个叶子结点,(___________)个分支结点。

答案:2 n-1 1 n 1 n-1(5)深度为k的二叉树,至多有(___________)个结点。

答案:2k-1(6)(7)有n个结点并且其高度为n的二叉树的数目是(___________)。

答案:2n-1(8)设只包含根结点的二叉树的高度为0,则高度为k的二叉树的最大结点数为(___________),最小结点数为(___________)。

答案:2k+1-1 k+1(9)将一棵有100个结点的完全二叉树按层编号,则编号为49的结点为X,其双亲PARENT (X)的编号为()。

答案:24(10)已知一棵完全二叉树中共有768个结点,则该树中共有(___________)个叶子结点。

答案:384(11)(12)已知一棵完全二叉树的第8层有8个结点,则其叶子结点数是(___________)。

答案:68(13)深度为8(根的层次号为1)的满二叉树有(___________)个叶子结点。

答案:128(14)一棵二叉树的前序遍历是FCABED,中序遍历是ACBFED,则后序遍历是(___________)。

答案:ABCDEF(15)某二叉树结点的中序遍历序列为ABCDEFG,后序遍历序列为BDCAFGE,则该二叉树结点的前序遍历序列为(___________),该二叉树对应的树林包括(___________)棵树。

数据结构答案 第5章 串学习指导

数据结构答案 第5章 串学习指导

第5章串5.1 知识点分析1.串的定义串(String)是由零个或多个任意字符组成的有限序列。

一般记作:s="a1 a2 …a i…a n"。

其中s 是串名,用双引号括起来的字符序列为串值,但引号本身并不属于串的内容。

a i(1<=i<=n)是一个任意字符,它称为串的元素,是构成串的基本单位,i是它在整个串中的序号;n为串的长度,表示串中所包含的字符个数。

2.几个术语(1)长度串中字符的个数,称为串的长度。

(2)空串长度为零的字符串称为空串。

(3)空格串由一个或多个连续空格组成的串称为空格串。

(4)串相等两个串相等,是指两个串的长度相等,且每个对应字符都相等。

(5)子串串中任意连续字符组成的子序列称为该串的子串。

(6)主串包含子串的串称为该子串的主串。

(7)模式匹配子串的定位运算又称为串的模式匹配,是一种求子串的第一个字符在主串中序号的运算。

被匹配的主串称为目标串,子串称为模式。

3.串的基本运算(1)求串长:LenStr(s)。

(2)串连接:ConcatStr(s1,s2) 。

(3)求子串:SubStr (s,i,len)。

(4)串比较:EqualStr (s1,s2)。

(5)子串查找:IndexStr (s,t),找子串t在主串s中首次出现的位置(也称模式匹配)。

(6)串插入:InsStr (s,t,i)。

(7)串删除:DelStr(s,i,len)。

4.串的存储(1)定长顺序存储。

(2)链接存储。

(3)串的堆分配存储。

5.2 典型习题分析【例1】下面关于串的的叙述中,哪一个是不正确的?()A.串是字符的有限序列B.空串是由空格构成的串C.模式匹配是串的一种重要运算D.串既可以采用顺序存储,也可以采用链式存储分析:空串是不含任何字符的串,即空串的长度是零。

空格串是由空格组成的串,其长度等于空格的个数。

答案为B。

【例2】两个串相等的充分必要条件是( )。

A.两个串长度相等B.两个串有相同字符C.两个串长度相等且有相同字符D.以上结论均不正确分析:根据串相等定义,两个串是相等是指两个串的长度相等且对应字符都相等,故A、B、C均不正确,答案为D。

数据结构(C语言版)(第2版)课后习题答案

数据结构(C语言版)(第2版)课后习题答案

数据结构(C语言版)(第2版)课后习题答案数据结构(C语言版)(第2版)课后习题答案目录第1章绪论1 第2章线性表5 第3章栈和队列13 第4章串、数组和广义表26 第5章树和二叉树33 第6章图43 第7章查找54 第8章排序65 第1章绪论1.简述下列概念:数据、数据元素、数据项、数据对象、数据结构、逻辑结构、存储结构、抽象数据类型。

答案:数据:是客观事物的符号表示,指所有能输入到计算机中并被计算机程序处理的符号的总称。

如数学计算中用到的整数和实数,文本编辑所用到的字符串,多媒体程序处理的图形、图像、声音、动画等通过特殊编码定义后的数据。

数据元素:是数据的基本单位,在计算机中通常作为一个整体进行考虑和处理。

在有些情况下,数据元素也称为元素、结点、记录等。

数据元素用于完整地描述一个对象,如一个学生记录,树中棋盘的一个格局(状态)、图中的一个顶点等。

数据项:是组成数据元素的、有独立含义的、不可分割的最小单位。

例如,学生基本信息表中的学号、姓名、性别等都是数据项。

数据对象:是性质相同的数据元素的集合,是数据的一个子集。

例如:整数数据对象是集合N={0,±1,±2,。

},字母字符数据对象是集合C={‘A’,‘B’,。

,‘Z’,‘a’,‘b’,。

,‘z’},学生基本信息表也可是一个数据对象。

数据结构:是相互之间存在一种或多种特定关系的数据元素的集合。

换句话说,数据结构是带“结构”的数据元素的集合,“结构”就是指数据元素之间存在的关系。

逻辑结构:从逻辑关系上描述数据,它与数据的存储无关,是独立于计算机的。

因此,数据的逻辑结构可以看作是从具体问题抽象出来的数学模型。

存储结构:数据对象在计算机中的存储表示,也称为物理结构。

抽象数据类型:由用户定义的,表示应用问题的数学模型,以及定义在这个模型上的一组操作的总称。

具体包括三部分:数据对象、数据对象上关系的集合和对数据对象的基本操作的集合。

2.试举一个数据结构的例子,叙述其逻辑结构和存储结构两方面的含义和相互关系。

《数据结构及其应用》笔记含答案 第五章_树和二叉树

《数据结构及其应用》笔记含答案 第五章_树和二叉树

第5章树和二叉树一、填空题1、指向结点前驱和后继的指针称为线索。

二、判断题1、二叉树是树的特殊形式。

()2、完全二叉树中,若一个结点没有左孩子,则它必是叶子。

()3、对于有N个结点的二叉树,其高度为。

()4、满二叉树一定是完全二叉树,反之未必。

()5、完全二叉树可采用顺序存储结构实现存储,非完全二叉树则不能。

()6、若一个结点是某二叉树子树的中序遍历序列中的第一个结点,则它必是该子树的后序遍历序列中的第一个结点。

()7、不使用递归也可实现二叉树的先序、中序和后序遍历。

()8、先序遍历二叉树的序列中,任何结点的子树的所有结点不一定跟在该结点之后。

()9、赫夫曼树是带权路径长度最短的树,路径上权值较大的结点离根较近。

()110、在赫夫曼编码中,出现频率相同的字符编码长度也一定相同。

()三、单项选择题1、把一棵树转换为二叉树后,这棵二叉树的形态是(A)。

A.唯一的B.有多种C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子解释:因为二叉树有左孩子、右孩子之分,故一棵树转换为二叉树后,这棵二叉树的形态是唯一的。

2、由3个结点可以构造出多少种不同的二叉树?(D)A.2 B.3 C.4 D.5解释:五种情况如下:3、一棵完全二叉树上有1001个结点,其中叶子结点的个数是(D)。

A.250 B. 500 C.254 D.501解释:设度为0结点(叶子结点)个数为A,度为1的结点个数为B,度为2的结点个数为C,有A=C+1,A+B+C=1001,可得2C+B=1000,由完全二叉树的性质可得B=0或1,又因为C为整数,所以B=0,C=500,A=501,即有501个叶子结点。

4、一个具有1025个结点的二叉树的高h为(C)。

A.11 B.10 C.11至1025之间 D.10至1024之间解释:若每层仅有一个结点,则树高h为1025;且其最小树高为⎣log21025⎦ + 1=11,即h在11至1025之间。

数据结构第五章考试题库(含答案)

数据结构第五章考试题库(含答案)

第 5 章数组和广义表一、选择题为第一元素,其存储地址为1,1.设有一个10阶的对称矩阵A,采用压缩存储方式,以行序为主存储,a11的地址为()。

【燕山大学 2001 一、2 (2分)】每个元素占一个地址空间,则a85A. 13B. 33C. 18D. 402. 有一个二维数组A[1:6,0:7] 每个数组元素用相邻的6个字节存储,存储器按字节编址,那么这个数组的体积是(①)个字节。

假设存储数组元素A[1,0]的第一个字节的地址是0,则存储数组A的最后一个元素的第一个字节的地址是(②)。

若按行存储,则A[2,4]的第一个字节的地址是(③)。

若按列存储,则A[5,7]的第一个字节的地址是(④)。

就一般情况而言,当(⑤)时,按行存储的A[I,J]地址与按列存储的A[J,I]地址相等。

供选择的答案:【上海海运学院 1998 二、2 (5分)】①-④: A.12 B. 66 C. 72 D. 96 E. 114 F. 120G. 156 H. 234 I. 276 J. 282 K. 283 L. 288⑤: A.行与列的上界相同 B. 行与列的下界相同C. 行与列的上、下界都相同D. 行的元素个数与列的元素个数相同3. 设有数组A[i,j],数组的每个元素长度为3字节,i的值为1 到8 ,j的值为1 到10,数组从内存首地址BA开始顺序存放,当用以列为主存放时,元素A[5,8]的存储首地址为( )。

A. BA+141B. BA+180C. BA+222D. BA+225【南京理工大学 1997 一、8 (2分)】4. 假设以行序为主序存储二维数组A=array[1..100,1..100],设每个数据元素占2个存储单元,基地址为10,则LOC[5,5]=()。

【福州大学 1998 一、10 (2分)】A. 808B. 818C. 1010D. 10205. 数组A[0..5,0..6]的每个元素占五个字节,将其按列优先次序存储在起始地址为1000的内存单元中,则元素A[5,5]的地址是( )。

数据结构预算法 第5章习题解答

数据结构预算法 第5章习题解答
(图 5-37)


0 1 2 3 4 5
1 2 3 4 5 6 ^
3 0 3
^ 2 4 ^ 5 ^
0 1
1 4 ^
3 ^
4)逆邻接表: 0 1 2 3 4 5 1 2 3 4 5 6 5)强连通分量:
1 4 1 0 2 2 ^ ^ 2 5 ^ 4 ^ 4 5 ^ ^
(2)设无向图 G 如图 5-38 所示,试给出: 1)该图的邻接矩阵; 2)该图的邻接表; 3)该图的多重邻接表; 4)从 V1 出发的“深度优先”遍历序列; 5)从 V1 出发的“广度优先”遍历序列。 【解答】 1) 该图的邻接矩阵: 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0
{if(p!=s) p->next=s->next; else (G->adjlist[e->adjvex].firstedge=s->next;)} if(s) free(s); break; } } for(i=v;i<G->n;i++) /*删除顶点值*/ {G->adjlist[i].vertex=G->adjlist[i+1].vextex; G->adjlist[i].first[i].firstedge=G->adjlist[i+1].firstedge; } } void DeleteArc(AALGraph *G,int v,int w) /*在图 G 中删除序号为 v,w 的顶点之的边*/ {EdgeNode *s,*p; s=G->adjlist[v].firstedge; p=s; for(;s;s=s->next); /*在与 m 邻接的点中找 n*/ {if(s->adjvex==w) /*若找到邻接点 n,则将该边从边表中脱出*/ {if(p!=s) p->next=s->next; else G->adjlist[v].firstedge=s->next; } if(s) free(s); /*释放要删除的边结点*/ } s=G->adjlist[w].firstedge;p=s; for(;s;p=s,s=s->next) /*在与 n 邻接的点中找 m*/ {if(s->adjvex==v) /*若找到邻接点 m,则将该边从边表中脱出*/ {if(p!=s) p->next=s->next; else G->adjlist[w].firstedge=s->next; } if(s) free(s); /*释放要删除的边结点*/ } G->e--; } (3)试以十字链表为存储结构实现算法设计题(1)中所列图的基本操作。 算法略。 (4)试以邻接多重表为存储结构实现算法设计题(1)中所列图的基本操作。 算法略。 (5)对于含有 n 个顶点的有向图,编写算法由其邻接表构造相应的逆邻接表。 【解答】 Void InvertAdjList(ALGraph G, ALGraph *H) /*由有向图的邻接表 G 建立其逆邻接表 H*/ {for (i=1;i<=n;i++) /*设有向图有 n 个顶点,建逆邻接表的顶点向量*/ {H[i]->vertex=G.adjlist[i].vertex; H->firstedge=NULL;} for (i=0; i<n; i++) /*邻接表转为逆邻接表*/ {p= G.adjlist[i].firstedge; /*取指向邻接表的指针*/ while (p!=null) {j=p->adjvex;

数据结构第五章习题答案

数据结构第五章习题答案

1.二维数组A行下标i的范围从1到12,列下标j的范围从3到10,采用行序为主序存储,每个数据存储元素占用4个存储单元,该数组的首地址(既A[1][3]的地址)为1200,则A[6][5]的地址为(D)A.1400B.1404C.1372D.13682.有一个M*N的矩阵A,若采用行序为主序进行顺序存储,每个元素占用8个字节,则A ij (1≤i≤M,1≤i≤N)元素的相对字节地址(相对首元素地址而言)为(B)A.((i-1)*N+j)*8B.((i-1)*N+j-1)*8C.(i*N+j-1)*8D.((i-1)*N+j+1)*83.稀疏矩阵一般的压缩存储方法有两种,即(D)A.二维数组和三维数组B.三元组和散列C.散列和十字链表D.三元组和十字链表4.若采用三元组压缩技术存储稀疏矩阵,只要把每个元素的行下标和列下标互换,就完成了对该矩阵的转置运算,这种观点(B)A.正确B.错误5.广义表((a,b),c,d)的表头是(C),表尾是(D)。

A.aB.bC.(a,b)D.(c,d)6.一个广义表的表头总是广义表,这个断言是(B)A.正确B.错误7.二维数组A[10][20]采用列序为主方式存储,每个元素占一个存储单元,并且A[0][0]的存储地址是200,则A[6][12]的地址是(326)8.有一个10阶对称矩阵A,采用压缩存储方式(以行序为主存储,且A[0][0]=1),则A[4][3]的地址是(14)9.一个广义表为(a,(a,b),d,e,((i,j),k)),则该广义表的长度为(5),深度为(3)10.广义表((a),((b),c),(((d))))的表头是((a)),表尾是((((b),c),(((d)))))11.已知广义表A=((a,b,c),(d,e,f)),则广义表运算head(tail(tail(A)))=(e)12.已知广义表GL=(a,(b,c,d),e),运用head和tail函数取出GL中的原子b的运算是(head(head(tail(GL))))13.特殊矩阵和压缩矩阵哪一种压缩存储后会失去随机存取的功能?为什么?答:稀疏矩阵在进行压缩存储后会失去随机存取的功能,因为非零元素的位置没有办法确定。

数据结构 第五章树答案

数据结构 第五章树答案

第五章 树(答案)一、选择题1、二叉树的第i 层最多有( )个结点。

A .2i B. 2i C. 2i-1 D.2i -12.对于一棵满二叉树,高度为h ,共有n 个结点,其中有m 个叶子结点,则( )A .n=h+m B.h+m=2n C.m=h-1 D.n=2h -1 3.在一棵二叉树中,共有16个度为2的结点,则其共有( )个叶子结点。

A .15 B.16 C.17 D.184. 一棵完全二叉树中根结点的编号为1,而且编号为23的结点有左孩子但没有右孩子,则此树中共有( )个结点。

A .24 B.45 C.46 D.47 5.下述编码那一组不是前缀码( )A .00,01,10,11 B.0,1,00,11 C.0,10,110,111 D.1,01,001,000 6.某二叉树的中序序列和后序序列相同,则这棵二叉树必然是( )A .空树B .空树或任一结点均无左孩子的非空二叉树C .空树或任一结点均无右孩子的非空二叉树D .空树或仅有一个结点的二叉树7.设n,m 为一棵二叉树上的两个结点,在中序遍历时,n 在m 前的条件是( )A .n 在m 的右边 B.n 是m 的祖先C .n 在m 的左边 D.n 是m 的子孙8、假定中根遍历二叉树的定义如下:若二叉树为非空二叉树,则中根遍历根的右子树;访问根结点;中根遍历根的左子树。

按此定义遍历下图所示的二叉树,遍历的结果为: A 、 DBEAFHGC A B 、 C GHFADBE B C C 、 E BDAFHGC E D FD 、 FHGCADBE GH9、文中出现的字母为A 、B 、C 、D 和E ,每个字母在电文中出现的次数分别为9、27、3、5和11。

按哈夫曼编码(构造时左小右大),则字母C 的编码应是:A 、10B 、0110C 、1110D 、1100 10、设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D .8 11.算术表达式a+b*(c+d/e )转为后缀表达式后为( )A .ab+cde/*B .abcde/+*+C .abcde/*++D .12. 设有一表示算术表达式的二叉树(见下图),它所表示的算术表达式是( )A. A*B+C/(D*E)+(F-G)B. (A*B+C)/(D*E)+(F-G)C. (A*B+C)/(D*E+(F-G ))D. A*B+C/D*E+F-G13.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( ) A .-A+B*C/DE B. -A+B*CD/E C .-+*ABC/DE D. -+A*BC/DE14.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是( )A .9B .11C .15D .不确定15.树的后根遍历序列等同于该树对应的二叉树的( ).A. 先序序列B. 中序序列C. 后序序列16.已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为( )。

数据结构第五章图习题

数据结构第五章图习题

05 图【单选题】1. 设无向图G 中有五个顶点,各顶点的度分别为2、4、3、1、2,则G 中边数为(C )。

A、4条 B、5条 C、6条 D、无法确定2. 含n 个顶点的无向完全图有(D )条边;含n 个顶点的有向图最多有(C )条弧;含n 个顶点的有向强连通图最多有(C )条弧;含n 个顶点的有向强连通图最少有(F)条弧;设无向图中有n 个顶点,则要接通全部顶点至少需(G )条边。

A 、n 2B 、n(n+1)C 、n(n-1)D 、n(n-1)/2E 、n+1F 、nG 、n-13. 对下图从顶点a 出发进行深度优先遍历,则(A )是可能得到的遍历序列。

A 、acfgdebB 、abcdefgC 、acdgbefD 、abefgcd对下图从顶点a 出发进行广度优先遍历,则(D )是不可能得到的遍历序列。

A 、abcdefgB 、acdbfgeC 、abdcegfD 、adcbgef4. 设图G 的邻接矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010101010,则G 中共有(C )个顶点;若G 为有向图,则G 中共有(D )条弧;若G 为无向图,则G 中共有(B )条边。

A 、1B 、2C 、3D 、4E 、5F 、9G 、以上答案都不对5. 含n 个顶点的图,最少有(B )个连通分量,最多有(D )个连通分量。

A 、0B 、1C 、n-1D 、n6. 用邻接表存储图所用的空间大小(A )。

A 、与图的顶点数和边数都有关B 、只与图的边数有关C 、只与图的顶点数有关D 、与边数的平方有关7. n 个顶点的无向图的邻接表最多有(B )个表结点。

A 、n 2B 、n(n-1)C 、n(n+1)D 、n(n-1)/28. 无向图G=(V ,E),其中:V={a,b,c,d,e,f},E={(a,b),(a,e),(a,c),(b,e),(c,f),(f,d),(e,d)},对该图进行深度优先遍历,得到的顶点序列正确的是(D )。

《数据结构》第五章习题参考答案

《数据结构》第五章习题参考答案

《数据结构》第五章习题参考答案一、判断题(在正确说法的题后括号中打“√”,错误说法的题后括号中打“×”)1、知道一颗树的先序序列和后序序列可唯一确定这颗树。

( ×)2、二叉树的左右子树可任意交换。

(×)3、任何一颗二叉树的叶子节点在先序、中序和后序遍历序列中的相对次序不发生改变。

(√)4、哈夫曼树是带权路径最短的树,路径上权值较大的结点离根较近。

(√)5、用一维数组存储二叉树时,总是以前序遍历顺序存储结点。

( ×)6、完全二叉树中,若一个结点没有左孩子,则它必是叶子结点。

( √)7、一棵树中的叶子数一定等于与其对应的二叉树的叶子数。

(×)8、度为2的树就是二叉树。

(×)二、单项选择题1.具有10个叶结点的二叉树中有( B )个度为2的结点。

A.8 B.9 C.10 D.112.树的后根遍历序列等同于该树对应的二叉树的( B )。

A. 先序序列B. 中序序列C. 后序序列3、二叉树的先序遍历和中序遍历如下:先序遍历:EFHIGJK;中序遍历:HFIEJKG 。

该二叉树根的右子树的根是:( C )A. EB. FC. GD. H04、在下述结论中,正确的是( D )。

①具有n个结点的完全二叉树的深度k必为┌log2(n+1)┐;②二叉树的度为2;③二叉树的左右子树可任意交换;④一棵深度为k(k≥1)且有2k-1个结点的二叉树称为满二叉树。

A.①②③B.②③④C.①②④D.①④5、某二叉树的后序遍历序列与先序遍历序列正好相反,则该二叉树一定是( D )。

A.空或只有一个结点B.完全二叉树C.二叉排序树D.高度等于其结点数三、填空题1、对于一棵具有n个结点的二叉树,对应二叉链接表中指针总数为__2n____个,其中___n-1_____个用于指向孩子结点,___n+1___个指针空闲着。

2、一棵深度为k(k≥1)的满二叉树有_____2k-1______个叶子结点。

数据结构与算法第5章课后答案

数据结构与算法第5章课后答案

page: 1The Home of jetmambo - 第 5 章树和二叉树第 5 章树和二叉树(1970-01-01) -第 5 章树和二叉树课后习题讲解1. 填空题⑴树是n(n&ge;0)结点的有限集合,在一棵非空树中,有()个根结点,其余的结点分成m (m>0)个()的集合,每个集合都是根结点的子树。

【解答】有且仅有一个,互不相交⑵树中某结点的子树的个数称为该结点的(),子树的根结点称为该结点的(),该结点称为其子树根结点的()。

【解答】度,孩子,双亲⑶一棵二叉树的第i(i&ge;1)层最多有()个结点;一棵有n(n&gt;0)个结点的满二叉树共有()个叶子结点和()个非终端结点。

【解答】2i-1,(n+1)/2,(n-1)/2【分析】设满二叉树中叶子结点的个数为n0,度为2的结点个数为n2,由于满二叉树中不存在度为1的结点,所以n=n0+n2;由二叉树的性质n0=n2+1,得n0=(n+1)/2,n2=(n-1)/2。

⑷设高度为h的二叉树上只有度为0和度为2的结点,该二叉树的结点数可能达到的最大值是(),最小值是()。

【解答】2h -1,2h-1【分析】最小结点个数的情况是第1层有1个结点,其他层上都只有2个结点。

⑸深度为k的二叉树中,所含叶子的个数最多为()。

【解答】2k-1【分析】在满二叉树中叶子结点的个数达到最多。

⑹具有100个结点的完全二叉树的叶子结点数为()。

【解答】50【分析】100个结点的完全二叉树中最后一个结点的编号为100,其双亲即最后一个分支结点的编号为50,也就是说,从编号51开始均为叶子。

⑺已知一棵度为3的树有2个度为1的结点,3个度为2的结点,4个度为3的结点。

则该树中有()个叶子结点。

【解答】12【分析】根据二叉树性质3的证明过程,有n0=n2+2n3+1(n0、n2、n3分别为叶子结点、度为2的结点和度为3的结点的个数)。

⑻某二叉树的前序遍历序列是ABCDEFG,中序遍历序列是CBDAFGE,则其后序遍历序列是()。

数据结构课后习题(第4-5章)

数据结构课后习题(第4-5章)

【课后习题】第4章 串 第5章 数组和广义表网络工程2010级( )班 学号: 姓名:题 号 一 二 三 四 总分 得 分一、填空题(每空1分,共30分)1. 串有三种机内表示方法: 、 和 ,其中前两种属于顺序存储结构,第三种属于 。

2. 若n 为主串长度,m 为子串长度,则串的BF (朴素)匹配算法最坏的情况下需要比较字符的总次数为 ,T(n)= 。

3. 是任意串的子串;任意串S 都是S 本身的子串,除S 本身外,S 的其他子串称为S 的 。

4. 设数组a[1…50, 1…60]的基地址为1000,每个元素占2个存储单元,若以行序为主序顺序存储,则元素a[32,58]的存储地址为 。

5. 对于数组,比较适于采用 结构够进行存储。

6. 广义表的深度是指_______。

7. 将一个100100 A 的三对角矩阵,按行优先存入一维数组B[297]中,A 中元素66,66A 在B 数组中的位置k 为 。

8. 注意:a i,j 的k 为 2(i-1)+j-1,(i=1时j=1,2;1<i<=n 时,j=i-1,i,i+1) 。

9. 称为空串; 称为空白串。

10. 求串T 在主串S 中首次出现的位置的操作是 ,其中 称为目标串, 称为模式。

11. 对称矩阵的下三角元素a[i,j],存放在一维数组V 的元素V[k]中(下标都是从0开始), 12. k 与i ,j 的关系是:k= 。

13. 在n 维数组中每个元素都受到 个条件的约束。

14. 同一数组中的各元素的长度 。

15. 三元素组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别表示该元素的 、 和 。

16.稀疏矩阵中有n个非零元素,则其三元组有行。

17.求下列广义表操作的结果:18.(1)GetHead【((a,b),(c,d))】=== ;19.(2)GetHead【GetTail【((a,b),(c,d))】】=== ;20.(3)GetHead【GetTail【GetHead【((a,b),(c,d))】】】=== ;21.(4)GetTail【GetHead【GetTail【((a,b),(c,d))】】】=== ;22.广义表E=(a,(b,E)),则E的长度= ,深度= ;二、判断题(如果正确,在下表对应位置打“√”,否则打“⨯”。

第5章 数据结构与算法 习题与答案

第5章 数据结构与算法 习题与答案

第五章习题(1)复习题1、试述数据和数据结构的概念及其区别。

数据是对客观事物的符号表示,是信息的载体;数据结构则是指互相之间存在着一种或多种关系的数据元素的集合。

(P113)2、列出算法的五个重要特征并对其进行说明。

算法具有以下五个重要的特征:有穷性:一个算法必须保证执行有限步之后结束。

确切性:算法的每一步骤必须有确切的定义。

输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件。

输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。

没有输出的算法没有实际意义。

可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。

(P115)3、算法的优劣用什么来衡量?试述如何设计出优秀的算法。

时间复杂度空间复杂度(P117)4、线性和非线性结构各包含哪些种类的数据结构?线性结构和非线性结构各有什么特点?线性结构用于描述一对一的相互关系,即结构中元素之间只有最基本的联系,线性结构的特点是逻辑结构简单。

所谓非线性结构是指,在该结构中至少存在一个数据元素,有两个或两个以上的直接前驱(或直接后继)元素。

树型和图型结构就是其中十分重要的非线性结构,可以用来描述客观世界中广泛存在的层次结构和网状结构的关系。

(P118 P122)5、简述树与二叉树的区别;简述树与图的区别。

树用来描述层次结构,是一对多或多对一的关系;二叉树(Binary Tree)是个有限元素的集合,该集合或者为空、或者由一个称为根(root)的元素及两个不相交的、被分别称为左子树和右子树的二叉树组成。

二叉树是有序的,即若将其左、右子树颠倒,就成为另一棵不同的二叉树。

图也称做网,是一种比树形结构更复杂的非线性结构。

在图中,任意两个节点之间都可能相关,即节点之间的邻接关系可以是任意的,图表示的多对多的关系。

(P121-P124)6、请举出遍历算法在实际中使用的例子。

提示:根据实际生活中需要逐个访问处理的情况举例。

数据结构课后习题答案第五章数组与广义表

数据结构课后习题答案第五章数组与广义表

第五章数组与广义表一、假设有二维数组A6*8,每个元素用相邻的6个字节存储,存储器按字节编址。

已知A的起始存储位置(基地址)为1000。

计算:1、数组A的体积(即存储量);2、数组A的最后一个元素a57的第一个字节的地址;3、按行存储时,元素a14的第一个字节的地址;4、按列存储时,元素a47的第一个字节的地址;答案:1、(6*8)*6=2882、loc(a57)=1000+(5*8+7)*6=1282或=1000+(288-6)=12823、loc(a14)=1000+(1*8+4)*6=10724、loc(a47)=1000+(7*6+4)*6=1276二、假设按低下标(行优先)优先存储整数数组A9*3*5*8时第一个元素的字节地址是100,每个整数占四个字节。

问下列元素的存储地址是什么?(1)a0000(2)a1111(3)a3125 (4)a8247答案:(1)100(2)loc(a1111)=100+(1*3*5*8+1*5*8+1*8+1)*4=776(3) loc(a3125)=100+(3*3*5*8+1*5*8+2*8+5)*4=1784(4) loc(a8247)=100+(8*3*5*8+2*5*8+4*8+7)*4=4416五、设有一个上三角矩阵(aij)n*n,将其上三角元素逐行存于数组B[m]中,(m 充分大),使得B[k]=aij且k=f1(i)+f2(j)+c。

试推导出函数f1,f2和常数C(要求f1和f2中不含常数项)。

答:K=n+(n-1)+(n-2)+…..+(n-(i-1)+1)+j-i=(i-1)(n+(n-i+2))/2+j-i所以f1(i)=(n+1/2)i-1/2i2f2(j)=jc=-(n+1)九、已知A为稀疏矩阵,试从空间和时间角度比较采用两种不同的存储结构(二维数组和三元组表)完成∑aii运算的优缺点。

(对角线求和)解:1、二维数组For(i=1;i<=n;i++)S=s+a[i][i];时间复杂度:O(n)2、for(i=1;i<=m.tu;i++)If(a.data[k].i==a.data[k].j) s=s+a.data[k].value;时间复杂度:O(n2)二十一、当稀疏矩阵A和B均以三元组表作为存储结构时,试写出矩阵相加的算法,其结果存放在三元组表C中。

数据结构C语言版第二版第5章树和二叉树答案

数据结构C语言版第二版第5章树和二叉树答案

第5章 树和二叉树1.选择题(1)把一棵树转换为二叉树后,这棵二叉树的形态是( )。

A .唯一的 B.有多种C .有多种,但根结点都没有左孩子 D.有多种,但根结点都没有右孩子 答案:A解释:因为二叉树有左孩子、右孩子之分,故一棵树转换为二叉树后,这棵二叉树的形态是唯一的。

(2)由3个结点可以构造出多少种不同的二叉树?( ) A .2 B .3 C .4 D .5 答案:D解释:五种情况如下:A CBACBA CBACBACB(3)一棵完全二叉树上有1001个结点,其中叶子结点的个数是( )。

A .250 B . 500 C .254 D .501 答案:D解释:设度为0结点(叶子结点)个数为A ,度为1的结点个数为B ,度为2的结点个数为C ,有A=C+1,A+B+C=1001,可得2C+B=1000,由完全二叉树的性质可得B=0或1,又因为C 为整数,所以B=0,C=500,A=501,即有501个叶子结点。

(4)一个具有1025个结点的二叉树的高h 为( )。

A .11B .10C .11至1025之间D .10至1024之间 答案:C解释:若每层仅有一个结点,则树高h 为1025;且其最小树高为 log 21025 + 1=11,即h 在11至1025之间。

(5)深度为h 的满m 叉树的第k 层有( )个结点。

(1=<k=<h) A .mk-1B .m k -1C .m h-1D .m h-1答案:A解释:深度为h 的满m 叉树共有m h-1个结点,第k 层有m k-1个结点。

(6)利用二叉链表存储树,则根结点的右指针是( )。

A .指向最左孩子B .指向最右孩子C .空D .非空 答案:C解释:利用二叉链表存储树时,右指针指向兄弟结点,因为根节点没有兄弟结点,故根节点的右指针指向空。

(7)对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用( )遍历实现编号。

数据结构与算法教程 习题答案 作者 朱明方 吴及 第5章习题解答.docx

数据结构与算法教程 习题答案 作者 朱明方 吴及 第5章习题解答.docx

第5章习题解答2- 9, 0-6, 4-9, 2-6, 6-4;(1) 请确定图中各个顶点的度; (2) 给出图的连通分量;(3)列出至少有三个顶点的简单路径。

[解答]由题意得到的图如图5-1所示。

[解答]如图5-2所示,分别为1个顶点,2个顶点,3个顶点,4个顶点,5个顶点和6个顶点 的无向完全图。

5. 1 已知一个图有。

到9 一共10个顶点, 图中边为:3-7,1-4, 7-8, 0-5, 5-2, 3-8,(1)顶点:0 12 3 4 顶点的度:213232⑵连通分量1: 连通分量2: (3)连通分量1:连通分量2中:4-6-0, 4-6-2, 6-2-5, 6-2-9, 9-2-6, 0-5-2,如图5-1 (b)所示。

如图5-1 (a)所示。

3- 7-8; 1-4-6, 1-4-9 4- 9-2, 6-0-5, 6-4一9, 9—2-5,共有13条。

5.2向完全图。

请分别画出1个顶点,2个顶点, 3个顶点,4个顶点,5个顶点和6个顶点的无图5-15.3 若无向图G有15条边,有3个度为4的顶点,其余顶点的度不大于3,图G至少有多少个顶点?[解答]设图G至少有x个顶点,根据握手定理有:3 X4 + 3 (x-3) =2X15, x=9(个)5.4 试证明有/个顶点的任何无环连通图均有V -1条边。

[解答]无环连通图即为树。

根据树的性质,有V个顶点的树均有V-1条边。

5.5对于一个有r个顶点和的无向完全图,请问一共有多少个子图?[解答]V 2一共有个子图。

i=05.6对于一个有V个顶点和E条边的无向图,请给出其连通分量个数的上界和下界。

[解答]根据无向图中顶点和边的关系可知,E必然满足0WEWK(片1)/2,由分析可得到:V-E if E<V-1 c = dmin[1 if E>V-1M=V-(l + Jl + 8E)/2 E<V(V-1)/2提示:在不形成环的情况下,连通分量数目达到最小值;当某个连通分量为完全图时, 连通分量数目达到最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 5 章树和二叉树1970-01-01第 5 章树和二叉树课后习题讲解1. 填空题⑴树是n(n≥0)结点的有限集合,在一棵非空树中,有()个根结点,其余的结点分成m(m>0)个()的集合,每个集合都是根结点的子树。

【解答】有且仅有一个,互不相交⑵树中某结点的子树的个数称为该结点的(),子树的根结点称为该结点的(),该结点称为其子树根结点的()。

【解答】度,孩子,双亲⑶一棵二叉树的第i(i≥1)层最多有()个结点;一棵有n(n>0)个结点的满二叉树共有()个叶子结点和()个非终端结点。

【解答】2i-1,(n+1)/2,(n-1)/2【分析】设满二叉树中叶子结点的个数为n0,度为2的结点个数为n2,由于满二叉树中不存在度为1的结点,所以n=n0+n2;由二叉树的性质n0=n2+1,得n0=(n+1)/2,n2=(n-1)/2。

⑷设高度为h的二叉树上只有度为0和度为2的结点,该二叉树的结点数可能达到的最大值是(),最小值是()。

【解答】2h -1,2h-1【分析】最小结点个数的情况是第1层有1个结点,其他层上都只有2个结点。

⑸深度为k的二叉树中,所含叶子的个数最多为()。

【解答】2k-1【分析】在满二叉树中叶子结点的个数达到最多。

⑹具有100个结点的完全二叉树的叶子结点数为()。

【解答】50【分析】100个结点的完全二叉树中最后一个结点的编号为100,其双亲即最后一个分支结点的编号为50,也就是说,从编号51开始均为叶子。

⑺已知一棵度为3的树有2个度为1的结点,3个度为2的结点,4个度为3的结点。

则该树中有()个叶子结点。

【解答】12【分析】根据二叉树性质3的证明过程,有n0=n2+2n3+1(n0、n2、n3分别为叶子结点、度为2的结点和度为3的结点的个数)。

⑻某二叉树的前序遍历序列是ABCDEFG,中序遍历序列是CBDAFGE,则其后序遍历序列是()。

【解答】CDBGFEA【分析】根据前序遍历序列和后序遍历序列将该二叉树构造出来。

⑼在具有n个结点的二叉链表中,共有()个指针域,其中()个指针域用于指向其左右孩子,剩下的()个指针域则是空的。

【解答】2n,n-1,n+1⑽在有n个叶子的哈夫曼树中,叶子结点总数为(),分支结点总数为()。

【解答】n,n-1【分析】n-1个分支结点是经过n-1次合并后得到的。

2. 选择题⑴如果结点A有3个兄弟,B是A的双亲,则结点B的度是()。

A 1B 2C 3D 4【解答】D⑵设二叉树有n个结点,则其深度为()。

A n-1B nC +1D 不能确定【解答】D【分析】此题并没有指明是完全二叉树,则其深度最多是n,最少是+1。

⑶二叉树的前序序列和后序序列正好相反,则该二叉树一定是()的二叉树。

A 空或只有一个结点B 高度等于其结点数C 任一结点无左孩子D 任一结点无右孩子【解答】B【分析】此题注意是序列正好相反,则左斜树和右斜树均满足条件。

⑷线索二叉树中某结点R没有左孩子的充要条件是()。

A R.lchild=NULLB R.ltag=0C R.ltag=1D R.rchild=NULL【解答】C【分析】线索二叉树中某结点是否有左孩子,不能通过左指针域是否为空来判断,而要判断左标志是否为1。

⑸深度为k的完全二叉树至少有()个结点,至多有()个结点,具有n个结点的完全二叉树按层序从1开始编号,则编号最小的叶子的序号是()。

A 2k-2+1B 2k-1C 2k -1D 2k–1 -1E 2k+1F 2k+1 -1G 2k -1+1H 2k【解答】B,C,A【分析】深度为k的完全二叉树最少结点数的情况应是第k层上只有1个结点,最多的情况是满二叉树,编号最小的叶子应该是在结点数最少的情况下,叶子结点的编号。

⑹一个高度为h的满二叉树共有n个结点,其中有m个叶子结点,则有()成立。

A n=h+mB h+m=2nC m=h-1D n=2m-1【解答】D【分析】满二叉树中没有度为1的结点,所以有m个叶子结点,则度为2的结点个数为m-1。

⑺任何一棵二叉树的叶子结点在前序、中序、后序遍历序列中的相对次序()。

A 肯定不发生改变B 肯定发生改变C 不能确定D 有时发生变化【解答】A【分析】三种遍历次序均是先左子树后右子树。

⑻如果T' 是由有序树T转换而来的二叉树,那么T中结点的前序序列就是T' 中结点的()序列,T中结点的后序序列就是T' 中结点的()序列。

A 前序B 中序C 后序D 层序【解答】A,B⑼设森林中有4棵树,树中结点的个数依次为n1、n2、n3、n4,则把森林转换成二叉树后,其根结点的右子树上有()个结点,根结点的左子树上有()个结点。

A n1-1B n1C n1+n2+n3D n2+n3+n4【解答】D,A【分析】由森林转换的二叉树中,根结点即为第一棵树的根结点,根结点的左子树是由第一棵树中除了根结点以外其余结点组成的,根结点的右子树是由森林中除第一棵树外其他树转换来的。

⑽讨论树、森林和二叉树的关系,目的是为了()。

A 借助二叉树上的运算方法去实现对树的一些运算B 将树、森林按二叉树的存储方式进行存储并利用二叉树的算法解决树的有关问题C 将树、森林转换成二叉树D 体现一种技巧,没有什么实际意义【解答】B3. 判断题⑴在线索二叉树中,任一结点均有指向其前趋和后继的线索。

【解答】错。

某结点是否有前驱或后继的线索,取决于该结点的标志域是否为1。

⑵在二叉树的前序遍历序列中,任意一个结点均处在其子女的前面。

【解答】对。

由前序遍历的操作定义可知。

⑶二叉树是度为2的树。

【解答】错。

二叉树和树是两种不同的树结构,例如,左斜树是一棵二叉树,但它的度为1。

⑷由树转换成二叉树,其根结点的右子树总是空的。

【解答】对。

因为根结点无兄弟结点。

⑸用一维数组存储二叉树时,总是以前序遍历存储结点。

【解答】错。

二叉树的顺序存储结构是按层序存储的,一般适合存储完全二叉树。

4.证明:对任一满二叉树,其分枝数B=2(n0-1) 。

(其中,n0为终端结点数)【解答】因为在满二叉树中没有度为1的结点,所以有:n=n0+n2设B为树中分枝数,则n=B+1所以B=n0 +n2-1再由二叉树性质:n0=n2+1代入上式有:B=n0+n0-1-1=2(n0-1)5.证明:已知一棵二叉树的前序序列和中序序列,则可唯一确定该二叉树。

【解答】证明采用归纳法。

设二叉树的前序遍历序列为a1a2a3… an,中序遍历序列为b1b2b3… bn。

当n=1时,前序遍历序列为a1,中序遍历序列为b1,二叉树只有一个根结点,所以,a1= b1,可以唯一确定该二叉树;假设当n<=k时,前序遍历序列a1a2a3… ak和中序遍历序列b1b2b3… bk可唯一确定该二叉树,下面证明当n=k+1时,前序遍历序列a1a2a3… akak+1和中序遍历序列b1b2b3… bk bk+1可唯一确定一棵二叉树。

在前序遍历序列中第一个访问的一定是根结点,即二叉树的根结点是a1,在中序遍历序列中查找值为a1的结点,假设为bi,则a1=bi且b1b2… bi-1是对根结点a1的左子树进行中序遍历的结果,前序遍历序列a2a3… ai是对根结点a1的左子树进行前序遍历的结果,由归纳假设,前序遍历序列a2a3… ai和中序遍历序列b1b2… bi-1唯一确定了根结点的左子树,同样可证前序遍历序列ai+1ai+2… ak+1和中序遍历序列bi+1bi+2… bk+1唯一确定了根结点的右子树。

6.已知一棵度为m的树中有:n1个度为1的结点,n2个度为2的结点,……,nm个度为m的结点,问该树中共有多少个叶子结点?【解答】设该树的总结点数为n,则n=n0+n1+n2+……+nm又:n=分枝数+1=0×n0+1×n1+2×n2+……+m×nm+1由上述两式可得:n0= n2+2n3+……+(m-1)nm+17.已知二叉树的中序和后序序列分别为CBEDAFIGH和CEDBIFHGA,试构造该二叉树。

【解答】二叉树的构造过程如图5-12 所示。

8.对给定的一组权值W=(5,2,9,11,8,3,7),试构造相应的哈夫曼树,并计算它的带权路径长度。

【解答】构造的哈夫曼树如图5-13所示。

树的带权路径长度为:WPL=2×4+3×4+5×3+7×3+8×3+9×2+11×2=1209.已知某字符串S中共有8种字符,各种字符分别出现2次、1次、4次、5次、7次、3次、4次和9次,对该字符串用[0,1]进行前缀编码,问该字符串的编码至少有多少位。

【解答】以各字符出现的次数作为叶子结点的权值构造的哈夫曼编码树如图5-14所示。

其带权路径长度=2×5+1×5+3×4+5×3+9×2+4×3+4×3+7×2=98,所以,该字符串的编码长度至少为98位。

10.算法设计⑴设计算法求二叉树的结点个数。

【解答】本算法不是要打印每个结点的值,而是求出结点的个数。

所以可将遍历算法中的“访问”操作改为“计数操作”,将结点的数目累加到一个全局变量中,每个结点累加一次即完成了结点个数的求解。

具体算法如下:⑵设计算法按前序次序打印二叉树中的叶子结点。

【解答】本算法的要求与前序遍历算法既有相同之处,又有不同之处。

相同之处是打印次序均为前序,不同之处是此处不是打印每个结点的值,而是打印出其中的叶子结点,即为有条件打印。

为此,将前序遍历算法中的访问操作改为条件打印即可。

算法如下:⑶设计算法求二叉树的深度。

【解答】当二叉树为空时,深度为0;若二叉树不为空,深度应是其左右子树深度的最大值加1,而其左右子树深度的求解又可通过递归调用本算法来完成。

具体算法如下:⑷编写算法,要求输出二叉树后序遍历序列的逆序。

【解答】要想得到后序的逆序,只要按照后序遍历相反的顺序即可,即先访问根结点,再遍历根结点的右子树,最后遍历根结点的左子树。

注意和前序遍历的区别,具体算法如下:⑸以二叉链表为存储结构,编写算法求二叉树中结点x的双亲。

【解答】对二叉链表进行遍历,在遍历的过程中查找结点x并记载其双亲。

具体算法如下:⑹以二叉链表为存储结构,在二叉树中删除以值x为根结点的子树。

【解答】对二叉链表进行遍历,在遍历的过程中查找结点x并记载其双亲,然后将结点x的双亲结点中指向结点x的指针置空。

具体算法如下:⑺一棵具有n个结点的二叉树采用顺序存储结构,编写算法对该二叉树进行前序遍历。

【解答】按照题目要求,设置一个工作栈以完成对该树的非递归算法,思路如下:①每访问一个结点,将此结点压栈,查看此结点是否有左子树,若有,访问左子树,重复执行该过程直到左子树为空。

相关文档
最新文档