G5177B 高效率同步整流升压芯片

合集下载

超低功耗的同步整流降压

超低功耗的同步整流降压

超低功耗的同步整流降压
好的,为你找到同步整流降压芯片FH3441,其相关介绍如下:
FH3441是一款超微小型,超低功耗、高效率,升降压一体DC-DC同步整流调整器,适用于双节、三节(AAA(7号电池)/AA(5号电池))干电池或者单节锂电池(Li-ion)的应用场景,可以有效地延长电池的使用时间。

该芯片由电流模式PWM控制环路、误差放大器、比较器和功率开关等模块组成,可在较宽负载范围内高效稳定地工作。

其输入电压为1.8V至5.0V,提供可调输出电压为1.2V至5.0V。

在输出电压为3.3V的情况下,输入从2.7V到4.4V工作电压,它能提供最大600mA 的电流负载。

此外,FH3441可以通过调整两个外接电阻来设定输出电压值。

该芯片提供8脚小型化的DFN2*2-8L封装结构可供电路设计选型应用,其额定的工作温度范围为-40℃至85℃。

100V 同步整流芯片ZCC6709C

100V 同步整流芯片ZCC6709C

快速关断智能型整流器概述ZCC6709C是一个模拟低压降二极管集成电路,内置一个MOS开关管,取代在高效率反激电压转换器中的肖特基二极管。

该芯片将外部同步整流器(SR) MOSFET 的正向压降控制在40mV左右,当电压为负时立即将其关闭。

在低输出电压电池充电或高边整流的应用中ZCC6709C可以为自己产生供电电压。

可编程的振铃检测电路,防止ZCC6709C在DCM和准谐振工作期间的错误开启。

特点●可低至0V的宽输出电压范围工作●无辅助线圈低输出整流下自供电工作。

●逻辑电平SR MOSFETS方式工作。

●符合能源之星1W待机的要求。

●快速关闭和打开延迟时间。

●静态电流。

●支持DCM, Quasi-Resonant 和CCM 工作方式。

●支持高边和底边整流。

●典型笔记本适配器中电能节约达1.5W。

●SOP8封装应用● 工业电力系统。

●分散电力系统。

●电池电力系统。

●反激式电源变换器。

快速关断智能型整流器典型应用封装形式极限值VDD to VSS ........................................................................... –0.3V to +14V VD to Vss .................................................................. .... ..... –1V to + 80V HVC to VSS ................................................................... .... ..–1V to + 80V SLEW to VSS ..................................................................... –0.3V to +6.5V 连续功率损耗(TA = +25°C)结温................................. ....... ........................ 150°C引脚温度(焊接) ............................................... 260°C快速关断智能型整流器存储温度 ........................................................ –55°C to +150°C推荐工作条件VDD to VSS ........................................................................ 3.6 to 13V最大节点温度(TJ) .................................. ........................... +125°C热阻SOP8 ....................................................... ........ ......................... 165 °C /W电特性VDD=5V. TJ=-40°C~125°C, 条件温度:25°C,(除非特殊说明).参数符号条件Min Typ Max Units 电源管理部分VDD UVLO 开启 4 V VDD UVLO 回差0.1 0.2 0.35 VVDD 最大充电电流IVDD VDD=7V,HVC=40V 60mA VDD=4V, VD=30V 30VDD 稳压HVC=3V, VD=12V 5.2 V工作电流ICC VDD=5V,CLOAD=2.2nF,FSW=100kHz1.72 mA静态电流Iq(VDD) VDD=5V 100 130 uA 关机电流ISD(VDD) VDD=UVLO-0.05V 100 uA 控制电流部分VSS–VD 正向稳压值Vfwd 40 mV 打开门限(VDS) VLL-DS -86 mV 关闭门限(VSS-VD) 0 mV 打开延时TDon CLOAD = 2.2nF 30 ns 关闭延时TDoff CLOAD = 2.2nF 30 ns 打开消隐时间TB-ON CLOAD = 2.2nF 1.97 us 关闭消隐VDS 门限VB-OFF 2 3 V 打开上升检测时间Rslew=100kohm,Vds from 2.5V stepdown.60 ns 内置MOS管参数漏源击穿电压BV DSS V GS=0V,I D=250uA 80 V 栅极开启电压Vth(GS)I D=250uA, 1.8 V快速关断智能型整流器V DS=V GS栅极漏电流I GSS V GS=±20V,V DS=0V±100 nA 漏源饱和漏电流I DSS V DS=60V,V GS=0V 1.0 uA 漏源导通电阻R DS(ON)I D=6A,V GS=4.5V 17 mΩ漏源寄生二极管正向导通压降V SD Is=8.5A,V GS=0V1.4 V管脚功能脚# 名称功能1 VDD 线性稳压源输出,电源ZCC6709C2 SLEW 用于打开时信号变化速率检测的设定,为防止SR控制器在DCM或QR模式下,由于VD端低于门限的振铃错误地打开,任何慢于设定速率的信号都不能打开开关管。

平芯微PW2057降压芯片PDF规格书

平芯微PW2057降压芯片PDF规格书
3uA 4.2uA 2 uA
SOT23-6 SOP8-EP SOP8-EP SOT23-6 SOP8-EP SOP8-EP SOP8-EP SOP8-EP SOP8 封装 SOT23-3
Sot23-3 Sot23/89 Sot23-3
PCB 布局建议
在布置印刷电路板时,应进行以下检查,以确保 PW2057 正常工作。在布局中检查以下内 容: 1 功率记录道,包括 GND 记录道、SW 记录道和 Vin 记录道短,直,宽。 2 将输入电容器尽可能靠近设备引脚(VIN 和 GND)。 3 开关节点电压波动较大,应保持小面积。使模拟组件远离 SW 节点,以防止杂散电容噪 声拾取。 4 将所有模拟接地连接到命令节点,然后将命令节点连接到输出电容器后面的电源接地。 5 尽可能靠近 CIN 和 COUT 的(-)板
PW2057
VOUT 也会增加波纹电流,如等式所示。设置纹波电流的合理起点是 I△L=280mA (700mA 的 40%)。
电感器的直流电流额定值应至少等于最大负载电流加上一半纹波电流,以防止铁芯饱和。 因此,对于大多数应用(700 毫安+140 毫安),一个 840 毫安额定电感器就足够了。为 了提高效率,选择低直流电阻电感。 不同的磁芯材料和形状会改变电感的尺寸/电流和价格/电流关系。铁氧体或坡莫合金材料 中的环形或屏蔽盆形磁芯体积小,辐射的能量不多,但通常比具有类似电气特性的粉末铁 芯电感器成本高。选择哪种类型的电感器通常更多地取决于价格和尺寸要求以及任何辐射 场/EMI 要求,而不是 PW2057 需要什么操作。
1.2V1.5V,1.8V,2.0V,2.5, .2.8V,3.0V,3.3V,5V 3V,3.3V,5V 3V,3.3V,5V 3V,3.3V,5V

BCT24157_REV2P2_20170511

BCT24157_REV2P2_20170511

如果器件工作条件超过上述各项极限值,可能对器件造成永久性损坏。上述参数仅仅是工作条件的极限值,不建议器 件工作在推荐条件以外的情况。器件长时间工作在极限工作条件下,其可靠性及寿命可能受到影响。

5
Ver 2.2
电气特性
除特别说明外,测试条件均为:VBUS=5V,TA=25℃。
VBUS=5V, VBAT=3.6V, IOREG=1600mA No Battery, VBUS at Power UP
OTG MODE波形(CH2=VBUS,CH4=BAT,CH3=SW,CH1=IL)
VBAT=3.6V, IVBUS=500mA Battery Removal/Insertion During Charging


应用
手机、智能手机、PDA、充电宝 平板电脑、便携式媒体播放器 游戏机、数码相机
订购信息
产品型号 BCT24157EBP-TR 工作温度范围 -40℃~85℃ 封装形式 WLCSP-20L 器件标识 24157 发货形式 卷带包装3000 片/盘

VBUS OVP VCC
Q1A Q1B ISNS
POWER OUTPUT STAGE
RSENSE
PGND
Battery
DAC
VREF
CSIN
VBAT
CBAT
SDA SCL
PMID
I2C INTERFACE OSC LOGIC AND CONTROL
STAT 50mA
SYSTEM LOAD
图2
IC 和系统原理框图
1
Ver 2.2
典型应用原理图
手机USB 端口
VBUS SW
L1 1uH

CS5171-BOOST电源芯片

CS5171-BOOST电源芯片

1 CS5171/3 8
VC
VSW
FB
PGND
517xy ALYW
G
Test
AGND
SS
VCC
1 VC Test
CS5172/4 8
VSW PGND
517xy ALYW
G
NFB
AGND
SS
VCC
517xy = Device Code
x= 1, 2, 3, or 4
y= E, G
A
= Assembly Location
VC = 1.25 V
Positive Error Amp Transconductance Negative Error Amp Transconductance Positive Error Amp Gain Negative Error Amp Gain
IVC = ± 25 mA IVC = ± 5 mA (Note 2) (Note 2)
10 V
−0.3 V −0.3 V
0V −0.3 V
ISOURCE N/A
1.0 mA 10 mA 1.0 mA
1.0 mA
1.0 mA 4A N/A
10 mA
ISINK 200 mA 1.0 mA 10 mA 1.0 mA
1.0 mA
1.0 mA 10 mA 10 mA 3.0 A
2
VC sources 25 mA FB = 1.5 V or NFB = −3.1 V, VC sinks 25 mA Reduce VC from 1.5 V until switching stops
Base Operating Frequency
CS5171/2, FB = 1 V or NFB = −1.9 V

5177B 同步升压芯片设计指南

5177B 同步升压芯片设计指南
SOT-23-6
G2116F11U
G5177AF11U G5177BF11U
2.5V5.5V
2.5V5.5V 2.5V5.5V
3.2A4.4A-6.2A 6.5A-
70
40 39
80
60 42
SOP-8(FD)
SOP-8(FD) SOP-8(FD)
致新科技股份有限公司 Global Mixed-mode Technology Inc.
致新科技股份有限公司 Global Mixed-mode Technology Inc.
PCB LAYOUT指南
1. PIN5和EPAD需严格分开 PIN5为芯片内部模拟信号GND EPAD为内部MOSFET功率GND PIN5需严格执行单点接GND 如下示意! PIN5单点接GND至输出端陶瓷电容!
N
致新科技股份有限公司 Global Mixed-mode Technology Inc.
D
G2116F11U原理图和BOM
USB1 USBA_SMB1
标示
G N 3 D
物料编号
G2116F11U
规格参数
同步升压DC/DC
VCC
D
D
G
G
+
-
N
N
D
D
4
2
3
1
5
6
C
D
N
G
U1
C1
G
N
2
2
u
R
1
F
R
2
G
A
T
+
致新科技股份有限公司 Global Mixed-mode Technology Inc.
G

YH-B811技术使用说明书

YH-B811技术使用说明书

3.
硬件说明 ................................................................................................................................... 7 3.1. 3.2. 3.3. 装置面板布置.................................................................................................................... 7 结构与安装 ....................................................................................................................... 7 插件原理说明.................................................................................................................... 8
4.
定值整定及信息表 .................................................................................................................. 13 4.1. 4.2. 定值及整定说明 .............................................................................................................. 13 信息表 ............................................................................................................................. 13

lm2577升压工作原理

lm2577升压工作原理

lm2577升压工作原理LM2577是一种升压转换器,也被称为升压稳压器。

它的工作原理是将输入的直流电压转换为输出的高电压直流电压。

LM2577采用了开关电源技术,通过控制开关管的导通和截止来实现电压的转换。

LM2577的工作原理可以分为三个步骤:输入电压的整流、开关管的控制和输出电压的滤波。

输入电压经过整流电路转换为直流电压。

整流电路通常由二极管桥整流电路组成,用于将交流电转换为直流电。

整流后的直流电压输入到升压稳压器的控制电路中。

控制电路通过对开关管的控制,实现了输入电压的升压转换。

控制电路通常由比较器、振荡器和驱动电路组成。

比较器用于比较反馈电压和参考电压,根据比较结果控制开关管的导通和截止。

振荡器产生一个固定频率的方波信号,用于控制开关管的开关动作。

驱动电路将振荡器产生的方波信号转换为开关管的控制信号,控制开关管的导通和截止。

当开关管导通时,输入电压通过升压电感和开关管传递到输出端,从而实现了电压的升压。

当开关管截止时,电感中储存的能量通过二极管传递到输出端,保持输出电压的稳定性。

输出电压经过滤波电路进行滤波处理,去除掉交流成分,得到稳定的直流电压。

滤波电路通常由电容器和电感器组成。

电容器可以储存电荷,平滑输出电压,并且能够快速响应负载变化。

电感器则用于过滤高频噪声,保证输出电压的稳定性。

LM2577升压工作原理的关键在于开关管的控制。

通过对开关管的合理控制,可以实现输入电压的升压转换,并保持输出电压的稳定性。

LM2577具有高效率、高可靠性和低功耗的特点,广泛应用于电源供应、通信设备和工控设备等领域。

LM2577升压工作原理是通过开关电源技术实现的。

它通过控制开关管的导通和截止,将输入的直流电压转换为输出的高电压直流电压。

LM2577的工作原理经过整流、开关管的控制和输出电压的滤波三个步骤,最终实现了电压的升压转换和稳定输出。

这一工作原理使得LM2577在各种电子设备中得到了广泛的应用。

超宽带高功率高增益放大器芯片设计

超宽带高功率高增益放大器芯片设计

超宽带高功率高增益放大器芯片设计
邬海峰;王测天;胡柳林;林倩
【期刊名称】《现代信息科技》
【年(卷),期】2022(6)10
【摘要】介绍了一种基于HEMT工艺的高增益、高功率宽带单片微波集成电路功率放大器芯片。

该芯片采用六个三堆叠式晶体管管胞构成非均匀分布式放大器结构,可获得高增益和高功率输出能力。

在0.1~20 GHz超宽带频率范围内,该芯片增益为19±1.5 dB,功率输出能力为38 dBm,尺寸为2×3.1 mm。

同时,该芯片可以覆盖到更低频段(接近DC工作范围),当采用两个0.22 μH的锥形电感作为偏置扼流圈时,这个放大器的芯片可以向下拓展到1 MHz并且具备21 dB增益。

【总页数】3页(P64-66)
【作者】邬海峰;王测天;胡柳林;林倩
【作者单位】成都嘉纳海威科技有限责任公司;青海民族大学
【正文语种】中文
【中图分类】TN722
【相关文献】
1.一种宽带、高增益、低噪音功率放大器的设计与实现
2.一种宽带高线性高增益功率放大器的研究与设计
3.一种宽带、高增益、低噪音功率放大器的设计
4.L频段宽带GaN芯片高功率放大器设计
5.锐迪科推出新一代宽带高线性功率放大器芯片
因版权原因,仅展示原文概要,查看原文内容请购买。

G5177设计指导-数字电源芯片

G5177设计指导-数字电源芯片
G5177 设计指导
G5177 设计指导
数字反激式开关电源应用
G5177 是 GlobalSemi 公司采用最新技术开发的数字 PSR 架构 PWM 控制器。 其高效 率和低待机的特性可满足最新全球能效标准对 AC/DC 充电器/适配器的要求,同时可满足 更低的 BOM 成本和更小的产品尺寸要求。 它采用数字控制技术,打造峰值电流 PWM 模式反激式电源。G5177 工作在准谐振模 式,在重负载提供高效率,以及一些关键的内置保护功能,同时最大限度地减少了外部元 件数量,简化了 EMI 设计,降低材料成本的总费用。 G5177 不再需要次级反馈电路,同时实现出色的线性和负载调节。它在去除了环路补 偿元件的同时保证了稳定的工作。脉冲波形分析使环路响应比传统的解决方案快得多,从 而提高了动态负载响应。 G5177 专为 10W 内,空载损耗低于 30mW 的智能手机和平板设备设计。其主要特性 如下: 1) 在整个工作范围内具有较好的恒流(<3%)恒压(<3%)特性 2) 采用特有技术实现超低空载功耗(典型应用<20mW ) ,达到五星级待机水平,同 时具有较好的动态负载响应性能 3) 72kHz 最大开关频率 4) 原边反馈架构,省略光耦并简化了设计 5) 采用有源启动结构,加快了启动速度 6) 采用自适应的多模式 PWM/PFM 控制技术来实现高效率 7) 采用准谐振技术进一步提高整体效率 8) 直接驱动低成本的 BJT 功率管 9) 基极驱动电流动态控制 10)不需要外部补偿元件 11)内置软启动,短路保护和输出过压保护 12)整个工作范围内无音频噪声
图 4 电压采样 G5177 内置了原边峰值电流限制( PCL ) ,过流保护( OCP ) ,采样电阻短路保护 (SRSP) ,通过 CS 脚 G5177 可以监视原边峰值电流,并且可以实现逐周期峰值电流控 制和限流。当原边峰值电流与 CS 电阻相乘大于 1.15V 时,IC 将检测到过流保护(OCP) , 并立即关闭基极驱动,直到下一个周期。在下一个周期输出脚发出一个开关脉冲,如果未 达到 OCP 阈值,则继续发出开关脉冲,否则开关脉冲关闭。如果 OCP 连续多次发生,这 时 G5177 关闭。

LTK5311-自适应-无电感式升压-5W防破音-音频功率放大器

LTK5311-自适应-无电感式升压-5W防破音-音频功率放大器

LTK5311 2019.2.20修订LTK5311 4.9W 无电感式升压、F 类、音频功率放大器⏹ 管脚说明及定义PVB A CTR A VBA ASSP CPOU T Top View Bottom View⏹基本电气特性⏹性能特性曲线特性曲线图图1:Input Amplitude VS. OutputPower图2:Input Voltage VS. Output Power图3:Input Voltage VS.Power Crrent图4:Output Power VS.THD+N图5:Frequency VS.THD+N图6:Frequency VS.THD+N1010010001000010100100010000O u t p u t A m p l i t u d e (m V r m s )Input Voltage Amplitude (mVrms )VDD=4.2V AGC_OFF RL=4Ω+33uHVDD=4.2V AGC=MODE4 THD=10% RL=4Ω+33uH VDD=4.2V AGC=MODE1 THD=1% RL=4Ω+33uHInput Amplitude VS Output Amplitude0.010.11100.1110T H D +N %Output Power (W )VDD=4.2V RL=4Ω+33uH Class_D VDD=3.8V RL=4Ω+33uH Class_DOutput Power VS THD+N0.010.111010100100010000T H D +N %Frequency(HZ)VDD=4.2V AGC_OFF PO=1W RL=4Ω+33uHVDD=4.2V AGC_OFF PO=0.5W RL=4Ω+33uHFrequency VS THS+N0.010.111010100100010000T H D +N %Frequency(HZ)VDD=3.8V AGC_OFF PO=1W RL=4Ω+33uHVDD=3.8V AGC_OFF PO=0.5W RL=4Ω+33uHFrequency VS THD+N%图7:Frequency Response图8:Output Power VS.THD+N⏹ 应用说明● Flying 电容Flying 电容C F 用于在电源和Charge Pump 输出CPOUT 之间传递能量,该电容的容值过小会影响负载调整率和输出电流。

G5178 数字电源芯片

G5178 数字电源芯片

G5178Low-Power Off-Line Digital Green-Mode PWM Controller1of 16Global Semiconductor Co.,LTD.1.0General DescriptionThe G5178is a high performance AC/DC power supply controller which uses digital control technology to build peak current mode PWM flyback power supplies.The device together with an external active device (depletion mode NFET or NPN BJT)provides a fast start-up meanwhile achieving ultra-low no-load power consumption.The device directly drives a power BJT and operates in quasi-resonant mode to provide high efficiency along with a number of key built-in protection features while minimizing the external component count,simplifying EMI design and lowering the total bill of material cost.The G5178removes the need for secondary feedback circuitry while achieving excellentline and load regulation.It also eliminates the need for loop compensation components while maintaining stability over all operatingconditions.Pulse-by-pulse waveform analysis allows for a loop response that is much faster than traditionalsolutions,resulting in improved dynamic load response,for both one-time and repetitive load transient.The built-in power limit function enables optimized transformer design inuniversal off-line applications and allows for a wide input voltage range.Global Semiconductor’s innovative proprietary technology ensures that power supplies built with the G5178can achieve both highest average efficiency and zero no-load power consumption,and have fast dynamic load response in a compact form factor.The active start-up scheme enables shortest possible start-up time without sacrificing no-load power loss.DIGITAL PWM ICFeatures◆Very tight constant voltage and constantcurrent regulation over entire operating range ◆Zero power consumption at no-load withlowest system cost (<5mW at 230Vac with typical application circuit)◆Intelligent low power management achieves ultra-low operating current at no-load◆Complies with EPA 2.0energy-efficiencyspecifications with ample margin ◆Intrinsically low common mode noise ◆Adaptive multi-mode PWM/PFM controlimproves efficiency◆Quasi-resonant operation for highest overallefficiency◆Direct drive of low-cost BJT switch ◆Dynamic base current control◆No external compensation componentsrequired◆Primary-side feedback eliminatesopto-isolators and simplifies design◆Optimized 72kHZ PWM switching frequencyachieves best size and efficiency◆EZ-ENI @design enhances manufacturability ◆Built-in soft start◆Built-in short circuit protection and output overvoltage protection◆Built-in current sense resistor short circuit protection◆No audible noise over entire operatingApplications●Compact low power AC/DCadapter/chargers for cellphones,PDAs,digital still cameras ●Linear AC/DC replacementG5178Low-Power Off-Line Digital Green-Mode PWM ControllerRev.1.02of 162.0Products Information2.1Pin configuration2.2Marking Information2.3Series description Pin Name I/O DescriptionV DD P Power supply for control logic.FB I Analog Input Auxiliary voltage sense (used for primary regulation).ASU O Control signal for active start-up device (BJT or depletion NFET).CS I Analog Input Primary current ed for cycle-by-cycle peak current control and limit.GND P Ground.DRVOBase drive for BJT.Part Number Marking InformationG5178GDXXXPart Number DescriptionG5178-00Cable Comp =0mVV DD FB ASUDRV GND CSPin Configuration:G5178Series (Sot23-6)G5178Low-PowerOff-Line Digital Green-Mode PWM Controller 3of 162.4Block diagram3.0Absolute Maximum RatingsParameterSymbol Value Units DC supply voltage range (pin 1,I DD =20mA max)V DD -0.3to 18.0V Continuous DC supply current at V DD pin (V DD =15V)I DD20mA ASU output (Pin 3)-0.3to 18.0V DRV output (Pin 6)-0.3to 4.0V FB input (Pin 2,I FB ≤10mA)-0.7to 4.0V CS input (Pin 4)-0.3to 4.0V Maximum junction temperature 150℃Storage temperature–65to 150℃Lead temperature during IR reflow for ≤15seconds T J MAX 260℃Thermal resistance junction-to-ambient T STG 190℃/W ESD ratingT LEAD 2,000V Latch-up test per JEDEC 78θJA ±100mAG5178Low-Power Off-Line DigitalGreen-Mode PWM ControllerRev.1.04of16 4.0Typical ApplicationThe G5178contains a controller for a yback circuit.Figure4.1G5178Typical Application Circuit5.0Electrical Characteristics(V DD=12V,-40C≤T A≤+85C,unless otherwise specified)Symbol Parameter Test Conditions Min Typ Max Unit Supply Voltage(Pin1)V DD(MAX)Maximum operatingvoltage(Note1)16V V DD(ST)Start-up threshold V DD rising10.011.012.0VV DD(UVL)Under voltage lockoutthresholdV DD falling 3.8 4.0 4.2VI IN(ST)Start-up current V DD=10V 1.0 1.7 3.0uAI DDQ Quiescent current No I B current 2.7 4.0mAV ZB Zener breakdown voltage Zener current=5mA18.519.520.5V Feedback(Pin2)I BVS Input leakage current V SENSE=2V1uAV FB Nominal voltage threshold TA=25°C,negative edge 1.518 1.533 1.548VG5178Low-PowerOff-Line Digital Green-Mode PWM Controller 5of 16SymbolParameter Test ConditionsMin TypMax UnitV FB (MAX)Output OVP threshold -00(Note 1)TA=25°C,negative edge 1.834V V FB (MAX)Output OVP threshold -01(Note 1)TA=25°C,negative edge Load=100%1.926VASU Section (Pin3)V ASUMaximum operatingvoltage(Note1)16V R VDD_ASUResistance between V DDand ASU830kΩCS Section (Pin4)V OCP Over current threshold 1.11 1.15 1.19V V IPK(HIGH)I CS regulation upper limit (Note 1)1.0V V IPK(LOW)I CS regulation lower limit (Note 1)0.23VI LKInput leakage current V CS =1.0V 1uADRV Section (Pin6)R DS(ON)LODRV low level ON-resistanceI SINK =5mA 13ΩF SWSwitching frequency (Note 2)>50%load72kHzNotes:Note 1.These parameters are not 100%tested,guaranteed by design and characterization.Note 2.Operating frequency varies based on the load conditions,see Section 9.6for more details.G5178Low-PowerOff-LineDigital Green-ModePWM ControllerRev.1.06of16 6.0Typical Performance CharacteristicsNotes:Note1.Operating frequency varies based on the load conditions,see Section8.6formore details.G5178Low-PowerOff-Line Digital Green-Mode PWM Controller 7of 167.0Theory of OperationTheG5178is a digital controller which uses a new,proprietary primary-side control technology to eliminate the opto-isolated feedback and secondary regulation circuits required in traditional designs.This results in a low-cost solution for low power AC/DC adapters.The core PWM processor uses fixed-frequency Discontinuous Conduction Mode (DCM)operation at higher power levels and switches to variable frequency operation at light loads to maximize efficiency.Furthermore,G5178’s digital control technology enables fast dynamic response,tight output regulation,and full featured circuit protection with primary-side control.Referring to the block diagram in Figure 7.1,the digital logic control block generates the switching on-time and off-time information based on the output voltage and current feedback signal and provides commands to dynamically control theexternal BJT base current.The system loop is automatically compensated internally by a digital error amplifier.Adequate system phase margin and gain margin are guaranteed by design and no external analog components are required forloop compensation.The G5178uses an advanced digital control algorithm to reduce system design time and increase reliability.Furthermore,accurate secondary constant-current operation is achieved without the need for any secondary-side sense and control circuits.The G5178uses adaptive multi-mode PWM/PFM control to dynamically change the BJT switching frequency for efficiency,EMI,and power consumption optimization.In addition,it achieves unique BJT quasi-resonant switching to further improve efficiency and reduce EMI.Built-in single-point fault protection features include overvoltage protection (OVP),output short circuit protection (SCP),over current protection (OCP),and ISENSE fault detection.In particular,it ensures that power supplies built with the G5178can meet 5-star energy saving requirement and achieve fast dynamic load response.G5178’s digital control scheme is specifically designed to address the challenges and trade-offs of power conversion design.This innovative technology is ideal for balancing new regulatory requirements for green mode operation with more practical design considerations such as lowest possible cost,smallest size and high performance output control.G5178Low-Power Off-Line Digital Green-Mode PWM Controller7.1Pin DetailPin1–V DDPower supply for the controller during normal operation.The controller will start upwhen V DD reaches11.0V(typical)and will shut-down when the V DD voltage is4.0V(typical).A decoupling capacitor of0.1μF or so should be connected between theV DD pin and GND.Pin2–FBSense signal input from auxiliary winding.This provides the secondary voltagefeedback used for output regulation.Pin3–ASUControl signal for active startup device.This signal is pulled low after start-up isfinished to cut off the active device.Pin4–CSPrimary current ed for cycle-by-cycle peak current control and limit.Pin5–GNDGround.Pin6–DRVBase drive for the external power BJT switch.7.2Active Start-up and Soft-startRefer to Figure 4.1for active start-up circuits using external depletion NFET and BJTrespectively.Prior to start-up,the depletion NFET or the BJT is turned on,allowing the start-upcurrent to charge the V DD bypass capacitor.When the VCC bypass capacitor is charged to avoltage higher than the start-up threshold V DD(ST),the ENABLE signal becomes active and theG5178commences soft start function.During this start-up process an adaptive soft-start controlalgorithm is applied,where the initial output pulses will be small and gradually get larger untilthe full pulse width is achieved.The peak current is limited cycle by cycle by the IPEAKcomparator.If at any time the V DD voltage drops below undervoltage lockout(UVLO)thresholdV DD(UVL)then the G1578goes to shutdown.At this time ENABLE signal becomes low and theCC capacitor begins to charge up again towards the start-up threshold to initiate a new soft-startprocess.While the ENABLE signal initiates the soft-start process,it also pulls down the ASU pinvoltage at the same time,which turns off the depletion NFET or the BJT,thus minimizing theno-load standby power consumption.Rev.1.08of16G5178Low-PowerOff-LineDigital Green-Mode PWM Controller 9of 16Figure 7.1:Start-up Sequencing Diagram7.3Understanding Primary FeedbackFigure 7.2illustrates a simplified flyback converter.When the switch Q1conducts during t ON (t),the current ig(t)is directly drawn from rectified sinusoid vg(t).The energy Eg(t)is stored in the magnetizing inductance L M .The rectifying diode D1is reverse biased and the load current IO is supplied by the secondary capacitor CO.When Q1turns off,D1conducts and the stored energy Eg(t)is delivered to the output..Figure 7.2:Simplified Flyback ConverterG5178Low-Power Off-Line Digital Green-Mode PWM ControllerRev.1.010of 16In order to tightly regulate the output voltage,the information about the output voltage and load current need to be accurately sensed.In the DCM fl yback converter,this information can be read via the auxiliary winding or the primary magnetizing inductance (L M ).During the Q1on-time,the load current is supplied from the output filter capacitor CO.The voltage across L M is vg(t),assuming the voltage dropped across Q1is zero.The current in Q1ramps up linearly at a rate of:di g (t)/dt=v g (t)/L M(7.1)At the end of on-time,the current has ramped up to:i g _peak (t)=v g (t)*t ON /L M (7.2)This current represents a stored energy of:E g =L M /2*I g _b (peak)2(7.3)When Q1turns off at to,ig(t)in L M forces a reversal of polarities on all windings.Ignoring the communication-time caused by the leakage inductance L K at the instant of turn-off to,the primary current transfers to the secondary at a peak amplitude of:i d t)=N P /N S *I g_peak (t)(7.4)Assuming the secondary winding is master,and the auxiliarywinding is slave,Figure 7.3:Auxiliary Voltage WaveformsThe auxiliary voltage is given by:V AUX =N AUX /N S (V0+△V)(7.5)and reflects the output voltage as shown in Figure 7.3.The voltage at the load differs from the secondary voltage by a diode drop and IR losses.Thus,if the secondary voltage is always read at a constant secondary current,the difference between the output voltage and the secondary voltage will be a fixed ΔV.Furthermore,if the voltage can be read when the secondary currentis small,ΔV will also be small.With the G5178,ΔV can be ignored..The real-time waveform analyzer in the G5178reads this information cycle by cycle.The part then generates a feedback voltage VFB.The VFB signal precisely represents the output voltage under most conditions and is used to regulate the output voltage.7.4Constant Voltage OperationAfter soft-start has been completed,the digital control block measures the output conditions.It determines output power levels and adjusts the control system according to a light load or heavy load.If this is in the normal range,the device operates in the Constant Voltage(CV) mode,and changes the pulse width(T ON)and off time(T OFF)in order to meet the output voltage regulation requirements.If no voltage is detected on FB it is assumed that the auxiliary winding of the transformer is either open or shorted and the G5178shuts down.7.5Constant Current OperationThe constant current(CC)mode is useful in battery charging applications.During this mode of operation the G5178will regulate the output current at a constant level regardless of the output voltage,while avoiding continuous conduction mode.To achieve this regulation the G5178senses the load current indirectly through the primary current.The primary currentis detected bythe CS pin through a resistor from the BJT emitter to ground.Figure7.4:Power Envelope11of167.6Multi-Mode PWM/PFM Control and Quasi-Resonant SwitchingThe G5178uses a proprietary adaptive multi-mode PWM/PFM control to dramatically improvethe light-load efficiency and thus the overall average effi ciency.During the constant voltage(CV)operation,the G5178normally operates in apulse-width-modulation(PWM)mode during heavy load conditions.In the PWM mode,theswitching frequency keeps around constant.As the output load I OUT is reduced,the on-time t ON isdecreased,and the controller adaptively transitions to a pulse-frequency-modulation(PFM)mode.During the PFM mode,the BJT is turned on for a set duration under a given instantaneousrectified AC input voltage,but its off time is modulated by the load current.With a decreasingload current,the off time increases and thus the switching frequency decreases.When the switching frequency approaches to human ear audio band,the G5178transitions to asecond level of PWM mode,namely Deep PWM mode(DPWM).During the DPWM mode,the switching frequency keeps around25kHz in order to avoid audible noise.As the load currentis further reduced,the G5178transitions to a second level of PFM mode,namely Deep PFMmode(DPFM),which can reduce the switching frequency to a very low level.Although theswitching frequency drops across the audible frequency range during the DPFM mode,theoutput current in the power converter has reduced to an insignifi cant level in the DPWM modebefore transitioning to the DPFM mode.Therefore,the power converter practically produces noaudible noise,while achieving high efficiency across varying load conditions.As the load currentreduces to very low or no-load condition,the G5178transitions from the DPFM to the third levelof PWM mode,namely Deep-Deep PWM mode(DDPWM),where the switching frequency isfixed at around2.1kHz.The G5178also incorporates a unique proprietary quasiresonant switching scheme that achievesvalley-mode turn on for every PWM/PFM switching cycle,during all PFM and PWM modes andin both CV and CC operations.This unique feature greatly reduces the switching loss and dv/dtacross the entire operating range of the power supply.Due to the nature of quasi-resonantswitching,the actual switching frequency can vary slightly cycle by cycle,providing theadditional benefit of reducing EMI.Together these innovative digital control architecture andalgorithms enable the G5178to achieve highest overall efficiency and lowest EMI,withoutcausing audible noise over entire operating range.Rev.1.012of167.7Zero Power No-Load OperationAt the no-load condition,the G5178is operating in the DPFM mode,where the switchingfrequency can drop as low as275Hz and still maintain tight closed-loop control of outputvoltage.The distinctive DPFM operation allows the use of a relatively large pre-load resistorwhich helps reduce the no-load power consumption.In the meanwhile,the G5178implements anintelligent low-power management technique that achieves ultra-low chip operating current atthe noload,typically less than400μA.One important feature of the G5178is that it directlydrives a low-cost BJT switch.Unlike a power MOSFET,the BJT is a current-driven device thatdoes not require a high driving voltage.As a result,the UVLO threshold of the iW1700isdesigned to be as low as4.0V(typical).The power supply system design can fully utilize thislow UVLO feature to have a low VCC voltage at the no-load operation in order to minimize theno-load power.In addition,the active start-up scheme with depletion NFET eliminates thestartup resistor power consumption after the ENABLE signal becomes active.All together thesefeatures ensure with the lowest system cost power supplies built with the G5178can achieve lessthan5mW no-load power consumption at230Vac input and maintain very tight constant voltageand constant current regulation over the entire operating range including the no-load operation.While achieving ultra-low no-load power consumption,the G5178implements innovativeproprietary digital control technology to intelligently detect load transient events,and ensureadaptive fast response.7.8Variable Frequency Operation ModeAt each of the switching cycles,the falling edge of FB will be checked.If the falling edge of FBis not detected,the off-time will be extended until the falling edge of FB is detected.Themaximum allowed transformer reset time is110μs.When the transformer reset time reaches110μs,the G5178shuts off.7.9Internal Loop CompensationThe G5178incorporates an internal Digital Error Amplifier with no requirement for externalloop compensation.For a typical power supply design,the loop stability is guaranteed to provideat least45degrees of phase margin and-20dB of gain margin.13of167.10Voltage Protection FeaturesThe secondary maximum output DC voltage is limited by the G5178When the FB signalExceeds the output OVP threshold at point1indicated in Figure7.3the G5178huts down.The G5178protects against input line undervoltage by setting a maximum T ON time.Sinceoutput power is power is proportional to the squared V IN T ON product,then for a given outputpower,as V IN decreases the T ON will increase.Thus by knowing when the maximum T ON timeoccurs the G5178detects that the minimum V IN is reached,and shuts down.The maximum t ONlimit is set to13.8us.Also,the G5178monitors the voltage on the V DD pin and when the voltageon this pin is below UVLO threshold the IC shuts down immediately.When any of these faults are met the IC remains biased to discharge the V DD supply.Once V DDdrops below UVLO threshold,the controller resets itself and the initiates a new soft-start cycle.The controller continues attempting start-up until the fault condition is removed.7.11PCL,OCP and SRS ProtectionPeak-current limit(PCL),over-current protection(OCP)and sense-resistor short protection(SRSP) are features built-in to the G5177.With the FB pin the G5178monitor the peak primary current.This allows for cycle by cycle peak current control and limit.When the primary peak currentmultiplied by the FB resistor is greater than1.15V,over current(OCP)is detected and the ICwill immediately turn off the base driver until the next cycle.The output driver will send out aswitching pulse in the next cycle,and the switching pulse will continue if the OCP threshold isnot reached;or,the switching pulse will turn off again if the OCP threshold is reached.If theOCP occurs for several consecutive switching cycles,the G5178down.If the FB resistor is shorted there is a potential danger of the over current condition not beingdetected.Thus,the IC is designed to detect this sense-resistor-short fault after startup and shutdown immediately.The VDD ll be discharged since the IC remains biased.Once VDD ps belowthe UVLO threshold,the controller resets itself and then initiates a new soft-start cycle.Thecontroller continues attempting to startup,but does not fully startup until the fault condition isremoved.Rev.1.014of167.12Dynamic Base Current ControlOne important feature of the G5178is that it directly drives a BJT switching device with dynamic base current control to optimize performance.The BJT base current ranges from13mA to40mA,and is dynamically controlled according to the power supply load change.The higherthe output power,the higher the base current.Specifically,the base current is related to V IPK,asshown in Figure8.5.Figure7.5:Base Drive Current vs.V IPK7.13Cable Drop CompensationThe G5178incorporates an innovative method to compensate for any IR drop in the secondarycircuitry including cable and cable connector.A2.5W adapter with5V DC output has3%deviation at0.5A load current due to the drop across a24AWG,1.8meter DC cable withoutcable compensation.The G5178compensates for this voltage drop by providing a voltage offsetto the feedback signal based on the amount of load current detected.15of16Rev.1.016of 168.0Package InformationSot23-6SymbolDimension in Millimeters Dimensions in Inches Min Max Min Max A2.6923.0990.1060.122B1.397 1.8030.0550.071C-- 1.450--0.057D0.3000.5000.0120.020F0.950.037H0.0800.2540.0030.010I0.0500.1500.0020.006J2.6003.0000.1020.118M0.3000.6000.0120.024θ0°10°0°10°Data and specifications subject to change without notice.This product has been designed and qualified for Industrial Level and Lead-Free.Qualification Standards can be found on GS's Web site.Global Semiconductor HEADQUARTERS:Scotia Centre ,4th Floor ,P.O.Box 2804,George Town ,Grand Cayman KY1-1112,CaymanVisit us at for sales contact information.。

LM2576中文资料

LM2576中文资料

LM2576中文资料———————————————————————————目录概述 (3)1.LM2576简介 (3)1.1 性能 (3)1.2 外形图 (6)1.3 订购信息 (6)1.4 管脚定义 (7)2.LM2576应用举例 (7)2.1 基本应用设计 (7)2.1.1 应用分析 (7)2.1.2 外围元件的选择 (9)2.1.3应用注意事项 (10)2.2 工作模式可控应用设计 (10)2.3 1.2V至55V的可调3A低输出纹波电源 (10)页脚内容12.4 输入欠压锁定电源 (11)3.LM2576测试电路和PCB布局原则 (11)页脚内容2概述LM2576系列开关稳压集成电路是线性三端稳压器件(如78xx系列端稳压集成电路)的替代品,它具有可靠的工作性能、较高的工作效率和较强的输出电流驱动能力,从而为MCU的稳定、可靠工作提供了强有力的保证。

1.LM2576简介1.1 性能LM2576系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压电路,它内含固定频率振荡器(52kHz)和基准稳压器(1.23V),并具有完善的保护电路,包括电流限制及热关断电路等,利用该器件只需极少的外围器件便可构成高效稳压电路。

LM2576系列包括LM2576(最高输入电压40V)及LM2576HV(最高输入电压60V)二个系列。

各系列产品均提供有3.3V(-3.3)、5V(-5.0)、12V(-12)、15V(-15)及可调(-ADJ)等多个电压档次产品。

此外,该芯片还提供了工作状态的外部控制引脚。

图1LM2576系列开关稳压集成电路的主要特性如下[2]:●最大输出电流:3A;页脚内容3●最高输入电压:LM2576为40V,LM2576HV为60V;●输出电压:3.3V、5V、12V、15V和ADJ(可调)等可选;●振东频率:52kHz;●转换效率:75%~88%(不同电压输出时的效率不同);●控制方式:PWM;●工作温度范围:-40℃~+125℃●工作模式:低功耗/正常两种模式可外部控制;●工作模式控制:TTL电平兼容;●所需外部元件:仅四个(不可调)或六个(可调);●器件保护:热关断及电流限制;●封装形式:TO-220或TO-263。

TI推出业界领先的多相双向电流控制器

TI推出业界领先的多相双向电流控制器

TI推出业界领先的多相双向电流控制器
 高度集成的降压-升压控制器可在双车载电池系统之间实现有效的电力传输
 2017年3月21日,北京讯德州仪器(TI)近日推出业界领先的全集成型多相双向DC/DC电流控制器,该器件可在48V和12V的双车载电池系统之间有效传输每相大于500W的电力。

高度集成的LM5170-Q1模拟控制器采用创新的平均电流模式控制方法,克服了当今元件数量多、全数字控制方案的挑战。

如需了解更多信息并获得样片和评估模块,敬请访问TI/lm5170q1-pr-cn。

 TI将出席于2017年3月27日至29日在佛罗里达州坦帕举行的应用能源电子展(APEC),并在701号展位展出这款LM5170-Q1控制器。

LM5170-Q1是TI业界领先的DC/DC转换器、控制器和电荷泵产品组合中的最新产品,帮助工程师实现创新并打造差异化的电源设计。

 混合动力汽车使用高压48 V电池和标准的12 V汽车电池。

设计工程师通常采用数字控制方案管理这些双电池系统,包括多个分立元件,如电流检测放大器、栅极驱动器和保护电路。

这些全数字控制方案不仅体积庞大,而且价格昂贵。

为了解决这一挑战,同时提高性能和系统可靠性,TI提供了一种。

lm2577升压工作原理

lm2577升压工作原理

lm2577升压工作原理LM2577是一种常用的升压型DC-DC转换器芯片,其工作原理基于开关电源技术。

本文将详细介绍LM2577升压工作原理。

一、LM2577的基本结构和工作原理LM2577芯片由输入电压检测电路、PWM控制电路、开关管驱动电路、功率开关管、输出电压反馈电路和输出电流保护电路等组成。

1. 输入电压检测电路:LM2577的输入电压检测电路主要用于检测输入电压是否达到芯片工作的最低电压要求。

如果输入电压低于最低电压要求,芯片将不会启动。

2. PWM控制电路:PWM控制电路是LM2577的核心部分,用于产生高频脉冲信号。

这个信号的占空比决定了开关管的导通时间和关断时间,从而影响转换效率和输出电压。

3. 开关管驱动电路:开关管驱动电路用于驱动功率开关管。

当PWM控制电路产生高电平信号时,开关管导通,当PWM控制电路产生低电平信号时,开关管关断。

4. 功率开关管:功率开关管是LM2577的核心元件,它可以实现输入电压的升压。

当开关管导通时,输入电压通过电感储能,当开关管关断时,储能电感将其储存的能量传递给输出回路,实现输出电压的升压。

5. 输出电压反馈电路:输出电压反馈电路用于监测输出电压,并将反馈信号送回PWM控制电路,通过调节占空比来稳定输出电压。

6. 输出电流保护电路:输出电流保护电路用于监测输出电流,当输出电流超过一定阈值时,保护电路将关闭开关管,以保护电路和负载。

二、LM2577的升压工作原理LM2577的升压工作原理可以分为四个阶段:导通、储能、关断和输出。

1. 导通阶段:在导通阶段,PWM控制电路产生高电平信号,驱动开关管导通。

此时,输入电压通过电感储能,并将能量传递给输出回路,输出电压开始升高。

2. 储能阶段:在储能阶段,开关管关断,电感储能器将能量储存起来。

此时,输出电压继续上升。

3. 关断阶段:在关断阶段,PWM控制电路产生低电平信号,驱动开关管关断。

此时,储能电感将其储存的能量传递给输出回路,输出电压继续上升。

1MHz单周期控制同步整流Buck变换器的设计

1MHz单周期控制同步整流Buck变换器的设计

1MHz单周期控制同步整流Buck变换器的设计
任琦梅;姜建
【期刊名称】《电测与仪表》
【年(卷),期】2014(000)009
【摘要】提高功率变换器功率密度的有效方法是加大开关频率。

传统的单周期控
制芯片 IR1150只能工作到200 kHz的开关频率,为此提出了一种1 MHz工作频
率的单周期控制同步整流Buck变换器实现方案,控制电路采用
“UC3825+TPS28225”这两款芯片实现,其中UC3825作为主控芯片,TPS28225作为驱动芯片。

分析了整个系统工作原理,并对同步整流Buck变换器的主开关管、同步整流管、输出滤波器和积分器等进行了详细分析及设计。

制作了一台1.8V、
5A输出的样机,样机运行稳定,额定效率可达80.74%。

实验结果验证了该设计方案的有效性。

【总页数】4页(P102-105)
【作者】任琦梅;姜建
【作者单位】河南城建学院,河南平顶山467036;河南城建学院,河南平顶山467036
【正文语种】中文
【中图分类】TM46
【相关文献】
1.基于LTC3879高效同步整流BUCK变换器的设计 [J], 杨帆
2.同步整流buck变换器低功耗驱动电路设计 [J], 高庆;孙金中;郭锐
3.低压大电流同步整流Buck变换器的设计 [J], 邵静宜
4.低压大电流同步整流Buck变换器的设计 [J], 邵静宜;
5.移相双重同步整流Buck变换器的研究与设计 [J], 张德超; 秦建鑫; 杨艳
因版权原因,仅展示原文概要,查看原文内容请购买。

HX711电路

HX711电路

HX711电路优点及特性:HX711是一款专为高精度秤重传感器而设计的24位A/D转换器芯片。

与同类型其它芯片相比,该芯片集成了包括稳压电源、片内时钟振荡器等其它同类型芯片所需要的外围电路,具有集成度高、响应速度快、抗干扰性强等优点、降低了电子秤的整机成本,提高了整机的性能和可靠性。

该芯片与后端MCU芯片的接口和编程非常简单,所有控制信号由管脚驱动,无需对芯片内部的寄存器编程。

输入选择开关可任意选取通道A或通道B,与其内部的低噪声可编程放大器相连。

通道A的可编程增益为128或64,对应的满额度差分输入信号幅值分别为±20mV或±40mV。

通道B则为固定的64增益,用于系统参数检测。

芯片内提供的稳压电源可以直接向外部传感器和芯片内的A/D转换器提供电源,系统板上无需另外的模拟电源。

芯片内的时钟振荡器不需要任何外接部件。

上电自动复位功能简化了开机的初始化过程。

引脚功能及电器特性表引脚功能表3 输入通道和增益选择管脚说明模拟输入通道A模拟差分输入可直接与桥式传感器的差分输出相接。

由于桥式传感器输出的信号较小,为了充分利用A/D转换器的输入动态范围,该通道的可编程增益较大,为128或64。

这些增益所对应的满量程差分输入电压分别±20mV或±40mV。

通道B为固定的增益,所对应的满量程差分输入电压为±40mV。

通道B 应用于包括电池在内的系统参数检测。

供电电源数字电源(DVDD)应使用与MCU芯片相同的数字供电电源。

HX711芯片内稳压电路可同时向A/D转换器和外部传感器提供模拟电源。

稳压电源的供电电压(VSUP)可与数字电源(DVDD)相同。

稳压电源的输出电压值(VAVDD)由外部分电阻R1、R2和芯片的输出参考电压VBG决定(图4),VAVDD=VBG(R1+ R2)/ R2。

应选择该输出电压比稳压电源的输入电压(VSUP)低至少100mV。

如果不使用芯片内的稳压电路,管脚VSUP和管脚AVDD应相连,并接到电压为2.6-5.5V 的低噪声模拟电源。

实时变音处理芯片SD771D的原理与应用

实时变音处理芯片SD771D的原理与应用

实时变音处理芯片SD771D的原理与应用
高美珍
【期刊名称】《单片机与嵌入式系统应用》
【年(卷),期】2005(000)012
【摘要】集成实时变音处理芯片SD771D是台湾翔音科技公司推出的单芯片语音处理器.该芯片可将输出的语音进行变调处理(如升高、降低),还可将男女声的语音相互转换.文中介绍该芯片的工作原理及应用,给出SD771D典型应用的硬件接口电路.
【总页数】2页(P39-40)
【作者】高美珍
【作者单位】湖北师范学院
【正文语种】中文
【中图分类】TN4
【相关文献】
1.二、新型彩电中微处理器MN181768芯片的原理与应用 [J], 王锡胜
2.实时时钟芯片DS1388的原理与应用 [J], 李红;冯庆胜;曾洁
3.X1203实时时钟芯片的原理与应用 [J], 吴金宏;倪向阳;吴昊
4.微处理器实时时钟芯片MM58167B原理与应用 [J], 陈世利;李庄;靳世久
5.实时时钟芯片DS12887原理与应用 [J], 薛伦生;戴新生
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
Global Mixed-mode Technology
G5177B
Thermal Resistance of Junction to Ambient (θJA) SOP-8 (FD) . . . . . . . . . . . . . . . . . . . . . . . . . TBD Continuous Power Dissipation (TA = +25°C) SOP-8 (FD). . . . . . . . . . . . . . . . . . . . . . . . . . . . TBD Storage Temperature . . . . . . . . . . . . . . . . . -55~150°C Operation Temperature. . . . . . . . . . . . . . . . . -40~85°C
Ver: 0.1 Aug 05, 2013
TEL: 886-3-5788833
2
Global Mixed-mode Technology
G5177B
CONDITIONS MIN
----1.7 2 --1.5 0 200
Electrical Characteristics (Continued)
PARAMETER
General Input operation voltage Output voltage Input Quiescent current Shutdown supply current Oscillator&Protection Switching Frequency Soft-Start Interval FB Regulation Voltage FB Input Current T_scp_restart short-Circuit Response Time Current Limit Response Time Maximum Duty Cycle DC-DC Switches VOUT Leakage Current LX Leakage Current Switch ON Resistance Peak Current Limit Efficiency
Electrical Characteristics
(VOUT = 5V, VBAT = 3.6V, L = 2.2µH, CIN = 47µF, COUT = 68µF, TA = 25°C)
The device is not guaranteed to function outside its operating conditions. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified.
PARAMETER
Protection Block VOUT Short-Circuit Threshold VOUT Short-Circuit Threshold VBAT UVLO Threshold VBAT UVLO Threshold Thermal Shutdown Threshold Control Block ILM01 Input High Level ILM01 Input Low Level VSCP VSCP VUVLO VUVLO Falling Edge Ring Edge Falling Edge Rling Edge Rising Edge, 20°C hysteresis Vih_ilm Vil_ilm VOUT(1- 0.27) VOUT(1- 0.19) 1.9 2.2 150 ----250 ----2.2 2.5 --5.5 0.5 300 V V V V °C V V KΩ
Global Mixed-mode Technology
G5177B
General Description
The G5177B is a compact, high-efficiency, synchronous step-up converter with power Mosfets embedded and with output turn off true shutdown function and adjustable output current limiting with foldback for a single-cell Li-ion/polymer battery. The G5177B uses only 70μA (typ) quiescent current and allows the converter to switch only when needed at no load and light loads, and when load is higher than 100mA, it uses fixed-frequency PWM technique at 1MHz. It features a current mode control for fast transient response with internal compensation. The G5177B includes cycle-by-cycle current limit to maximum inductor current and over-temperature protection circuit. The G5177B is suitable for iPad-like computers, smart phones and portable handheld devices. The G5177B is available in a SOP8 (FD) package. The operating temperature range is from -45°C to +85°C.
Sync. Rectifier Step Up Converter
Features


Up to 90% Efficiency at Iout=2A VOUT = 5V from 3.3V Input Low 70μA Quiescent Current Guaranteed 3A Output Current at VOUT = 5V from 3.3V Input 1MHz PWM Switching Frequency Synchronous and Embedded Power Mosfets; No Schottky Diode Required Internal Soft-Start to Limit Inrush Current Adjustable Output Output turn off true shutdown function Current Mode Operation with Internal Compensation for Excellent Line and Load Transient Response Overload/Short-Circuit Protection with hiccup control Shutdown Current <1µA Thermal Shutdown Compact 8 pin,SOP8 (FD) package
5 5.075 70 1 1.3 6 1.246 100 ------96 5 5 55 60 ----V V µA µA MHz ms V nA ms µs µs % µA µA mΩ A %
Line and Load Regulation in CCM (IL>100mA) VBAT=2.5~4.5 VBAT =3.6 FB=1.28 No load, no switching (exclude input current from ILM01) (ILM01=0 in SOP-8)
SYMBOL
VBAT VOUT IBAT IBAT Fosc SS VFB IFB FB=1.0V Restart time in SCP
CONDITIONS

MIN
2.5
TYP
--5 50 0.1 1.0 5 1.227 --80 Tosc Tosc 93 1 1 39 42 --87
MAX UNITS
3 4
ILM01 4
SOP-8 (FD)
Note: Recommend connecting the Thermal Pad to the Ground for excellent power dissipation.
Ver: 0.1 Aug 05, 2013
TEL: 886-3-5788833
SYMBOL
TYP
MAX UNITS
ILIM01 Internal Pull-Low ResisRin_ilm tance *note1:If ILM01 connect to Vbat, It will consume current I_ilm01=Vbat/250k
4.925 ----0.7 4 1.208 --------86 --------6.5 ---
T_short_response VOUT < VOUT X25%, T_oc_response Dmax IPVOUT_LK ILX_LK RON-N RON-P I_LIM ILM01=1 ILM01=1 VBAT=3V, VOUT=5V, IOUT=2A FB=0.95V (ILM01=0 in SOP-8) VOUT=5V (ILM01=0 in SOP-8) VOUT=5V
Absolute Maximum Ratings
VOUT to GND . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6V LX to GND . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to 6V ILIM0 to GND . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6V ILIM1 to GND . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6V FB to GND . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to 6V BAT to GND . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to 6V
相关文档
最新文档