场效应管知识点
mos管源极和漏极的电压
mos管源极和漏极的电压MOS管是一种常见的场效应管,广泛应用于电路设计领域。
在使用MOS管时,掌握其源极和漏极的电压是非常重要的,可以帮助我们更好地理解MOS管的工作原理和特性,实现更好的电路设计。
下面,我们就围绕“MOS管源极和漏极的电压”展开阐述。
第一步:初识MOS管首先,我们需要了解MOS管的基本结构。
MOS管由源极、漏极和栅极三个电极组成。
通过在栅极上施加电压,可以控制漏极和源极之间的电流流动。
MOS管有两种类型:n型和p型。
n型MOS管中,P型半导体作为基底,源极和漏极为N型半导体。
p型MOS管中,N型半导体作为基底,源极和漏极为P型半导体。
第二步:源漏结的导通当栅极上的电压大于某个临界值时,MOS管中源极和漏极之间的电流就会开始流动,这就是源漏结的导通。
栅极上的电压会调整MOS管中的沟道区域,进而控制源漏结的导通。
在导通状态下,源极和漏极之间就会有电压差,这个电压差就称为MOS管的“饱和电压”。
第三步:源漏结的截止如果栅极上的电压小于导通的临界值,MOS管就处于截止状态,源漏结之间就没有电流流动。
此时,源极和漏极之间的电压差就是MOS 管的“截止电压”。
在截止状态下,MOS管的阻值非常大,相当于一个开路状态,不会耗费电能。
第四步:“过渡区域”的探究在MOS管源极和漏极之间的电压不断变化的过程中,还有一个“过渡区域”,处于这个“过渡区域”的MOS管会有一定的电流流过。
这是由于MOS管渐变区中的晶粒逐渐递增,漏极电流也随之递减,直到最终达到源极和漏极之间的饱和电压。
第五步:对源漏结电压的有效控制对于MOS管的应用,一般需要对其源漏结的电压进行有效控制,实现对电路的调节和控制。
一种常见的方法是使用反向二极管,将其串联在源极和漏极之间。
这种反向二极管被称为“保护二极管”,可提供过压保护,避免源漏结的电压超过设定范围。
以上就是围绕“MOS管源极和漏极的电压”展开的知识点,涉及到MOS管的基本结构,导通状态和截止状态的电压,渐变区和源漏结电压的有效控制等方面。
半导体知识点总结大全
半导体知识点总结大全引言半导体是一种能够在一定条件下既能导电又能阻止电流的材料。
它是电子学领域中最重要的材料之一,广泛应用于集成电路、光电器件、太阳能电池等领域。
本文将对半导体的知识点进行总结,包括半导体基本概念、半导体的电子结构、PN结、MOS场效应管、半导体器件制造工艺等内容。
一、半导体的基本概念(一)电子结构1. 原子结构:半导体中的原子是由原子核和围绕原子核轨道上的电子组成。
原子核带正电荷,电子带负电荷,原子核中的质子数等于电子数。
2. 能带:在固体中,原子之间的电子形成了能带。
能带在能量上是连续的,但在实际情况下,会出现填满的能带和空的能带。
3. 半导体中的能带:半导体材料中,能带又分为价带和导带。
价带中的电子是成对出现的,导带中的电子可以自由运动。
(二)本征半导体和杂质半导体1. 本征半导体:在原子晶格中,半导体中的电子是在能带中的,且不受任何杂质的干扰。
典型的本征半导体有硅(Si)和锗(Ge)。
2. 杂质半导体:在本征半导体中加入少量杂质,形成掺杂,会产生额外的电子或空穴,使得半导体的导电性质发生变化。
常见的杂质有磷(P)、硼(B)等。
(三)半导体的导电性质1. P型半导体:当半导体中掺入三价元素(如硼),形成P型半导体。
P型半导体中导电的主要载流子是空穴。
2. N型半导体:当半导体中掺入五价元素(如磷),形成N型半导体。
N型半导体中导电的主要载流子是自由电子。
3. 载流子浓度:半导体中的载流子浓度与掺杂浓度有很大的关系,载流子浓度的大小决定了半导体的电导率。
4. 质量作用:半导体中载流子的浓度受温度的影响,其浓度与温度成指数关系。
二、半导体器件(一)PN结1. PN结的形成:PN结是由P型半导体和N型半导体通过扩散结合形成的。
2. PN结的电子结构:PN结中的电子从N区扩散到P区,而空穴从P区扩散到N区,当N区和P区中的载流子相遇时相互复合。
3. PN结的特性:PN结具有整流作用,即在正向偏置时具有低电阻,反向偏置时具有高电阻。
场效应管知识点
场效应管知识点场效应管是一种重要的电子器件,广泛应用于各个领域,如通信、计算机、电子设备等。
它的工作原理是基于电场的调控作用,通过电场的控制来控制电流的流动,实现信号放大、开关控制等功能。
本文将从场效应管的基本结构、工作原理和应用等方面进行详细介绍。
一、场效应管的基本结构场效应管由栅极、漏极、源极和沟道四部分组成。
其中栅极是控制电流的输入端,漏极是电流的输出端,源极是电流的输入端,而沟道则连接源极和漏极。
栅极与源极之间的电压可以控制沟道中的电场分布,从而控制电流的流动。
栅极与漏极之间的电压被称为栅极电压,而漏极与源极之间的电压被称为漏极电压。
二、场效应管的工作原理1. N沟道MOSFETN沟道MOSFET是一种常见的场效应管,其沟道为N型材料。
当栅极电压为0V时,沟道中没有电子流动,处于截止状态;当栅极电压为正值时,形成栅极-沟道电场,使沟道中的N型材料中的电子被推向漏极,形成漏-源电流,处于导通状态。
2. P沟道MOSFETP沟道MOSFET是另一种常见的场效应管,其沟道为P型材料。
当栅极电压为0V时,沟道中没有空穴流动,处于截止状态;当栅极电压为负值时,形成栅极-沟道电场,使沟道中的P型材料中的空穴被推向漏极,形成漏-源电流,处于导通状态。
三、场效应管的应用场效应管具有很多优点,如高输入阻抗、低输出阻抗、功耗小、速度快等,因此在电子电路设计中有着广泛的应用。
以下是场效应管的几个常见应用场景。
1. 信号放大器场效应管可以通过控制栅极电压来调节漏极电流,从而实现信号的放大。
在放大器电路中,场效应管常常作为前置放大器,将输入信号放大后再输出给后续电路。
2. 开关控制场效应管可以作为开关来控制电流的通断。
当栅极电压为高电平时,场效应管处于导通状态,电流可以通过;当栅极电压为低电平时,场效应管处于截止状态,电流无法通过。
因此,场效应管常用于各种开关电路中。
3. 数字逻辑电路由于场效应管的特性,它可以作为数字逻辑门电路的基本单元。
场效应管的基础知识
场效应管的基础知识:
场效应管(Field Effect Transistor,FET)是一种利用电场效应来控制半导体器件中的电流流动的半导体器件。
以下是场效应管的基础知识:
1.工作原理:场效应管利用电场效应原理,通过控制栅极电压来控制源极和漏极之间
的电流。
当栅极电压为零时,源极和漏极之间没有电流。
当栅极电压不为零时,电场效应使得半导体内的电子聚集在沟道的一侧,形成导电沟道,从而使得源极和漏极之间有电流流动。
2.结构:场效应管的结构包括源极(Source)、漏极(Drain)、栅极(Gate)三个电
极。
源极和漏极之间是半导体材料,称为沟道。
栅极位于源极和漏极之间,通过控制栅极电压来控制沟道的通断。
3.类型:场效应管有N沟道和P沟道两种类型。
N沟道场效应管的源极和漏极之间是
N型半导体,P沟道场效应管的源极和漏极之间是P型半导体。
4.特性曲线:场效应管的特性曲线包括转移特性曲线和输出特性曲线。
转移特性曲线
表示栅极电压对漏极电流的影响,输出特性曲线表示漏极电流与漏极电压之间的关系。
5.应用:场效应管广泛应用于电子设备中,如放大器、振荡器、开关等。
由于场效应
管具有体积小、重量轻、寿命长等优点,因此在便携式设备、移动通信等领域得到广泛应用。
场效应管介绍
场效应管原理场效应管是只有一种载流子参与导电的半导体器件,是一种用输入电压控制输出电流的半导体器件。
有N沟道器件和P沟道器件。
有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。
IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide Semiconductor FET)。
1.1 1.1.1MOS场效应管MOS场效应管有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟道和P沟道两种导电类型。
场效应管有三个电极:D(Drain) 称为漏极,相当双极型三极管的集电极;G(Gate) 称为栅极,相当于双极型三极管的基极;S(Source) 称为源极,相当于双极型三极管的发射极。
增强型MOS(EMOS)场效应管一、工作原理1.沟道形成原理当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S间形成电流。
当栅极加有电压时,若0<VGS<VGS(th)时,通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。
耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。
进一步增加VGS,当VGS>VGS(th)时(VGS(th) 称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。
如果此时加有漏源电压,就可以形成漏极电流ID。
在栅极下方形成的导电沟1线性电子电路教案道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。
随着VGS的继续增加,ID将不断增加。
场效应管的工作原理
场效应管的工作原理首先,让我们来了解一下场效应管的基本结构。
场效应管由栅极、漏极和源极三个主要部分组成。
其中,栅极位于介质层上,通过栅极与源极之间的电场来控制漏极和源极之间的电流。
漏极和源极则位于半导体材料中,通过控制栅极电场的变化来调节漏极和源极之间的电流。
这种结构使得场效应管具有了高输入电阻、低噪声、低功耗等优点,适用于各种电路设计需求。
其次,让我们来了解一下场效应管的工作原理。
场效应管的工作原理主要是通过控制栅极电场来改变漏极和源极之间的电流。
当栅极施加了一定的电压时,栅极和源极之间形成了电场,这个电场会影响半导体中的载流子分布,从而改变了漏极和源极之间的电流。
当栅极电压为正时,电场会吸引负载流子,使得漏极和源极之间的电流增大;当栅极电压为负时,电场会排斥负载流子,使得漏极和源极之间的电流减小。
通过调节栅极电压的大小,可以实现对漏极和源极之间电流的精确控制,从而实现信号放大、开关控制等功能。
此外,场效应管还具有许多特性,例如高输入电阻、低噪声、低功耗、频率响应快等。
这些特性使得场效应管在各种电子设备中得到了广泛的应用,包括放大器、开关、振荡器、滤波器等。
同时,场效应管还具有很好的温度稳定性和可靠性,能够在各种环境条件下正常工作。
综上所述,场效应管是一种基于电场调控的半导体器件,具有许多优良的特性,被广泛应用于各种电子设备中。
通过控制栅极电场来改变漏极和源极之间的电流,实现了信号放大、开关控制等功能。
它的特性包括高输入电阻、低噪声、低功耗、频率响应快等,使得它在电子领域中具有重要的地位。
希望本文对场效应管的工作原理有所帮助,让读者对这一领域有更深入的了解。
场效应管的基础知识
场效应管的基础学问英文名称:MOSFET (简写:MOS )中文名称:功率场效应晶体管(简称:场效应管)场效应晶体管简称场效应管,它是由半导体材料构成的。
与一般双极型相比,场效应管具有许多特点。
场效应管是一种单极型半导体(内部只有一种载流子一多子)分四类:N沟通增加型;P沟通增加型;N沟通耗尽型;P沟通耗尽型。
增加型MOS管的特性曲线场效应管有四个电极,栅极G、漏极D、源极S和衬底B ,通常字内部将衬底B与源极S相连。
这样,场效应管在外型上是一个三端电路元件场效管是一种压控电流源器件,即流入的漏极电流ID栅源电压UGS掌握。
1、转移特性曲线:应留意:①转移特性曲线反映掌握电压VGS与电流ID之间的关系。
②当VGS很小时,ID基本为零,管子截止;当VGS大于某一个电压VTN时ID随VGS的变化而变化,VTN称为开启电压,约为2V0③无论是在VGS2、输出特性曲线:输出特性是在给顶VGS的条件下,ID与VDS之间的关系。
可分三个区域。
①夹断区:VGS②可变电阻区:VGS>VTN且VDS值较小。
VGS值越大,则曲线越陡,D、S极之间的等效电阻RDS值就越小。
③恒流区:VGS>VTN且VDS值较大。
这时ID只取于VGS ,而与VDS无关。
3、MOS管开关条件和特点:管型状态,N-MOS , P-MOS特点截止VTN , RDS特别大,相当与开关断开导通VGS2VTN , VGS<VTN , RON很小,相当于开关闭合4、MOS场效应管的主要参数①直流参数a、开启电压VTN ,当VGS>UTN时,增加型NMOS管通道。
b、输入电阻RGS , 一般RGS值为109〜1012。
高值②极限参数最大漏极电流IDSM击穿电压V(RB)GS , V(RB)DS最大允许耗散功率PDSM5、场效应的电极判别用RxlK挡,将黑表笔接管子的一个电极,用红表笔分别接此外两个电极,如两次测得的结果阻值都很小,则黑表笔所接的电极就是栅极(G),此外两极为源(S)、漏(D)极,而且是N型沟场效应管。
场效应管基础知识——很全
场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。
一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。
它属于电压控制型半导体器件,具有输入电阻高(108W~109W)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
一、场效应管的分类场效应管分结型、绝缘栅型两大类。
结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。
目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS 场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。
若按导电方式来划分,场效应管又可分成耗尽型与增强型。
结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。
而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
见下图。
二、场效应晶体管的型号命名方法现行场效应管有两种命名方法。
第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。
第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。
例如,3DJ6D 是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。
第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。
例如CS14A、CS45G等。
三、场效应管的参数1、IDSS —饱和漏源电流。
场效应管参数大全
场效应管参数大全场效应管(Field Effect Transistor)是一种三端电子器件,由源极(Source)、栅极(Gate)和漏极(Drain)组成。
在场效应管中,栅极控制电流的流动,输出电流由源极到漏极流动。
场效应管广泛应用于电子设备和集成电路中,是数字和模拟电路中最重要的组成元件之一、下面是场效应管的一些重要参数:1. 阈值电压(Threshold Voltage):场效应管的阈值电压(Vth)是指在栅极电压低于该值时,管子处于截止(OFF)状态,没有漏极电流流过。
阈值电压是场效应管的重要特性之一,对于管子的工作状态和电路设计都有重要影响。
2. 最大漏极电流(Maximum Drain Current):最大漏极电流(Idmax)是指在给定的栅极-漏极电压下,场效应管可以承受的最大漏极电流。
超过最大漏极电流的电流将损坏管子。
3. 转导电导(Transconductance):转导电导(gm)是指单位栅极-漏极电压变化时,漏极电流的变化量。
转导电导是场效应管的重要参数,也用来衡量管子的增益和灵敏度。
4. 漏极电压(Drain-Source Voltage):漏极电压(Vds)是指场效应管的漏极与源极之间的电压差。
漏极电压对场效应管的工作状态和性能有重要影响。
5. 饱和电流(Saturation Current):饱和电流(Idsat)是指在给定的栅极电压下,场效应管的漏极电流达到饱和状态时的电流值。
6. 耗散功率(Power Dissipation):耗散功率是指场效应管在工作中消耗的功率。
场效应管的耗散功率深受设计要求和环境温度的影响。
7. 开启时间和关闭时间(Turn-On and Turn-Off Time):开启时间是指场效应管由截止状态转变为导通状态所需的时间,关闭时间是指从导通状态转变为截止状态所需的时间。
8. 输入和输出电容(Input/Output Capacitance):输入和输出电容是指场效应管输入和输出端之间的电容。
场效应管详解
场效应管详解一、场效应管的基本概念场效应管(Field-Effect Transistor,简称FET)是一种三极管,由栅极、漏极和源极三个电极组成。
栅极与漏极之间通过电场控制漏极和源极之间的电流。
二、场效应管的工作原理场效应管的工作原理基于电场控制电流的效应。
当栅极施加一定电压时,在栅极和漏极之间形成了一个电场,这个电场控制着漏极和源极之间的电流。
通过调节栅极电压,可以改变漏极和源极之间的电流,实现对电流的控制。
三、场效应管的分类根据不同的控制机构,场效应管可以分为三种类型:MOSFET(金属-氧化物-半导体场效应管)、JFET(结型场效应管)和IGBT(绝缘栅双极型晶体管)。
MOSFET是最常见的一种场效应管。
四、场效应管的特点和优势1. 高输入阻抗:场效应管的栅极是绝缘层,因此栅极和源极之间的电流极小,使得场效应管具有很高的输入阻抗。
2. 低噪声:由于高输入阻抗的特性,场效应管的噪声很低。
3. 低功耗:场效应管的控制电流很小,从而使得其功耗较低。
4. 快速开关速度:场效应管的开关速度较快,适合高频应用。
五、场效应管的应用领域场效应管广泛应用于各种电子设备中,包括放大器、开关电路、调节电路、振荡器等。
在电子行业中,场效应管已经成为一种重要的电子元件。
六、场效应管的优化和发展随着科技的不断进步,场效应管也在不断优化和发展。
目前,一些新型的场效应管已经出现,如高电压场效应管、功率场效应管等,以满足不同领域对场效应管的需求。
场效应管作为一种重要的电子元件,具有较高的输入阻抗、低噪声、低功耗和快速开关速度等特点,广泛应用于各种电子设备中。
随着科技的不断发展,场效应管的优化和发展也在不断进行,使其能更好地满足不同领域的需求。
场效应管的研究和应用将继续推动电子技术的发展,为人们的生活带来更多便利和创新。
场效应管(MOS管)知识介绍
场效应管(MOS管)知识介绍6.1场效应管英文缩写:FET(Field-effect transistor)6.2 场效应管分类:结型场效应管和绝缘栅型场效应管6.3 场效应管电路符号:结型场效应管S SN沟道 P沟道6.4场效应管的三个引脚分别表示为:G(栅极),D(漏极),S(源极)D D D DGG G G 绝缘栅型场效应管增强型 S 耗尽型N沟道 P沟道 N沟道 P沟道注:场效应管属于电压控制型元件,又利用多子导电故称单极型元件,且具有输入电阻高,噪声小,功耗低,无二次击穿现象等优点。
6.5场效应晶体管的优点:具有较高输入电阻高、输入电流低于零,几乎不要向信号源吸取电流,在在基极注入电流的大小,直接影响集电极电流的大小,利用输出电流控制输出电源的半导体。
6.6场效应管与晶体管的比较(1)场效应管是电压控制元件,而晶体管是电流控制元件。
在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。
(2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。
被称之为双极型器件。
(3)有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好。
(4)场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管6.7 场效应管好坏与极性判别:将万用表的量程选择在RX1K档,用黑表笔接D极,红表笔接S极,用手同时触及一下G,D极,场效应管应呈瞬时导通状态,即表针摆向阻值较小的位置,再用手触及一下G,S极, 场效应管应无反应,即表针回零位置不动.此时应可判断出场效应管为好管.将万用表的量程选择在RX1K档,分别测量场效应管三个管脚之间的电阻阻值,若某脚与其他两脚之间的电阻值均为无穷大时,并且再交换表笔后仍为无穷大时,则此脚为G 极,其它两脚为S极和D极.然后再用万用表测量S极和D极之间的电阻值一次,交换表笔后再测量一次,其中阻值较小的一次,黑表笔接的是S极,红表笔接的是D极.。
场效应管 源极 反射系数
场效应管源极反射系数
场效应管(Field Effect Transistor,FET)是一种半导体器件,其主要特点是由多数载流子参与导电,因此也被称为单极型晶体管。
场效应管按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。
结型场效应管(JFET)与绝缘栅型场效应管(MOSFET)是其主要的两大类。
它包括三个主要电极:栅极(Gate)、漏极(Drain)和源极(Source)。
在场效应管中,源极是一个重要的电极,它与栅极和漏极一起控制电流的流动。
反射系数通常与传输线或电路中的信号波纹之间的反射有关,而不是直接与场效应管有关。
在传输线理论中,反射系数(Reflection Coefficient)表示信号波纹在传输线上遇到阻抗不匹配时的反射程度。
它通常用Greek 字母Γ(Gamma)表示。
反射系数的值在-1 到+1 之间,取决于阻抗匹配的程度。
如果有一个场效应管连接在传输线上,其源极的电阻或阻抗可能会影响传输线上的波纹反射。
在设计电路时,工程师可能需要考虑源极的阻抗匹配,以减小信号的反射并提高电路性能。
在场效应管中,源极是电流流入的一端,而漏极是电流流出的一端。
反射系数是用来描述信号在传输过程中的反射情况的一个参数,对于场效应管来说,其源极反射系数可能
会影响到电路的工作性能。
总的来说,场效应管的源极与反射系数之间的关系需要具体看待电路设计和阻抗匹配的情况。
电子技术基础重要知识点总结
第一章绪论1.在时间上和数值上均是连续的信号称为模拟信号;(只有高低电平的矩形脉冲信号为数字信号)在时间上和数值上均是离散的信号称为数字信号;处理模拟信号的电路称为模拟电路,处理数字信号的电路称为数字电路。
2.信号通过放大电路放大后,输出信号中增加的能量来自工作电源。
3.电子电路中正、负电压的参考电位点称为电路中的“地”,用符号“⊥”表示,它也是电路输入与输出信号的共同端点。
4.根据输入信号的不同形式和对输出信号形式的不同要求,通常将放大电路分为电压放大电路、电流放大电路、互阻放大电路和互导放大电路四种类型。
5.放大的特征是功率的放大,表现为输出电压大于输入电压,或者输出电流大于输入电流,或者二者兼而有之。
6.输入电阻、输出电阻、增益、频率响应和非线性失真等几项主要的性能指标是衡量放大电路品质优劣的标准,也是设计放大电路的依据。
7.放大倍数A:输出变化量幅值与输入变化量幅值之比,用以衡量电路的放大能力。
8.输入电阻R i:从输入端看进去的等效电阻,反映放大电路从信号源索取电流的大小。
9.输出电阻R o:从输出端看进去的等效输出信号源的内阻,说明放大电路的带负载能力。
第二章运算放大器1.运算放大器有两个输入端,即同相输入端和反相输入端,一个输出端。
2.运算放大器有线性和非线性两个工作区域。
要使运放稳定地工作在线性区,必须引入深度负反馈。
3.理想运放两输入端间电压V P-V N≈0,如同两输入端近似短路,这种现象称为“虚短”。
4.理想运放流入同相端和流出反相端的电流基本为零,即“虚断”。
5.理想运放的输入电阻趋近于无穷,输出电阻趋近于零。
6.同相放大电路的闭环电压增益为正,且大于等于1。
7.若反相放大电路的反相输入端输入信号,同相输入端接地,则反相输入端呈现虚地。
第三章二极管及其基本电路1.本征半导体:纯净的不带任何杂质的半导体,它的自由电子和空穴的数目相等,对外不显电性。
2.P型半导体:是指在本征半导体中掺入三价元素如硼,形成的主要靠空穴导电的半导体。
场效应管复习知识点.
• 沟道全部被夹断,iD近似为0。
IV :击穿区
hy1j0
复习用课件
总 结:
1. 当
u U
GD
G S( o f f )
对于不同的uGS ,D--S之间等效成不同的电阻;
2. 当 U U U U
GD
GS
DS
G S( o ff )
D--S之间预夹断;
u U 3. 当 GD
G S( o f f )
•两个P+N结之间的P区称为导电沟道;
•符号中箭头的方向代表了栅源P+N结正偏时栅极的电 流方向。
D G
S
hyj3
复习用课件
二、工作原理
D
1 uDS =0时,uGS与对沟道电阻的控制作用
•当UGS=0时: 为平衡PN结,导电沟道最宽。
G
P
P
•当UGS < 0时: PN 结反偏,耗尽层
导电沟道
UGS
复习用课件
1.4 场效应管
场效应管 (简称FET)是一种电压控制器件 (uGS~ iD) 。工作时,只有一种载流子参与导电,因此它是单极 型器件。
FET因其制造工艺简单、功耗小、热稳定性好、输入电 阻极高、便于集成等优点,得到了广泛应用。
场效应管根据结构不同分为两大类:
结型场效应管 (JFET) 输入阻抗 106 ~ 109 绝缘栅场效应管 (MOSFET) 输入阻抗 1012 ~ 1014
hyj1
复习用课件
1.4.1 结型场效应管(JFET) D 漏极
一、 JFET的结构
1 结构 N沟道管:电子导电 P沟道管:空穴导电
G 栅极
P
P
N
D
G S
mos管公式
mos管公式MOS 管,全称金属-氧化物-半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor),在电子电路中那可是相当重要的角色。
要说MOS 管的公式,那咱们得先从它的基本结构和工作原理说起。
MOS 管有增强型和耗尽型两种,咱们先聊聊增强型 MOS 管。
在增强型 MOS 管中,有个特别重要的公式叫阈值电压公式,这个公式能帮咱们搞清楚 MOS 管啥时候导通。
就比如说,我之前在给学生们讲解这个知识点的时候,有个特别调皮的小家伙,一直嚷嚷着说不理解。
我就拿了个简单的电路模型给他演示,一边演示一边解释,这小家伙终于恍然大悟,眼睛都亮了起来。
对于 N 沟道增强型 MOS 管,阈值电压 Vth 的公式是:Vth = VFB + 2φF + √(2qεSiNa(2φF)) / C ox这里面,VFB 是平带电压,φF 是费米势,q 是电子电荷量,εSi 是硅的介电常数,Na 是衬底的掺杂浓度,C ox 是栅氧化层电容。
这个公式看起来挺复杂,但咱们一点点拆解来理解。
比如说 q 这个电子电荷量,它就像一个小小的“能量包”,决定了电流的基本单位。
而 C ox 这个栅氧化层电容呢,就像是一个储存能量的“小仓库”。
再来说说 MOS 管的电流公式。
当 MOS 管工作在饱和区时,电流ID 的公式是:ID = 1/2 μnC ox (W/L) (VGS - Vth)²这里的μn 是电子迁移率,W 是沟道宽度,L 是沟道长度。
想象一下,这就好比一条水流的通道,μn 就是水流的速度,W 和L 决定了通道的宽窄和长短,而 VGS - Vth 就是推动水流的压力差。
我还记得有一次实验课,同学们自己搭建电路来验证这个公式。
大家那认真劲儿,一边测量数据,一边对照公式计算,有算错的急得抓耳挠腮,算对的兴高采烈。
在实际应用中,MOS 管的这些公式可太有用了。
比如说在集成电路设计里,要根据具体的性能要求,通过这些公式来确定 MOS 管的参数。
场效应管的工作原理和优势
场效应管的工作原理和优势
一、工作原理
场效应管是一种广泛应用的电子器件,它利用电场效应来控制半导体材料的导电性能。
具体来说,场效应管由三个电极组成:栅极、源极和漏极。
在栅极与源极之间加一个电压,会在半导体材料中产生一个电场。
这个电场会影响源极和漏极之间的电流,从而实现电压的控制。
二、优势
1.低噪声:场效应管具有较低的噪声系数,因此它在放大信号时能保持较高的信噪比,特别适合用于通信、音频和视频等领域。
2.高输入阻抗:场效应管的输入阻抗极高,接近于无穷大。
这意味着它对信号源的负载非常小,有利于减小信号源的负担。
3.低功耗:由于场效应管的工作效率高,因此它在工作时的功耗较低。
这使得它适合用于便携式设备和电池供电的应用。
4.易于集成:场效应管可以在集成电路中实现小型化,使得它在微电子领域具有广泛的应用。
5.稳定性好:场效应管的阈值电压相对稳定,不易受温度和工艺等因素的影响。
这使得它在各种工作条件下都能保持稳定的性能。
6.易于控制:通过改变栅极电压,可以方便地控制漏极电流,使得场效应管成为一种易于控制的电子器件。
光电元件知识点总结
光电元件知识点总结一、光电元件的定义光电元件是一种可以把光信号转换成电信号的器件,或者把电信号转换成光信号的器件。
光电元件具有灵敏度高、响应速度快、可靠性好等特点,广泛应用于光通信、光电子、光电测量、光电开关等领域。
二、光电元件的分类光电元件主要包括光电探测器、光电脉冲调制器、光发射器件等几大类。
其中光电探测器主要包括光电二极管、光电三极管、光敏电阻、光电场效应管等;光电脉冲调制器主要包括光电开关、光电倍增管、光电触发器等;光发射器件主要包括LED、LD、光电继电器等。
三、光电二极管光电二极管是一种将光信号转换为电信号的器件。
它主要由PN结及PN结两侧的金属电极组成。
当光线照射到PN结上时,光子能量会导致PN结的电子和空穴对被激发出来,从而产生电流。
光电二极管的工作波长范围取决于所使用的半导体材料,一般包括可见光和红外光等不同波长范围。
四、光电三极管光电三极管是一种依靠光信号控制电信号的器件。
它是在三极管基础上加上一个光敏电阻接在基极和发射极间的器件,当光线照射到光敏电阻上时,会改变光敏电阻的电阻值,从而影响基极与发射极之间的电流。
光电三极管的输出电流与输入光信号的强度呈线性关系。
五、光敏电阻光敏电阻是一种可以将光信号转换为电阻信号的器件。
它是一种半导体材料加工成薄膜状,当光线照射到其表面时,光子能量会激发出电子和空穴对,从而改变材料的电阻值。
光敏电阻的灵敏度取决于其材料的光敏特性和加工工艺。
六、光电场效应管光电场效应管是一种可以将光信号转换为电信号的器件。
它采用光电效应和场效应相结合的原理来实现。
当光线照射到场效应管的栅极上时,会激发出光电子,从而改变栅极和源极之间的电流,实现光信号的转换功能。
七、光电开关光电开关是一种利用光信号控制电信号开关的器件。
它主要由发光器件和光敏探测器两部分组成,当光线照射到光敏探测器上时,会产生电信号,从而控制开关的闭合和断开。
八、光电倍增管光电倍增管是一种可以将光信号转换为电信号并进行放大处理的器件。
中职电子线路教案:场效应管
中等专业学校2024-2025-1教案编号:备课组别电子课程名称《电子线路》所在年级主备教师授课教师授课系部授课班级授课日期课题 2.2 场效应管教学目标1.了解MOS管的工作原理、特性曲线和主要参数重点MOS管的工作原理、特性曲线和主要参数难点MOS管的工作原理、特性曲线和主要参数教法理实一体化教学设备教学平台、虚拟实验室、实验室教学环节教学活动内容及组织过程个案补充教学内容2.2 场效应管场效应管:是利用输入电压产生的电场效应控制输出电流的电压控制型器件。
特点:管子内部只有一种载流子参与导电,称为单极型晶体三极管。
2.2.1 结型场效应管一、结构和符号N沟道结型场效应管的结构、符号如图所示P沟道结型场效应管如图所示。
教学内容3特点:由两个PN结和一个导电沟道所组成。
三个电极分别为源极S、漏极D和栅极G。
漏极和源极具有互换性。
工作条件:两个PN结加反向电压。
二、工作原理动画结型场效应管的工作原理以N沟道结型场效应管为例,原理电路如图所示。
工作原理如下:DS>G;0GS<G。
在漏源电压DSV不变条件下,改变栅源电压GSV,通过PN结的变化,控制沟道宽窄,即沟道电阻的大小,从而控制漏极电流DI。
结论:1.结型场效应管是一个电压控制电流的电压控制型器件。
2.输入电阻很大。
一般可达107-108Ω。
三、结型场效应管的特性曲线和跨导教学内容21.转移特性曲线反映栅源电压GSV对漏极电流D I的控制作用。
如图所示,若漏源电压一定:当栅源电压0GS=V时,漏极电流DSSDII=,DSSI称为饱和漏极电流;当栅源电压GSV向负值方向变化时,漏极电流D I逐渐减小;当栅源电压PGSVV=时,漏极电流0D=I,P V称为夹断电压。
2.输出特性曲线表示在栅源电压一定条件下,漏极电流与漏源电压之间的关系。
如图所示。
(1) 可调电阻区(图中Ⅰ区)GSV不变时,D I随DSV作线性变化,漏源间呈现电阻性;栅源电压GSV越负,输出特性越陡,漏源间的电阻越大。
场效应管知识点
场效应管知识点场效应管是一种半导体器件,也是现代电子技术中非常重要的一部分。
它具有电压控制特性,可以用来放大信号、开关电路等。
下面将对场效应管的知识点进行介绍。
一、场效应管的基本结构场效应管由源极、栅极和漏极组成。
源极和漏极之间通过一个P型或N型的半导体区域相隔,这个区域被称为沟道。
栅极则位于沟道的上方,通过栅极电压的变化来控制沟道中的电流。
二、场效应管的工作原理场效应管的工作原理主要是基于栅极电压与漏极电流之间的关系。
当栅极电压为零时,沟道中的电流几乎为零,处于截止状态;当栅极电压增大时,沟道中的电流随之增加,处于放大状态。
三、场效应管的类型场效应管根据沟道的类型可以分为两种类型:N沟道型和P沟道型。
N沟道型场效应管的沟道为N型半导体,P沟道型场效应管的沟道为P型半导体。
根据栅极结构的不同,场效应管又可以分为增强型和耗尽型两种。
四、场效应管的工作方式场效应管的工作方式主要有三种:共源极、共栅极和共漏极。
共源极方式是将信号加在栅极上,通过源极来输出信号;共栅极方式是将信号加在漏极上,通过栅极来输出信号;共漏极方式是将信号加在源极上,通过漏极来输出信号。
不同的工作方式适用于不同的应用场景。
五、场效应管的特点和优势场效应管具有以下特点和优势:1. 高输入阻抗:由于栅极与沟道之间没有电流流过,所以场效应管的输入阻抗非常高,可以减小对信号源的影响。
2. 低输出阻抗:场效应管的输出阻抗较低,可以提供较大的输出电流。
3. 低功耗:由于场效应管的工作电流较小,所以功耗也相对较低。
4. 快速开关速度:场效应管的开关速度较快,适用于高频率的应用。
5. 可靠性高:场效应管的结构简单,制造工艺成熟,具有较高的可靠性。
六、场效应管的应用领域场效应管在电子技术中有广泛的应用,主要包括以下几个领域:1. 放大器:场效应管可以作为放大器来放大信号,用于音频放大、射频放大等应用。
2. 开关电路:由于场效应管具有快速开关速度和低功耗的特点,可以用于开关电路中,如电源开关、光电开关等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
场效应管工作原理场效应管工作原理MOS场效应管电源开关电路。
这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。
MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field EffectTransistor(金属氧化物半导体场效应管)的缩写。
它一般有耗尽型和增强型两种。
本文使用的为增强型MOS 场效应管,其内部结构见图5。
它可分为NPN型PNP型。
NPN型通常称为N沟道型,PNP型也叫P沟道型。
由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。
我们知道一般三极管是由输入的电流控制输出的电流。
但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。
为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。
如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。
这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。
同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。
对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。
当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。
我们也可以想像为两个N型半导体之间为一条沟,栅极电压的建立相当于为它们之间搭了一座桥梁,该桥的大小由栅压的大小决定。
图8给出了P沟道的MOS场效应管的工作过程,其工作原理类似这里不再重复。
下面简述一下用C-MOS场效应管(增强型MOS场效应管)组成的应用电路的工作过程(见图9)。
电路将一个增强型P沟道MOS场效应管和一个增强型N沟道MOS场效应管组合在一起使用。
当输入端为低电平时,P沟道MOS场效应管导通,输出端与电源正极接通。
当输入端为高电平时,N沟道MOS场效应管导通,输出端与电源地接通。
在该电路中,P沟道MOS场效应管和N沟道MOS场效应管总是在相反的状态下工作,其相位输入端和输出端相反。
通过这种工作方式我们可以获得较大的电流输出。
同时由于漏电流的影响,使得栅压在还没有到0V,通常在栅极电压小于1到2V时,MOS场效应管既被关断。
不同场效应管其关断电压略有不同。
也正因为如此,使得该电路不会因为两管同时导通而造成电源短路。
由以上分析我们可以画出原理图中MOS场效应管电路部分的工作过程(见图10)。
工作原理同前所述。
场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。
一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。
它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
一、场效应管的分类场效应管分结型、绝缘栅型两大类。
结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。
目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOS FET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。
若按导电方式来划分,场效应管又可分成耗尽型与增强型。
结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。
而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
见下图。
二、场效应三极管的型号命名方法现行有两种命名方法。
第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。
第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。
例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。
第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。
例如CS14A、CS 45G等。
三、场效应管的参数场效应管的参数很多,包括直流参数、交流参数和极限参数,但一般使用时关注以下主要参数:1、I DSS — 饱和漏源电流。
是指结型或耗尽型绝缘栅场效应管中,栅极电压U GS=0时的漏源电流。
2、U P — 夹断电压。
是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。
3、U T — 开启电压。
是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。
4、g M — 跨导。
是表示栅源电压U GS — 对漏极电流I D的控制能力,即漏极电流I D变化量与栅源电压U GS变化量的比值。
g M是衡量场效应管放大能力的重要参数。
5、BU DS — 漏源击穿电压。
是指栅源电压U GS一定时,场效应管正常工作所能承受的最大漏源电压。
这是一项极限参数,加在场效应管上的工作电压必须小于BU DS。
6、P DSM — 最大耗散功率。
也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率。
使用时,场效应管实际功耗应小于P DSM并留有一定余量。
7、I DSM — 最大漏源电流。
是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流。
场效应管的工作电流不应超过I DSM几种常用的场效应三极管的主要参数四、场效应管的作用1、场效应管可应用于放大。
由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。
2、场效应管很高的输入阻抗非常适合作阻抗变换。
常用于多级放大器的输入级作阻抗变换。
3、场效应管可以用作可变电阻。
4、场效应管可以方便地用作恒流源。
5、场效应管可以用作电子开关。
五、场效应管的测试1、结型场效应管的管脚识别: 场效应管的栅极相当于晶体管的基极,源极和漏极分别对应于晶体管的发射极和集电极。
将万用表置于R×1k档,用两表笔分别测量每两个管脚间的正、反向电阻。
当某两个管脚间的正、反向电阻相等,均为数KΩ时,则这两个管脚为漏极D和源极S(可互换),余下的一个管脚即为栅极G。
对于有4个管脚的结型场效应管,另外一极是屏蔽极(使用中接地)。
2、判定栅极 用万用表黑表笔碰触管子的一个电极,红表笔分别碰触另外两个电极。
若两次测出的阻值都很小,说明均是正向电阻,该管属于N 沟道场效应管,黑表笔接的也是栅极。
制造工艺决定了场效应管的源极和漏极是对称的,可以互换使用,并不影响电路的正常工作,所以不必加以区分。
源极与漏极间的电阻约为几千欧。
注意不能用此法判定绝缘栅型场效应管的栅极。
因为这种管子的输入电阻极高,栅源间的极间电容又很小,测量时只要有少量的电荷,就可在极间电容上形成很高的电压,容易将管子损坏。
3、估测场效应管的放大能力 将万用表拨到R×100档,红表笔接源极S,黑表笔接漏极D,相当于给场效应管加上1.5V的电源电压。
这时表针指示出的是D-S极间电阻值。
然后用手指捏栅极G,将人体的感应电压作为输入信号加到栅极上。
由于管子的放大作用,UDS和ID都将发生变化,也相当于D-S极间电阻发生变化,可观察到表针有较大幅度的摆动。
如果手捏栅极时表针摆动很小,说明管子的放大能力较弱;若表针不动,说明管子已经损坏。
由于人体感应的50Hz交流电压较高,而不同的场效应管用电阻档测量时的工作点可能不同,因此用手捏栅极时表针可能向右摆动,也可能向左摆动。
少数的管子RDS减小,使表针向右摆动,多数管子的RDS增大,表针向左摆动。
无论表针的摆动方向如何,只要能有明显地摆动,就说明管子具有放大能力。
本方法也适用于测MOS管。
为了保护MOS场效应管,必须用手握住螺钉旋具绝缘柄,用金属杆去碰栅极,以防止人体感应电荷直接加到栅极上,将管子损坏。
MOS管每次测量完毕,G-S结电容上会充有少量电荷,建立起电压UGS,再接着测时表针可能不动,此时将G-S极间短路一下即可。
目前常用的结型场效应管和MOS型绝缘栅场效应管的管脚顺序如下图所示。
六、常用场效用管1、MOS场效应管 即金属-氧化物-半导体型场效应管,英文缩写为MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor),属于绝缘栅型。
其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻(最高可达1015Ω)。
它也分N沟道管和P沟道管,符号如图1所示。
通常是将衬底(基板)与源极S接在一起。
根据导电方式的不同,MOSFET又分增强型、耗尽型。
所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。
耗尽型则是指,当VGS=0时即形成沟道,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。
以N沟道为例,它是在P型硅衬底上制成两个高掺杂浓度的源扩散区N+和漏扩散区N+,再分别引出源极S和漏极D。
源极与衬底在内部连通,二者总保持等电位。
图1(a)符号中的前头方向是从外向里,表示从P型材料(衬底)指身N型沟道。
当漏接电源正极,源极接电源负极并使VGS=0时,沟道电流(即漏极电流)ID=0。
随着VGS逐渐升高,受栅极正电压的吸引,在两个扩散区之间就感应出带负电的少数载流子,形成从漏极到源极的N型沟道,当VGS大于管子的开启电压VTN(一般约为+2V)时,N沟道管开始导通,形成漏极电流ID。
国产N沟道MOSFET的典型产品有3DO1、3DO2、3DO4(以上均为单栅管),4DO1(双栅管)。
它们的管脚排列(底视图)见图2。
MOS场效应管比较“娇气”。