集合的含义与表示-PPT课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂小结
1.集合的定义; 2.集合元素的性质:确定性,互异性,无序性; 3.数集及有关符号表示; 4. 集合的表示方式; 5. 集合的分类.。
⑶空 集:不含任何元素的集合,记作
例题讲解
例1 下面的各组对象能否构成集合? (1)高个子的人; (2)小于2004的数; (3)和2004非常接近的数.
例题讲解
例2 若方程x2-5x+6=0和方程x2-x
-2=0的解为元素的集合为M,则M中元
素的个数为( C )
A.1
B.2
C.3
Βιβλιοθήκη Baidu
D.4
例题讲解
例3 已知集合 A={x ax2+4x+4=0, x∈R,a∈R} 只有一个元素,求a的值和这个元素.
思考 1.集合{x|x-6<7}与集合{y|y-6<7}是否相同? 2.集合{y|y=x2-1}与{y|y≥-1}是否相同? 3.集合{x|y=x2-1}与{y|y=x2-1}是否相同? 4.集合{x|y=x2-1}与{(x,y)|y=x2-1}是否相同?
(3)无序性:集合中的元素是无先后顺序的. 集合中的 任何两个元素都可以交换位置.
4.集合相等 构成两个集合的元素一样,就称这两个集合相等.
5.重要数集 (1) N: 自然数集(含0),即非负整数集 (2) N+或N* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
集合常用大写字母表示,如集合A,集合B... 元素则常用小写字母表示,如a,b...
3.集合元素的性质 (1)确定性:集合中的元素必须是确定的.
如果a是集合A的元素,就说a属于集合A, 记作a ∈ A;
如果a不是集合A的元素,就说a不属于集合A,
记作a A.
(2)互异性:集合中的元素必须是互不相同的.
人教版A版 高中数学必修1 第一章《集合与函数概念》
1.1集合
1.1.1集合的含义与表示
观察下列对象:
(1)1~20以内的所有质数 ; (2)我国古代四大发明; (3)满足x-3>2 的实数; (4)所有的正方形 ; (5)抛物线y=x2上的点.
思考:上面的对象有何共同特征?
1. 定义 一般地, 指定的某些对象的全体称为集合(简称为集). 集合中每个对象叫做这个集合的元素. 2. 集合的表示法
合的方法. (3)不等式x-3>2的解集; (4)抛物线y=x2上的点集;
③ 图示法(Venn图) 常画一条封闭的曲线,用它的内部表示一个集合.
例:图1-1表示任意一个集合A; 图1-2表示集合{1,2,3,4,5} .
A 图1-1
1,2,3, 5, 4.
图1-2
7. 集合的分类 ⑴有限集:含有有限个元素的集合. ⑵无限集:含有无限个元素的集合.
练习
1.用符号“ ”或“ ”填空
(1) 3.14 Q
(2) Q
(3) 0 N+ (5) 2 3 Q
(4) (-2)0 N+ (6) 2 3 R
6.集合的表示方式 ①列举法:把集合的元素一一列出来,并用“{ }”括起 来表示集合. 例:用列举法表示下列集合:
(1)方程x2 =x的所有实数根组成的集合; (2)小于10的所有自然数组成的集合; ②描述法:用确定条件表示某些对象是否属于这个集
相关文档
最新文档