运筹学课件--第四章 整数规划
运筹学-整数规划与分配问题PPT
但 z=13 不是最优。实际问题的
最优解为(4 , 1)这时 z*= 14。
逻辑(0-1)变量在建立数学模型中的作用
1. m 个约束条件中只有 k 个起作用
设 m 个约束条件可以表示为:
n
aijxj bi (i1, ,m)
j1
定义逻辑变量
1,假定第 i 个约束条件不起作用 yi 0,假定第 i 个约束条件起作用
第四章 整数规划与分配问题
整数规划的特点及作用 分配问题与匈牙利法 分枝定界法 割平面法 应用举例
1 整数规划的特点及应用
在实际问题中,全部或部分变量取值必须是整数。比如人 或机器是不可分割的,选择地点可以设置逻辑变量等。
在一个线性规划问题中要求全部变量取整数值的,称纯整
数线性规划或简称纯整数规划;只要求一部分变量取整 数值的,称为混合整数规划。
如果完成任务的效率表现为资源消耗,考虑的是如何分配 任务使得目标极小化;如果完成任务的效率表现为生产效 率的高低,则考虑的是如何分配使得目标函数极大化。
在分配问题中,利用不同资源完成不同计划活动的效率常
用表格形式表示为效率表,表格中数字组成效率矩阵。
例2. 有一份说明书,要分别翻译成英、日、德、俄 四种文字,交甲、乙、丙、丁四个人去完成。因各人专长 不同,使这四个人分别完成四项任务总的时间为最小。效 率表如下:
又设 M 为任意大的正数,则约束条件可以改写为:
n
aijxj
bi Myi
j1
y1 y2 ym mk
2. 约束条件的右端项可能是 r 个值中的某一个
n
即
aijxj b1或b2或或br
j1
定义逻辑变量:
yi 10, ,假 其定 它约束右端项b为 i
运筹学课件第4章_整数规划与分配问题
街道1 街道2 街道3 街道4 街道5 街道6 10 20 30 30 20 街道1 0 0 25 35 20 10 街道2 10 25 0 15 30 20 街道3 20 35 15 0 15 25 街道4 30 20 30 15 0 14 街道5 30 10 20 25 14 0 街道6 20
40
24
在实际中,许多要求变量取整的 数学模型,称为整数规划。本章 将讨论整数规划求解的基本思路、 0-1变量的用法、分配问题及匈 牙利法,以及利用Excel, Lingo, WinQSB求解的演示。
设 x1,x2表示两种货物装载数量 (整数),依题意有如下数学模型:
max z 5 x1 6 x2 3 x1 8 x2 ≤ 40 4 x 3 x ≤ 24 1 2 x1 , x2 ≥ 0 x , x 取整数 1 2
管理运筹学课件
2013年3月5日星期二
4.1.2 分枝定界法的基本思路*
0 1 2 3 4 5 6 7 8 x2
分枝定界法(Branch and Bound Method)用于求解整数规划问题 ,是在20世纪60年代初,由Land Doig和Dakin等人提出的。
【例4.1】 用图解法求解整数规划
x1 1 x1 令 x2 1 x2 x 1 x 3 3
目标系数升序排序 min w x2 x3 3x1 5 x1 0 2 x2 x3 x1 0 4 x2 x3 x1 2 解得 x2 1 s.t. x 0 x2 +x1 1 3 x1, x2 , x3 0或1
变量取整的 LP 整数规划
运筹学经典课件-04.整数规划(胡运权)
整数规划: 要求决策变量取整数值的规划问题。
(线性整数规划、非线性整数规划等)
纯整数规划:在整数规划中,如果所有的变量都为非负整 数,则称为纯整数规划问题; 混合整数规划:如果有一部分变量为非负整数,则称之为 混合整数规划问题。 0-1变量:在整数规划中,如果变量的取值只限于0和1,这 样的变量我们称之为0-1变量。 0-1规划:在整数规划问题中,如果所有的变量都为0-1变 量,则称之为0-1规划。
资源 金属板(吨) 小号容器 2 中号容器 4 大号容器 8
劳动力(人月)
机器设备(台月)
2
1
3
2
4
3
2013-10-30
14
解:这显然是一个整数规划的问题。
设x1,x2, x3 分别为小号容器、中号容器和大号容器的生产数量。各 种容器的固定费用只有在生产该种容器时才投入,为了说明固定费用的这 种性质,设 yi = 1(当生产第 i种容器, 即 xi > 0 时) 或0(当不生产第 i种
2 x1 3x2 14
z 3x1 2 x2
2013-10-30
x1
5
§2 应用举例
一、 逻辑变量在数学模型中的应用
1、m个约束条件中只有k个起作用
设有m个约束条件
a
j 1
n
ij
bi ,
i 1,2,..., m
0 定义0-1整型变量: yi 1 M是任意大正数。
x j 0, j 1,... 6
2013-10-30
13
例3.(固定成本问题) 高压容器公司制造小、中、大三种尺寸的金属容器,所用资 源为金属板、劳动力和机器设备,制造一个容器所需的各种 资源的数量如表所示。每种容器售出一只所得的利润分别为 4万元、5万元、6万元,可使用的金属板有500吨,劳动力有 300人/月,机器有100台/月,此外不管每种容器制造的数量 是多少,都要支付一笔固定的费用:小号是l00万元,中号为 150 万元,大号为200万元。现在要制定一个生产计划,使获 得的利润为最大。
运筹学 第四章 整数规划
x 解: 设 x 1 、 2 分别为甲、乙两种货物的托运箱 数,则数学模型可以表示为:
m a x z 2 0 x1 1 0 x 2 5 x1 4 x 2 2 4 2 x1 5 x 2 1 3 x1 , x 2 0 , x1 , x 2 整 数
m a x z 4 0 x1 9 0 x 2
m a x z 4 0 x1 9 0 x 2
9 x1 7 x 2 5 6 9 x1 7 x 2 5 6 7 x1 2 0 x 2 7 0 (B) 7 x1 2 0 x 2 7 0 (A)s .t s .t x1 4 x1 5 x1 , x 2 0 x1 , x 2 0
在线性规划问题的求解过程中,最优解可 能是整数,也可能不是整数。在一些情况下, 某些实际问题要求最优解必须是整数,例如, 若所求得的解是安排上班的人数,需要采购 的机器台数等。
用前面介绍的线性规划方法求解时,不 一定能得到整数解。为解决这一类变量为整 数的实际问题,出现了整数规划模型。
在所建模型中,决策变量全为整数的问题 称为纯整数规划(Pure Integer Programming)或 全整数规划(All Integer Programming);决策变 量中部分为整数、部分为非整数的问题称为混 合整数规划(Mixed Integer Programming);变 量取值为0或1的问题称为0-1整数规划。 对于求整数解的线性规划问题,能否采用 四舍五入或者去尾的方法将求得的非整数解加 以解决呢?如果不能,有无有效的解决方案呢?
若所得到的解为非整数则转到步骤2继续迭代直到找到最优的整数p119p119第第8282迭代一步迭代一步42301规划及隐枚举法在实际建模过程中经常遇到要求模型解决是否或者有无等问题这类问题一般可以借助引入数值为0或者1的决策变量加以解决例42就是此类问题这类问题被称为01整数规划
管理运筹学第四章整数规划与指派问题 ppt课件
资源
小号容器
金属板(张)
2
劳动力(个)
2
机时(小时)
1
中号容器 大号容器 资源拥有量
4
8
500
3
4
300
2
3
100
利润
4
5
6
11
解:设x1 , x2 , x3分别表示小、中、大号容器的生产数量, M为很大的正数,z表示总利润
引入逻 辑变量
yj 10,,
xj 0 xj 0
j1,2,3
m ax z 4 x1 5 x2 6 x3 100 y1 150 y2 200 y3
32
分枝的方法
max z CX
AX b
s.t.
X
0,
X为整数
m ax z CX
AX b
s .t . x r b r
X
0,
X为
整
数
m ax z CX
AX b
s .t . x r b r
X
0, X 为 整 数
33
定界的方法
当前得到的最好整数解的目标函数值 分枝后计算放松的线性规划的最优解
.t
.
X
0
如果最优解x
i中某个分量
x
0 i
非整
max z CX
AX b
s.t
.
X 0
X为整数向量
xi [ xi0 ]
max z CX
AX b
s.t
.
X 0
X为整数向量
xi [ xi0 ] 1
26
分枝定界法的两个要点:分枝和定界 ☺如何定界? • 整数规划ILP的最优解不会优于松弛LP的最优解; • 对极大化问题来说,松弛 LP 的目标函数最优值是原
运筹与决策PPT:整数规划
案例2: California制造公司问题- Excel求解
多个决策变量
0-1变量
相依决策
互斥方案
案例2: California制造公司问题- 灵敏度分析
Capital Spent 100 <=
Capital Available
100
Total Profit ($millions)
10
取整约束
G 12 SUMPRODUCT(UnitProduced,UnitProfit)
6.2 整数规划问题的分类
▪ 纯整数规划问题:
– 所有决策变量均为整数
▪ 混合整数规划问题(MIP):
B
C
3 NPV ($millions)
LA
4
Warehouse
6
5
6
Factory
8
7
8 Capital Required
9
($millions)
LA
10
Warehouse
5
11
12
Factory
6
13
14
15
Build?
LA
16
Warehouse
0
17
<=
18
Factory
1
19
20
Total NPV ($millions)
原因分析
▪线性规划的可分性假设
–线性规划的决策变量必须允许在满足一定函数 约束与非负约束下取任意实数。
TBA公司的问题由于决策变量只能取整 数,故不满足可分性假设。
整数规划的Excel求解模型- 案例1
B
3
4
Unit Profit ($millions)
运筹学--整数规划 ppt课件
三、投资问题
某公司在今后五年内考虑给以下的项目投资。已知: 项目A:从第一年到第四年每年年初需要投资,并于次年末
回收本利115%,但要求第一年投资最低金额为4万元,第 二、三、四年不限; 项目B:第三年初需要投资,到第五年未能回收本利128%, 但规定最低投资金额为3万元,最高金额为5万元; 项目 C:第二年初需要投资,到第五年未能回收本利140%, 但规定其投资额或为2万元或为4万元或为6万元或为8万元。 项目 D:五年内每年初可购买公债,于当年末归还,并加利 息6%,此项投资金额不限。
= 1.15x1A+ 1.06x2D; 第四年:年初的资金为 1.15x2A+1.06x3D,于是 x4A + x4D =
1.15x2A+ 1.06x3D; 第五年:年初的资金为 1.15x3A+1.06x4D,于是 x5D =
引入约束 xi ≤ M yi ,i =1,2,3,M充分大,以 保证当 yi = 0 时,xi = 0 。
这样我们可建立如下的数学模型:
Max z = 4x1 + 5x2 + 6x3 - 100y1 - 150y2 -
200y3
s.t. 2x1 + 4x2 + 8x3 ≤ 500 2x1 + 3x2 + 4x3 ≤ 300 x1 + 2x2 + 3x3 ≤ 100 xi ≤ M yi ,i =1,2,3,M充分大 xj ≥ 0 yj 为0--1变量,i = 1,2,3
一、投资场所的选择
京成畜产品公司计划在市区的东、西、南、北四区建立销售
门市部,拟议中有10个位置 Aj ( j=1,2,3,…,10)可供 选择,考虑到各地区居民的消费水平及居民居住密集度,规
运筹学课件第四节0—1型整数规划
例:固定费用问题 有三种产品被用于生产三种产品,资源量、产品单件费用、 资源消耗量以及生产产品的固定费用。要求制定一个生产计 划,总收益最大。
,先加工某种产品 0 yj ( j 1 ,2 ,3 ,4 ) 1 ,先加工另外产品 机床1:x11+a11≤x21+My1 ; x21+a21≤x11+M(1-y1) 机床2:x22+a22≤x32+My2 ; x32+a32≤x22+M(1-y2) 机床3:x13+a13≤x33 +My3 ; x33+a33≤x13+M(1-y3) 机床4:x14+a14≤x24 +My4 ; x24+a24≤x14+M(1-y4) 当y1=0,表示机床1先加工产品1,后加工产品2;当y1=1,表示机床1先 加工产品2,后加工产品1.
4 求解: 7 C 6 6 6
8
7
9 17 9 12 7 14 9 12
15 12 14 10 8 7 6 10 10 6
第一步 造0 各行各列减其最小元素
0 0 0 0 0
4 3 2 10 3 1 3 6 8 6
11 7 2 0 4
第四节
0—1型整数规划
一、0-1变量及其应用 某些特殊问题,只做是非选择,故变量设置简化为0或1, 1代表选择,0代表不选择。
选取某个特定方案 1, 当决策选取方案 x 0 , 当决策不选取方案 问题含有较多的要素, 每项要素有 2 种选择,用 0 1变量描述。 有限要素 E1, E 2 ,...E n , 每项 E j 有两种选择 A j , A j 1, E j 选择 A j xj 0 , E j 选择 A j
运筹学 第4章 整数规划与分配问题
匈牙利法思路:若能在 [Cij] 中找出 n 个位于
不同行不同列的0元素(称为独立0元素),则
令解矩阵[xij]中对应这n个独立0元素的元素
取值为 1 ,其他元素取值为 0 ,则它对应目
标函数zb=0是最小的。这就是以[Cij]为系数
矩阵分配问题的最优解,也得原问题的最
优解。
定理1 若从分配问题效率矩阵[cij]的每一行元素中分别减去 (或加上)一个常数ui(称为该行的位势),从每一列分别减去 (或加上)一个常数vj(称为该列的位势),得到一个新效率矩阵 [bij],若其中bij=cij-ui-vj,则[bij]的最优解等价于[cij]的最优解
第1步:找出效率矩阵每行的最小元素,并分别从每行
中减去。
第2步:再找出矩阵每列的最小元素,并分别从各列中 减去。
2 10 9 7 2 15 4 14 8 4 13 14 16 11 11 4 15 13 9 4
0 8 7 5 11 0 10 4 0 3 5 0 0 11 9 5
表明m个约束条件中有(m-k)个的右端项为( bi+M ),不起约 束作用,因而,只有k个约束条件起作用。 ② 约束条件的右端项可能是r个值b1 , b2 ,, br 中的某一个 即: 定义:
n
aij x j b1 或b2或或br
j 1
1 假定约束右端项为 bi yi 否则 0
现用下例来说明: max z=40x1+90x2 9x1+7x2≤56 7x1+20x2≤70 x1,x2≥0 x1,x2整数 ① ② ③ ④ ⑤
解:先不考虑条件⑤,即解相应的线性规划B,①~④(见图5-2), 得最优解x1=4.81,x2=1.82,z0=356
运筹学第四章--整数规划和分配问题(新)aPPT课件
-
1
整数线性规划的一般形式: n max(或min)z cj xj j 1
n
aij xj ( 或 )bi (i 1,2,...m)
j 1
xj 0( j 1,2,...n),且部分或全部取整数
例1.求下述整数规划问题的最优解
max z 3x1 2x2
2x1 3x2 14 x1 0.5x2 4.5
先不考虑整数解的限制,用单纯形法求 解其松弛问题,如果求得的解恰好是整数解, 则得整数规划最优解,停止计算。否则,将 松弛问题分解为两个子问题(也称后继问 题),每个子问题都是在原松弛问题的基础 上增加一个变量取整数的约束条件,这样就 缩小了原来的可行域,然后用单纯形法求解, 直至得到最终结果。
-
21
-
23
例.用分枝定界法求下述数整规划问题的最优
maxz 3x1 2x2
2x1 3x2 14 x1 0.5x2 4.5 x1, x2 0,且均取整数值
-
24
-
25
-
26
-
27
-
28
-
29
第四节 割平面法 一、割平面法的基本思想
先不考虑整数条件,用单纯形法求解其 松弛问题,若得整数解,即得整数规划最优 解。否则,增加线性约束条件(称为割平面 方程),将原问题的可行域切割掉一部分, 被切割掉的都是非整数解,再用单纯形法求 解新的线性规划问题,依次进行下去,直到 使问题的最优解恰好在可行域的某个具有整 数坐标的顶点上得到。
0.5 + 0.4 x4 + 0.4 x5≥ 1
-
35
2. 借助单纯形表法
对求解整数规划问题的松弛问题(LP问题)得到
最优单纯形表,设xi=bi 是最优解中取分数值(分数 部分最大)的基变量,则有
运筹学PPT 第四章 线性整数规划
s.t.
x
i 1
8
i
5
x1 x2 1
x6 x7 x8 1
x6 x2
xi 0 或 1,i=1, … ,8
2. 指派问题 问题描述:n项任务可由n个人完成,由于专长不同,各人 完成各任务的时间也不同,求最优安排。 要求:每人只能完成一项任务,每项任务只能由一人完成。 例: 有一份中文说明书,需译成英、日、德、俄四种文字, 分别记作任务E、J、G、R,现有甲、乙、丙、丁四人,他们 将中文说明书翻译成不同语种说明书所需的时间如下表所示, 问应指派何人去完成何项任务,使所需总时间最少?
运动员 甲 乙
丙 丁
仰泳 75.5 65.8
67.6 74.0
蛙泳 86.8 66.2
84.3 69.4
蝶泳 66.6 57.0
77.8 60.8
自由泳 58.4 52.8
59.1 57.0
3. 背包问题 问题描述 已知:一个背包最大容量为b公斤;有m件物品供选择,每 件物品重ai公斤,价值为ci(i=1,…,m)。 问题:携带哪些物品可使总价值最大? 一般模型 xi=
解:令 x i=
7
1, Ai被选中
i 1
0, Ai没被选中
bixi≤B ∑ i=1 x1+x2+x3≤2 s.t. x4+x5≥1 x6+x7≥1 x =0或 1,i=1, … ,7
i
7
课堂练习1:
某钻井队要从S1~S10共10个井位中确定五个钻 井探油,如果选Si,估计钻探费用为ci元,并且 井位选择上要满足下列条件: (1)或选择S1和S7,或选择S8 ;
解:令 x i=
运筹学 整数规划( Integer Programming )
检查所有分枝的解及目标函数值,若某分枝的解是整数并且目标函数 值大于(max)等于其它分枝的目标值,则将其它分枝剪去不再计算,若 还存在非整数解并且目标值大于(max)整数解的目标值,需要继续分枝, 再检查,直到得到最优解。
割平面法的内涵:
Page 18
通过找适当的割平面,使得切割后最终得到这样的可行域( 不一定一次性得到), 它的一个有整数坐标的顶点恰好是 问题的最优解.
-Gomory割平面法
例: 求解
max z x1 x2 s.t. x1 x2 1
3x1 x2 4 x1 , x2 0, 整 数
1 x1 3/4 1 0 -1/4 1/4 0
1 x2 7/4 0 1 3/4 1/4 0
0 x5 -3 0 0 -3 -1 1
0 0 -1/2 -1/2 0
由对偶单纯形法, x5为换出变量, x3为换入变量, 得Page 29
cj CB XB b 1 x1 1 1 x2 1 0 x3 1
1 100 0 x1 x2 x3 x4 x5 1 0 0 1/3 1/12 0 1 0 0 1/4 0 0 1 -1 -1/3 0 0 0 -1/2 -1/6
收敛性很慢. 但若下其它方法(如分枝定界法)配合使用,
也是有效的.
分支定界法
Page 33
分支定界法的解题步骤:
1)求整数规划的松弛问题最优解; 若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下
一步; 2)分支与定界:
任意选一个非整数解的变量xi,在松弛问题中加上约束: xi≤[xi] 和 xi≥[xi]+1
运筹学课件第四节0-1型整数规划
目录
CONTENTS
• 0-1型整数规划概述 • 0-1型整数规划的数学模型 • 0-1型整数规划的求解算法 • 0-1型整数规划的案例分析 • 0-1型整数规划的软件实现
01 0-1型整数规划概述
CHAPTER
定义与特点
定义
0-1型整数规划是一种特殊的整数规 划,其中决策变量只能取0或1。
解决方案通常采用动态规划或混合整数线性规 划方法,通过迭代和优化算法来找到最优解。
05 0-1型整数规划的软件实现
CHAPTER
Excel求解工具
适用范围
适用于简单的0-1型整数规划问题。
优点
操作简单,易学易用,适合初学者。
使用方法
利用Excel的Solver插件,设置目标函数、 约束条件和决策变量,进行求解。
其他约束
除了资源和需求约束外,还可能 存在其他类型的约束,如数量约 束、时间约束等,这些约束条件 都对决策变量的取值范围进行了 限制。
决策变量
离散变量 0-1型整数规划中的决策变量通常 是离散的,只能取0或1两个值。 这些决策变量代表了不同的策略 或选择。
最优解 最优解是指在所有可行解中使目 标函数达到最优值的决策变量的 取值组合。
缺点
对于大规模问题求解能力有限,可能存在精 度问题。
Python求解库
适用范围
适用于各种规模的0-1型整数规 划问题。
使用方法
利用Python的优化库,如PuLP 或CVXPY,编写目标函数和约束 条件,进行求解。
优点
功能强大,可处理大规模问题 ,精度高。
缺点
需要一定的编程基础,学习成 本较高。
MATLAB求解工具
运筹学课件--第四章 整数规划
LP0:X=(3.57,7.14),Z0=35.7
x1≤3 x1≥4
LP1:X=(3,7.6) Z1=34.8
x2≤6
LP2:X=(4,6.5) Z2=35.5
x2≥7 无可行解 x1≥5 LP5:X=(5,5) Z5=35
OR:SM OR:SM
LP3:X=(4.33,6) Z3=35.33
10
OR:SM OR:SM
第二节 整数规划求解
【例3.5 】用分枝定界法求解例3.1
max Z 4 x 1 3 x 2 1 . 2 x 1 0 . 8 x 2 10 2 x 1 2 . 5 x 2 25 x 1 , x 2 0 , 且均取整数
【解】先求对应的松弛问题(记为LP0):
7
OR:SM OR:SM
第二节 整数规划求解
一、舍入化整法
为了满足整数解的要求,自然想到“舍入”或“截尾”处理,以得到 与最优解相近的整数解。 这样做除少数情况外,一般不可行,因为化整后的解有可能超出 了可行域,成为非可行解;或者虽是可行解,却不是最优解。
不考虑整数约束则是一个LP问题,称为原整数规划的松弛问题 对于例1的数学模型,不考虑整数约束的最优解:
6
LP1 LP3
LP3:X=(4.33,6),Z3=35.33
C o
14
3
4
10
x1
OR:SM OR:SM
x2 ① ②
10 A
由于 Z 3 Z 1,选择 LP 3 进行分枝,增加约束 x 1 4 及 x 1 5,到线性规划 LP 4 及 LP 5:
max Z 4x1 3x2 LP1:X=(3,7.6),Z1=34.8 1.2x1 0.8x2 10 2x1 2.5x2 25 LP4 : LP4:X=(4,6),Z4=34 x1 4,x2 6,x1 4 x1 , x2 0 即x1 4, 可行域是一条线段 max Z 4x1 3x2
运筹学-4-整数规划ppt课件
.
8
第四章 整数规划 0-1规划
解:设xi
1 0
带第 i件物品
不带第 i件物品 数学模型:
Z表示所带物品的总价值
m
Z ci 带第i件
ci xi
i 1
m
携带物品的总重量 bi x i
i 1
m
max Z ci xi
m i1
s.t
i1
bi xi
b
xi 0,1,
i 1, 2, m
i1
1, 2,..., m
i1
s.t. xij bj j 1, 2 , n
i1
xij
0
,
yi 0,1
混合型整数规划
.
11
第四章 整数规划
例 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要再 建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地有 B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各需 求地的单位物资运费cij,见下表:
.
10
第四章 整数规划
解:设 xij表示A 工 i运厂 往B 商 j的店 运量
m
n
则总运费为
c ij x ij
i1 j 1
数学模型:
mn
m
设yi
1 0
则总建厂费为
在第 i个地点建m厂in Z
不在第 i个地点建厂 n
m
fi yi
j1 m
xij
i1
j
ai
1
yi
cij xij
i
fi yi
1 若 建 工 厂 yi 0 若 不 建 工 厂(i3,4)
再设xij为由Ai运往Bj的物资数量,单位为千吨;z表示总费用, 单位万元。
运筹学 第4章 整数规划
第四章整数规划整数规划(Integer Programming)主要是指整数线性规划。
一个线性规划问题,如果要求部分决策变量为整数,则构成一个整数规划问题,在项目投资、人员分配等方面有着广泛的应用。
整数规划是近二、三十年发展起来的数学规划的一个重要分支,根据整数规划中变量为整数条件的不同,整数规划可以分为三大类:所有变量都要求为整数的称为纯整数规划(Pure Integer Programming)或称全整数规划(All integer Programming);仅有一部分变量要求为整数的称为混合整数规划(Mixed Integer Programming);有的变量限制其取值只能为0或1,这类特殊的整数规划称为0-1规划。
本章主要讨论整数规划的分枝定界法、割平面法、0-1规划及指派问题。
第一节整数规划问题及其数学模型一、问题的提出在线性规划模型中,得到的最优解往往是分数或小数,但在有些实际问题中要求有的解必须是整数,如机器设备的台数、人员的数量等,这就在原来线性规划模型的基础上产生了一个新的约束,即要求变量中某些或全部为整数,这样的线性规划称为整数规划(Integer Programming)简称IP,是规划论中的一个分枝。
整数规划是一类特殊的线性规划,为了满足整数解的条件,初看起来,只要对相应线性规划的非整数解四舍五入取整就可以了。
当然在变量取值很大时,用上述方法得到的解与最优解差别不大,当变量取值较小时,得到的解与实际最优解差别较大,当变量较多时,如n=10个,则整数组合有210=1024个,而且整数解不一定在这些组合当中。
先来看下面的例子。
例4.1某工厂生产甲、乙两种设备,已知生产这两种设备需要消耗材料A、材料B,有关数据如下,问这两种设备各生产多少使工厂利润最大?表4-112量都要求为整数,建立模型如下:2123max x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,5.45.01432x x x x x x x x 要求该模型的解,首先不考虑整数约束条件④,用单纯形法对相应线性规划求解,其最优解为:x 1=3.25 x 2=2.5 max z =14.75由于x 1=3.25,x 2=2.5都不是整数,不符合整数约束条件。
运筹四 整数规划
– 若松弛问题最优解为整数解,则其也是整数规划的 最优解
2、分枝过程
– 若松弛问题最优解中某个 xk=bk 不是整数,令 bk 为 bk 的整数部分 – 构造两个新的约束条件 xk bk 和 xk bk +1,分 别加于原松弛问题,形成两个新的整数规划
0 3 1 ( 0) 0 1 2 0*
逐 列 检 查
2 3 ( 0) 1
( 0) 2 2 2
0 * 1 0 * 2
3、重复1、2后,可能出现三种情况; a. 每行都有一个 (0),显然已找到最优解,令对应(0)位置的 xij=1; b. 仍有零元素未标记,此时,一定存在某些行和列同时有多个零, 称为僵局状态,因为无法采用 1. 2 中的方法继续标记。 4、打破僵局。令未标记零对应的同行同列上其它未标记零的个数为 该零的指数,选指数最小的先标记 ( );采用这种方法直至所有零都 被标记,或出现 情况 a,或 情况 c 。 10
表4.2.1 分枝问题解可能出现的情况
序号 问题 1 问题 2 无可行解 无可行解 1 无可行解 整数解 2 无可行解 非整数解 3 整数解 整数解 4 非整数解 5 整数解,目标函 数优于问题 2 整数解 非整数解,目标 6 函数优于问题 1 说 明 整数规划无可行解 此整数解即最优解 对问题 2 继续分枝 较优的一个为最优解 问题 1 的解即最优解 问题 1 停止分枝(剪 枝), 其整数解 为 界, 对问题 2 继续分枝
9
清华算法的步骤:例4.6.1
2、逐列检查,若该列只有一个未标记的零,对其加( )标记,将( )标 记元素同行同列上其它的零打上*标记。若该列有二个以上未标记的 零,暂不标记,转下一列检查,直到所有列检查完;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x1≤3 x1≥4
LP1:X=(3,7.6) Z1=34.8
x2≤6
LP2:X=(4,6.5) Z2=35.5
x2≥7 无可行解 x1≥5 LP5:X=(5,5) Z5=35
OR:SM OR:SM
LP3:X=(4.33,6) Z3=35.33
8 OR:SM OR:SM
第二节 整数规划求解
二、穷举整数法
x2
5 4 3 2 1 2x1 + x2 =9
•
• • •
1
• • •
2
• (3,3) • •
3
(3 1 7 ,2 ) 9 9
•
4
5x1 +7 x2 =35
x1
对于决策变量少,可行的整数解又较少时,这种穷举法有时是 可行的,并且也是有效的。 但对于大型的整数规划问题,可行的整数解数量很多,用穷举 法求解是不可能的。例如,指派问题 。
6 OR:SM OR:SM
第一节 整数规划问题
F 三、混合整数规划
i
例:某产品有n个区域市场,各区域市场的需求量为 bj吨/月;现拟 在m个地点中选址建生产厂,一个地方最多只能建一家工厂;若选 i 地建厂,生产能力为 ai吨/月,其运营固定费用为F元/月;已知址i至j 区域市场的运价为cij元/吨。如何选址和安排调运,可使总费用最小? 解:选址建厂与否是个0-1型决策变量,
管理运筹学--管理科学方法
李军
桂林电子科技大学商学院
第4 章 整数规划
内容提要 Sub title
第一节 整数规划问题
纯整数规划 0-1规划 混合整数规划
第二节 整数规划求解
分枝定界法
第三节 整数规划应用
2
OR:SM OR:SM
本章框架
本章要点: 1.整数规划的特点; 2.整数线性规划求解原理; 3.0-1规划和指派问题的处理思路
19 OR:SM OR:SM
第三节 整数规划应用
二、人员安排规划
某服务部门各时段(每2小时为一时段)需要的服务人数如表: 1 2 3 4 5 6 7 8 时段 9 11 13 8 5 3 服务员最少数目 10 8 按规定,服务员连续工作8小时 (4个时段)为一班。请安排服务员 的工作时间,使服务员总数最少. 解:设第j 时段开始时上班的服务员 人数为xj 第 j 时段来上班的服务员将在第j+3 时段结束时下班,故决策变量有 x1,x2,x3,x4,x5 。
x1 *=28/9, x2 * =25/9,Z * =293/9
舍入化整 x1 =3, x2 =3,Z =33,不满足约束条件5x1 +7 x2 ≤35,非可行解; x1 =3, x2 =2,Z =28,满足约束条件,是可行解,但不是最优解; x1 =4, x2 =1,Z =29,满足约束条件,才是最优解。
整数 规划
一般 的ILP
问题背景与数学描述 求解
分枝定界法
割平面法
0-1规划 特殊的ILP 指派问题
3 2011-3-25
原理 步骤 进一步讨论
建模 求解 特点分析
OR:SM 3 OR:SM
第一节 整数规划问题
• 线性规划的决策变量取值可以是任意非负实数,但许多 实际问题中,只有当决策变量的取值为整数时才有意义
A 占地(万平米) 费用(万元) 2 5 B 5 4 资源限制 13 24
生产能力(百件/年)
20
10
解:设A、B两类基地各建设 x1,x2 个,则其模型为: max Z 20 x1 10 x 2
2 x1 5 x 2 13 5x1 4 x 2 24
x1 , x 2 0且为整数
例如,产品的件数、机器的台数、装货的车数、完成工作的人 数等,分数或小数解显然是不合理的。
• 要求全部或部分决策变量的取值为整数的线性规划问 题,称为整数规划(Integer Programming)。
全部决策变量的取值都为整数,则称为全整数规划(All IP)
仅要求部分决策变量的取值为整数,则称为混合整数规划 (Mixed IP)
要求决策变量只取0或1值,则称0-1规划(0-1 Programming)
4
OR:SM OR:SM
第一节 整数规划问题
一、纯整数规划
例4.1:某企业利用材料和设备生产甲乙产品,其工艺消耗 系数和单台产品的获利能力如下表所示:
资源 产品 甲 2 乙 1 现有量 9
A
B
5
6
7
5
35
单台利润
问如何安排甲、乙两产品的产量,使利润为最大。 解:设x1为甲产品的台数,x2为乙产品的台数。 maxZ= 6x1 +5 x2 2x1 + x2 ≤9 5x1 +7 x2 ≤35 x1, x2 ≥0 x1, x2 取整数
LP1
6
LP5:X=(5,5),Z5=35 1.2x1 0.8x2 10
LP3
LP5
C 10
2x1 2.5x2 25 LP5 : x1 5,x2 6 x1 , x2 0
o
15
3
4 5
x1
OR:SM OR:SM
尽管LP1的解中x1不为整数,但Z5>Z因此LP5的最优解 就是原整数规划的最优解。
LP4: x1 2 4 , x 2 3, Z 3 1 5 4 5
上界: 31 下界: 29 4 5
x1≤2
LP5: x 1 2, x 2 3 4 7 , Z 29 6 7
x1 ≥3
LP6: 无 可 行 解
上界: 下界: 29 29 6 7
x2≤3
LP7: x 1 2, x 2 3, Z 2 7 x1
10
OR:SM OR:SM
第二节 整数规划求解
【例3.5 】用分枝定界法求解例3.1
max Z 4 x 1 3 x 2 1 . 2 x 1 0 . 8 x 2 10 2 x 1 2 . 5 x 2 25 x 1 , x 2 0 , 且均取整数
【解】先求对应的松弛问题(记为LP0):
max Z 4 x1 3x2
1.2 x1 0.8x2 10 LP0 : 2 x1 2.5x2 25 x1 , x2 0 用图解法得到最优解X=(3.57,7.14),Z0=35.7,如下图所示。
11 OR:SM OR:SM
第二节 整数规划求解
x2
1.2x1 0.8x2 10
x1≤4
LP4:X=(4,6) Z4=34
16
第二节 整数规划求解
LP 0 :
三、分支定界法
MaxZ 6 x1 5x2 2 x1 x2 9 5x 7 x2 35 s.t. 1 x1 , x2 0 x1 , x2取整数
上界: 32
x1 3
1 9
,x2 2
x2 ≥4
LP8: 2 1 , x 2 4, Z 28 5 2 5
上界: 29 下界: 29
17
OR:SM OR:SM
分枝定界法小结
非整数解A 增加约束 增加约束
整数解B1 增加约束
非整数解B2, 比B1好 增加约束 整数B3 ,
非整数解B4, 比B1,B3好 增加约束
1 若分枝后得到整数解,则这枝不必再分枝。 2 若分枝后得到非整数解, 如果比整数解更好,则这枝继续分枝
7
OR:SM OR:SM
第二节 整数规划求解
一、舍入化整法
为了满足整数解的要求,自然想到“舍入”或“截尾”处理,以得到 与最优解相近的整数解。 这样做除少数情况外,一般不可行,因为化整后的解有可能超出 了可行域,成为非可行解;或者虽是可行解,却不是最优解。
不考虑整数约束则是一个LP问题,称为原整数规划的松弛问题 对于例1的数学模型,不考虑整数约束的最优解:
松弛问题LP0的最优解 X=(3.57,7.14),Z0=35.7
10
A
B
2x1 2.5x2 25
o
12
C 8.33
10
x1
OR:SM OR:SM
x2 ① ② A 10
增加约束x1 3及x1 4得到两个线性规划
max Z 4x1 3x2
LP1:X=(3,7.6),Z1=34.8
5 OR:SM OR:SM
第一节 整数规划问题
二、0-1规划
序号
物品 重量 重要性系数 1 食品 2 氧气 3 冰镐 4 绳索 5 帐篷 6 相机 7 设备
5
20
5
15
2
18
6
14
12
8
2
4
4
10
登山队员可携带最大重量为25公斤。问都带哪些物品的重要性最大。 解:对于每一种物品无非有两种状态,带或者不带,不妨设 0 不带此种物品 xj 1 带此种物品 0-1规划的模型: max Z 20 x1 15 x 2 18 x3 14 x 4 8x5 4 x6 10 x7 5 x1 5x 2 2 x3 6 x 4 12 x5 2 x6 4 x7 25 x j 0或1 ( j 1,2, 7)
7 5 ,Z 32 9 9
5 9
下界: 0
x1≤3
LP1 : x1 3,x2 2 6 7 ,Z 32 2 7
x1 ≥4
LP 2 : x 1 4 , x 2 1, Z 2 9
上界: 32
下界: 29 2 7
x2≤2
L P 3: x1 3,x2 2,Z 28
x2 ≥3