集合的含义与表示-PPT课件
合集下载
集合的含义与表示 课件
![集合的含义与表示 课件](https://img.taocdn.com/s3/m/032bacd4580216fc710afd9c.png)
利用描述法表示集合应该注意以下五点: (1)写清楚该集合代表元素的符号.例如,集合{x∈R|x<1}不能写成{x<1}. (2)所有描述的内容都要写在花括号内.例如,{x∈Z|x=2k},k∈Z,这种表达方式 就不符合要求,需将 k∈Z 也写进花括号内,即{x∈Z|x=2k,k∈Z}. (3)不能出现未被说明的字母. (4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如, 方程 x2-2x+1=0 的实数解集可表示为{x∈R|x2-2x+1=0},也可写成 {x|x2-2x+1=0}. (5)在不引起混淆的情况下,可省去竖线及代表元素,如{直角三角形},{自然数}等.
2.设不等式 3-2x<0 的解集为 M,下列正确的是( )
A.0∈M,2∈M
B.0∉M,2∈M
C.0∈M,2∉M 答案:B
D.0∉M,2∉M
探究三 用列举法表示集合 [典例 3] 用列举法表示下列集合. (1)不大于 10 的非负偶数组成的集合; (2)方程 x2=x 的所有实数解组成的集合; (3)直线 y=2x+1 与 y 轴的交点所组成的集合; (4)方程组xx+ -yy= =1-,1 的解.
3.用列举法表示下列集合: (1)小于 10 的所有自然数组成的集合; (2)由 1~20 以内的所有质数组成的集合.
解析:(1)设小于 10 的所有自然数组成的集合为 A,那么 A={0,1,2,3,4,5,6,7,8,9}. (2)设由 1~20 以内的所有质数组成的集合为 C,那么 C={2,3,5,7,11,13,17,19}.
1.下列各项中,不可以组成集合的是( )
A.所有的正数
B.等于 2 的数
C.接近于 0 的数
D.不等于 0 的偶数
高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)
![高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)](https://img.taocdn.com/s3/m/b8aad94b03d8ce2f00662369.png)
(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集
集
Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.
人教版高中数学必修一课件:1.1《集合》 (共23张PPT)
![人教版高中数学必修一课件:1.1《集合》 (共23张PPT)](https://img.taocdn.com/s3/m/a127bfc4fbb069dc5022aaea998fcc22bcd143d6.png)
(2)互异性:
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为
。
4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;
ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为
。
4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;
ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c
集合的含义及表示ppt课件.ppt
![集合的含义及表示ppt课件.ppt](https://img.taocdn.com/s3/m/40a26943a66e58fafab069dc5022aaea998f41e9.png)
思考3:我们用符号“ A B”表示集合A与B的 并集,并读作“A并B”,那么如何用描述法 表示集合A B? A B { x |x A ,或 x B }
思考4:如何用venn图表示 A B ?
A
B
思考5:集合A、B与集合A B的关系如何? A B与B A的关系如何?
AA B BA B ABBA
理论迁移
例1 写出满足 { 1 ,2 } A { 1 ,2 ,3 ,4 }的所有集 合A.
{1,2},{1,2,3},{1,2,4},{1,2,3,4}
例2 已知集合 A{y|y(x1 )2,x0 }, B {y|yx2x 1 ,x R },试确定集合A与 B的关系.
A B
例3 设集合 A {2, a2} ,B{1,2,a},若 A B , 求实数 a 的值. -1或0
1.1.1 集合的含义与表示
第二课时 集合的表示
问题提出
1.集合中的元素有哪些特征?
确定性、无序性、互异性
2.元素与集合有哪几种关系? 属于、不属于
3.用自然语言描述一个集合往往是不简明的, 如“在平面直角坐标系中以原点为圆心,2 为半 径的圆周上的点”组成的集合,那么,我们可以 用什么方式表示集合呢?
称集合A是集合B的真子集.
思考4:如果集合A是集合B的真子集,我们怎 样用符号表示?
AB或 B A
思考5:若集合A是集合B的子集,则集合A一 定是集合B的真子集吗?若集合A是集合B的 真子集,则集合A一定是集合B的子集吗?
知识探究(二)
考察下列集合: (1){x|x是边长相等的直角三角形}; (2){xR|x210} ; (3){xR||x|20}.
思考1:上述三个集合有何共同特点? 集合中没有元素
集合的含义与表示 课件
![集合的含义与表示 课件](https://img.taocdn.com/s3/m/6e283810910ef12d2bf9e79c.png)
通常用大写的拉丁字母 A,B,C,…表示集合, 小写的拉丁字母 a,b,c ,…表示集合中的元素.
问题:如何理解“把一些元素组成的总体叫做 集合”,这些集合里的元素必须具备什么特性?
二、集合中元素的特性
先思考以下两个问题:
① 高一级身高较高的同学,能否构成集合?
否
② 高一级身高160cm以上的同学,能否构成集合? 能
①确定性:集合中的元素必须是确定的。即确定了一 个集合,任何一个元素是不是这个集合的 元素也就确定了。 (具有某种属性)
先思考以下两个问题:
① 高一级身高较高的同学,能否构成集合?
否
② 高一级身高160cm以上的同学,能否构成集合? 能 ③ 2, 4, 2 这三个数能否组成一个集合? 否
②互异性:集合中的元素是互异的。即集合元素是没 有重复现象的。 (互不相同)
解:(1)设小于10的所有自然数组成的集合为A, 则 A={0,1,2,3,4,5,6,7,8,9}
(2)设方程 x2=x 的所有实数根组成的集合为B, 则 B={0,1}
(3)设所求集合为C, 则 C={6,12,18}
你能用列举法表示不等式 x -7< 3 的解集吗?
无限集
(3)描述法:用集合所含元素的共同特征表示集合的 方法称为描述法。
用花括号“{ }”括起来的表示集合的方法叫做列举法.
{2, 3, 5, 7,11,13,17,19}
(3)描述法: 用集合所含元素的共同特征表示集合的 方法称为描述法。
{x R | x 7 3}
例2 用描述法和列举法描述下列集合
(1)方程 x2-2=0 的所有实数根组成的集合 A={x R | x2 2=0 } 或A { 2, 2}
2、用适当的方法表示下列集合: (1)方程组 23xx32yy184的解集;
问题:如何理解“把一些元素组成的总体叫做 集合”,这些集合里的元素必须具备什么特性?
二、集合中元素的特性
先思考以下两个问题:
① 高一级身高较高的同学,能否构成集合?
否
② 高一级身高160cm以上的同学,能否构成集合? 能
①确定性:集合中的元素必须是确定的。即确定了一 个集合,任何一个元素是不是这个集合的 元素也就确定了。 (具有某种属性)
先思考以下两个问题:
① 高一级身高较高的同学,能否构成集合?
否
② 高一级身高160cm以上的同学,能否构成集合? 能 ③ 2, 4, 2 这三个数能否组成一个集合? 否
②互异性:集合中的元素是互异的。即集合元素是没 有重复现象的。 (互不相同)
解:(1)设小于10的所有自然数组成的集合为A, 则 A={0,1,2,3,4,5,6,7,8,9}
(2)设方程 x2=x 的所有实数根组成的集合为B, 则 B={0,1}
(3)设所求集合为C, 则 C={6,12,18}
你能用列举法表示不等式 x -7< 3 的解集吗?
无限集
(3)描述法:用集合所含元素的共同特征表示集合的 方法称为描述法。
用花括号“{ }”括起来的表示集合的方法叫做列举法.
{2, 3, 5, 7,11,13,17,19}
(3)描述法: 用集合所含元素的共同特征表示集合的 方法称为描述法。
{x R | x 7 3}
例2 用描述法和列举法描述下列集合
(1)方程 x2-2=0 的所有实数根组成的集合 A={x R | x2 2=0 } 或A { 2, 2}
2、用适当的方法表示下列集合: (1)方程组 23xx32yy184的解集;
集合的含义及其表示课件(新)
![集合的含义及其表示课件(新)](https://img.taocdn.com/s3/m/fca6d361ec630b1c59eef8c75fbfc77da26997cb.png)
交集
对于任意两个集合A和B,由所有既 属于A又属于B的元素组成的集合称 为A和B的交集,记作A∩B。
补集
对于任意集合A和全集U,由所有属 于U但不属于A的元素组成的集合称 为A的补集,记作∁UA。
差集
对于任意两个集合A和B,由所有属 于A但不属于B的元素组成的集合称 为A和B的差集,记作A-B。
集合的基本定理
举例
由数1,2,3,4组成的集 合可表示为{1, 2, 3, 4}。
注意事项
元素间用逗号隔开,且元 素不重复。
描述法表示集合
定义
用确定的条件表示某些对 象是否属于这个集合的方 法。
举例
由所有大于0小于5的整数 组成的集合可表示为{x | 0 < x < 5, x ∈ ℤ}。
注意事项
描述法表示集合时,首先 要弄清楚集合中元素所具 有的特征,再用确定的条 件表示出来。
算法设计
许多算法都涉及到对集合的操作,如排序、查找、遍历等。通过对集合的合理运用,可以 设计出高效、稳定的算法。
数据库系统
数据库是计算机科学中另一个广泛应用集合的领域。数据库中的表可以看作是一个个的集 合,通过对这些集合进行增删改查等操作,可以实现数据的存储和管理。
集合在其他领域的应用
物理学
在物理学中,集合用于描述各种物理现象和规律。例如, 量子力学中的态空间就是一个集合,描述了所有可能的状 态。
或B包含A,记作A⊆B或B⊇A。
自反性
任何集合都包含于自身,即A⊆A。
传递性
如果A⊆B且B⊆C,则A⊆C。
反对称性
如果A⊆B且B⊆A,则A=B。
集合的相等关系
定义
对于两个集合A和B,如果A包含于B且B包含 于A,则称A与B相等,记作A=B。
人教版高中必修一 111 《集合的含义与表示》 课件
![人教版高中必修一 111 《集合的含义与表示》 课件](https://img.taocdn.com/s3/m/a979d46c814d2b160b4e767f5acfa1c7aa0082d4.png)
新知探索
例题讲解
例1、用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程x²=x的所有实数根组成的集合; (3 ) 小于100的所有奇数.
注意:由于元素具有无序性, 集合A还有其它列举方法哦,
动手试一试吧!
【解析】(1)设小于10的所有自然数组成的集合为A,那么 A={0,1,2,3,4,5,6,7,8,9}.
为__-_1_. (3)若A= {x²+x-6=0},则3___∉_____A.
巩固练习
3、判断下列说法是否正确:
(1) {x2,3x+2,5x3-x}即{5x3-x,x2,3x+2} .
(2) 若4x=3,则 x N. (3) 若x Q,则 x R .
(4)若X∈N,则x∈N+.
( √) (√ ) (×) (× )
巩固练习
4、已知集合A={x | ax2+4x+4=0,x∈R,a∈R}只有一个元素, 求a的值和这个元素.
解析:当a=0时,x=-1; 当a≠ 0 时,由于集合只有一个元素,所以 =0,则x=-2.
拓展应用
5、设A是由满足不等式x<6的自然数组成的集合,a∈A且3a∈A,求a的值.
解析:因为a∈A且3a∈A, a<6,
合是不么定义呢的?那概你么念能,,举集数一合学些的家有很含难关义回集是答合什。 一的天例,子他吗看到?牧民正在向羊圈里赶羊,
等到牧民把羊全赶进羊圈并关好门,数学家 突然灵机一动,兴奋地告诉牧民:“这就是 集合”。
新知探索
探究1 集合的含义
观察下面例子,它们有什么共同特征? (1)1~20以内的所有偶数; (2)我国古代四大发明 (3)所有的长方形; (4)到直线的距离等于定长d的所有的点; (5)方程x²+3x-2=0的所有实数根; (6)我国从2001~2018年的15年内所发射的所有卫星。
人教版高中数学必修一1.1.1_集合的含义与表示ppt课件
![人教版高中数学必修一1.1.1_集合的含义与表示ppt课件](https://img.taocdn.com/s3/m/eb34b2603968011ca300915d.png)
a∉A.
A,记作属于 . A,记不作属于
高一(1)班的学生组成集合A,a是高一(1)班的学生,b不是高一(1)班的学生 a与A,b与A之间有何关系? 提示:a∈A b∉A
Hale Waihona Puke 3.几种常用的数集及记法N
N*或N+
Z
Q
用“∈”或“∉”填空. 2________N; 2________Q;12________R; -3________Z;0________N*;5________Z. 提示:∈ ∉ ∈ ∈ ∉ ∈
[解] ∵1∈A,∴a+2,(a+1)2,a2+3a+3都可能等于1. ①若a+2=1,则a=-1,此时A中的元素为1,0,1与集合中元素的互异性矛盾 故舍去; ②若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3}适合题意, 当a=-2时,A中的元素为0,1,1与集合中元素的互异性矛盾,舍去, ③若a2+3a+3=1,则a=-1或a=-2,由①②知都不合题意,舍去. 综上所述,a=0.
的、 确定 的.互不相同
(1)“高一(2)班1.78米以上的同学”、“16岁的少年”、 “大于1的数”能构成一个集合吗? 提示:能构成集合.
(2)“高一(2)班的高个子同学”、“年轻人”、“帅哥”、 “接近0的数”能构成集合吗? 提示:不能构成集合.
2.元素与集合的关系 (1)如果a是集合A中的元素,就说a (2)如果a不是集合A中的元素,就说a
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
A,记作属于 . A,记不作属于
高一(1)班的学生组成集合A,a是高一(1)班的学生,b不是高一(1)班的学生 a与A,b与A之间有何关系? 提示:a∈A b∉A
Hale Waihona Puke 3.几种常用的数集及记法N
N*或N+
Z
Q
用“∈”或“∉”填空. 2________N; 2________Q;12________R; -3________Z;0________N*;5________Z. 提示:∈ ∉ ∈ ∈ ∉ ∈
[解] ∵1∈A,∴a+2,(a+1)2,a2+3a+3都可能等于1. ①若a+2=1,则a=-1,此时A中的元素为1,0,1与集合中元素的互异性矛盾 故舍去; ②若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3}适合题意, 当a=-2时,A中的元素为0,1,1与集合中元素的互异性矛盾,舍去, ③若a2+3a+3=1,则a=-1或a=-2,由①②知都不合题意,舍去. 综上所述,a=0.
的、 确定 的.互不相同
(1)“高一(2)班1.78米以上的同学”、“16岁的少年”、 “大于1的数”能构成一个集合吗? 提示:能构成集合.
(2)“高一(2)班的高个子同学”、“年轻人”、“帅哥”、 “接近0的数”能构成集合吗? 提示:不能构成集合.
2.元素与集合的关系 (1)如果a是集合A中的元素,就说a (2)如果a不是集合A中的元素,就说a
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
1.1集合的含义与表示课件-2024-2025学年高一上学期数学人教A版(2019)必修第一册
![1.1集合的含义与表示课件-2024-2025学年高一上学期数学人教A版(2019)必修第一册](https://img.taocdn.com/s3/m/b9b94abdac51f01dc281e53a580216fc710a5312.png)
2. 集合中的元素具有的特性:
× (1)确定性:我们班的高个子同学 × (2)互异性:{张三,李四,张三}
(3)无序性:{黄河,长江}
2. 集合中的元素具有的特性:
× (1)确定性:我们班的高个子同学 × (2)互异性:{张三,李四,张三}
(3)无序性:{黄河,长江} {长江,黄河}
2. 集合中的元素具有的特性:
记作N.
记作N*或N+ . 记作Z . 记作Q.
4.常用数集及其记法:
(1)非负整数集 (自然数集):
(2)正整数集: (3)整数集: (4)有理数集: (5)实数集:
记作N.Nature
记作N*或N+ . 记作Z .zheng数 记作Q. 记作R.Real
探究4:下列关系中正确的个数为( )
A. 1
拓展3:
已知 a∈R, x∈R, 集合 A 是方程 ax2+2x+1=0 的解集。 1) 若A中只有一个元素,求 a 的值; 2) 若A中有两个元素,求 a 的取值范围。
拓展4:
已知由实数组成的集合A满足: 若x∈A, ,则 ∈A。 1)若2∈A,试确定集合A; 2)试讨论集合A能否为单元素集合?
一般地,我们把研究对象统称为元素,把一些元 素组成的总体叫做集合(简称为集)。
元素通常用小写拉丁字母表示:
1. 元素、集合的概念及其表示:
一般地,我们把研究对象统称为元素,把一些元 素组成的总体叫做集合(简称为集)。
元素通常用小写拉丁字母表示: a, b, c
1. 元素、集合的概念及其表示:
一般地,我们把研究对象统称为元素,把一些元 素组成的总体叫做集合(简称为集)。
探究2:
已知集合 S 中有三个元素 a, b, c 是△ABC 的三边长,则△ABC 一定不是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版A版 高中数学必修1 第一章《集合与函数概念》
1.1集合
1.1.1集合的含义与表示
观察下列对象:
(1)1~20以内的所有质数 ; (2)我国古代四大发明; (3)满足x-3>2 的实数; (4)所有的正方形 ; (5)抛物线y=x2上的点.
思考:上面的对象有何共同特征?
1. 定义 一般地, 指定的某些对象的全体称为集合(简称为集). 集合中每个对象叫做这个集合的元素. 2. 集合的表示法
⑶空 集:不含任何元素的集合,记作
例题讲解
例1 下面的各组对象能否构成集合? (1)高个子的人; (2)小于2004的数; (3)和2004非常接近的数.
例题讲解
例2 若方程x2-5x+6=0和方程x2-x
-2=0的解为元素的集合为M,则M中元
素的个数为( C )
A.1
B.2
C.3
D.4
例题讲解
集合常用大写字母表示,如集合A,集合B... 元素则常用小写字母表示,如a,b...
3.集合元素的性质 (1)确定性:集合中的元素必须是确定的.
如果a是集合A的元素,就说a属于集合A, 记作a ∈ A;
如果a不是集合A的元素,就说a不属于集合A,
记作a A.
(2)互异性:集合中的元素必须是互不相同的.
例3 已知集合 A={x ax2+4x+4=0, x∈R,a∈R} 只有一个元素,求a的值和这个元素.
思考 1.集合{x|x-6<7}与集合{y|y-6<7}是否相同? 2.集合{y|y=x2-1}与{y|y≥-1}是否相同? 3.集合{x|y=x2-1}与{y|y=x2-1}是否相同? 4.集合{x|y=x2-1}与{(x,y)|y=x2-1}是否相同?
练习
1.用符号“ ”或“ ”填空
(1) 3.14 Q
(2) Q
(3) 0 N+ (5) 2 3 Q
(4) (-2)0 N+ (6) 2 3 R
6.集合的表示方式 ①列举法:把集合的元素一一列出来,并用“{ }”括起 来表示集合. 例:用列举法表示下列集合:
(1)方程x2 =x的所有实数根组成的集合; (2)小于10的所有自然数组成的集合; ②描述法:用确定条件表示某些对象是否属于这个集
课堂小结
1.集合的定义; 2.集合元素的性质:确定性,互异性,无序性; 3.数集及有关符号表示; 4. 集合的表示方式; 5. 集合的分类.。
合的方法. (3)不等式x-3>2的解集; (4)抛物线y=x2上的点集;
③ 图示法(Venn图) 常画一条封闭的曲线,用它的内部表示一个集合.
例:图1-1表示任意一个集合A; 图1-2表示集合{1,2,3,4,5} .
A 图1-1
1,2, 5, 4.
图1-2
7. 集合的分类 ⑴有限集:含有有限个元素的集合. ⑵无限集:含有无限个元素的集合.
(3)无序性:集合中的元素是无先后顺序的. 集合中的 任何两个元素都可以交换位置.
4.集合相等 构成两个集合的元素一样,就称这两个集合相等.
5.重要数集 (1) N: 自然数集(含0),即非负整数集 (2) N+或N* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
1.1集合
1.1.1集合的含义与表示
观察下列对象:
(1)1~20以内的所有质数 ; (2)我国古代四大发明; (3)满足x-3>2 的实数; (4)所有的正方形 ; (5)抛物线y=x2上的点.
思考:上面的对象有何共同特征?
1. 定义 一般地, 指定的某些对象的全体称为集合(简称为集). 集合中每个对象叫做这个集合的元素. 2. 集合的表示法
⑶空 集:不含任何元素的集合,记作
例题讲解
例1 下面的各组对象能否构成集合? (1)高个子的人; (2)小于2004的数; (3)和2004非常接近的数.
例题讲解
例2 若方程x2-5x+6=0和方程x2-x
-2=0的解为元素的集合为M,则M中元
素的个数为( C )
A.1
B.2
C.3
D.4
例题讲解
集合常用大写字母表示,如集合A,集合B... 元素则常用小写字母表示,如a,b...
3.集合元素的性质 (1)确定性:集合中的元素必须是确定的.
如果a是集合A的元素,就说a属于集合A, 记作a ∈ A;
如果a不是集合A的元素,就说a不属于集合A,
记作a A.
(2)互异性:集合中的元素必须是互不相同的.
例3 已知集合 A={x ax2+4x+4=0, x∈R,a∈R} 只有一个元素,求a的值和这个元素.
思考 1.集合{x|x-6<7}与集合{y|y-6<7}是否相同? 2.集合{y|y=x2-1}与{y|y≥-1}是否相同? 3.集合{x|y=x2-1}与{y|y=x2-1}是否相同? 4.集合{x|y=x2-1}与{(x,y)|y=x2-1}是否相同?
练习
1.用符号“ ”或“ ”填空
(1) 3.14 Q
(2) Q
(3) 0 N+ (5) 2 3 Q
(4) (-2)0 N+ (6) 2 3 R
6.集合的表示方式 ①列举法:把集合的元素一一列出来,并用“{ }”括起 来表示集合. 例:用列举法表示下列集合:
(1)方程x2 =x的所有实数根组成的集合; (2)小于10的所有自然数组成的集合; ②描述法:用确定条件表示某些对象是否属于这个集
课堂小结
1.集合的定义; 2.集合元素的性质:确定性,互异性,无序性; 3.数集及有关符号表示; 4. 集合的表示方式; 5. 集合的分类.。
合的方法. (3)不等式x-3>2的解集; (4)抛物线y=x2上的点集;
③ 图示法(Venn图) 常画一条封闭的曲线,用它的内部表示一个集合.
例:图1-1表示任意一个集合A; 图1-2表示集合{1,2,3,4,5} .
A 图1-1
1,2, 5, 4.
图1-2
7. 集合的分类 ⑴有限集:含有有限个元素的集合. ⑵无限集:含有无限个元素的集合.
(3)无序性:集合中的元素是无先后顺序的. 集合中的 任何两个元素都可以交换位置.
4.集合相等 构成两个集合的元素一样,就称这两个集合相等.
5.重要数集 (1) N: 自然数集(含0),即非负整数集 (2) N+或N* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集