七年级上《第四章几何图形初步》期末复习知识点、易错题

合集下载

七年级上《第四章几何图形初步》期末复习知识点、易错题

七年级上《第四章几何图形初步》期末复习知识点、易错题

⎧⎨⎩七年级数学上册期末复习几何图形初步知识点+易错题几何图形初步知识点一、本章的知识结构图一、立体图形与平面图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。

1、几何图形平面图形:三角形、四边形、圆等。

主(正)视图---------从正面看2、几何体的三视图侧(左、右)视图-----从左(右)边看俯视图---------------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。

(2)能根据三视图描述基本几何体或实物原型。

3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。

(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。

4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

二、直线、射线、线段(一)直线、射线、线段的区别与联系:基本概念(二)直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;1、线段的性质:两点的所有连线中,线段最短。

简单地:两点之间,线段最短。

2.画线段的方法:(1)度量法;(2)用尺规作图法3、线段的大小比较方法:(1)度量法;(2)叠合法4、点与直线的位置关系:(1)点在直线上;(2)点在直线外。

5、过三个已知点不一定能画出直线。

当三个已知点在一条直线上时,可以画出一条直线;当三个已知点不在一条直线上时,不能画出直线。

(三)两点距离的定义:连接两点间的线段的长度,叫做这两点的距离。

(四)线段中点:把一条线段分成两条相等的线段的点叫线段中点;(五)延长线和反向延长线延长线段AB是指按从端点A到B的方向延长;延长线段BA是指按从端点B 到A的反方向延长,这时也可以说反向延长线段AB。

直线、射线没有延长线,射线可以有反向延长线。

七年级数学上册第四章《几何图形初步》知识点复习(2)

七年级数学上册第四章《几何图形初步》知识点复习(2)

七年级数学上册第四章《几何图形初步》知识点复习(2)一、选择题1.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示: .故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.2.如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处A解析:A【详解】要想4个人到工具箱的距离之和最短,据图可知:•位置在A 与B 之间时,距离之和;AD BC >+‚位置在B 与C 之间时,距离之和;AD BC =+ƒ位置在C 与D 之间时,距离之和.AD BC >+则工具箱在B 与C 之间时,距离之和最短.故选A .3.如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).A .45︒B .65︒C .50︒D .25︒A解析:A【分析】 根据题意,先求得∠COB 的值;OM 平分∠BOC ,ON 平分∠AOC ,则可求得∠AOM 、∠AON 的值;∠MON=∠AOM+∠AON ,计算得出结果.【详解】∵∠AOB=90°,且∠AOC=40°,∴∠COB=∠AOB+∠AOC=90°+40°=130°,∵OM 平分∠BOC ,∴∠BOM=12∠BOC=65°, ∴∠AOM=∠AOB-∠BOM=25°,∵ON 平分∠AOC ,∴∠AON=12∠AOC=20°, ∴∠MON=∠AOM+∠AON=45°.∴∠MON 的度数是45°.故选:A .【点睛】本题考查了余角的计算,角的计算,角平分线的定义.首先确立各角之间的关系,根据角平分线定义得出所求角与已知角的关系转化是解题的关键.4.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .16B 解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =. 由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.5.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等D 解析:D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与β∠互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.6.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π C解析:C【分析】 根据柱体的体积V=S•h ,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h ,其中S 表示柱体的底面面积,h 表示柱体的高,现将矩形ABCD 绕轴l 旋转一周,∴柱体的底面圆环面积为:π(2r )2-πr 2=3πr 2,∴形成的几何体的体积等于:3πr 2h .故选:C .【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.7.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④C解析:C【分析】分三种情况: C 在线段AB 上,C 在线段BA 的延长线上以及C 不在直线AB 上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:当C 在线段AB 上时,BC=AB-AC= 8-6=2;当C 在线段BA 的延长线上时,BC=AB+AC =8+6=14;当C 不在直线AB 上时,AB 、AC 、BC 三边构成三角形,则2<BC <14,综上所述①②④正确故选:C .【点睛】本题考查两点间的距离和三角形三边的关系,理解题意,进行正确的分类求解是关键. 8.对于线段的中点,有以下几种说法:①若AM=MB ,则M 是AB 的中点;②若AM=MB=12AB ,则M 是AB 的中点;③若AM=12AB ,则M 是AB 的中点;④若A ,M ,B 在一条直线上,且AM=MB ,则M 是AB 的中点.其中正确的是( )A .①④B .②④C .①②④D .①②③④B 解析:B【分析】根据线段中点的定义和性质,可得答案.【详解】若AM=MB ,M 不在线段AB 上时,则M 不是AB 的中点,故①错误,若AM=MB=12AB ,则M 是AB 的中点,故②正确; 若AM=12AB ,M 不在线段AB 上时,则M 不是AB 的中点,故③错误; 若A ,M ,B 在一条直线上,且AM=MB ,则M 是AB 的中点,故④正确;故正确的是:②④故选B.【点睛】本题考查了线段中点的定义和性质,线段上到线段两端点距离相等的点是线段的中点. 9.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′B 解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 10.线段10AB cm =,C 为直线AB 上的点,且2BC cm =,,M N 分别是,AC BC 中点,则MN 的长度是( )A .6cmB .5cm 或7cmC .5cmD .5cm 或6cm C 解析:C【分析】根据题意分两种情况,①C 为线段AB 延长线上的点,②C 为线段AB 上的点,利用中点的性质分别进行求解.【详解】如图1, ①C 为线段AB 延长线上的点,∵,M N 分别是,AC BC 中点,∴CM=12AC=12(AB+BC )=6cm, CN=12BC=1cm, ∴MN=CM-CN=5cm;如图2,②C 为线段AB 上的点,∵,M N 分别是,AC BC 中点,∴CM=12AC=12(AB-BC )=4cm, CN=12BC=1cm, ∴MN=CM+CN=5cm;故选C.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.二、填空题11.如图,记以点A 为端点的射线条数为x ,以点D 为其中一个端点的线段的条数为y ,则x y -的值为________.【分析】先根据射线和线段的定义求出xy 的值再代入求解即可【详解】以点为端点的射线有射线AC 和射线AB 共两条故点为其中一个端点的线段有线段ADODBDCD 共四条故将代入中原式故答案为:【点睛】本题考查 解析:2-【分析】先根据射线和线段的定义求出x ,y 的值,再代入求解即可.【详解】以点A 为端点的射线有射线AC 和射线AB ,共两条,故2x =点D 为其中一个端点的线段有线段AD 、OD 、BD 、CD ,共四条,故4y =将2x =,4y =代入x y -中原式242=-=-故答案为:2-.【点睛】本题考查了代数式的运算,掌握射线和线段的定义是解题的关键.12.如图所示,∠BOD =45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE =90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA 即和为90°而有的角相加等于∠BOD 即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE =90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA ,即和为90°,而有的角相加等于∠BOD ,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD ,∠EOC ,∠EOB ,∠EOA ,∠DOC ,∠DOB ,∠DOA ,∠COB ,∠COA ,∠BOA 共10个;它们的度数之和是(∠EOD +∠DOA)+(∠EOC +∠COA)+(∠ EOB +∠BOA)+[(∠DOC +∠COB)+∠DOB]+∠EOA =90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.13.如图所示,填空:(1)AOB AOC ∠=∠+_________;(2)COB COD ∠=∠-_________=_________-_________;(3)AOB COD AOD ∠+∠-∠=_________.∠BOC 【分析】根据图中各角的和与差的关系进行运算即可完成解答;【详解】(1);(2)=∠AOB-∠AOC (3)====∠BOC 【点睛】此题主要考查角的和差关系解答的关键在于在图形中寻找角的和差关系解析:BOC ∠ BOD ∠ AOB ∠ AOC ∠ ∠BOC【分析】根据图中各角的和与差的关系进行运算,即可完成解答;【详解】(1)AOB AOC ∠=∠+BOC ∠;(2)COB COD ∠=∠-BOD ∠=∠AOB-∠AOC(3)AOB COD AOD ∠+∠-∠=()AOB COD AOB BOD ∠+∠-∠+∠=AOB COD AOB BOD ∠+∠-∠-∠=COD BOD ∠-∠=∠BOC【点睛】此题主要考查角的和差关系,解答的关键在于在图形中寻找角的和差关系.14.按照图填空:(1)可用一个大写字母表示的角有____________.(2)必须用三个大写字母表示的角有_____________________.(3)以B 为顶点的角共有______个,分别表示为_______________________.3【解析】【分析】根据角的表示方法:即角可以用一个大写字母表示也可以用三个大写字母表示其中顶点字母要写在中间唯有在顶点处只有一个角的情况才可用顶点处的一个字母来记这个角否则分不清这个字母究竟表示哪个解析:A ∠,C ∠ ABD ∠,ABC ∠,DBC ∠,ADB ∠,BDC ∠ 3 ABD ∠,ABC ∠,DBC ∠【解析】【分析】根据角的表示方法:即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】(1)∵以A 、 C 为顶点的角有两个,∴能用一个大写字母表示的角有A ∠,C ∠ ;(2)∵只要角的顶点及两边均有大写字母,则此角可用三个大写字母表示,∴可用三个大写字母表示的角是ABD ∠,ABC ∠,DBC ∠,ADB ∠,BDC ∠ ; (3)由图可知以B 为顶点的角共有3个,分别是ABD ∠,ABC ∠,DBC ∠.【点睛】此题考查角的概念,解题关键在于掌握其概念.15.下面的图形是某些几何体的表面展开图,写出这些几何体的名称. 正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱;解析:正方体 四棱锥 三棱柱【解析】【分析】根据常见的几何体的展开图进行判断.【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体 ,四棱锥 , 三棱柱;【点睛】此题考查几何体的展开图,解题关键在于掌握其展开图.16.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.若3AC =,1CP =,则线段PN 的长为________.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.17.把一个棱长为1米的正方体分割成棱长为1分米的小正方体,并把它们排列成一排,则可排________米.100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算正方体的体积=棱长×棱长×棱长1分米=01米即可解答【详解】棱长为1米的正方体的体积是1立方米棱长为1分米的小正方体的体积是1立方分米解析:100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算,正方体的体积=棱长×棱长×棱长,1分米=0.1米,即可解答【详解】棱长为1米的正方体的体积是1立方米,棱长为1分米的小正方体的体积是1立方分米,1立方米=1000立方分米,所以1000÷1=1000(个),则总长度是1×1000=1000(分米)=100(米).【点睛】此题考查正方体的体积公式以及长度单位之间的换算,掌握换算法则是解题关键 18.在同一平面内,如果15AOB ∠=︒,75AOC ∠=︒,那么BOC ∠=_______.或【分析】分别讨论射线OBOC 在射线OA 同侧和异侧的情况问题可解【详解】解:如图(1)当OBOC 在射线OA 同侧时如图(2)当OBOC 在射线OA 异侧时故答案为或【点睛】本题考查了角的加减运算解答关键是解析:60︒或90︒【分析】分别讨论射线OB 、OC 在射线OA 同侧和异侧的情况,问题可解【详解】解:如图(1)当OB 、OC 在射线OA 同侧时,701560BOC AOB AOC ∠=∠-∠=︒-︒=︒如图(2)当OB 、OC 在射线OA 异侧时,701590BOC AOB AOC ∠=∠+∠=︒+︒=︒故答案为60︒或90︒【点睛】本题考查了角的加减运算,解答关键是应用分类讨论思想,找到不同情况分别求解. 19.如图,点A ,O ,B 在同一直线上,12∠=∠,则与1∠互补的角是________.若1283235'''∠=︒,则1∠的补角为________.【分析】根据补角的性质和余角的性质解答即可【详解】∵∠1=∠2∴与∠1互补的角是∠AOD ∵∠1=28°32′35″∴∠1的补角=151°27′25″故答案为:∠AOD ;151°27′25″【点睛】本解析:AOD ∠ 2512517'''︒【分析】根据补角的性质和余角的性质解答即可.【详解】∵∠1=∠2,∴与∠1互补的角是∠AOD ,∵∠1=28°32′35″,∴∠1的补角=151°27′25″,故答案为:∠AOD ;151°27′25″.【点睛】本题考查了余角和补角,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.20.如图,OE 平分AOC ∠,OF 平分BOC ∠,124EOF ︒∠=,则AOB ∠的度数为________.【分析】根据角平分线的性质计算出再根据角的关系即可求解【详解】∵平分平分∴∴∴【点睛】本题考查了角的平分线定义及性质熟练掌握角平分线的意义是解本题的关键解析:112︒【分析】根据角平分线的性质计算出2AOC COE ∠=∠,2BOC COF ∠=∠,再根据角的关系,即可求解.【详解】∵OE 平分AOC ∠,OF 平分BOC ∠,∴2AOC COE ∠=∠,2BOC COF ∠=∠,∴2()2248AOC BOC COE COF EOF ︒∠+∠=∠+∠=∠=,∴360248112AOB ︒︒︒∠=-=.【点睛】本题考查了角的平分线定义及性质,熟练掌握角平分线的意义是解本题的关键.三、解答题21.如图,已知线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间的间距是10cm ,求AB 、CD 的长.解析:AB=12cm ,CD=16cm 【分析】先设BD=xcm ,由题意得AB=3xcm ,CD=4xcm ,AC=6xcm ,再根据中点的定义,用含x 的式子表示出AE=1.5xcm 和CF=2xcm ,再根据EF=AC-AE-CF=2.5xcm ,且E 、F 之间距离是EF=10cm ,所以2.5x=10,解方程求得x 的值,即可求AB ,CD 的长.【详解】设BD=xcm ,则AB=3xcm ,CD=4xcm ,AC=6xcm .∵点E 、点F 分别为AB 、CD 的中点,∴AE=12AB=1.5xcm ,CF=12CD=2xcm . ∴EF=AC -AE -CF=2.5xcm .∵EF=10cm ,∴2.5x=10,解得:x=4.∴AB=12cm ,CD=16cm .【点睛】本题考查了线段中点的性质,设好未知数,用含x 的式子表示出各线段的长度是解题关键.22.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=.②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点, 所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论. 23.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF .解析:【分析】根据题意和图形可以求得线段EB 、BC 、CF 的长,从而可以得到线段EF 的长.【详解】 ∵E ,F 分别是线段AB ,CD 的中点,∴AB=2EB=2AE ,CD=2CF=2FD ,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4,∴AC+2CF=6,解得,CF=1,同理可得:EB=1,∴BC=2,∴EF=EB+BC+CF=1+2+1=4.【点睛】此题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.如图,一个点从数轴上的原点开始,先向左移动2cm 到达A 点,再向左移动3cm 到达B 点,然后向右移动9cm 到达C 点.(1)用1个单位长度表示1cm ,请你在数轴上表示出A ,B , C 三点的位置;(2)把点C 到点A 的距离记为CA ,则CA=______cm.(3)若点B 以每秒2cm 的速度向左移动,同时A .C 点分别以每秒1cm 、4cm 的速度向右移动.设移动时间为t 秒,试探索:CA−AB 的值是否会随着t 的变化而改变?请说明理由. 解析:(1)数轴见解析;(2)6;(3)CA−AB 的值不会随着t 的变化而改变,理由见解析;【分析】(1)在数轴上表示出A ,B ,C 的位置即可;(2)求出CA 的长即可;(3)不变,理由如下:当移动时间为t 秒时,表示出A ,B ,C 表示的数,求出CA-AB 的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm ,(3)不变,理由如下:当移动时间为t 秒时,点A. B. C 分别表示的数为−2+t 、−5−2t 、4+4t ,则CA=(4+4t)−(−2+t)=6+3t ,AB=(−2+t)−(−5−2t)=3+3t ,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB 的值不会随着t 的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 25.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线.[知识运用](1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 解析:(1)40︒,16α;(2)①存在,当20t =秒或25秒时,∠COD 的度数是20︒;②当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α; (2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能: 若在相遇之前,则1805320t t --=,∴20t =;若在相遇之后,则5318020t t +-=,∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°;②相遇之前:(i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠, 即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时,则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后: (iii )如图3,OD 是OC 的伴随线时,则12COD AOD ∠=∠, 即()153********t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠, 即()118053t 5t 1802t -=+-, ∴30t =; 所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【点睛】 本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.26.如图所示是一个正方体的表面展开图,请回答下列问题:(1)与面B 、面C 相对的面分别是 和 ;(2)若A =a 3+15a 2b +3,B =﹣12a 2b +a 3,C =a 3﹣1,D =﹣15(a 2b +15),且相对两个面所表示的代数式的和都相等,求E 、F 代表的代数式. 解析:(1)面F ,面E ;(2)F =12a 2b ,E =1 【分析】(1)根据“相间Z 端是对面”,可得B 的对面为F ,C 的对面是E ,(2)根据相对两个面所表示的代数式的和都相等,三组对面为:A 与D ,B 与F ,C 与E ,列式计算即可. 【详解】(1)由“相间Z 端是对面”,可得B 的对面为F ,C 的对面是E.故答案为:面F ,面E.(2)由题意得:A 与D 相对,B 与F 相对,C 与E 相对,A +D =B +F =C +E将A =a 315+a 2b +3,B 12=-a 2b +a 3,C =a 3﹣1,D 15=-(a 2b +15)代入得:a315+a2b+315-(a2b+15)12=-a2b+a3+F=a3﹣1+E,∴F12=a2b,E=1.【点睛】本题考查了正方体的展开与折叠,整式的加减,掌握正方体展开图的特点和整式加减的计算方法是正确解答的前提.27.说出下列图形的名称.解析:依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【分析】根据平面图形:一个图形的各部分都在同一个平面内可得答案.【详解】根据平面图形的定义可知:它们依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【点睛】此题考查认识平面图形,解题关键在于掌握其定义对图形的识别.28.如图,已知点C是线段AB的中点,点D在线段CB上,且DA=5,DB=3.求CD的长.解析:1【解析】【分析】根据线段的和差,可得AB的长,根据线段中点的性质,可得AC的长,根据线段的和差,可得答案.【详解】由线段的和差,得AB=AD+BD=5+3=8.由线段中点的性质,得AC=CB=12AB=4.由线段的和差,得CD=AD−AC=5−4=1.【点睛】此题考查两点间的距离,解题关键在于掌握各性质定义.。

几何图形认识初步复习无忧

几何图形认识初步复习无忧

数学·新课标(RJ)
第四章期末复习
数学·新课标(RJ)
第4章 |复习 针对第18题训练 计算(精确到秒): (1)90°-45°32″; (2)36°32′25″×7. 解:(1)44°59′28″. (2)255°46′55″.
数学·新课标(RJ)
第一章期末复习
数学·新课标(RJ)
第一章期末复习
试卷讲练
针对第20题训练 观察下列算式:21=2,22=4,23=8,24=16,…,根据上
[答案] y=43
数学·新课标(RJ)
第三章期末复习
针对第25题训练 方程1-3(8-x)=-2(15-2x)的解为________. [答案] x=7
数学·新课标(RJ)
第三章期末复习
针对第26题训练
解方程: 3x5-2+2=x+5 6.
解:3x-2+10=x+6,3x-x=6+2-10, 2x=-2,x=-1.
针对第32题训练 已知|a|=3,|b|=5,且ab<0,那么a+b的值等于( ) A.8 B.-2 C.8或-8 D.2或-2
[答案] D
数学·新课标(RJ)
第一章期末复习
针对第33题训练 点M在数轴上距原点4个单位长度,若将M向右移动2个单位
长度至N点,点N表达的数是( ) A.6 B.-2 C.-6 D.6或-2 [答案] D
数学·新课标(RJ)
第4章 |复习
解:(1)当点 E 在线段 AC 上,即在点 C 的左边时,如图 FX4-5 所示:
图 FX4-5 DE=DC+CE=12BC+13AC =12×12AB+13×12AB=5.
数学·新课标(RJ)
第4章 |复习
(2)当点 E 不在线段 AC 上,即在点 C 的右边时,如图 FX4-6 所示:

人教版七年级数学上册 第四章几何图形初步易错题 训练

人教版七年级数学上册  第四章几何图形初步易错题 训练

几何初步易错题训练1.下列说法正确的个数是()①射线AB与射线BA是同一条射线;②两点确定一条直线;③两条射线组成的图形叫做角;④两点之间直线最短;⑤若AB=BC,则点B是AC的中点.A.1 个B.2 个C.3 个D.4 个2.下列说法中,①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间所有连线中,线段最短;④射线比直线小一半,正确的个数为()A.1个B.2个C.3个D.4个3.如图所示的图形中,可用∠AOB,∠1、∠O是三种方法标识同一个角的是()A.B.C.D.4.如图所示,从O点出发的五条射线,可以组成小于平角的角的个数是()A.10个B.9个C.8个D.4个5.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A.40°B.50°C.140°D.130°6.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.7.已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON的大小为()A.20°B.40°C.20°或40°D.30°或10°8.如图,点O为直线AB上一点,∠COD=90°,OE平分∠AOD.有下列四种结论,其中一定正确的个数有()个①∠AOE=∠EOD②∠AOC=∠EOD③∠AOC+∠BOD=90°④∠BOD=2∠COEA..4 B.3 C.2 D.19.如图,点C、D是线段AB上的两点,若AC=4,CD=5,DB=3,则图中所有线段的和是.10.线段AB=8cm.在直线AB上另取一点C,使AC=2cm,P、Q分别是AB、AC的中点,则线段PQ 的长度为cm.解答题训练1.如图,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=80°,∠BOC =60°,求∠AOD的度数.2.如图OC是∠AOB内部的一条射线,∠BOC=2∠AOC,OD平分∠AOC.(1)若∠AOB=120°,求∠BOC和∠BOD的度数;(2)画出∠BOC的平分线OE,说明∠DOE=∠AOB.3.如图,点O在直线AC上,OD平分∠AOB,∠BOE=∠EOC,∠DOE=70°,求∠EOC.14.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠DOB,求∠MON的大小.(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠DOB,求∠MON的大小.参考答案与试题解析一.选择题(共8小题)1.下列说法正确的个数是()①射线AB与射线BA是同一条射线;②两点确定一条直线;③两条射线组成的图形叫做角;④两点之间直线最短;⑤若AB=BC,则点B是AC的中点.A.1 个B.2 个C.3 个D.4 个【解答】解:①射线AB与射线BA不是同一条射线,故①错误;②两点确定一条直线,故②正确;③两条端点重合的射线组成的图形叫做角,故③错误;④两点之间线段最短,故④错误;⑤若AB=BC,则点B不一定是AC的中点,故⑤错误.故选:A.【点评】本题主要考查了角的定义,中点的定义,直线的性质以及线段的性质,解题时注意:角可以看成一条射线绕着端点旋转而成.2.下列说法中,①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间所有连线中,线段最短;④射线比直线小一半,正确的个数为()A.1个B.2个C.3个D.4个【解答】解:(1)过两点有且只有一条直线,此选项正确;(2)连接两点的线段的长度叫两点间的距离,此选项错误;(3)两点之间所有连线中,线段最短,此选项正确;(4)射线比直线小一半,根据射线与直线都无限长,故此选项错误;故正确的有2个.故选:B.【点评】本题主要考查学生对直线、射线概念公理的理解及掌握程度,熟记其内容是解题关键.3.如图所示的图形中,可用∠AOB,∠1、∠O是三种方法标识同一个角的是()A.B.C.D.【解答】解:A、不能用∠1,∠AOB,∠O三种方法表示同一个角,故A选项错误;B、能用∠1,∠AOB,∠O三种方法表示同一个角,故B选项正确;C、不能用∠1,∠AOB,∠O三种方法表示同一个角,故C选项错误;D、不能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项错误;故选:B.【点评】本题考查了角的表示方法的应用,主要考查学生的理解能力和判断能力.4.如图所示,从O点出发的五条射线,可以组成小于平角的角的个数是()A.10个B.9个C.8个D.4个【解答】解:引出5条射线时,以OA为始边的角有4个,以OD为始边的角有3个,以OC为始边的角有2个,以OE为始边的角有1个,故小于平角的角的个数是4+3+2+1=10(个).故选:A.【点评】本题主要考查角的个数的计算方法,在数角的个数时,能按一定的顺序计算,理清顺序,发现规律是解题的根据.5.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A.40°B.50°C.140°D.130°【解答】解:设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°﹣α=3(90°﹣α)+10°,180°﹣α=270°﹣3α+10°,解得α=50°.故选:B.【点评】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.6.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.【解答】解:A、∠AOC=∠BOC能确定OC平分∠AOB,故此选项不合题意;B、∠AOB=2∠AOC能确定OC平分∠AOB,故此选项不合题意;C、∠AOC+∠COB=∠AOB不能确定OC平分∠AOB,故此选项符合题意;D、∠BOC=∠AOB,能确定OC平分∠AOB,故此选项不合题意.故选:C.【点评】此题主要考查了角平分线的性质,正确把握角平分线的定义是解题关键.7.已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON的大小为()A.20°B.40°C.20°或40°D.30°或10°【解答】解:∠BOC在∠AOB内部∵∠AOB=60°,其角平分线为OM∴∠MOB=30°∵∠BOC=20°,其角平分线为ON∴∠BON=10°∴∠MON=∠MOB﹣∠BON=30°﹣10°=20°;∠BOC在∠AOB外部∵∠AOB=60°,其角平分线为OM∴∠MOB=30°∵∠BOC=20°,其角平分线为ON∴∠BON=10°∴∠MON=∠MOB+∠BON=30°+10°=40°.故选:C.【点评】本题主要考查平分线的性质,知道∠BOC在∠AOB内部和外部两种情况是解题的关键.8.如图,点O为直线AB上一点,∠COD=90°,OE平分∠AOD.有下列四种结论,其中一定正确的个数有()个①∠AOE=∠EOD②∠AOC=∠EOD③∠AOC+∠BOD=90°④∠BOD=2∠COEA..4 B.3 C.2 D.1【解答】解:∵OE平分∠AOD,∴∠AOE=∠EOD,故①正确;∵∠AOE=∠EOD,∠AOC<∠AOE,∴∠AOC<∠EOD,故②错误;∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,故③正确;∵∠BOD=180°﹣∠AOD=180°﹣2∠AOE=180°﹣2(∠AOC+∠COE)=2(90°﹣∠AOC)﹣2∠COE=2∠BOD﹣2∠COE,∴∠BOD=2∠BOD﹣2∠COE,∴∠BOD=2∠COE,故④正确;即正确的有3个,故选:B.【点评】本题考查了角平分线的定义,邻补角等知识点,能根据知识点进行推理是解此题的关键.二.填空题(共2小题)9.如图,点C、D是线段AB上的两点,若AC=4,CD=5,DB=3,则图中所有线段的和是41.【解答】解:AD=AC+CD=9,AB=AC+CD+DB=12,CB=CD+DB=8,故所有线段的和=AC+AD+AB+CD+CB+DB=41.【点评】找出图中所有线段是解题的关键,注意不要遗漏,也不要增加.10.线段AB=8cm.在直线AB上另取一点C,使AC=2cm,P、Q分别是AB、AC的中点,则线段PQ 的长度为3或5cm.【解答】解:当点C在AB之间时,P、Q分别是AB、AC的中点,所以AQ=AC,AP=AB,PQ=AP ﹣AQ=AB﹣AC=3cm.当点C在AB之外时,P、Q分别是AB、AC的中点,所以AQ=AC,AP=AB,PQ=AP+AQ=4+1=5cm.故线段PQ的长为3cm或5cm.【点评】本题难点是找出题中点C的位置,根据分析可得,点C有两个两种情况满足要求,则根据不同的情况分析各线段之间的关系,然后分别得出PQ的长度.三.解答题(共4小题)11.如图,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=80°,∠BOC =60°,求∠AOD的度数.【解答】解:∵OM平分∠AOB,ON平分∠COD,∴∠AOM=∠BOM=∠AOB,∠DON=∠CON=∠COD,∵∠MON=80°,∠BOC=60°,∴∠NOC+∠BOM=80°﹣60°=20°,∴∠DOC+∠AOB=20°×2=40°,∴∠AOD=40°+60°=100°.【点评】此题主要考查了角平分线的定义,关键是掌握角平分线把角分成相等的两部分.12.如图OC是∠AOB内部的一条射线,∠BOC=2∠AOC,OD平分∠AOC.(1)若∠AOB=120°,求∠BOC和∠BOD的度数;(2)画出∠BOC的平分线OE,说明∠DOE=∠AOB.【解答】解:(1)设∠AOC=x,则∠BOC=2x,所以x+2x=120°,则x=40°,即∠AOC=40°,∠BOC=80°,因为OD平分∠AOC,∴∠DOC=20°,所以∠DOB=∠DOC+∠BOC=20°+80°=100°;(2)∠BOC的平分线OE如图所示:因为OD平分∠AOC,∴∠DOC=∠AOC,因为OE平分∠BOC,∴∠EOC=∠BOC,∠DOE=∠DOC+∠EOC=∠AOC+∠BOC=∠AOB.【点评】本题考查的是角的计算、角平分线的定义,掌握角平分线的定义以及角平分线的画法是解题的关键.13.如图,点O在直线AC上,OD平分∠AOB,∠BOE=∠EOC,∠DOE=70°,求∠EOC.【解答】解:设∠AOB=x,则∠BOC=180°﹣x,∵OD平分∠AOB,∴∠BOD=∠AOB=x,∵∠BOE=∠EOC,∴∠BOE=∠BOC=60°﹣x,由题意得,x+60°﹣x=70°,解得,x=60°,∠EOC=(180°﹣x)=80°.【点评】本题考查的是角的计算、角平分线的定义,正确进行角的计算、掌握角平分线的定义是解题的关键.14.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠DOB,求∠MON的大小.(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠DOB,求∠MON的大小.【解答】解:(1)∵OM平分∠AOB,ON平分∠DOB,∴∠MOB=∠AOB,∠NOB=∠DOB,∴∠MON=∠MOB+∠BON=(∠AOB+∠DOB)=∠AOD=80°;(2)OM平分∠AOC,ON平分∠DOB,∴∠MOC=∠AOC,∠NOB=∠DOB,∴∠MON=∠MOC+∠BON﹣∠BOC=(∠AOC+∠DOB)﹣∠BOC=70°.【点评】本题考查的是角的计算、角平分线的定义,正确进行角的计算、掌握角平分线的定义是解题的关键.。

《易错题》七年级数学上册第四单元《几何图形初步》-解答题专项知识点(含答案)

《易错题》七年级数学上册第四单元《几何图形初步》-解答题专项知识点(含答案)

一、解答题1.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.小刚说:“过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点是为什么呢?”聪明的你能回答小强的疑问吗? 解析:见解析【分析】根据直线的性质,结合实际意义,易得答案.【详解】解:如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即可看到哪儿打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.【点睛】题考查直线的性质,无限延伸性即没有端点;同时结合生活中的射击场景,立意新颖,熟练掌握直线的性质是解题的关键.2.如图所示,长度为12cm 的线段AB 的中点为点M ,点C 将线段MB 分成:1:2MC CB =,求线段AC 的长度.解析:8cm【解析】【分析】设MC =xcm ,由MC :CB =1:2得到CB =2xcm ,则MB =3x ,根据M 点是线段AB 的中点,AB =12cm ,得到AM =MB 12=AB 12=⨯12=3x ,可求出x 的值,又AC =AM +MC =4x ,即可得到AC 的长.【详解】设MC =xcm ,则CB =2xcm ,∴MB =3x .∵M 点是线段AB 的中点,AB =12cm ,∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC ,∴AC =3x +x =4x =4×2=8(cm ).故线段AC 的长度为8㎝.【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.3.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.4.已知直线l上有三点A、B、C,AB=3,AC=2,点M是AC的中点.(1)根据条件,画出图形;(2)求线段BM的长.解析:(1)见解析;(2)2或4.【分析】(1)分C点在线段AB上和C点在BA的延长线上两种情况画出图形即可;(2)利用(1)中所画图形,根据中点的定义及线段的和差故选,分别求出MB的长即可.【详解】(1)点C的位置有两种:当点C在线段AB上时,如图①所示:当点C在BA的延长线上时,如图②所示:(2)∵点M是AC的中点,AC=2,∴AM=CM=12AC=1,如图①所示,当点C在线段AB上时,∵AB=AM+MB,AB=3,∴MB=AB-AM=2.如图②所示:当点C在BA的延长线上时,MB=AM+AB=4.综上所述:MB的长为2或4.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用分类讨论的思想是解题关键. 5.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.6.蜗牛爬树一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?解析:蜗牛需41天才爬到树顶不下滑.【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x天,爬到树顶不下滑,列出方程即可解答.【详解】设蜗牛需x天才爬到树顶不下滑,即爬到九丈八需x天,可列方程(10-7.8)(x-1)+10=98,解得x=41.答:蜗牛需41天才爬到树顶不下滑.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程.7.如图所示是一个正方体的表面展开图,请回答下列问题:(1)与面B、面C相对的面分别是和;(2)若A=a3+15a2b+3,B=﹣12a2b+a3,C=a3﹣1,D=﹣15(a2b+15),且相对两个面所表示的代数式的和都相等,求E、F代表的代数式.解析:(1)面F,面E;(2)F=12a2b,E=1【分析】(1)根据“相间Z端是对面”,可得B的对面为F,C的对面是E,(2)根据相对两个面所表示的代数式的和都相等,三组对面为:A与D,B与F,C与E,列式计算即可.【详解】(1)由“相间Z端是对面”,可得B的对面为F,C的对面是E.故答案为:面F,面E.(2)由题意得:A与D相对,B与F相对,C与E相对,A+D=B+F=C+E将A=a315+a2b+3,B12=-a2b+a3,C=a3﹣1,D15=-(a2b+15)代入得:a315+a2b+315-(a2b+15)12=-a2b+a3+F=a3﹣1+E,∴F12=a2b,E=1.【点睛】本题考查了正方体的展开与折叠,整式的加减,掌握正方体展开图的特点和整式加减的计算方法是正确解答的前提.8.如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.解析:(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【分析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则∠COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可; (3)分别用∠COE 及∠AOD 的式子表达∠COD ,进行列式即可.【详解】解:(1)∵90DOE ∠=︒,70AOC ∠=︒∴907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)∵OC 平分AOE ∠,70AOC ∠=︒,∴70COE AOC ∠=∠=︒,∵90DOE ∠=︒,∴907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)∵90COD DOE COE COE =∠-∠=︒-∠∠,70COD AOC AOD AOD =∠-∠=︒-∠∠∴9070COE AOD ︒-∠=︒-∠∴20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【点睛】本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.9.如图,平面上有四个点A ,B ,C ,D .(1)根据下列语句画图:①射线BA ;②直线AD ,BC 相交于点E ;③延长DC 至F (虚线),使CF=BC ,连接EF (虚线).(2)图中以E 为顶点的角中,小于平角的角共有__________个.解析:(1)见解析;(2)8【分析】(1) 根据直线、射线、线段的特点画出图形即可;(2)有公共端点的两条射线组成的图形叫做角,根据角的概念数出角的个数即可.【详解】解:(1)画图如下:(2)(前面数过的不再重数)以EF 为始边的角有4个,以EC 为始边的角有1个,以EA 为始边的角有1个,以EC 的反向延长线为始边的有1个,以EA 的反向延长线为始边的有1个,所以以E 为顶点的角中,小于平角的角共有8个.【点睛】此题主要考查了角、直线、射线、线段,关键是掌握角的概念及直线、射线、线段的特点.10.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.解析:(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时: 11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.11.已知线段AB=12,CD=6,线段CD 在直线AB 上运动(C 、A 在B 左侧,C 在D 左侧).(1)M 、N 分别是线段AC 、BD 的中点,若BC=4,求MN ;(2)当CD 运动到D 点与B 点重合时,P 是线段AB 延长线上一点,下列两个结论:①PA PB PC +是定值; ②PA PB PC -是定值,请作出正确的选择,并求出其定值. 解析:(1)MN =9;(2)①PA PB PC+是定值2. 【分析】(1)如图,根据“M 、N 分别为线段AC 、BD 的中点”,可先计算出CM 、BN 的长度,然后根据MN =MC +BC +BN 利用线段间的和差关系计算即可;(2)根据题意可得:当CD 运动到D 点与B 点重合时,C 为线段AB 的中点,根据线段中点的定义可得AC =BC ,此时①式可变形为()()PC AC PC BC PA PB PC PC ++-+=,进而可得结论.【详解】解:(1)如图,∵M 、N 分别为线段AC 、BD 的中点,∴CM =12AC =12(AB ﹣BC )=12(12﹣4)=4, BN =12BD =12(CD ﹣BC )=12(6﹣4)=1, ∴MN =MC +BC +BN =4+4+1=9;(2)①正确,且PA PB PC+=2. 如图,当CD 运动到D 点与B 点重合时,∵AB =12,CD =6,∴C 为线段AB 的中点,∴AC =BC ,∴()()22PC AC PC BC PA PB PC PC PC PC ++-+===, 而()()212PC AC PC BC PA PB AC PC PC PC PC+---===,不是定值. ∴①PA PB PC +是定值2.本题考查了线段中点的定义和线段的和差计算等知识,正确画出图形、熟练掌握线段中点的定义是解题的关键.12.如图,在数轴上有A ,B 两点,点A 在点B 的左侧.已知点B 对应的数为2,点A 对应的数为a .(1)若a =﹣1,则线段AB 的长为 ;(2)若点C 到原点的距离为3,且在点A 的左侧,BC ﹣AC =4,求a 的值.解析:(1)3;(2)﹣2【分析】(1)根据点A 、B 表示的数利用两点间的距离公式即可求出AB 的长度;(2)设点C 表示的数为c ,则|c|=3,即c =±3,根据BC ﹣AC =4列方程即可得到结论.【详解】(1)AB =2﹣a =2﹣(﹣1)=3,故答案为:3;(2)∵点C 到原点的距离为3,∴设点C 表示的数为c ,则|c|=3,即c =±3,∵点A 在点B 的左侧,点C 在点A 的左侧,且点B 表示的数为2,∴点C 表示的数为﹣3,∵BC ﹣AC =4,∴2﹣(﹣3)﹣[a ﹣(﹣3)]=4,解得a =﹣2.【点睛】本题主要考查数轴上两点之间的距离,解此题的关键在于熟练掌握其知识点.13.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由. (3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解析:(1)7.5;(2)12a ,理由见解析;(3)能,MN=12b ,画图和理由见解析 【分析】(1)据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN=CM+CN 即可求出MN 的长度即可.(2)据题意画出图形,利用MN=MC+CN 即可得出答案.(3)据题意画出图形,利用MN=MC-NC 即可得出答案.解:(1)点M、N分别是AC、BC的中点,∴CM=12AC=4.5cm,CN=12BC=3cm,∴MN=CM+CN=4.5+3=7.5cm.所以线段MN的长为7.5cm.(2)MN的长度等于12 a,根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC)=12a;(3)MN的长度等于12 b,根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC)=12b.【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.14.如图是由几个完全相同的小立方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的形状图.解析:见解析.【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为1,4,2;从左面看有3列,每列小正方形数目分别为3,4,2.据此可画出图形.【详解】解:如图所示.【点睛】本题考查了作图-三视图, 由三视图判断几何体,能根据俯视图对几何体进行推测分析,有一定的挑战性,关键是从俯视图中得出几何体的排列信息.15.已知长方形纸片ABCD ,点E 在边AB 上,点F ,G 在边CD 上,连接EF ,EG .将BEG ∠对折,点B 落在直线BG 上的点B '处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN .(1)如图(1),若点F 与点G 重合,求MEN ∠的度数;(2)如图(2),若点G 在点F 的右侧,且30FEG ︒∠=,求MEN ∠的度数; (3)若MEN α∠=,请直接用含α的式子表示FEG ∠的大小.解析:(1)90︒;(2)105︒;(3)若点G 在点F 的右侧,2180FEG α︒∠=-;若点G 在点F 的左侧,1802FEG α︒∠=-【分析】(1)由题意根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)由题意根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题. (3)根据题意分点G 在点F 的右侧以及点G 在点F 的左侧两种情形分别求解即可.【详解】解:(1)因为EN 平分AEF ∠,EM 平分BEF ∠, 所以12NEF AEF ∠=∠,12MEF BEF ∠=∠, 所以1111()2222MEN NEF MEF AEF BEF AEF BEF AEB ∠=∠+∠=∠+∠=∠+∠=∠. 因为180AEB ︒∠=, 所以1180902MEN ︒︒∠=⨯=. (2)因为EN 平分AEF ∠,EM 平分BEG ∠,所以12NEF AEF ∠=∠,12MEG BEG ∠=∠, 所以1111()()2222NEF MEG AEF BEG AEF BEG AEB FEG ∠+∠=∠+∠=∠+∠=∠-∠. 因为180AEB ︒∠=,30FEG ︒∠=,所以()118030752NEF MEG ︒︒︒∠+∠=-=, 所以7530105MEN NEF FEG MEG ︒︒︒∠=∠+∠+∠=+=.(3)因为EN 平分AEF ∠,EM 平分BEG ∠,所以12NEF AEF AEN ∠=∠=∠,12MEG BEG BEM ∠=∠=∠, 若点G 在点F 的右侧,MEN NEF FEG MEG α∠=∠+∠+∠=, ()()(180)2180FEG NEF MEG AEN BEM ααααα︒︒∠=-∠+∠=-∠+∠=-=--;若点G 在点F 的左侧,MEN NEF MEG FEG α∠=∠+∠-∠=1801802FEG NEF MEG AEN BEM ααααα︒︒∠=∠+∠-=∠+∠-=--=-.【点睛】本题考查角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.16.读下列语句,画出图形,并回答问题.(1)直线l 经过A ,B ,C 三点,且C 点在A ,B 之间,点P 是直线l 外一点,画直线BP ,射线PC ,连接AP ;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC .【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.17.如图,已知点O 为直线AB 上一点,将一个直角三角板COD 的直角顶点放在点O 处,并使OC 边始终在直线AB 的上方,OE 平分BOC ∠.(1)若70DOE ∠=︒,则AOC ∠=________;(2)若DOE α∠=,求AOC ∠的度数.(用含α的式子表示)解析:(1)140︒;(2)2α【分析】(1)由70DOE ︒∠=,90COD ︒∠=,可以推出COE ∠的度数,又因为OE 平分BOC ∠,所以可知BOC ∠的度数,180BOC ︒-∠的度数即可解决;(2)由DOE α∠=,90COD ︒∠=,可以推出COE ∠=90α︒-,又因为OE 平分BOC ∠,以可知BOC ∠=2COE ∠=1802α︒-,180BOC ︒-∠即可解决.【详解】解:(1)∵70DOE ︒∠=,90COD ︒∠=,∴907020COE ︒︒︒∠=-=.∵OE 平分BOC ∠,∴20COE BOE ︒∠=∠=,∴1801802140AOC BOC COE ︒︒︒∠=-∠=-∠=.故答案为140︒.(2)∵DOE α∠=,90COD ︒∠=,∴90COE α︒∠=-.∵OE 平分BOC ∠,∴21802BOC COE α︒∠=∠=-,∴()180********AOC BOC αα︒︒︒∠=-∠=--=.【点睛】本题主要考查了角平分线的定义,平角和直角,熟练各概念是解决本题的关键. 18.如图,O 在直线AC 上,OD 是∠AOB 的平分线,OE 在∠BOC 内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.解析:(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x)=72°,解得x=36°,故∠EOC=2x=72°.【点睛】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.19.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.20.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。

七年级数学上册第四章几何图形初步知识点总结(超全)

七年级数学上册第四章几何图形初步知识点总结(超全)

(名师选题)七年级数学上册第四章几何图形初步知识点总结(超全)单选题1、如图是一个几何体的展开图,则这个几何体是()A.B.C.D.答案:B分析:根据侧面为n个长方形,底边为n边形,原几何体为n棱柱,依此即可求解.解:侧面为3个长方形,底边为三角形,故原几何体为三棱柱.故选:B.小提示:本题考查了几何体的展开图,n棱柱的展开图侧面为n个长方形,底边为n边形.2、由5个相同的小正方体组成的几何体如图所示,从正面看该几何体得到的平面图形是()A.B.C.D.答案:D分析:从正面看该几何体得到的平面图形是主视图,根据主视图的定义进行判断.解:主视图有3列,每列小正方形数目分别为2,1,1,故选:D.小提示:此题主要考查了不同角度看几何体,主视图是从物体的正面看得到的视图.3、若α=70°,则α的补角的度数是()A.130°B.110°C.30°D.20°答案:B分析:直接根据补角的定义即可得.∵α=70°∴α的补角的度数是180°−α=180°−70°=110°故选:B.小提示:本题考查了补角的定义,熟记定义是解题关键.4、如图,将矩形绕着它的一边所在的直线l旋转一周,可以得到的立体图形是()A.B.C.D.答案:B分析:根据面动成体:一个长方形绕着它的一条边所在的直线旋转一周后所得到的立体图形是圆柱,据此判断即可.解:由题意可知:一个长方形绕着它的一条边所在的直线旋转一周后所得到的立体图形是圆柱.故选:B小提示:本题考查了圆柱的概念和面动成体,属于应知应会题型,熟练掌握基础知识是解题关键.5、圆柱与圆锥的体积之比为2:3,底面圆的半径相同,那么它们的高之比为( )A .2:3B .4:5C .2:1D .2:9答案:D分析:利用圆柱、圆锥的体积公式,即可算出它们的高之比;由题意可知,圆柱的体积=πr 2h 1,圆锥的体积=13πr 2h 2,∵圆柱与圆锥的体积之比为2:3,∴πr 2ℎ113πr 2ℎ2=23, ∴ℎ1ℎ2=29=2:9. 故选:D .小提示:本题考查圆锥和圆柱的体积公式,熟练掌握圆锥和圆柱的体积公式计算是解决本题的关键.6、流星滑过天空留下一条痕迹,这种生活现象可以反映的数学原理是( )A .点动成线B .线动成面C .面动成体D .以上都不对答案:A分析:流星是点,光线是线,所以说明点动成线.解:流星滑过天空留下一条痕迹,这种生活现象可以反映的数学原理是:点动成线.故选:A小提示:此题主要考查了点、线、面、体,关键是掌握点动成线,线动成面,面动成体.7、一个角的补角为138°,则这个角的余角为( )A .38°B .42°C .48°D .132°答案:C分析:根据互为补角的定义求出此角,然后再根据余角的定义求出答案即可.这个角是,180°-138°=42°,这个角的余角是,90°-42°=48°.故选:C .小提示:本题主要考查了补角和余角,熟练掌握补角和余角的定义是解题的关键.8、如图是由6块相同的小正方体组成的立体图形,从左面看到的形状是()A.B.C.D.答案:B分析:根据从左面看的要求画图即可.根据题意,从左面看到的形状是:,故选B.小提示:本题考查了从左面看几何体的形状,熟练掌握从左面看到图形的画法是解题的关键.9、一个角的度数等于60°20′,那么它的余角等于()A.40°80′B.39°80′C.30°40′D.29°40′答案:D分析:根据互为余角的定义解答即可.解:90°﹣60°20′=29°40′,故选D.小提示:本题主要考查了余角的定义,若两个角的和为90°,则这两个角互余.10、小王准备从A地去往B地,打开导航,显示两地距离为50km,但导航提供的三条可选路线长却分别为56km,66km,61km(如图).能解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.两点之间,直线最短D.两点确定一条直线答案:A分析:根据线段的性质:两点之间,线段最短,可得答案.小王准备从A地去往B地,打开导航,显示两地距离为50km,但导航提供的三条可选路线长却分别为56km,66km,61km(如图).能解释这一现象的数学知识是:两点之间,线段最短.故选A.小提示:本题考查了线段的性质,熟记线段的性质并应用是解题的关键.填空题11、如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.答案:月分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:由正方体的展开图特点可得:“神”字对面的字是“月”.所以答案是:月.小提示:此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.12、根据表面展开图依次写出立体图形的名称:_____、_____、_____.答案:圆锥四棱锥三棱柱分析:根据表面展开图的形状判断即可.解:圆锥的表面展开图是一个扇形和圆,四棱锥的表面展开是一个四边形和四个三角形,三棱柱的表面展开是三个长方形和两个三角形.所以答案是:圆锥,四棱锥,三棱柱.小提示:本题考查立体图形的表面展开,熟悉各几何体表面展开的形状是求解本题的关键.13、在直线AB上,AB=10,AC=16,那么AB的中点与AC的中点的距离为__________.答案:3或13##13或3分析:分两种情况讨论:若点B位于点A和点C间,若点A位于点B和点C间,解:设AB的中点与AC的中点分别为点M、N,如图,若点B位于点A和点C间,MN=AN−AM=12AC−12AB=12×16−12×10=3;如图,若点A位于点B和点C间,MN=AN+AM=12AC+12AB=12×16+12×10=13;综上所述,AB的中点与AC的中点的距离为3或13.所以答案是:3或13小提示:本题主要考查了有关中点的计算,明确题意,准确得到线段间的数量关系,利用分类讨论思想解答是解题的关键.14、平面内有n 个点A 、B 、C 、D …,其中点A 、B 、C 在同一条直线上,过其中任意两点画直线,最多可以画_____________________条.答案:n(n−1)2−2分析:如果所有点都不在同一直线上,当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…找到规律:当有n 个点不在同一直线上时,最多可连成n(n−1)2条直线,即可求得点A 、B 、C 在同一条直线上,最多可以画n(n−1)2−2条直线.如果所有点都不在同一直线上,当仅有两个点时,最多可连成1条直线;当有3个点时,最多可连成1+2=3条直线;当有4个点时,最多可连成1+2+3=6条直线;当有5个点时,最多可连成1+2+3+4=10条直线;…;可以得到规律:当有n 个点不在同一直线上时,最多可连成n(n−1)2条直线, 已知点A 、B 、C 在同一条直线上,则点A 、B 、C 任意两点的连线都是同一条直线,故最多可以画n(n−1)2−2条直线. 所以答案是:n(n−1)2−2. 小提示:本题考查了探究图形类规律以及直线的性质:两点确定一条直线.注意讨论点共线及不共线的情况,不要漏解.15、图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格,第2格,第3格,此时小正方体朝上一面的字是_________.答案:国分析:动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.由图1可得:“中”和“的”相对;“国”和“我”相对;“梦”和“梦”相对;由图2可得:该正方体从图2所示的位置依次翻到第1格、第2格、第3格时,“我”在下面,则这时小正方体朝上一面的字是“国”.所以答案是:国.小提示:本题以小立方体的侧面展开图为背景,考查学生对立体图形展开图的认识.考查了学生空间想象能力.解答题16、欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数(Vertex)、棱数E(Edge)、面数F (Flat surface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:三棱锥三棱柱正方体正八面体V 4 6 8____________________________.答案:(1)表格详见解析;(2)V+F−E=2分析:(1)通过认真观察图象,即可一一判断;(2)从特殊到一般探究规律即可.解:(1)填表如下:三棱锥三棱柱正方体正八面体V 4 6 8 6V+F−E=2.小提示:本题考查规律型问题,欧拉公式等知识,解题的关键是学会从特殊到一般探究规律的方法,属于中考常考题型.17、数轴上有A,B,C三点,A,B表示的数分别为m,n(m<n),点C在B的右侧,AC−AB=2.(1)如图1,若多项式(n−1)x3−2x7+m+3x−1是关于x的二次三项式,请直接写出m,n的值:(2)如图2,在(1)的条件下,长度为1的线段EF(E在F的左侧)在A,B之间沿数轴水平滑动(不与A,B 重合),点M是EC的中点,N是BF的中点,在EF滑动过程中,线段MN的长度是否发生变化,请判断并说明理由;(3)若点D是AC的中点.①直接写出点D表示的数____________(用含m,n的式子表示);②若AD+2BD=4,试求线段AB的长.答案:(1)m=−5,n=1 (2)不变化,理由见解析(3)①m+n2+1;②103分析:(1)由题可知,n-1=0,7+m=2,求出m,n;(2)设点E表示的数为x,则AE=x+5,AF=x+6,EC=3−x,BF=−x,再由中点的定义,得MC=ME=3−x2,NF=−x2,由MN=ME−EF−FN,得出MN的定值;(3)①根据两点间距离公式以及中点公式进行推导即可;②由题意,AD+2BD=4,依次表示出AD,BD的长,代入求解即可. (1)解:由题可知,n-1=0,7+m=2,∴n=1,m=−5所以答案是:m=−5,n=1(2)解:MN的长不发生变化,理由如下:由题意,得点C表示的数为3,设点E表示的数为x,则点F表示的数为x+1∴AB=6,BC=2,AE=x+5,AF=x+6,EC=3−x,BF=−x,∵点M是EC的中点,N是BF的中点∴MC=ME=3−x2,NF=−x2即MN=ME−EF−FN=3−x2−1−−x2=12(3)解:①∵A,B表示的数分别为m,n(m<n)又点C在B的右侧∴AB=n-m∵AC−AB=2∴AC= n-m+2∵点D是AC的中点∴AD =12AC = 12(n -m +2) ∴D 表示的数为:m + 12(n -m +2)=m+n 2+1②依题意,点C 表示的数分别为n +2∴AB =n −m ,AD =m+n 2+1−m =n−m 2+1 ∴BD =|m+n 2+1−n|=|m−n 2+1|,2BD =2|m−n 2+1|=|m −n +2|∵AD +2BD =4即n−m 2+1+|m −n +2|=4当m −n +2>0时.n−m 2+1+(m −n +2)=4m −n =2∵m <n∴m −n =2不符合题意,舍去当m −n +2<0时.n−m 2+1−(m −n +2)=4n −m =103综上所述,线段AB 的长为103.小提示:本题主要考查了数轴上的动点问题,以及两点间距离公式和中点公式的考查,利用数形结合思想表示出线段长是解决问题的关键.18、如图所示,C 是线段AB 上的一点,D 是AC 的中点,E 是BC 的中点,如果AB =9cm ,AC =5cm.求:⑴AD 的长;⑵DE 的长.答案:(1)AD =52cm ;(2)DE =92cm.分析:(1)根据中点的定义AD =12AC 计算即可;(2)根据DE =DC +CE ,求出CD 、CE 即可解决问题.解:(1)∵AC =5cm ,D 是AC 中点,∴AD =DC =12AC =52cm ,(2)∵AB =9cm ,AC =5cm ,∴BC =AB −AC =9−5=4cm ,∵E 是BC 中点,∴CE =12BC =2cm , ∴DE =CD +CE =52+2=92cm .小提示:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.。

人教版七年级数学上册第四章《几何图形初步》知识点汇总

人教版七年级数学上册第四章《几何图形初步》知识点汇总

⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看;2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB作直线a 作射线AB作线段a作线段AB、连接AB延长叙述不能延长反向延长射线AB延长线段AB反向延长线段BA 2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=AB ,AB=2AM=2BM.126、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; ; ; .α∠β∠ABC ∠3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。

七年级数学上册第四章几何图形初步重点易错题

七年级数学上册第四章几何图形初步重点易错题

(名师选题)七年级数学上册第四章几何图形初步重点易错题单选题1、在下面的几何体中:①长方体;②圆柱;③球;④五棱柱;⑤圆锥;⑥正方体,可以看成有两个底面的几何体是( )A .①②④⑥B .②③④C .②④⑤⑥D .①②③⑥答案:A分析:根据每一个几何体的特征判断即可.解:在下面的几何体中:①长方体;②圆柱;③球;④五棱柱;⑤圆锥;⑥正方体,可以看成有两个底面的几何体是:长方体,圆柱,五棱柱,正方体,故选:A .小提示:本题考查了认识立体图形,解题的关键是熟练掌握每一个几何体的特征.2、如图,在数轴上,若点A,B 表示的数分别是-2和10,点M 到A,B 距离相等,则M 表示的数为( )A .10B .8C .6D .4答案:D分析:根据两点之间的距离求出AB 的长度,根据点M 到A 、B 距离相等,求出BM 的长度,从而得到点M 表示的数.解:AB =10-(-2)=10+2=12,∵点M 到A 、B 距离相等,即M 是线段AB 的中点,∴BM =12AB =12×12=6, ∴点M 表示的数为10-6=4,故选:D .小提示:本题考查了两点之间的距离,数轴,有理数的减法,线段的中点,根据两点之间的距离求出AB 的长度是解题的关键.3、如图是正方体的表面展开图,则与“话”字相对的字是()A.跟B.党C.走D.听答案:C分析:根据正方体表面展开图的特征进行判断即可.解:由正方体表面展开图的“相间、Z端是对面”可知,“话”与“走”是对面,所以答案是:C.小提示:本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.4、下列图形是正方体展开图的个数为()A.1个B.2个C.3个D.4个答案:C分析:根据正方体的展开图的特征,11种不同情况进行判断即可.解:根据正方体的展开图的特征,只有第2个图不是正方体的展开图,故四个图中有3个图是正方体的展开图.故选:C.小提示:考查正方体的展开图的特征,“一线不过四,田凹应弃之”应用比较广泛简洁.5、如图,一个三棱柱共有侧棱()A.3条B.5条C.6条D.9条答案:A分析:结合图形即可得到答案.解:一个三棱柱,这个三棱柱共有3条侧棱.故选:A.小提示:本题考查的是立体图形—三棱柱.三棱柱有两个面是三角形且互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行.棱柱中两个侧面的公共边叫做棱柱的侧棱.掌握三棱柱的结构特征是解答的关键.6、下列几何体都是由4个相同的小正方体搭成的,其中从正面和左面看到的形状图相同的是()A.B.C.D.答案:A分析:分别画出四个选项从正面看和从左面看的形状,即可得到答案.解:A、从正面看的形状,从左面看的形状,故A符合题意;B、从正面看的形状,从左面看的形状,故B不符合题意;C、从正面看的形状,从左面看的形状,故C 不符合题意;D、从正面看的形状,从左面看的形状,故D 不符合题意;故选A.小提示:本题主要考查了小正方块组成的几何体的三视图,熟知三视图的定义是解题的关键.7、如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“负”字一面的相对面上的字是()A.强B.提C.课D.质答案:C分析:根据正方体表面展开图的特点,选择“负”这一面作为底面将正方体还原,即可找出相对面上的字.解:选择“负”这一面作为底面将正方体还原可得:“减”与“质”是相对面,“强”与“提”是相对面,“负”与“课”是相对面,故选:C.小提示:本题考查了根据正方体表面展开图判断相对面的字,熟练掌握正方体表面展开图的特点是解题的关键,需要一定空间想象能力.8、将如图所示的直棱柱展开,下列各示意图中不可能...是它的表面展开图的是()A.B.C.D.答案:D分析:由直棱柱展开图的特征判断即可.解:图中棱柱展开后,两个三角形的面不可能位于同一侧,因此D选项中的图不是它的表面展开图;故选D.小提示:本题考查了常见几何体的展开图,解决本题的关键是牢记三棱柱展开图的特点,即其两个三角形的面不可能位于展开图中侧面长方形的同一侧即可.9、如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是()A.跟B.百C.走D.年答案:B分析:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“建”字相对的面上的汉字是“百”.故选B.小提示:本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.10、如图,某正方体三组相对的两个面的颜色相同,分别为红,黄,蓝三色,其展开图不可能是()A.B.C.D.答案:C分析:利用正方体的展开图中,间隔是对面判断即可.解:根据正方体的展开图中,间隔是对面可知,选项A、B、D中都符合正方体三组相对的两个面的颜色相同,只有选项C中,蓝与蓝是相邻的面,故选:C.小提示:本题考查了正方体的展开图中间隔是对面的规律,理解掌握该规律是解题的关键.填空题11、将图中的角用不同的方法表示出来,并填写下表:分析:根据角的表示方法分析即可,角的两个基本元素中,边是两条射线,顶点是这两条射线的公共端点.是同一个角必须满足顶点相同,角的两边必须分别是指同一条射线.∠ADC可以表示为∠2,∠ABC可以表示为∠B,∠1可以表示为∠DAC,∠3可以表示为∠ECF,∠4可以表示为∠E,所以答案是:∠2,∠B,∠DAC,∠ECF,∠E.小提示:本题考查了角的表示方法,理解角的表示方法是解题的关键.12、如图,OC是∠AOB的平分线,∠BOD=1∠COD,∠BOD=15°,则∠COD=_____,∠BOC=______,3∠AOB=______.答案:45°30°60°∠COD,∠BOD=15°可求出∠COD的度数,∠COD−∠BOD即可求∠BOC的度数,然后根分析:根据∠BOD=13据OC是∠AOB的平分线即可求出∠AOB的度数.∵∠BOD=1∠COD,∠BOD=15°,3∴∠COD=3∠BOD=45°;∴∠BOC=∠COD−∠BOD=45°−15°=30°;∵OC是∠AOB的平分线,∴∠AOB=2∠BOC=60°.所以答案是:45°;30°;60°.小提示:此题考查了角平分线的概念,角度之间的数量关系,解题的关键是熟练掌握角平分线的概念,角度之间的数量关系.13、由n个相同的小正方体堆成的几何体,其主视图、俯视图如图所示,则n的最大值是________.答案:13分析:根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.综合主视图和俯视图,从上往下数,底面最多有 2+2+3=7 个,第二层最多有1+1+2=4 个,第三层最多有1+0+1=2 个,则n的最大值是 7+4+2=13所以答案是:13.小提示:本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.14、有一个正六面体骰子,放在桌面上,将骰子沿如图所示的方式滚动,每滚动90°算一次,则滚动第2021次后,骰子朝下一面的点数是_______.答案:2分析:观察图形知道第一次点数五和点二数相对,第二次点数四和点数三相对,第三次点数二和点数五相对,第四次点数三和点数四相对,第五次点数五和点二数相对,且四次一循环,从而确定答案.观察图形知道:第一次点数五和点二数相对,第二次点数四和点数三相对,第三次点数二和点数五相对,第四次点数三和点数四相对,第五次点数五和点二数相对,且四次一循环,∵2021÷4=505…1,∴滚动第2021次后与第一次相同,∴朝下的数字是5的对面2,所以答案是:2.小提示:本题考查了正方体相对两个面上的文字及图形类的变化规律问题,解题的关键是发现规律.15、如图,直线AB,CD相交于O,OE平分∠AOC,OF⊥OE,若∠BOD=46°,则∠DOF的度数为______°.答案:67分析:根据角平分线与角度的运算即可求解.∵∠BOD=46°,∴∠AOC=∠BOD=46°,∵OE平分∠AOC,∴∠COE=1∠AOC=23°,2又∵OF⊥OE,∴∠FOE=90°,∵∠COE+∠EOF+∠FOD=180°,∴∠FOD=180°−∠COE−∠EOF=180°−23°−90°=67°.所以答案是:67.小提示:此题主要考查角平分线的性质,解题的关键是熟知角度计算.解答题16、一个几何体是由若干个小正方体堆积而成的,从不同方向看到的几何体的形状图如图所示,在从上面看得到的形状图中标出相应位置小正方体的个数.答案:见解析分析:由俯视图可得该组合几何体最底层的小木块的个数,由主视图和左视图可得第二层和第三层小木块的个数,据此解答即可.小提示:本题考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.17、已知点A、B、C是数轴上的三点,点C表示数C,且点A、B表示的数a、b满足:(a+3)2+|5−b|=0.(1)当AC的长度为6个单位长度时,则a=,b=,.(2)在(1)条件下,点P、Q分别是AB、AC的中点,求PQ的长度是多少?(3)点M从点A出发以每秒4个单位长度的速度向点B运动,到达点B停留3秒钟后加快速度(仍保持匀速运动)返回到点A;点N从点O出发以每秒2个单位长度的速度向点B运动,到达点B后立即以相同速度返回到点O后停止;结果点M到点A比点N到点O晚1秒钟,设点M从出发到运动结束的整个过程时间记为t秒,求在整个运动过程中,当MN=1时t的值.答案:(1)−3,5,3或-9(2)7或1(3)1或2或3或5.5或5.75分析:(1)根据非负数的性质和两点间的距离公式即可求解;(2)根据中点坐标公式和两点间的距离公式即可求解;(3)根据题意先求出点N从出发到返回原点O并停止运动的时间,点M返回到点A时的速度,根据题意分情况讨论,即可求解.(1)解:∵(a+3)2+|5−b|=0,∴(a+3)2=0,|5−b|=0∴a=−3,b=5,又∵AC=6,∴c=3或−9所以答案是:−3,5,3或-9.(2)∵点P是AB的中点,∴点P表示的数是1,当点c=−9时,AC=6,∵点Q是AC的中点,∴点Q表示的数是-6∴PQ的长度是7同理可得:PQ的长度是1.(3)点N从出发到返回原点O并停止运动的时间为:5×2÷2=5(秒)点M从出发到运动结束的时间为:5+1=6(秒)点M从点A出发到达点B用时:8÷4=2(秒)点M从点B加快速度(仍保持匀速运动)返回到点A用时:6-2-3=1(秒)点M从点B加快速度(仍保持匀速运动)为:8÷1=8点M从点B开始加快速度返回点A时,点N到达点O并已停止①当M和N都向点B运动时:MN=2t-(4t-3)=1或4t-3-2t=1,t=1或t=2②当点M到达点B停留3秒时,点N正返回原点O,2t=5+1,t=3③当点M从点B加快速度(仍保持匀速运动)返回到点A时,此时点N已到原点O并停止距离点B为5,设点M从点B出发运动x秒时MN=1,则5−8x=1或8x-5=1x=0.5或x=0.75所以t=5+0.5=5.5或t=5+0.75=5.75∴当MN=1时t的值为1或2或3或5.5或5.75.小提示:本题考查了一元一次方程的应用、数轴以及绝对值,解题的关键是的熟练掌握非负数的性质和两点间的距离公式,找准等量关系,正确列出一元一次方程求解.18、如图1,货轮停靠在O点,发现灯塔A在它的东北(东偏北45°或北偏东45°)方向上.货轮B在码头O 的西北方向上.(1)仿照表示灯塔方位的方法,画出表示货轮B方向的射线;(保留作图痕迹,不写做法)(2)如图2,两艘货轮从码头O出发,货轮C向东偏北15°的OC的方向行驶,货轮D向北偏西15°的OD方向航行,求∠COD的度数;(3)令有两艘货轮从码头O出发,货轮E向东偏北x°的OE的方向行驶,货轮F向北偏西x°的OF方向航行,请直接用等式表示∠MOE与∠FOQ之间所具有的数量是.答案:(1)画图见解析;(2)∠COD=90°;(3)∠MOE+∠FOQ=180°.分析:(1)根据方向角西北方向上的度数,可得图;(2)根据余角的关系,可得∠COD的度数;(3)根据角的和差,∠MOE+∠FOQ=180°;(1)射线OB的方向就是西北方向,即货轮B所在的方向.(2)解:由已知可知,∠MOQ=90°,∠COQ=15°.所以,∠MOC=∠MOQ-∠COQ =75°.又因为∠DOM=15°,所以,∠COD=∠MOC+∠DOM =90°.(3)因为∠FOQ=∠FOM+∠MOQ=90°+x°,∠MOE=∠MOQ-∠QOE =90°-x°所以∠MOE+∠FOQ=180°.小提示:本题考查了作图-应用与设计作图,方向角,利用余角与角的和差的关系得出角的度数是解题关键.。

山东东营市七年级数学上册第四章《几何图形初步》知识点复习(含解析)

山东东营市七年级数学上册第四章《几何图形初步》知识点复习(含解析)

山东东营市七年级数学上册第四章《几何图形初步》知识点复习(含解析)一、选择题1.如图,已知点C为线段AB的中点,则①AC=BC;②AC=12AB;③BC=12AB;④AB=2AC;⑤AB=2BC,其中正确的个数是()A.2 B.3 C.4 D.5D 解析:D【分析】根据线段中点的定义解答.【详解】∵点C为线段AB的中点,∴AC=BC,AC=12AB,BC=12AB,AB=2AC,AB=2BC,故选:D.【点睛】此题考查线段中点的定义及计算,掌握线段中点是将线段两等分的点是解题的关键.2.下列说法错误的是()A.若直棱柱的底面边长都相等,则它的各个侧面面积相等B.n棱柱有n个面,n个顶点C.长方体,正方体都是四棱柱D.三棱柱的底面是三角形B解析:B【解析】A、若直棱柱的底面边长都相等,则它的各个侧面面积相等,说法正确;B、n棱柱有n+2个面,n个顶点,故原题说法错误;C、长方体,正方体都是四棱柱,说法正确;D、三棱柱的底面是三角形,说法正确;故选B.3.如图,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,且∠DOE=60°,∠BOE=13∠EOC,则下列四个结论正确的个数有()①∠BOD=30°;②射线OE平分∠AOC;③图中与∠BOE互余的角有2个;④图中互补的角有6对.A.1个B.2个C.3个D.4个D解析:D【分析】根据题意首先计算出∠AOD的度数,再计算出∠AOE、∠EOC、∠BOE、∠BOD的度数,然后再分析即可.【详解】解:由题意设∠BOE=x,∠EOC=3x,∵∠DOE=60°,OD平分∠AOB,∴∠AOD=∠BOD =60°-x,根据题意得:2(60°-x)+4x=180°,解得x=30°,∴∠EOC=∠AOE=90°,∠BOE=30°,∴∠BOD=∠AOD=30°,故①正确;∵∠BOD=∠AOD=30°,∴射线OE平分∠AOC,故②正确;∵∠BOE=30°,∠AOB=60°,∠DOE=60°,∴∠AOB+∠BOE=90°,∠BOE+∠DOE=90°,∴图中与∠BOE互余的角有2个,故③正确;∵∠AOE=∠EOC=90°,∴∠AOE+∠EOC=180°,∵∠EOC=90°,∠DOB=30°,∠BOE=30°,∠AOD=30°,∴∠COD+∠AOD=180°,∠COD+∠BOD=180°,∠COD+∠BOE=180°,∠COB+∠AOB=180°,∠COB+∠DOE=180°,∴图中互补的角有6对,故④正确,正确的有4个,故选:D.【点睛】本题主要考查角平分线以及补角和余角,解答的关键是正确计算出图中各角的度数.4.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D. C解析:C【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,根据看到的图形进行比较即可解答.【详解】解:A、主视图看到的是2行,3列,最下1行是3个,上面一行是1个,第2列是2个;左视图是2行,上下各1个;B.主视图看到的是3行,最下1行是2个,上面2行在下面1行的中间,各1个,左视图是3行,每行各一个;C.主视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个;左视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个,故主视图和左视图相同;D.主视图是2行2列,下面1行2个,上面1行1个,右面1列2个,左视图也是2行2列,下面1行2个,上面1行1个,左面1列2个.故选:C.【点睛】此题考查了从不同方向观察物体,重点是看清有几行几列,每行每列各有几个.5.将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是()A.B.C.D. C解析:C【分析】根据图形,结合互余的定义判断即可.【详解】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.【点睛】本题考查了余角和补角的应用,掌握余角和补角的定义是解题的关键.6.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20°B.30°C.10°D.15°A解析:A【分析】首先根据三角形的内角和定理求得∠B,再根据角平分线的定义求得∠BAD,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC,最后根据直角三角形的两个锐角互余即可求解.【详解】∵∠BAC=60°,∠C=80°,∴∠B=180°-∠BAC-∠C=40°,又∵AD是∠BAC的角平分线,∠BAC=30°,∴∠BAD=12∴∠ADE=∠B+∠BAD=70°,又∵OE⊥BC,∴∠EOD=90°-∠ODE=90°-70°=20°.故选:A.【点睛】本题考查了三角形的内角和定理及其推论、角平分线的定义等知识,此类题要首先明确解题思路,再利用相关知识解答.7.一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有()A.7种B.6种C.5种D.4种B解析:B【分析】根据棒上标的数字,找出这根木棒被2、7两点分成的线段的条数即可.【详解】如图,∵线段AD被B、C两点分成AB、AC、AD、BC、BD、CD六条的线段∴能量的长度有:2、3、5、7、8、10,共6个,故选B.【点睛】本题考查的实质是找出已知图形上线段的条数.8.如图所示,在∠AOB的内部有3条射线,则图中角的个数为().A.10 B.15 C.5 D.20A解析:A【分析】根据图形写出各角即可求解.【详解】图中的角有∠AOB、∠AOD、∠AOC、∠AOE、∠EOB、∠EOD、∠EOC、∠COB、∠COD、∠DOB,共10个.故选A.【点睛】此题主要考查角的个数,解题的关键是依次写出各角.9.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.10.用一个平面去截一个圆锥,截面的形状不可能是()A.B.C.D. D解析:D【解析】【分析】圆锥是由圆和扇形围成的几何体,圆锥的底面是圆,侧面是曲面,截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关,据此对所给选项一一进行判断.【详解】圆锥的轴截面是B,平行于底面的截面是C,当截面与轴截面斜交时截面是A;无论如何截,截面都不可能是D.故选D.【点睛】此题考查截一个几何体,解题关键是掌握圆锥的特点进行求解.二、填空题11.已知一个角的补角是它余角的3倍,则这个角的度数为_____.45°【分析】根据互为余角的和等于90°互为补角的和等于180°用这个角表示出它的余角与补角然后列方程求解即可【详解】设这个角为α则它的余角为90°﹣α补角为180°﹣α根据题意得180°-α=3(解析:45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键. 12.如图,若AOB ∠是直角,OM 平分AOC ∠,ON 平分COB ∠,则MON ∠=________.45°【分析】结合图形根据角的和差以及角平分线的定义找到∠MON 与∠AOB 的关系即可求出∠MON 的度数【详解】解:∵OM 平分∠AOCON 平分∠BOC ∴∠MOC=∠AOC ∠NOC=∠BOC ∴∠MON=解析:45°【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON 与∠AOB 的关系,即可求出∠MON 的度数.【详解】解:∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC=12∠AOC ,∠NOC=12∠BOC , ∴∠MON=∠MOC-∠NOC =12(∠AOC-∠BOC ) =12(∠AOB+∠B0C-∠BOC ) =12∠AOB =45°.故选答案为45°.【点睛】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.13.已知线段AB的长度为16厘米,C是线段AB上任意一点,E,F分别是AC,CB的中点,则E,F两点间的距离为_______.8厘米【解析】【分析】根据线段的中点即把线段分成相等的两部分的点进行解答【详解】解:∵C是线段AB的中点∴AC=CB=AB=8∵EF分别是ACCB的中点∴CE=AC=4CF=CB=4∴EF=8(cm解析:8厘米【解析】【分析】根据线段的中点即把线段分成相等的两部分的点进行解答.【详解】解:∵C是线段AB的中点,∴AC=CB=12AB=8,∵E、F分别是AC、CB的中点,∴CE=12AC=4,CF=12CB=4,∴EF=8(cm),故答案为:8cm.【点睛】本题主要考查了线段的中点的概念和性质,解决本题的关键是要能够根据中点准确运用式子表示并进行计算.14.36.275︒=_____度______分______秒.1630【解析】【分析】利用度分秒的换算1度=60分1分=60秒来计算【详解】36度16分30秒故答案为:361630【点睛】此题考查度分秒的换算解题关键在于掌握换算法则解析:16 30【解析】【分析】利用度分秒的换算1度= 60分,1分=60秒,来计算.【详解】36.275︒=36度16分30秒故答案为:36,16,30.【点睛】此题考查度分秒的换算,解题关键在于掌握换算法则.15.按照图填空:(1)可用一个大写字母表示的角有____________.(2)必须用三个大写字母表示的角有_____________________.(3)以B为顶点的角共有______个,分别表示为_______________________.3【解析】【分析】根据角的表示方法:即角可以用一个大写字母表示也可以用三个大写字母表示其中顶点字母要写在中间唯有在顶点处只有一个角的情况才可用顶点处的一个字母来记这个角否则分不清这个字母究竟表示哪个解析:A ∠,C ∠ ABD ∠,ABC ∠,DBC ∠,ADB ∠,BDC ∠ 3 ABD ∠,ABC ∠,DBC ∠【解析】【分析】根据角的表示方法:即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】(1)∵以A 、 C 为顶点的角有两个,∴能用一个大写字母表示的角有A ∠,C ∠ ;(2)∵只要角的顶点及两边均有大写字母,则此角可用三个大写字母表示, ∴可用三个大写字母表示的角是ABD ∠,ABC ∠,DBC ∠,ADB ∠,BDC ∠ ; (3)由图可知以B 为顶点的角共有3个,分别是ABD ∠,ABC ∠,DBC ∠.【点睛】此题考查角的概念,解题关键在于掌握其概念.16.车轮旋转时,看起来像一个整体的圆面,这说明了_______;直角三角形绕它的直角边旋转一周形成了一个圆锥体,这说明了________.线动成面面动成体【解析】【分析】车轮上有线看起来像一个整体的圆面所以是线动成面;直角三角形是一个面形成圆锥体所以是面动成体【详解】车轮旋转时看起来像一个整体的圆面这说明了线动成面;直角三角形绕它的直解析:线动成面 面动成体【解析】【分析】车轮上有线,看起来像一个整体的圆面,所以是线动成面;直角三角形是一个面,形成圆锥体,所以是面动成体.【详解】车轮旋转时,看起来像一个整体的圆面,这说明了线动成面;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了面动成体.故答案为线动成面,面动成体.【点睛】此题考查点、线、面、体,解题关键在于掌握其定义.17.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.90【分析】根据折叠的性质及平角的定义求出根据BD 为∠A′BE 的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD 为∠A′BE 的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠ABA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.18.如图所示,直线AB ,CD 交于点O ,∠1=30°,则∠AOD =________°,∠2=________°.30【分析】根据邻补角和对顶角的定义解答【详解】∠AOD =180°-∠1=180°-30°=150°∠2=180°-∠AOD=180°-150°=30°故答案为:15030【点睛】此题考查邻补角的定解析:30【分析】根据邻补角和对顶角的定义解答.【详解】∠AOD=180°-∠1=180°-30°=150°,∠2=180°-∠AOD=180°-150°=30°.故答案为:150,30.【点睛】此题考查邻补角的定义,正确理解图形中角的位置关系是解题的关键.19.如图,把一张长方形纸片沿AB折叠后,若∠1=50°,则∠2的度数为______.65°【解析】∵把一张长方形纸片沿AB折叠∴∠2=∠3∵∠1+∠2+∠3=180°∠1=50°∴∠2=(180°-∠1)2=65°解析:65°【解析】∵把一张长方形纸片沿AB折叠,∴∠2=∠3,∵∠1+∠2+∠3=180°,∠1=50°,∴∠2=(180°-∠1) 2=65°.20.如图,将一副三角板叠放一起,使直角的顶点重合于点O,则∠AOD +∠COB的度数为___________度.180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)解析:见解析.【分析】根据正方体展开图直接画图即可.【详解】解:【点睛】正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.23.已知,A、B是线段EF上两点,已知EA:AB:BF=1:2:3,M、N分别为EA、BF的中点,且MN=8cm,求EF的长.解析:12cm【解析】【分析】由已知设设EA=x,AB=2x,BF=3x,根据线段中点性质得MN=MA+AB+BN=12x+2x+32x=4x=8,可得EF=EA+AB+BF=6x=12.【详解】解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=12EA,NB=12BF,∴MN=MA+AB+BN=12x+2x+32x=4x,∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm.【点睛】本题考核知识点:线段的中点.解题关键点:根据线段中点性质和线段的和差关系列出方程.24.已知线段AB=10cm,直线AB上有一点C,BC=6cm,M为线段AB的中点,N为线段BC的中点,求线段MN的长.解析:2cm或8cm【分析】分两种情况:(1)点C在线段AB上时,(2)点C在AB的延长线上时,分别求出线段MN的值,即可.【详解】解:(1)若为图1情形,∵M为AB的中点,∴MB=MA=5cm,∵N为BC的中点,∴NB=NC=3cm,∴MN=MB﹣NB=2cm;(2)若为图2情形,∵M为AB的中点,∴MB=AB=5cm,∵N为BC的中点,∴NB=NC=3cm,∴MN=MB+BN=8cm.【点睛】本题主要考查线段的和差倍分和线段的中点概念,根据题意,画出图形,分类讨论,是解题的关键.25.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.解析:120°【分析】此题可以设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOB=120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.26.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.解析:(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x)=72°,解得x=36°,故∠EOC=2x=72°.【点睛】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.27.如图是由7个相同的小立方体组成的几何体,请画出从正面看、从左面看、从上面看的平面图形.解析:画图见详解.【分析】分别画出从正面看、左面看、上面看的图形,注意所有看到的棱都要表示到三视图中.【详解】如图所示:【点睛】本题主要考查了三视图的画法,所有看到的棱都要在三视图中表示出来是画图的关键. 28.如图,C,D,E为直线AB上的三点.(1)图中有多少条线段,多少条射线?能用大写字母表示的线段、射线有哪些?请表示出来;(2)若一条直线上有n个点,则这条直线上共有多少条线段,多少条射线?解析:(1)有10条线段,10条射线.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.(2)(1)2n n条线段,2n条射线.【解析】【分析】对于(1),这条直线上共5个点,求直线上的线段条数,相当于求从5个点中任取两个点的不同取法有多少种,可从点A开始,用划曲线的方法从左向右依次连接其它各点,再从点C开始,用同样的划曲线方法,直到将线段EB画出为止,即可找到所有的线段,由于每个点对应两条射线,由直线上的5个点即可知有多少条射线;对于(2),和(1)类似,当一条直线上有n个点时,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,结合其中有一半重合的线段,则可计算出n个点所组成的线段条数;一个点对应延伸方向相反的两条射线,可表示出当一条直线上有n个点时的射线条数.【详解】解:(1)图中有10条线段,10条射线.如图所示.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.能用大写字母表示的射线:射线AC、射线CD、射线DE、射线EB、射线CA、射线DC、射线ED、射线BE.(2)因为n个点,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,所以n个点就组成n(n-1)条线段.因为其中有一半重合的线段,如线段AC与线段CA,所以这条直线上共有(1)2n n条线段.因为一个端点对应延伸方向相反的两条射线,所以当一条直线上有n个点时,共有2n条射线.【点睛】此题考查直线、射线、线段,解题关键在于掌握直线上射线、线段条数的求法.。

初一数学上册(人教版)第四章 几何图形初步4.3 知识点总结含同步练习及答案

初一数学上册(人教版)第四章 几何图形初步4.3 知识点总结含同步练习及答案

已知 ∠A = 37∘ ,则 ∠A 的余角等于(

A. 37∘
B. 63∘
C. 143∘
D. 53∘
解:D.
如图,将一副三角尺的直角顶点重合后叠放在一起,若 ∠1 = 40∘ ,则 ∠2 的度数为( )
A. 60∘ 解:C.
B. 50∘
同角的余角相等.
C. 40∘
D. 30∘
下列关于角的说法,正确的有( )
分析:根据角平分线的定义求得 ∠COB + ∠DOC = 70∘,由已知条件和图示求得
∠AOB = ∠BOC = 40∘.
解:因为 OB 是 ∠AOC 的平分线,OD 是 ∠COE 的平分线,
所以 ∠COB + ∠DOC = 又因为 ∠COD = 30∘ ,
1 2
∠AOE =
1 2
× 140∘
= 70∘.
所以 ∠AOB = ∠BOC = 40∘.
已知一个角的补角比这个角的余角的 3 倍大 10∘ ,求这个角的度数 解:设这个角是 x,则
(180∘ − x) − 3(90∘ − x) = 10∘ .
解得
所以这个角的度数 50∘ .
x = 50∘ .
四、课后作业 (查看更多本章节同步练习题,请到快乐学) 1. 如图所示,用两种方法表示同一角的是 ( )
① 角是由两条有公共端点的两条射线组成的图形,故原命题错误;
② 角的大小与边的长短无关,只与两条边张开的角度有关,故原命题正确; ③ 角的边是射线,无需延长,故在角的一边的延长线上取一点 D 说法错误;
④ 角可以看做由一条射线绕着它的端点旋转而形成的图形,正确;
⑤ 把一个角放到一个放大 10 倍的放大镜下观看,角的度数不变,故原命题错误, 故正确的有两个.

华东师大版七年级数学上册第四章《图形的初步认识》知识点汇总

华东师大版七年级数学上册第四章《图形的初步认识》知识点汇总

华东师大版七年级数学上册
第四章《图形的初步认识》知识点汇总
复习内容:立体图形的三视图、展开图,最基本的图形——点和线,角,相交线,平行线.
(一)立体图形的三视图:正视图、左视图、俯视图
(二)立体图形的展开图
(三)最基本的图形——点和线
1、两点之间,线段最短.
2、连结两点的线段的长度,叫做这两点的距离.
3、经过两点有一条直线,并且只有一条直线.(两点确定一条直线)
4、把一条线段分成两条相等线段的点叫做线段的中点.(四)角
1、一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.
2、⑴如果两个角的和是90º,这两个角叫做互为余角.
⑵如果两个角的和是180º,这两个角叫做互为补角.
说明:①若∠1与∠2互余,则∠1+∠2=90º.
②若∠1与∠2互补,则∠1+∠2=180º.
3、⑴同角(或等角)的余角相等.
⑵同角(或等角)的补角相等.
4、用角度表示方向: 一般以正北、正南为基准,向东旋转的角度表示方向.如图,OA 示为北偏西60º.
5、对顶角相等.。

(易错题精选)初中数学几何图形初步解析含答案

(易错题精选)初中数学几何图形初步解析含答案

(易错题精选)初中数学几何图形初步解析含答案一、选择题1.下列说法,正确的是( )A.经过一点有且只有一条直线B.两条射线组成的图形叫做角C.两条直线相交至少有两个交点D.两点确定一条直线【答案】D【解析】【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【详解】A、经过两点有且只有一条直线,故错误;B、有公共顶点的两条射线组成的图形叫做角,故错误;C、两条直线相交有一个交点,故错误;D、两点确定一条直线,故正确,故选D.【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键. 2.如图,AB∥CD,EF平分∠GED,∠1=50°,则∠2=()A.50°B.60°C.65°D.70°【答案】C【解析】【分析】由平行线性质和角平分线定理即可求.【详解】∵AB∥CD∴∠GEC=∠1=50°∵EF平分∠GED∴∠2=∠GEF= 12∠GED=12(180°-∠GEC)=65°故答案为C.【点睛】本题考查的知识点是平行线性质和角平分线定理,解题关键是熟记角平分线定理.3.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=()A.35°B.45°C.55°D.65°【答案】A【解析】【分析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35°故选:A.【点睛】本题考查余角、补角的计算.⊥,从A地测得B地在A地的北偏东43︒4.如图,有A,B,C三个地点,且AB BC的方向上,那么从B地测得C地在B地的()A.北偏西43︒B.北偏西90︒C.北偏东47︒D.北偏西47︒【答案】D【解析】【分析】根据方向角的概念和平行线的性质求解.【详解】如图,过点B作BF∥AE,则∠DBF=∠DAE=43︒,∴∠CBF=∠DBC-∠DBF=90°-43°=47°,∴从B地测得C地在B地的北偏西47°方向上,故选:D.【点睛】此题考查方位角,平行线的性质,正确理解角度间的关系求出能表示点位置的方位角是解题的关键.5.如右图,在ABC ∆中,90ACB ∠=︒,CD AD ⊥,垂足为点D ,有下列说法:①点A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段AD 的长;③线段CD 是ABC ∆边AB 上的高;④线段CD 是BCD ∆边BD 上的高.上述说法中,正确的个数为( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 根据两点间的距离定义即可判断①,根据点到直线距离的概念即可判断②,根据三角形的高的定义即可判断③④.【详解】解:①、根据两点间的距离的定义得出:点A 与点B 的距离是线段AB 的长,∴①正确; ②、点A 到直线CD 的距离是线段AD 的长,∴②正确;③、根据三角形的高的定义,△ABC 边AB 上的高是线段CD ,∴③正确;④、根据三角形的高的定义,△DBC 边BD 上的高是线段CD ,∴④正确.综上所述,正确的是①②③④共4个.故选:D .【点睛】本题主要考查对两点间的距离,点到直线的距离,三角形的高等知识点的理解和掌握,能熟练地运用概念进行判断是解此题的关键.6.下列语句正确的是( )A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的7.如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式子中正确的是()A.∠1=12(∠2﹣∠3)B.∠1=2(∠2﹣∠3)C.∠G=12(∠3﹣∠2)D.∠G=12∠1【答案】C【解析】【分析】根据角平分线得,∠1=∠AFE,由外角的性质,∠3=∠G+∠CFG=∠G+∠1,∠1=∠2+∠G,从而推得∠G=12(∠3﹣∠2).【详解】解:∵AD平分∠BAC,EG⊥AD,∴∠1=∠AFE,∵∠3=∠G+∠CFG,∠1=∠2+∠G,∠CFG=∠AFE,∴∠3=∠G+∠2+∠G,∠G=12⨯(∠3﹣∠2).故选:C.【点睛】本题考查了三角形中角度的问题,掌握角平分线的性质、三角形外角的性质是解题的关键.8.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是()A.10cm2B.10πcm2C.20cm2D.20πcm2【答案】D【解析】【分析】根据圆柱的侧面积=底面周长×高.【详解】根据圆柱的侧面积计算公式可得π×2×2×5=20πcm2,故选D.【点睛】本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧面积公式.9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB=【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.∠,10.如图,已知直线AB和CD相交于G点,CG EG⊥,GF平分AGE∠=︒,则BGD34CGF∠大小为()A.22︒B.34︒C.56︒D.90︒【答案】A【解析】【分析】先根据垂直的定义求出∠EGF的度数,然后根据GF平分∠ABE可得出∠AGF的度数,再由∠AGC=∠AGF-∠CGF求出∠AGC的度数,最后根据对顶角相等可得出∠BGD的度数.【详解】解:∵CG⊥EG,∴∠EGF=90°-∠CGF=90°-34°=56°,又GF平分∠AGE,∴∠AGF=∠EGF=56°,∴∠AGC=∠AGF-∠CGF=56°-34°=22°,∴∠BGD=∠AGC=22°.故选:A.【点睛】本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题的关键.11.如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是()A.B. C.D.【答案】C【解析】【分析】由三棱柱侧面展开图示是长方形,但只需将平行四边线变形成一个长方形,再根据长方形围成的三棱柱不能为斜的进行判断即可.【详解】因为三棱柱侧面展开图示是长方形,所以平行四边形要变形成一个长方形,如图所示:又因为长方形围成的三棱柱不是斜的,所以排除A、B、D,只有C符合.故选:C.【点睛】考查了学生空间想象能力和三棱柱的展示图形,解题关键是抓住三棱柱侧面展开图示是长方形和长方形围成的三棱柱不能为斜的.12.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A.64°B.68°C.58°D.60°【答案】A【解析】【分析】首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB ∥CD ,∴∠1=∠AEG .∵EG 平分∠AEF ,∴∠AEF=2∠AEG ,∴∠AEF=2∠1=64°,∵AB ∥CD ,∴∠2=64°.故选:A .【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.13.如图,将三个同样的正方形的一个顶点重合放置,如果145∠=°,330∠=°时,那么2∠的度数是( )A .15°B .25°C .30°D .45°【答案】A【解析】【分析】 根据∠2=∠BOD+EOC-∠BOE ,利用正方形的角都是直角,即可求得∠BOD 和∠EOC 的度数从而求解.【详解】∵∠BOD=90°-∠3=90°-30°=60°,∠EOC=90°-∠1=90°-45°=45°,∵∠2=∠BOD+∠EOC-∠BOE ,∴∠2=60°+45°-90°=15°.故选:A .【点睛】此题考查余角和补角,正确理解∠2=∠BOD+EOC-∠BOE 这一关系是解题的关键.14.如图,直线 a ∥b ∥c ,直角三角板的直角顶点落在直线 b 上,若∠1=30°,则∠2 等于( )A .40°B .60°C .50°D .70° 【答案】B【解析】【分析】根据两直线平行内错角相等得1324==∠∠,∠∠,再根据直角三角板的性质得341290+=+=︒∠∠∠∠,即可求出∠2的度数.【详解】∵a ∥b ∥c∴1324==∠∠,∠∠∵直角三角板的直角顶点落在直线 b 上∴341290+=+=︒∠∠∠∠∵∠1=30°∴290160=︒-=︒∠∠故答案为:B .【点睛】本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.15.如果α∠和β∠互余,下列表β∠的补角的式子中:①180°-β∠,②90°+α∠,③2α∠+β∠,④2β∠+α∠,正确的有( )A .①②B .①②③C .①②④D .①②③④【答案】B【解析】【分析】根据互余的两角之和为90°,进行判断即可.【详解】∠β的补角=180°﹣∠β,故①正确;∵∠α和∠β互余,∴∠β=90°-∠α,∴∠β的补角=180°﹣∠β=180°﹣(90°-∠α)=90°+α∠,故②正确;∵∠α和∠β互余,∠α+∠β=90°,∴∠β的补角=180°﹣∠β=2(∠α+∠β)﹣∠β=2∠α+∠β,故③正确;∵∠α+∠β=90°,∴2∠β+∠α=90°+∠β,不是∠β的补角,故④错误.故正确的有①②③.故选B .【点睛】本题考查了余角和补角的知识,解答本题的关键是掌握互余的两角之和为90°,互补的两角之和为180°.16.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 是∠BAC 的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C 、∵∠B=30°,∠DAB=30°,∴AD=DB ,∴点D 在AB 的中垂线上,正确;D、∵∠CAD=30°,∴CD=12 AD,∵AD=DB,∴CD=12 DB,∴CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,∴S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.17.用一副三角板(两块)画角,能画出的角的度数是()A.145C o B.95C o C.115C o D.105C o【答案】D【解析】【分析】一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.【详解】选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为:45°+30°=75°,45°+60°=105°,45°+90°=135°,故选:D.【点睛】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.18.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A .B .C .D .【答案】A【解析】【分析】 根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】A 、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项正确;B 、图中∠α=∠β,不一定互余,故本选项错误;C 、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D 、图中∠α+∠β=180°,互为补角,故本选项错误.故选:A .【点睛】此题考查余角和补角,熟记概念与性质是解题的关键.19.如图,在平行四边形ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若60B ∠=o ,AB=3,则ADE ∆的周长为()A .12B .15C .18D .2【答案】C【解析】【分析】 依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE 是等边三角形,即可得到△ADE 的周长为6×3=18.【详解】由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选:C.【点睛】此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.20.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【答案】A【解析】【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..。

《易错题》七年级数学上册第四单元《几何图形初步》-解答题专项知识点(含解析)

《易错题》七年级数学上册第四单元《几何图形初步》-解答题专项知识点(含解析)

一、解答题1.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC.解析:见解析.【分析】(1)连接AB、CD并向两方无限延长即可得到直线AB、CD;交点处标点E;(2)连接AC、BD可得线段AC、BD,交点处标点F;(3)连接AD并从D向A方向延长即可;(4)连接BC,并且以B为端点向BC方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.2.如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.解析:见解析【解析】试题分析:根据旋转的特点和各几何图形的特性判断即可.试题如图所示:3.如图,有一只蚂蚁想从A点沿正方体的表面爬到G点,走哪一条路最近?(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意.解析:如图①,(1)见解析,理由:两点之间线段最短;(2)见解析.【分析】(1)先把正方体展开,根据两点之间线段最短,即可得出由A爬到G的最短途径.(2)分情况讨论,作图解答即可.【详解】(1)如图①,理由:两点之间线段最短.(2)如图②,这种最短路线有4条.【点睛】本题考查了几何体的展开图和最短路线问题,把几何体展开为平面图形是解决“怎样爬行最近”这类问题的关键.4.已知A ,B ,C 三点,他们所表示的数分别是5,-3,a. (1)求线段AB 的长度AB ; (2)若AC=6,求a 的值;(3)若d=3a ++5a -,求d 的最小值,并判定d 与AB . 解析:(1)8;(2)a =11或-1;(3)8,d =AB . 【分析】(1)线段AB 的长等于A 点表示的数减去B 点表示的数; (2)AC =|A 点表示的数-C 点表示的数|,然后解方程即可; (3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8. 【详解】(1)AB =5-(-3)=8;(2)AC =5a -=6,解得:a =11或-1;即在数轴上,若 C 点在A 点左边,则a =-1,若C 点在A 点右边,则a =11; (3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8,所以d =AB . 【点睛】本题考查了数轴上两点之间的距离,利用数轴上求线段长度的方法,找出等量关系,解决问题.5.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.6.说出下列图形的名称.解析:依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【分析】根据平面图形:一个图形的各部分都在同一个平面内可得答案.【详解】根据平面图形的定义可知:它们依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【点睛】此题考查认识平面图形,解题关键在于掌握其定义对图形的识别.AB BC CD=,点M是线段AC的中7.如图,点B、C在线段AD上,且::2:3:4MN=.点,点N是线段CD上的一点,且9(1)若点N是线段CD的中点,求BD的长;(2)若点N是线段CD的三等分点,求BD的长.解析:(1)14;(2)37823或37831. 【分析】(1)设AB=2x ,则BC=3x ,CD=4x .根据线段中点的性质求出MC 、CN ,列出方程求出x ,计算即可;(2)分两种情况:①当N 在CD 的第一个三等分点时,根据MN=9,求出x 的值,再根据BD=BC+CD 求出结果即可;②当N 在CD 的第二个三等分点时,方法同①. 【详解】设AB=2x ,则BC=3x ,CD=4x . ∴AC=AB+BC=5x , ∵点M 是线段AC 的中点, ∴MC=2.5x ,∵点N 是线段CD 的中点, ∴CN=2x ,∴MN=MC+CN=2.5x+2x=4.5x ∵MN=9,∴4.5x=9,解得x=2, ∴BD=BC+CD=3x+4x=7x=14.(2)情形1:当N 在CD 的第一个三等分点时,CN=43x ,∴MN=MC+CN=54239236x x x +== 解得,5423x =, ∴BD=BC+CD=3x+4x=7x=37823; 情形2:当当N 在CD 的第二个三等分点时,CN=83x , ∴MN=MC+CN=58319236x x x +== 解得,5431x =, ∴BD=BC+CD=3x+4x=7x=37831; 故BD 的长为37823或37831. 【点睛】本题考查的是两点间的距离的计算,掌握线段中点和三等分点的性质、灵活运用数形结合思想是解题的关键.8.如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.解析:(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠. 【分析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则∠COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可; (3)分别用∠COE 及∠AOD 的式子表达∠COD ,进行列式即可. 【详解】解:(1)∵90DOE ∠=︒,70AOC ∠=︒ ∴907020COE DOE AOC =∠-∠=︒-︒=︒∠ 故答案为:20︒(2)∵OC 平分AOE ∠,70AOC ∠=︒,∴70COE AOC ∠=∠=︒, ∵90DOE ∠=︒,∴907020COD DOE COE ∠=∠-∠=︒-︒=︒. (3)∵90COD DOE COE COE =∠-∠=︒-∠∠,70COD AOC AOD AOD =∠-∠=︒-∠∠ ∴9070COE AOD ︒-∠=︒-∠∴20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠. 【点睛】本题考查了角的和差关系,准确表达出角的和差关系是解题的关键. 9.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线. [知识运用](1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线.解析:(1)40︒,16α;(2)①存在,当20t =秒或25秒时,∠COD 的度数是20︒;②当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线. 【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可; ②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可. 【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α;(2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能:若在相遇之前,则1805320t t --=, ∴20t =;若在相遇之后,则5318020t t +-=, ∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°; ②相遇之前: (i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠, 即()13180532t t t =--,∴907t =; (ii )如图2,OC 是OD 的伴随线时, 则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后:(iii )如图3,OD 是OC 的伴随线时, 则12COD AOD ∠=∠, 即()15318018052t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠, 即()118053t 5t 1802t -=+-, ∴30t =;所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线. 【点睛】本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.10.(1)已知一个角的补角比它的余角的3倍多10︒,求这个角的度数. (2)已知α∠的余角是β∠的补角的13,并且32βα∠=∠,试求a β∠+∠的度数.解析:(1)50°;(2)150° 【分析】(1)设这个角为α,则补角为(180°-α),余角为(90°-α),再由补角比它的余角的3倍多10°,可得方程,解出即可;(2)根据互余和互补的定义,结合已知条件列出方程组,解方程组得到答案. 【详解】(1)设这个角为α,根据题意,得18039010()a α︒-=︒-+︒.解得:50α=︒. 答:这个角的度数为50︒. (2)根据题意,得190(180)3αβ︒︒-∠=⨯-∠且32βα∠=∠, ∴60α∠=︒,90β∠=︒. ∴ 150αβ∠+∠≡︒. 【点睛】本题考查的是余角和补角的概念,掌握若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补是解题的关键. 11.将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE 的度数; (2)如图②,若∠ACE =2∠BCD ,请求出∠ACD 的度数. 解析:(1)∠CAE =18°;(2)∠ACD =120°.【分析】(1)由题意根据∠BAC =90°列出关于∠1、∠2的方程求解即可得到∠2的度数,再根据同角的余角相等求出∠CAE =∠2,从而得解;(2)根据∠ACB 和∠DCE 的度数列出等式求出∠ACE ﹣∠BCD =30°,再结合已知条件求出∠BCD ,然后由∠ACD =∠ACB+∠BCD 并代入数据计算即可得解.【详解】解:(1)∵∠BAC =90°,∴∠1+∠2=90°,∵∠1=4∠2,∴4∠2+∠2=90°,∴∠2=18°,又∵∠DAE =90°,∴∠1+∠CAE =∠2+∠1=90°,∴∠CAE =∠2=18°;(2)∵∠ACE+∠BCE =90°,∠BCD+∠BCE =60°,∴∠ACE ﹣∠BCD =30°,又∠ACE =2∠BCD ,∴2∠BCD ﹣∠BCD =30°,∠BCD =30°,∴∠ACD =∠ACB+∠BCD =90°+30°=120°.【点睛】本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.12.如图,以直线AB 上一点O 为端点作射线OC ,使80BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处(注:90DOE ∠=︒)()1如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠= .()2如图②,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OC 恰好平分∠BOE ,求COD ∠的度数;()3如图③,将直角三角板DOE 绕点O 转动,如果OD 始终在BOC ∠的内部,试猜想BOD ∠与COE ∠有怎样的数量关系?并说明理由.解析:(1)10°;(2)10°;(3)∠COE -∠BOD =10°,理由见解析.【分析】(1)根据COE DOE BOC =-∠∠∠,即可求出COE ∠的度数;(2)根据角平分线的性质即可求出COD ∠的度数;(3)根据余角的性质即可求出∠COE -∠BOD =10°.【详解】(1)∵90DOE ∠=︒,80BOC ∠=︒∴908010COE DOE BOC =-=︒-︒=︒∠∠∠∴∠COE =10°(2)∵OC 恰好平分∠BOE ∴12COE COB BOE ==∠∠∠ ∴∠COD =∠DOE -∠COE =∠DOE -∠BOC =10°(3)猜想:∠COE -∠BOD =10°理由:∵∠COE =∠DOE -∠COD =90°-∠COD∠COD =∠BOC -∠BOD =80°-∠B OD∴∠COE =90°-(80°-∠B OD )=10°+∠B OD即∠COE -∠BOD =10°【点睛】本题考查了角的度数问题,掌握角平分线的性质、余角的性质是解题的关键. 13.如图,平面上有四个点A ,B ,C ,D .(1)根据下列语句画图:①射线BA ;②直线AD ,BC 相交于点E ;③延长DC 至F (虚线),使CF=BC ,连接EF (虚线).(2)图中以E 为顶点的角中,小于平角的角共有__________个.解析:(1)见解析;(2)8【分析】(1)根据直线、射线、线段的特点画出图形即可;(2)有公共端点的两条射线组成的图形叫做角,根据角的概念数出角的个数即可.【详解】解:(1)画图如下:(2)(前面数过的不再重数)以EF为始边的角有4个,以EC为始边的角有1个,以EA为始边的角有1个,以EC的反向延长线为始边的有1个,以EA的反向延长线为始边的有1个,所以以E为顶点的角中,小于平角的角共有8个.【点睛】此题主要考查了角、直线、射线、线段,关键是掌握角的概念及直线、射线、线段的特点.14.直线l上有A,B两点,AB=24cm,点O是线段AB上的一点,OA=2OB.(1)OA=__________cm,OB=___________cm;(2)若C点是线段AO上的一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发向右运动,点P的速度为2cm/s,点Q的速度为1cm s⁄,设运动时间为t(s),当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP−OQ=8;②当点P经过点O时,动点M从点O出发,以3cm s⁄的速度向右运动.当点M追上点Q后立即返回.以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为___________cm.解析:(1)16,8;(2)83;(3)①t=165或16s;②48.【解析】【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16-x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16-2t)-(8+t)=8,当点P在点O右边时,2(2t-16)-(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2-1)=16由此即可解决.【详解】(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(2)设CO的长为x cm.由题意,得x+(x+8)=24−8−x..解得x=83.所以CO的长为83cm(3)①当点P在点O左边时,2(16−2t)−(8+t)=8,t=16,5当点P在点O右边时,2(2t−16)−(8+t)=8,t=16,∴t=16或16s时,2OP−OQ=8.5②设点M运动的时间为ts,由题意:t(2−1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.【点睛】此题考查一元一次方程的应用,两点间的距离,解题关键在于根据题意列出方程. 15.如图,在数轴上有A,B两点,点A在点B的左侧.已知点B对应的数为2,点A对应的数为a.(1)若a=﹣1,则线段AB的长为;(2)若点C到原点的距离为3,且在点A的左侧,BC﹣AC=4,求a的值.解析:(1)3;(2)﹣2【分析】(1)根据点A、B表示的数利用两点间的距离公式即可求出AB的长度;(2)设点C表示的数为c,则|c|=3,即c=±3,根据BC﹣AC=4列方程即可得到结论.【详解】(1)AB=2﹣a=2﹣(﹣1)=3,故答案为:3;(2)∵点C到原点的距离为3,∴设点C表示的数为c,则|c|=3,即c=±3,∵点A在点B的左侧,点C在点A的左侧,且点B表示的数为2,∴点C表示的数为﹣3,∵BC﹣AC=4,∴2﹣(﹣3)﹣[a﹣(﹣3)]=4,解得a=﹣2.【点睛】本题主要考查数轴上两点之间的距离,解此题的关键在于熟练掌握其知识点.16.如图,OC是∠AOB的平分线,∠AOD比∠BOD大30°,则∠COD的度数为________.解析:15°【分析】设∠BOD=x,分别表示出∠AOD=x+30°,∠AOC= x+15°,即可求出∠COD.【详解】解:设∠BOD=x,则∠AOD=x+30°,所以∠AOB=2x+30°.因为OC是∠AOB的平分线,所以∠AOC=12∠AOB= x+15°,所以∠COD=∠AOD-∠AOC=15°.故答案为:15°【点睛】本题考查了角平分线的定义,角的和差等知识,理解角平分线的定义,并用含x的式子表示是解题关键.17.如图,已知平面上有四个村庄,用四个点A,B,C,D表示.(1)连接AB,作射线AD,作直线BC与射线AD交于点E;(2)若要建一供电所M,向四个村庄供电,要使所用电线最短,则供电所M应建在何处?请画出点M的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M应建在AC与BD的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M 即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短. 18.如图,已知点O 为直线AB 上一点,将一个直角三角板COD 的直角顶点放在点O 处,并使OC 边始终在直线AB 的上方,OE 平分BOC ∠.(1)若70DOE ∠=︒,则AOC ∠=________;(2)若DOE α∠=,求AOC ∠的度数.(用含α的式子表示)解析:(1)140︒;(2)2α【分析】(1)由70DOE ︒∠=,90COD ︒∠=,可以推出COE ∠的度数,又因为OE 平分BOC ∠,所以可知BOC ∠的度数,180BOC ︒-∠的度数即可解决;(2)由DOE α∠=,90COD ︒∠=,可以推出COE ∠=90α︒-,又因为OE 平分BOC ∠,以可知BOC ∠=2COE ∠=1802α︒-,180BOC ︒-∠即可解决.【详解】解:(1)∵70DOE ︒∠=,90COD ︒∠=,∴907020COE ︒︒︒∠=-=.∵OE 平分BOC ∠,∴20COE BOE ︒∠=∠=,∴1801802140AOC BOC COE ︒︒︒∠=-∠=-∠=.故答案为140︒.(2)∵DOE α∠=,90COD ︒∠=,∴90COE α︒∠=-.∵OE 平分BOC ∠,∴21802BOC COE α︒∠=∠=-,∴()180********AOC BOC αα︒︒︒∠=-∠=--=.【点睛】本题主要考查了角平分线的定义,平角和直角,熟练各概念是解决本题的关键. 19.如图,∠AOC :∠COD :∠BOD=2:3:4,且A ,O ,B 三点在一条直线上,OE ,OF 分别平分∠AOC 和∠BOD ,OG 平分∠EOF ,求∠GOF 的度数。

(完整版)人教版七年级数学第四章《几何图形初步》知识点汇总

(完整版)人教版七年级数学第四章《几何图形初步》知识点汇总

第四章《几何图形初步》知识点汇总01、几何图形①几何图形的定义:我们把实物中抽象出来的各种图形叫做几何图形。

②几何图形分为图形和图形。

③平面图形:图形所表示的各个部分都在内的图形,如直线、三角形等。

④立体图形:图形所表示的各个部分同一平面内的图形,如圆柱体。

02、常见的立体图形①柱体:A棱柱: B 圆柱②椎体:A棱锥 B圆锥球体等03、立体图形的三视图:从不同方向观察几何体,从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做______、______、_______),这样就可以把立体图形转化为平面图形。

①会观察小正方体堆积图形画出三视图②会根据三视图知道堆积的小正方体的个数04、立体图形的展开图①圆柱的平面展开图是。

②圆锥的平面展开图是。

③n棱柱的侧面展开图是 n个形,n棱柱有个底面,都是,n棱柱的平面展开图是。

④n 棱锥的侧面展开图是 n个形,n棱锥有个底面,是,n棱锥的平面展开图是。

⑤正方体的展开图共分四类:①掌握在正方体展开图中找相对面的方法②会根据展开图中的图案判断是哪个图形的展开图05、点、线、面、体几何图形的组成:由___、___、___组成。

_____是构成图形的基本元素点动成_____、____动成____、____动成____。

06、直线:①点与直线的位置关系:第一种关系:点在直线____,或者说直线______点;第二种关系:点在直线____,或者说直线_________点。

②直线公理:经过两点有且只有一条直线(简称:______________);07、直线与直线的位置关系①同一平面内,两条直线的位置关系分为:_____与_____②当两条不同的直线________时,我们就称这两条直线相交,这个_______叫做它们的_____。

08、射线:①表示方法:端点字母必须写在前②判断两条射线是同一条射线的方法:_________________09、线段①基本性质:___________________②两点之间的距离__________________③线段的中点10、比较线段大小的方法:_______法和______法11会作图:作一条线段等于已知线段知道延长(反向延长)射线和线段的作图语言12、角:①由一点引出两条射线形成的图形叫做角。

人教版七年级数学上册第四章几何图形初步知识点归纳及练习

人教版七年级数学上册第四章几何图形初步知识点归纳及练习

人教版七年级数学上册第四章几何图形初步知识点归纳及练习知识点一:几何图形1、我们把从实物中抽象出的各种图形统称为几何图形。

2、有些几何图形的各部分不都在同一平面内,它们是立体图形。

如长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等。

3、有些几何图形的各部分都在同一平面内,它们是平面图形。

如线段、角、三角形、长方形、圆等。

4、立体图形与平面图形虽然是两类不同的几何图形,但是立体图形中某些部分是平面图形,对于一些立体图形的问题,常把它们转化为平面图形来研究和处理。

有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形成为相应立体图形的展开图。

知识点二:点、线、面、体1、立体图形是几何体,简称体;包围着体的是面,面有平面和曲面;面和面相交的地方形成线,线有直线和曲线;线和线相交的地方是点。

2、几何图形都是由点、线、面、体组成,点是构成图形的基本元素。

知识点三:直线、射线、线段1、线段:直线上两个点和它们之间的部分叫线段,这两个点叫线段的端点。

射线:将线段向一个方向无限延长就形成了射线。

直线:将线段向两个方向无限延长就形成了直线。

2、点与直线的位置关系:点p在直线a上(或说直线a经过点p);点p不在直线a上(或说直线a不经过点p)。

过一点可画无数条直线,过两点有且仅有一条直线。

简述为:两点确定一条直线。

3、线段的中点:把一线段分成两相等线段的点。

两点的所有连线中,线段最短,简述为:两点之间,线段最短。

两点间的距离:连接两点间的线段的长度。

线段的长短比较:⑴度量法;⑵叠合法判断:①两点间的距离是指两点间的线段。

()②两点间连线的长度叫这两点间的距离。

()知识点四:角角:由两条具有公共端点引出射线组成的图形(也可看做是由一射线绕端点旋转而成)。

角的表示:三个大写字母;一个大写字母(不混淆情况下方可使用);一个数字;一个希腊字母。

角的要素:顶点和边,角的大小与边的长短无关。

角的单位:度,分,秒①1°的60分之一为1分,记作1′,即1°=60′②1′的60分之一为1秒,记作1″,即1′=60″角的大小比较:⑴度量法;⑵叠合法。

人教版七年级上第四章《几何图形初步》知识点总结

人教版七年级上第四章《几何图形初步》知识点总结

人教版七年级上第四章《几何图形初步》知识点总结1 .几何图形相关概念L几何图形:从形形色色的物体外形中得出的图形是几何图形。

它分为立体图形和平面图形。

2、立体图形:有些几何图形的各部分不都在同一平面内,它们是立体图形(如长方体.正方体.圆柱.圆锥.球等)。

3、平面图形:有些几何图形的各部分都在同一平面内,它们是平面图形(如线段.角.三角形.长方形.圆等)。

4、立体图形的展开图:将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5、体:几何体简称为体。

6、面:包围着体的是面,面有平的面和曲的面两种。

7、体:面与面相交的地方形成线,线和线相交的地方是点。

8、点线面体关系:点动成面,面动成线,线动成体。

2.直线、射线、线段L直线基本事实:经过两点有一条直线,并且只有一条直线。

简单说成:两点确定一条直线(公理)。

2、直线表示方法:(1)用直线上任意表示两个点的大写字母表示,如直线AB ;(2 )用一个小写字母表示,如直线Io3、直线的特征:①无端点;②向两端无限延伸;③不可度量。

4、直线与点的位置关系:①点在直线上(直线经过点);②点在直线外(直线不经过点).5、直线相交:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

6、射线定义:直线上一点和它一旁的部分叫做射线,这一点叫做射线的端点。

7、射线的表示方法:(1)用射线的端点和射线上另一点的大写字母表示,如射线OA ;(2 )用一个小写字母表示,如射线I.8、射线的特性:①一个断定;②向一方无限延伸;③不可度量.9、线段概念:直线上两点和它们之间的部分叫做线段,这两个点叫做线段的端点。

线段的表示方法:IOs(1)用线段两个端点的大写字母表示,如线段AB ;(2 )用一个小写字母表示,如线段I.Ils线段的特征:①两个端点;②无方向;③可度量.12、线段的中点:点M把线段AB分成相等的两条线段AM和MB ,点M叫做线段AB的中点。

七年级数学上册第四章几何图形初步易错知识点总结

七年级数学上册第四章几何图形初步易错知识点总结

(名师选题)七年级数学上册第四章几何图形初步易错知识点总结单选题1、如图,在数轴上,若点A,B 表示的数分别是-2和10,点M 到A,B 距离相等,则M 表示的数为( )A .10B .8C .6D .4答案:D分析:根据两点之间的距离求出AB 的长度,根据点M 到A 、B 距离相等,求出BM 的长度,从而得到点M 表示的数.解:AB =10-(-2)=10+2=12,∵点M 到A 、B 距离相等,即M 是线段AB 的中点,∴BM =12AB =12×12=6, ∴点M 表示的数为10-6=4,故选:D .小提示:本题考查了两点之间的距离,数轴,有理数的减法,线段的中点,根据两点之间的距离求出AB 的长度是解题的关键.2、下列说法正确的是( )A .长方体的截面形状一定是长方形;B .棱柱侧面的形状可能是一个三角形;C .“天空划过一道流星”能说明“点动成线”;D .圆柱的截面一定是长方形.答案:C分析:根据用平面截一个几何体,从不同的位置截取,得到的截面形状不一定相同,通过分析如何做截面即可得到答案.解:A. 长方体的截面形状也可能是三角形,故该选项不正确,不符合题意;B. 棱柱侧面的形状是平行四边形,不可能是三角形,故该选项不正确,不符合题意;C. “天空划过一道流星”能说明“点动成线”,故该选项正确,符合题意;D. 圆柱的截面不一定是长方形,也可能圆形,故该选项不正确,不符合题意;.故选:C.小提示:本题考查了平面截一个几何体,点、线、面之间的关系,掌握好空间想象能力是解决本题的关键.3、如图,将矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是()A.B.C.D.答案:A分析:根据矩形绕一边旋转一周得到圆柱体示来解答.解:矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是圆柱体.故选:A.小提示:本题考查了点、线、面、体,熟练掌握“面动成体”得到的几何体的形状是解题的关键.4、如图,小明从A处沿南偏西65∘30′方向行走至点B处,又从点B处沿北偏西72∘30′方向行走至点E处,则∠ABE=()A.114∘30′B.108∘C.137∘D.138∘答案:D分析:先根据方位角以及平行线的性质可得∠2=∠3=65∘30′、∠1=72∘30′,则∠ABE=∠1+∠2,最后计算即可.解:如图:∵小明从A处沿南偏西65∘30′方向行走至点B处,又从点B处沿北偏西72∘30′方向行走至点E处∴∠2=∠3=65∘30′,∠1=72∘30′∴∠ABE=∠1+∠2=138°.故答案为D.小提示:本题主要考查了方位角和角的运用,正确认识方位角成为解答本题的关键.5、下列图形中,属于正方体的平面展开图的是()A.B.C.D.答案:D分析:根据几何体的平面展开图特点即可作答.解:A、为圆锥的平面展开图,该选项不符合题意;B、为长方体的平面展开图,该选项不符合题意;C、为圆柱的平面展开图,该选项不符合题意;D、为正方体的平面展开图,该选项符合题意;故选:D.小提示:本题考查了几何体的展开图,熟悉各种几何体的平面展开图特点,是解答此题的关键.6、在同一平面内有四个点,过其中任意两点画直线,仅能画出四条直线,则这四点的位置关系是().A.任意三点都不共线.B.有且仅有三点共线.C.有两点在另外两点确定的直线外.D.以上答案都不对.答案:B分析:分别画出四点共线,三点共线,和两点共线的图形,然后找出满足题意的图形即可.解:如图,因为仅能画出四条直线,所以选图(2),故选B.小提示:本题主要考查了点与线之间的关系,解题的关键在于能够正确画出四点共线,三点共线,和两点共线的图形.7、若∠A=23°,则∠A的补角是()A.57°B.67°C.157°D.167°答案:C分析:根据补角的定义,即若两个角的和等于180°,就称这两个角互补,即可解答.解:∵∠A=23°,∴∠A的补角等于180°−∠A=180°−23°=157°,故选:C小提示:本题主要考查了补角的定义,解题的关键是熟练掌握若两个角的和等于180°,就称这两个角互补.8、下列立体图形中,全部是由曲面围成的是()A.圆锥B.正方体C.圆柱D.球答案:D分析:根据每个几何体的面是否是平面进行判断即可.解:圆锥是由一个平面和一个曲面围成,正方体是由六个平面围成,圆柱是由两个平面,一个曲面围成,球是由一个曲面围成,因此球符合题意,故选:D.小提示:本题考查认识立体图形,掌握各个几何体的特征是正确判断的前提.9、把根绳子对折成一条线段AB,在线段AB取一点P,使AP=1PB,从P处把绳子剪断,若剪断后的三段绳3子中最长的一段为24cm,则绳子的原长为()A.32cm B.64cm C.32cm或64cm D.64cm或128cm答案:C分析:由于题目中的对折没有明确对折点,所以要分A为对折点与B为对折点两种情况讨论,讨论中抓住最长线段即可解决问题.解:如图∵AP=1PB,3∴2AP=2PB<PB3①若绳子是关于A点对折,∵2AP<PB∴剪断后的三段绳子中最长的一段为PB=30cm,∴绳子全长=2PB+2AP=24×2+2×24=64cm;3②若绳子是关于B点对折,∵AP<2PB∴剪断后的三段绳子中最长的一段为2PB=24cm∴PB=12 cm∴AP=12×1=4cm3∴绳子全长=2PB+2AP=12×2+4×2=32 cm;故选:C.小提示:本题考查的是线段的对折与长度比较,解题中渗透了分类讨论的思想,体现思维的严密性,在今后解决类似的问题时,要防止漏解.10、如图,一个三棱柱共有侧棱()A.3条B.5条C.6条D.9条答案:A分析:结合图形即可得到答案.解:一个三棱柱,这个三棱柱共有3条侧棱.故选:A.小提示:本题考查的是立体图形—三棱柱.三棱柱有两个面是三角形且互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行.棱柱中两个侧面的公共边叫做棱柱的侧棱.掌握三棱柱的结构特征是解答的关键.填空题11、直角三角形纸片绕它的直角边所在的直线旋转一周,得到的几何体是_____________.答案:圆锥分析:根据:面动成体,将直角三角形纸片绕它的直角边所在的直线旋转一周,得到的几何体是圆锥.解:将直角三角形纸片绕它的直角边所在的直线旋转一周,得到的几何体是圆锥.所以答案是:圆锥.小提示:本题考查几何体,解题的关键是有一定的空间想象能力,理解面动成体.12、如图,B处在A处的南偏西42°方向,C处在A处的南偏东30°方向,C处在B处的北偏东72°方向,则∠ACB的度数是______.答案:78°分析:根据方向角的定义,即可求得∠DBA,∠DBC,∠EAC的度数,然后根据三角形内角和定理即可求解.解:∵AE,DB是正南和正北方向,∴BD∥AE,∵B处在A处的南偏西42°方向,∴∠BAE=∠DBA=42°,∵C处在A处的南偏东30°方向,∴∠EAC=30°,∴∠BAC=∠BAE+∠EAC=42°+30°=72°,又∵C处在B处的北偏东72°方向,∴∠DBC=72°,∴∠ABC=72°﹣42°=30°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣30°﹣72°=78°.所以答案是:78°.小提示:本题考查的是方向角的概念,用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.13、如图,将长方形ABCD纸片按如图所示的方式折叠,EF,EG为折痕,点A落在A′,点B落在B′,点A′,B′,E在同一直线上,则∠FEG=_______度;答案:90分析:由折叠的性质可得∠A′EF=∠AEF=12∠AEA′,∠B′EG=∠BEG=12∠BEB′,再由角的和差及平角的定义即可求出答案.解:由题意得:∠A′EF=∠AEF=12∠AEA′,∠B′EG=∠BEG=12∠BEB′,∵A′,B′,E在同一直线上,∴∠FEG=∠A′EF+∠B′EG=12(∠AEA′+∠BEB′)=12×180°=90°.所以答案是:90.小提示:本题主要考查了折叠的性质和平角的定义,属于基本题型,熟练掌握折叠的性质是解题的关键.14、有同样大小的三个立方体骰子,每个骰子的展开图如图1所示,现在把三个股子放在桌子上(如图2),凡是能看得到的点数之和最大是________,最小是________.答案: 51 26分析:观察图形可知,1和6相对、2和5相对,3和4相对;要使能看到的纸盒面上的数字之和最大,则把第一个正方体的数字1的面与第二个正方体的数字2的面相连,把数字2的面放在下面,则第一个图形露出的数字分别是3、4、5、6;第二个正方体的数字1面与第三个正方体的数字1的面相连,数字3的面放在下面,则第二个正方体露在外面的数字是4、5、6,第三个正方体露在外面的数字就是3、4、5、6,据此可得能看得到的点数之和最大值;要使能看到的纸盒面上的数字之和最小,则把第一个正方体的数字6的面与第二个正方体的数字5的面相连,把数字5的面放在下面,则第一个正方体露在外面的数字分别是1、2、3、4;第二个正方体的数字6的面与第三个正方体数字6的面相连,数字4的面放在下面,则第二个正方体露在外面的数字是1、2、3;第三个正方体露在外面的数字是1、2、3、4,即可得能看得到的点数之和最小值.解:根据题意,得:露在外面的数字之和最大是:3+4+5+6+4+5+6+3+4+5+6=51,最小值是:1+2+3+4+1+2+3+1+2+3+4=26,所以答案是:51,26.所以答案是:51,26.小提示:本题主要考查学生的空间想象能力和推理能力,也可动手制作一个正方体,根据题意在各个面上标上数字,再确定对面上的数字,可以培养动手操作能力和空间想象能力.15、如图是一个正方体纸盒的展开图,正方体的各面标有数字1,2,3,−3,A,B,相对面上是两个数互为相反数,则A=_______.答案:-2分析:正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上是两个数互为相反数解答.解:根据题意得:“1”与“B”是相对面,“2”与“A”是相对面,“3”与“-3”是相对面,∵相对面上是两个数互为相反数,∴A=-2.所以答案是:-2.小提示:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.解答题16、一个圆柱的底面半径是10cm,高是18cm,把这个圆柱放在水平桌面上,如图所示.(1)如果用一个平面沿水平方向去截这个圆柱,所得的截面是什么形状?(2)如果用一个平面沿竖直方向去截这个圆柱,所得的截面是什么形状?(3)怎样截时所得的截面是长方形且长方形的面积最大,请你求出这个截面面积.答案:(1)所得的截面是圆(2)所得的截面是长方形(3)360cm2分析:(1)用水平的平面去截,所得到的截面形状与圆柱体的底面相同,是圆形的;(2)用竖直的平面去截,所得到的截面形状为长方形的;(3)求出当截面最大时,长方形的长和宽,即可求出面积.(1)解:所得的截面是圆.(2)解:所得的截面是长方形.(3)解:当平面沿竖直方向且经过两个底面的圆心时,截得的长方形面积最大,这时,长方形的一边等于圆柱的高,长方形的另一边等于圆柱的底面直径,这个长方形的面积为:10×2×18=360(cm2) .答:这个截面面积是360 cm2.小提示:本题考查认识立体图形和截几何体,掌握立体图形的特征和截面的形状是得出正确答案的关键.17、在平整的地面上,有若干个完全相同棱长为1的小正方体堆成一个几何图所示.(1)请画出这个几何体的三视图.(2)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加______个小正方体.(3)如果需要给原来这个几何体表面喷上红漆,则喷漆面积是多少?答案:(1)见解析;(2)4;(3)32分析:(1)根据三视图的画法,画出从正面、左面、上面看到的形状即可;(2)俯视图和左视图不变,构成图形即可解决问题;(3)求出这个几何体的表面积即可解决问题.解:(1)这个几何体有10个立方体构成,三视图如图所示;(2)在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,2+1+1=4(个),故最多可再添加4个小正方体.所以答案是:4;(3)这个几何体的表面有38个正方形,去了地面上的6个,32个面需要喷上红色的漆,∴表面积为32,故喷漆面积为32.小提示:本题考查了三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.注意涂色面积指组成几何体的外表面积.18、如图,点E是线段AB的中点,C是EB上一点,AC=12,(1)若EC:CB=1:4,求AB的长;(2)若F为CB的中点,求EF长,答案:(1)AB=20;(2)EF=6.分析:(1)设CE=x,则CB=4x,根据线段中点的定义得到AE=BE,求得AE=5x,得到AC=6x=12,于是得到结论;(2)根据线段中点的定义得到AE=BE,设CE=x,求得AE=BE=12-x,得到BC=BE-CE=12-x-x,于是得到结论.(1)解:∵EC:CB=1:4,∴设CE=x,则CB=4x,BE=5x,∵点E是线段AB的中点,∴AE=BE,∴AE=5x,∴AC=6x=12,∴x=2,∴AB=10x=20;(2)解:∵点E是线段AB的中点,∴AE=BE,设CE=x,∴AE=BE=12-x,∴BC=BE-CE=12-x-x=12-2x,∵F为CB的中点,∴CF=1BC=6-x,2∴EF=CE+CF=x+6-x=6.小提示:本题考查了两点间的距离,解题的关键是结合图形,利用线段的和与差和线段的中点即可解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎧⎨⎩七年级数学上册期末复习几何图形初步知识点+易错题几何图形初步知识点一、本章的知识结构图一、立体图形与平面图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。

1、几何图形平面图形:三角形、四边形、圆等。

主(正)视图---------从正面看2、几何体的三视图侧(左、右)视图-----从左(右)边看俯视图---------------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。

(2)能根据三视图描述基本几何体或实物原型。

3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。

(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。

4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

二、直线、射线、线段(一)直线、射线、线段的区别与联系:基本概念(二)直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;1、线段的性质:两点的所有连线中,线段最短。

简单地:两点之间,线段最短。

2.画线段的方法:(1)度量法;(2)用尺规作图法3、线段的大小比较方法:(1)度量法;(2)叠合法4、点与直线的位置关系:(1)点在直线上;(2)点在直线外。

5、过三个已知点不一定能画出直线。

当三个已知点在一条直线上时,可以画出一条直线;当三个已知点不在一条直线上时,不能画出直线。

(三)两点距离的定义:连接两点间的线段的长度,叫做这两点的距离。

(四)线段中点:把一条线段分成两条相等的线段的点叫线段中点;(五)延长线和反向延长线延长线段AB是指按从端点A到B的方向延长;延长线段BA是指按从端点B 到A的反方向延长,这时也可以说反向延长线段AB。

直线、射线没有延长线,射线可以有反向延长线。

(六)关于线段的计算:两条线段长度相等,这两条线段称为相等的线段,记作AB=CD,平面几何中线段的计算结果仍为一条线段。

即使不知线段具体的长度也可以作计算。

二、角(一)角的意义:1、角:由公共端点的两条射线所组成的图形叫做角。

2、角的表示法(四种):3、角的度量单位及换算4、角的分类∠β锐角直角钝角平角周角范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°做由一条射线绕着它的端点旋转而形成的图。

注意:表示角时,一定要对照几何图形,注意不能漏掉角的符号,切记用三个大写字母表示一个角时,顶点字母一定要写在中间;同一顶点处有多个角时,切不可用顶点字母表示。

(二)角的度量:1°=60′;1′=60″;1直角=90°;1平角=180 °;1周角=360°(三)角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法。

(四)画角:利用三角尺画出15的整数倍的角,利用量角器画出任何给定度数的角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。

(2)借助量角器能画出给定度数的角。

(3)用尺规作图法。

(五)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

(六)有关角的运算:(七)时针和分针所成的角度:钟表一周为360°,每一个大格为30°,每一个小格为6°.(每小时,时针转过30°,即一个大格,分针转过360°,即一周;每分钟,分针转过6°即一个小格)(八)方位角:表示方向的角,经常用于航空、航海、测绘中。

注意:用角度表示方向,一般以正北、正南为基准,向东或向西旋转的角度表示方向,如“北偏东40°”,不要写成“东偏北50°”(九)互余与互补:(1)若∠1+∠2=90°,则∠1与∠2互为余角。

其中∠1是∠2的余角,∠2是∠1的余角。

(2)若∠1+∠2=180°,则∠1与∠2互为补角。

其中∠1是∠2的补角,∠2是∠1的补角。

如果两个角的和等于直角,就说这两个角互为余角,即其中一个是另一个的余角;如果两个角的和等于平角,就说这两个角互为补角,即其中一个是另一个的补角;等角的余角相等,等角的补角相等。

(十)方向角(1)正方向(2)北(南)偏东(西)方向(3)东(西)北(南)方向图形认识错题精选一、选择题1.图中共有线段()A.8条B.9条C.10条D.11条2.如图,AOB是一条直线,∠AOC=60°,OD,OE分别是∠AOC和∠BOC的平分线,则图中互补的角有()A.5对B.6对C.7对D.8对3.由n个大小相同的小正方形搭成的几何体的主视图和左视图如图,则n最大值为()A.11 B.12 C.13 D.144.如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在点C/处,BC/交人D于点E,若∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°角(虚线也视为角的边)共有()A.3个B.4个C.5个D.6个5.如图,C、D是线段AB上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB的长度是()A.8 B.9 C.8或9 D.无法确定6.如果角α和角β互为余角,角α与角γ互为补角,角β和角γ的和等于周角的三分之一,那么此三个角分别为()A.75°,15°,105° B.60°,30°,120° C.50°,30°,130° D.70°,20°,110°7.在二行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点),在每一种翻动方式中,骰子不能后退.开始时骰子如图(1)那样摆放,朝上的点数是2;最后翻动到如图(2)所示的位置,此时骰子朝上的点数不可能...是下列数中的()A.1 B.4 C.3 D.5 ( )8.如图,一根10cm长的木棒,棒上有两个刻度,把它作为尺子,量一次要量出一个长度,能量出的长度有几个?()A.4个B.5个C.6个D.7个9.如图,点C,O,B在同一条直线上,∠AOB=90°,∠AOE=∠DOB,下列结论:①∠EOD=90°;②∠COE=∠AOD;③∠COE=∠DOB;④∠COE+∠BOD=90°.其中正确的个数是()A.1 B.2 C.3 D.410.如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6cm2,第②个图形的面积为18cm2,第③个图形的面积为36cm2,…,那么第⑥个图形的面积为()A.84cm2B.90cm2C.126cm2D.168cm211.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是( )A.2(a﹣b) B.2a﹣b C.a+b D.a﹣b12.如图,在数轴上有A.B、C、D、E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A.E两点表示的数的分别为 -13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A,-2B.-1 C,0 D,2二、填空题13.如下图,在已知角内画射线,画1条射线,图中共有个角;画2条射线,图中共有个角;画3条射线,图中共有个角,求画n条射线所得的角的个数为 (用含n的式子表示)。

14.如图,将长方形ABCD纸片沿AF折叠,点D落在点E处,已知∠AFE=40°,则∠CFE的度数为 .15.如图,由18个棱长为a厘米的正方形拼成的立体图形,它的表面积是 cm2.16.如图,已知B是线段AC上的一点,M是线段AB的中点,N是线段AC的中点,P为NA的中点,Q是AM的中点,则MN:PQ等于。

17.有一正方体木块,它的六个面分别标上数字 1—6,下图是这个正方体木块从不同面所观察到的数字情况。

数字2对面的数字是18.将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S,第2次对1折后得到的图形面积为S2,…,第n次对折后得到的图形面积为S n,请根据图2化简,S1+S2+S3+…+S2018= .三、解答题19.如图是一个正方体盒子的侧面展开图,该正方体六个面上分别标有不同的数字,且相对两个面上的数字是一对相反数.(1)请把-10,8,10,-3,-8,3分别填入六个小正方形中.(2)若某相对两个面上的数字分别满足关系式,求的值;20.在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体,如图4所示.(1)这个几何体由个小正方体组成,请画出这个几何体的三视图.正视图侧视图俯视图(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体.这时如果要重新给这个几何体表面喷上红漆,需要喷漆的面积比原几何体增加还是减少了?增加或减少了多少cm2?21.已知数轴上两点A,B对应的数分别为-2,4,点P为数轴上一动点,其对应的数为,(1)若点P到点A.点B的距离相等,求点P对应的数;(2)若点P在线段AB上,且将线段AB分成1:3的两部分,求点P对应的数;(3)数轴上是否存在点P,使点P到点A的距离与到点B的距离之比为1:2?若存在,求出的值;若不存在,说明理由。

22.如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段BC,MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=acm,M,N分别是线段AC,BC的中点,请画出图形,并用a的式子表示MN的长度.23.如图①点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°)(1)将如图①中的三角板绕O点旋转一定角度得到如图②,使边OM恰好平分∠BOC,问ON是否平分∠AOC?请说明理由。

(2)将如图①中的三角板绕O点旋转一定角度得到如图③,使边ON在∠BOC的内部,如果∠BOC=60°,则∠BOM与∠NOC之间存在怎样的数量关系,请说明理由。

24.已知∠AOB内部有三条射线,其中,OE平分∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=90°,∠AOC=30°,求∠EOF的度数;(2)如图2,若∠AOB=α,求∠EOF的度数(用含α的式子表示);(3)若将题中的“平分”的条件改为“3∠EOB=COB,3∠COF=2∠COA”,且∠AOB=α,用含α的式子表示∠EOF的度数为.参考答案1.B2.D3.C4.D5.C.6.A7.A8.C9.C.10.C11.B12.B13.答案为:3,6,10,14.答案为:100°;15.答案为:48a 2.16.答案为:217.答案为:485.18.答案为:2018211 .19.解:(1)前后两个面的数字符合要求即可(答案不唯一,答对即可)(2)依题意得:解得:20.解:(1)10,(2)1,2,3;(3)最多可以再添加4个小正方体,原几何体需喷32个面,新几何体需喷36个面,所以需喷漆的面积增加了,增加了4×10×10=400 cm2.21.解:(1)=1;(2)当BP=3AP时,AP=+2,BP=4-,所以4-=3(+2),=-0.5;当AP=3BP时,+2=3(4-),=2.5;(3)当P点在AB上时:2PA=PB,2(+2)=4-,=;当P点在BA延长线上时:PA=-2-,PB=4-,4-=2(-2-),=-.22.(1)∵M是AC的中点,∴MC=AC=3cm,∴BC=MB﹣MC=7cm,又N为BC的中点,∴CN=BC=3.5cm,∴MN=MC+NC=6.5cm;(2)如图:∵M是AC的中点,∴CM=AC,∵N是BC的中点,∴CN=BC,∴MN=CM﹣CN=AC﹣BC=(AC﹣BC)=acm.23.(1)ON平分∠AOC。

相关文档
最新文档