2014年九年级数学上学期期末模拟试卷(青岛版附答案)
小学数学-有答案-青岛版六年级(下)期末数学模拟试卷(3)
2013-2014学年青岛版六年级(下)期末数学模拟试卷(3)一、计算又对又快的一定是你!(共32分)1.2. 计算。
能简算的要简算哟!3. 解方程和比例。
5x+7×15=321x2=0.150.612x−34=62.75:x=3:12二、试试你的判断力.可要仔细哟!(6分)3.3时=3时30分________(判断对错)种子发芽试验中,有100粒发芽,20粒没有发芽,发芽率为80%________(判断对错)两个比组成一个比例。
________.(判断对错)三角形中,其中两个角的和是80度,这个三角形一定是钝角三角形。
________(判断对错)要使□628÷36的商是两位数,□里只能填1、2或3.________.(判断对错)一个冰箱上层温度是6∘C,下层温度是−6∘C,上下层的温差为12∘C.________.(判断对错)三、动脑筋填空.相信你最棒!(每空1分,共23分.)3082101000读作________,四舍五入到亿位记作________亿。
小明的弟弟2010年3月6日出生,他出生的这个季度共有________天。
在比例尺是1:800000的地图上,量得甲、乙两地之间的距离约是8厘米,两地之间实际距离大约是________千米。
把一个圆平均分成若干份,然后把它拼成一个近似的长方形,如果长方形的宽是4厘米,它的长应是________厘米。
3千米的16是________千米。
________米的34是24米。
用一块棱长为2分米的正方体木块,切削成一个最大的圆锥体的体积是________立方分米。
如果a ÷b =0.2,则a:b =________:________.在一个比例式中,两个比的比值等于2,这个比例的两个外项分别是12和13这个比例是________.把一根木料锯成4段用了12分钟,照这样计算,锯成6段用________分钟。
一件衣服原价是788元,现在八五折优惠,每件便宜________元。
青岛版2014-2015九年级数学上学期期末复习
Aห้องสมุดไป่ตู้x
如图,在ΔABC中,AB=8cm,BC=6cm,∠B=90°, 点P从点A开始沿AB边向点B以2厘米/秒的速度移动, 点Q从点B开始沿BC边向点C以1厘米/秒的速度 A
移动,如果P,Q分别从A,B同时出发,
几秒后ΔPBQ的面积最大?
最大面积是多少?
P
所以,当P、Q同时运动2秒后
ΔPBQ的面积y最大最大面积是 4cm2 C Q
△≥0且m-1≠0
已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的 形状相同,顶点在直线x=1上,且顶点到x轴的 距离为5,请写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状 相同 a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5, 顶点为(1,5)或(1,-5) 所以其解析式为: (1) y=(x-1)2+5 (2) y=(x-1)2-5 (3) y=-(x-1)2+5 (4) y=-(x-1)2-5
解: ∵点A在正半轴,点B在负半轴 OA=4,∴点A(4,0) y OB=1, ∴点B(-1,0) ∵ ∠ACB=90°OC⊥ AB ∴ ∠ CAO=∠BCO B O ∠CAO+∠OCA=90,∠OCA+∠BCO=90 ∴∠BOC=∠COA, C ∴△BOC∽△COA ∴OB/OC=OC/OA ∴OC=2,点C(0,-2) 由题意可设y=a(x+1)(x-4)得: a(0+1)(0-4)=-2 ∴a=0.5 ∴ y=0.5(x+1)(x-4)
(m 1) x 2 0
是关于x的一元二次方程,则m的值为
2
;
。
2024-2025学年九年级数学上学期期中模拟卷(青岛版,九上第1~3章)(全解全析)
2024-2025学年九年级数学上学期期中模拟卷(青岛版)(时间:120分钟满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:青岛版九年级上册第1章~第3章。
5.难度系数:0.7。
第Ⅰ卷一、选择题:本题共10 小题,每小题 3 分,共30 分.每小题只有一个选项符合题目要求.1.观察如图每组图形,是相似图形的是( )A.B.C.D.【答案】B【解析】A.两图形形状不同,不符合题意;B.两图形形状相同,符合题意;C.两图形形状不同,不符合题意;D.两图形形状不同,不符合题意.故选:B.2.如图,在⊙O中,∠BOC=130°,点A在BAC上,则∠BAC的度数为( )A .55°B .65°C .75°D .130°3.已如O e 的直径为6cm ,点O 到直线l 的距离为4cm ,则l 与O e 的位置关系是( )A .相离B .相切C .相交D .相切或相交【答案】A【解析】∵O e 的直径为6cm ,点O 到直线l 的距离为4cm ,∴O e 的半径为3cm ,∵43>,∴l 与O e 的位置关系是相离.故选A .4.如图,90B Ð=°,用科学计算器求∠A 的度数,下列按键顺序正确的是( )A .B .C .D .5.如图,直线123////l l l ,直线AC 和DF 被1l ,2l ,3l 所截,如果3AB =,5BC =,4EF =,那么DE 的长是( )A .125B .325C .203D .3236.小明不慎把家里的圆形镜子打碎了(如图),其中四块碎片如图所示,为了配到与原来大小一样的圆形镜子,小明带到商店去的碎片应该是( )A .①B .②C .③D .④【答案】A 【解析】解:第①块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:A .7.如图,O e 的直径AB 与弦CD 交于点E ,若B 为弧CD 的中点,则下列说法错误的是( )A .弧CB =弧BDB .OE BE =C .CE DE=D .AB CD^【答案】B【解析】∵点B 为 CD 的中点,∴ BCBD =,故A 选项说法正确,不符合题意;∵AB 是O e 的直径, BCBD =,∴CE DE =,AB CD ^,故C 、D 选项说法正确,不符合题意;不能证明OE BE =,故B 选项说法错误,符合题意;故选:B .8.一种燕尾夹如图1所示,图2是在闭合状态时的示意图,图3是在打开状态时的示意图(数据如图,单位:mm ),则从闭合到打开B ,D 之间的距离减少了( )A .25 mmB .20mmC .15 mmD .8mm ,∴284639AE AF AB AD ===,AEF ∽△ABD ,,∴9204BD =,解得BD =45,9.如图,在由小正方形组成的网格中,小正方形的边长均为1,点A ,B ,O 都在小正方形的顶点上,则AOBÐ的正弦值是( )A B C .13D .125.251051022==.10.如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点(30)A ,,与y 轴交于点B ,2OB OA =,点M 在以点(10),C -为圆心,3为半径的圆上,点N 在直线AB 上,若MN 是C e 的切线,则2MN 的最小值为( )A .194B .254C .195D .52°,^时CN最小,最小,即CN AB4,第Ⅱ卷二、填空题:本题共 6 小题,每小题 3 分,共18 分.11.计算:2cos60°=.12.如图,用一个半径为5cm 的定滑轮带动重物上升,滑轮上一点P 旋转了36°,假设绳索(粗细不计)与滑轮之间没有相对滑动,则重物上升了 .13.如图,P 是O e 外一点,PA PB 、分别和O e 相切于点A B 、,C 是弧AB 上任意一点,过C 作O e 的切线分别交PA PB 、于点D E 、,若12PA =,则PDE △的周长为 .14.如图,身高1.8m 的小超站在某路灯下,发现自己的影长恰好是3m ,经测量,此时小超离路灯底部的距离是5m ,则路灯离地面的高度是 m .【答案】4.8【解析】如图,5m AD =,3m DE =, 1.8m CD =,15.如图,海中有一个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 在它的北偏东60°方向上,航行12海里到达点C 处,测得小岛A 在它的北偏东30°方向上,那么小岛A 到航线BC 的距离等于 海里.16.在平面直角坐标系中,正方形1111D C B A 的位置如图所示,点1B 的坐标为()0,2,点1C 的坐标为(1,0),延长11A D 交x 轴于点2C ,作正方形1222D C D A ,延长22A D 交x 轴于点3C ,作正方形2333D C D A ××××××按这样的规律进行下去,则点4A 到x 轴的距离是 .22390=Ð+Ð=°,,12A H =,三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.(本题10分)计算:(1)11|1tan 60|sin 452-æö-°--+°+ç÷èø(2)()020221π3cos30°-+--.18.(本题9分)如图,在ABC V 中,CD AB ^于点D ,正方形EFGH 的四个顶点都在ABC V 的边上.求证:111.+=AB CD EF19.(本题9分)如图,数学兴趣小组用无人机测量一幢楼AB 的高度.小亮站立在距离楼底部94米的D 点处,操控无人机从地面F 点,竖直起飞到正上方60米E 点处时,测得楼AB 的顶端A 的俯角为30°,小亮的眼睛点C 看无人机的仰角为45°(点B F D 、、三点在同一直线上).求楼AB 的高度.(参考数据:小亮的眼睛距离地面1.7 1.7»)()60AG x =-米,45ICE =°, ∵m DB ∥,∴45HEC Ð=°,(3°,60AG x =-,, (4分)是矩形,20.(本题10分)如图,AB 是O e 的直径,点C 在O e 上,点D 在AB 的延长线上,BCD A Ð=Ð.(1)求证:直线CD 是O e 的切线;(2)若2BC BD ==,求图中阴影部分的面积.90OCB =°,(2分),A BCD Ð=Ð(3分),OC CD ^(4分)21.(本题10分)如图,在平面直角坐标系中,OAB △的顶点坐标分别为O (0,0),()2,1A ,()1,2B -.(1)以原点O 为位似中心,在y 轴的右侧画出OAB △的一个位似11OA B V ,使它与OAB △的位似比为2:1;(2)画出将OAB △向左平移2个单位,再向上平移1个单位后得到的222O A B V ;(3)判断11OA B V 和222O A B V 是位似图形吗?若是,请在图中标出位似中心点M ,并写出点M 的坐标.22.(本题12分)【问题思考】如图1,等腰直角Rt ABC △,90ACB Ð=°,点O 为斜边AB 中点,点D 是BC边上一点(不与B 重合),将射线OD 绕点O 逆时针旋转90°交AC 于点E .学习小组发现,不论点D 在BC 边上如何运动,BD CE =始终成立.请你证明这个结论;【问题迁移】如图2,Rt ABC △,90ACB Ð=°,15A Ð=°,点O 为斜边AB 中点,点E 是AC 延长线上一点,将线段OE 绕点O 逆时针旋转30°得到OD ,点D 恰好落BC 的延长线上,求C E C D的值;【问题拓展】如图3,等腰ABC V 中,AB AC =,120BAC Ð=°,点D 是BC 边上一点,将CD 绕点C 顺时针旋转60°得到CE ,点D 落在点E 处,连接AE ,BE ,取BE 的中点M ,连接AM ,若AM =AE 的长. ,45A B \=Ð=∠的中点,°,(4分)23.(本题12分)综合与实践小明在刘老师的指导下开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.小明继续利用上述结论进行探究.【提出问题】如图1,在线段AC 同侧有两点B ,D ,连接AD ,AB ,BC ,CD ,如果B D Ð=Ð,那么A ,B ,C ,D 四点在同一个圆上.探究展示:【反思归纳】(1)上述探究过程中的横线上填的内容是__________;【拓展延伸】(2)如图3,在Rt ABC △中,90ACB Ð=°,AC BC =,将ABC V 绕点A 逆时针旋转得ANM V ,连接CM 交BN 于点D ,连接BM 、AD .小明发现,在旋转过程中,CDB Ð永远等于45°,不会发生改变.①根据45CDB Ð=°,利用四点共圆的思想,试证明ND DB =;②在(1)的条件下,当BDM V 为直角三角形,且4BN =时,直接写出BC 的长.【解析】(1)在题图2中,作经过点A ,C ,D 的O e ,在劣弧AC 上取一点E (不与A ,C 重合),连接AE ,CE ,则180AEC D Ð+Ð=°,(1分)又∵B D Ð=Ð,∴180AEC B Ð+Ð=°,∴点A ,B ,C ,E 四点在同一个圆上(对角互补的四边形四个顶点共圆),(2分)∴点B ,D 在点A ,C ,E 所确定的O e 上,∴点A ,B ,C ,D 四点在同一个圆上,故答案为:180AEC B Ð+Ð=°;(3分)(2)①∵在Rt ACB △中,AC BC =,∴45BAC Ð=°,∵45CDB Ð=°,∴45CDB BAC Ð=Ð=°,∴A ,C ,B ,D 四点共圆,(4分)∴180ADB ACB Ð+Ð=°,∵90ACB Ð=°,∴90ADB Ð=°,∴AD BN ^,(5分)∵ACB △旋转得AMN V ,∴ACB AMN △≌△,∴AB AN =,∵AD BN ^,∴ND DB =.(6分)②如图,当90BMD Ð=°时,2AC,。
2015青岛版九年级数学上册期末试卷(含答案解析)
2015年上学期期末质量检测模拟试题九年级数学(时间:90分钟,总分100分)第I卷一.选择题(共16小题,每小题3分,共计48分)(每题只有一个答案是正确的,请将答案填写到指定的位置,否则不予得分)1.如图,所给图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.2.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A.53°B.37°C.47°D.123°(第2题图)(第4题图)(第5题图)3.不能判定一个四边形是平行四边形的条件是()A.两组对边分别平行B.一组对边平行另一组对边相等C.一组对边平行且相等D.两组对边分别相等4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4 B.6 C.8 D.105.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD6.已知⊙O1与⊙O2外切,O1O2=8cm,⊙O1的半径为5cm,则⊙O2的半径是()A.13cm B.8cm C.6cm D.3cm7.泰安市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是()A.5500(1+x)2=4000 B.5500(1﹣x)2=4000C.4000(1﹣x)2=5500 D.4000(1+x)2=55008.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B. m<﹣2 C.m>2 D.m<29.下列函数中,当x<0时,函数值y随x的增大而增大的有()①y=x ②y=﹣2x+1 ③y=﹣④y=3x2.A.1个B.2个C.3个D.4个10.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x﹣1)2+4 C.y=(x+1)2+2 D.y=(x ﹣1)2+211.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2(第11题图)(第12题图)(第15题图)(第16题图)12.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB 的度数为()A.45°B. 35°C.25°D.20°13.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y214.将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.y=3(x+2)2+3 B.y=3(x﹣2)2+3 C.y=3(x+2)2﹣3 D.y=3(x﹣2)2﹣315.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2B.πcm2 C.cm2D.cm216.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b第II卷选择题答案填写处题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 答案二.填空题(共4小题,每小题3分,共计12分)(只填写最后结果)17.如图,AB为⊙O直径,点C、D在⊙O上,已知∠BOC=70°,AD∥OC,则∠AOD=____度.(第17题图)(第19题图)(第20题图)18.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有_____个黄球.19.如图,在平面直角坐标系中,△ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标为_________.20.如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B 重合),M是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x 之间的函数关系式为_________.三.解答题(共5小题,共计40分)(写出必要的文字说明、解题步骤或证明过程)21.(本题5分)现有5个质地、大小完全相同的小球上分别标有数字﹣1,﹣2,1,2,3.先将标有数字﹣2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随即取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.22.(本题6分)如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(﹣1,﹣2)两点,与x轴交于点C.(1)分别求反比例函数和一次函数的解析式。
青岛版九年级数学上册同步练习附答案解析2.5 解直角三角形的应用(1)
2.5 解直角三角形的应用第1课时 与仰角、俯角有关的应用问题1.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B 、C 在同一水平面上).为了测量B 、C 两地之间的距离,某工程师乘坐热气球从C 地出发,垂直上升100 m 到达A 处,在A 处观察B 地的俯角为30°,则B 、C 两地之间的距离为( )第1题图A .100 3 mB .50 2 mC .50 3 mD.10033m2.如图,从热气球C 处测得地面两点A 、B 的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为80米,点A 、D 、B 在同一直线上,那么A 、B 两点的距离是( ) A .160米 B .803米 C .1003米D .80(1+3)米第2题图 第3题图3.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16 m ,到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物M 的高度等于( ) A .8(3+1)mB .8(3-1)mC .16(3+1)mD .16(3-1)m4.如图,为固定电线杆AC ,在离地面高度为6 m 的A 处引拉线AB ,使拉线AB 与地面上的BC 的夹角为48°,则拉线AB 的长度约为( )(结果精确到0.1 m ,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11) A .6.7 m B .7.2 m C .8.1 m D .9.0 m第4题图 第5题图5.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为( )A.11-sinα米 B.11+sinα米C.11-cosα米 D.11+cosα米6.如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为米.第6题图7.小宇在学习解直角三角形的知识后,萌生了测量他家对面位于同一水平面的楼房高度的想法.如图,他站在自家C处测得对面楼房底端B的俯角为45°,测得对面楼房顶端A的仰角为30°,并量得两栋房间的距离为9米.请你用小宇测得的数据求出对面楼房AB的高度.(结果保留到整数,参考数据:2≈1.4,3≈1.7)第7题图8.某兴趣小组借助无人机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人机的飞行速度为4米/秒,求这架无人机的飞行高度.(结果保留根号)第8题图9.芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如图),图乙是从图甲中引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端的距离AD为20米,请求出立柱BH 的长.(结果精确到0.1米,3≈1.732)第9题图10.如图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果保留小数点后两位,参考数据:sin22°≈0.374 6,cos22°≈0.927 2,tan22°≈0.404 0)第10题图11.如图,为了测量山顶铁塔AE的高,小明在27 m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角为36°52′.已知山高BE为56 m,楼的底部D与山脚在同一水平面上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)第11题图参考答案1.A 2.D 3.A 4.C 5.A6.1007.解:过点C作CD⊥AB于点D,如答图.由题意可知CD=9,在Rt△ADC中,∵tan30°=AD CD ,∴AD=CD·tan30°=9×33=3 3.在Rt△CDB中,∵tan45°=BDCD=1,。
青岛版2022-2023学年九年级数学上册期末模拟测试题(附答案)
2022-2023学年九年级数学上册期末模拟测试题(附答案)一、选择题(本题满分24分)1.|﹣2022|的相反数是()A.2022B.C.﹣D.﹣20222.如图所示,该几何体的俯视图是()A.B.C.D.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是13 5.下面计算错误的是()A.(﹣2a2b)3=﹣8a6b3B.a2+a﹣1=aC.(﹣a﹣b)2=a2+2ab+b2D.(a+2b)(a﹣2b)=a2﹣4b26.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1,则点A的对应点A2的坐标是()A.(1,0)B.(5,2)C.(3,﹣2)D.(﹣3,2)7.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为6,sin B=,则线段AC的长是()A.3B.4C.5D.68.已知反比例函数y=的图象如图所示,则二次函数y=2kx2﹣x+k2的图象大致为()A.B.C.D.二、填空题(本题满分18分)9.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为.10.计算:cos245°﹣tan60°•cos30°=.11.二次函数y=ax2+bx的图象如图所示,若关于x的一元二次方程ax2+bx+m=0有实数根,则m的最大值为.12.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为.13.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A 按逆时针方向旋转90°后得到△AB'C'.则图中阴影部分的面积为.14.已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.当P在AB上运动时,矩形PNDM的最大面积为.三、作图题(本题满分4分)15.用圆规、直尺作图.不写作法.但要保留作图痕迹.已知:△ABC求作菱形ADEF使顶点D、E、F分别在AB、BC、AC上.四、解答题(本题满分68,共有9道小题)16.(1).(2)解不等式组,并写出不等式组的最大整数解.17.国家“十四五”规划明确强化实施“健康中国”战略.为了引导学生积极参与体育运动,增强身体素质,某校举办了一分钟跳绳比赛,随机抽取了m名学生一分钟跳绳的次数x 进行调查统计,按照以下标准划分为四档:不合格合格良好优秀100≤x<120120≤x<140140≤x<160160≤x<180并根据统计结果绘制了如下条形统计图和扇形统计图:请结合上述信息完成下列问题:(1)m=,a=;(2)在扇形统计图中,“良好”等级对应的圆心角的度数是;(3)若该校有2400名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.18.某中学举行“中国梦•我的梦”演讲比赛.九年级(1)班的小明和小刚都想参加.现设计了如下游戏规则:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去,这个游戏规则是否公平?并说明理由.19.小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD 的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).20.在我市“青山绿水”行动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?21.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C 到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D 的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为多少米?(参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)22.某宾馆客房部有50个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.每个房间每天的定价每增加10元时,就会有一个房间空闲.设每个房间每天的定价增加x元.(1)求房间每天的入住量y(间)关于x(元)的函数关系式;(2)某一天,该宾馆客房部的总收入为12000元,问这天每个房间的定价是多少元?(3)若对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.求该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?23.几何模型条件:如图1,A、B是直线l同侧的两个定点.问题:在直线l上确定一点P,使P A+PB的值最小.方法:作点B关于直线l的对称点B’,连接AB’交l于点P,则P A+PB=AB’的值最小(不必证明).直接应用如图2,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN 的最小值为.变式练习如图3,点A是半圆上(半径为1)的三等分点,B是()的中点,P是直径MN上一动点,求P A+PB的最小值.深化拓展(1)如图4,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,求BM+MN的最小值.(2)如图5,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.(要求:保留作图痕迹,并简述作法.)24.已知:如图,菱形ABCD中,AB=5cm,AC=6cm,动点P从点B出发,沿BA方向匀速运动;同时,动点Q从点C出发,沿CB方向匀速运动,它们的运动速度均为1cm/s.过点P作PM∥BC,过点B作BM⊥PM,垂足为M,连接QP.设运动时间为t(s)(0<t <5).解答下列问题:(1)菱形ABCD的高为cm,cos∠ABC的值为;(2)在运动过程中,是否存在某一时刻t,使四边形MPQB为平行四边形?若存在,求出t的值;若不存在,请说明理由.(3)是否存在某一时刻t,使四边形MPQB的面积是菱形ABCD面积的?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使点M在∠PQB的角平分线上?若存在,求出t的值;若不存在,请说明理由.参考答案一、选择题(本题满分24分)1.解:|﹣2022|=2022,故|﹣2022|的相反数是:﹣2022.故选:D.2.解:从上往下看,可以看到选项C所示的图形.故选:C.3.解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.4.解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意;=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=,因此方差为,于是选项C不符合题意;故选:D.5.解:A.(﹣2a2b)3=﹣8a6b3,因此选项A不符合题意;B.a2×a﹣1=a,因此选项B符合题意;C.(﹣a﹣b)2=a2+2ab+b2,因此选项C不符合题意;D.(a+2b)(a﹣2b)=a2﹣4b2,因此选项D不符合题意;故选:B.6.解:如图:观察图象可得:点A的对应点A2的坐标是(5,2),故选:B.7.解:连接CD,则∠DCA=90°.Rt△ACD中,sin D=sin B=,AD=12.则AC=AD•sin D=12×=4.故选:B.8.解:∵函数y=的图象经过二、四象限,∴k<0,∴抛物线开口向下,对称轴x=﹣=<0,即对称轴在y轴的左边.故选:D.二、填空题(本题满分18分)9.解:439000用科学记数法表示为:4.39×105.故答案为:4.39×105.10.解:原式=()2﹣×=﹣=﹣1.故答案为:﹣1.11.解:一元二次方程ax2+bx+m=0有实数根,则二次函数y=ax2+bx的图象与直线y=﹣m有交点,由图象得,﹣m≥﹣7,解得m≤7,∴m的最大值为7,故答案为:7.12.解:连接OB.在△OAB中,OA=OB(⊙O的半径),∴∠OAB=∠OBA(等边对等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°﹣2×28°=124°;而∠C=∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠C=62°;故答案是:62°.13.解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=BC=,AC=2BC=2,∴图中阴影部分面积=S扇形ACC′﹣S扇形ADB′﹣S△AB′C′=﹣﹣×1×=,故答案为:;14.解:设矩形PNDM的边DN=x,NP=y,则矩形PNDM的面积S=xy(2≤x≤4),易知CN=4﹣x,EM=4﹣y,且有=,即=,∴y=﹣x+5,S=xy=﹣x2+5x(2≤x≤4),此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值是随x的增大而增大,对2≤x≤4来说,当x=4,即PM=4时,S有最大值,S最大=﹣×42+5×4=12,故答案为:12.三、作图题(本题满分4分)15.解:如图:四边形AEDF即为所求.四、解答题(本题满分68/分)16.解:(1)原式=(+)•=•=;(2)解不等式3(x﹣2)+1≥5x+2得:x≤﹣3.5,解不等式1﹣<得:x<1,∴不等式组的解集是x≤﹣3.5,∴该不等式组的最大整数解为﹣4.17.解:(1)m=10÷25%=40,a=40﹣4﹣12﹣10=14;故答案为:40,14;(2)在扇形统计图中,“良好”等级对应的圆心角的度数是360°×=108°;故答案为:108°;(3)估计该校一分钟跳绳次数达到合格及以上的人数为2400×=2160(人).18.解:这个游戏规则不公平,理由:由题意可得,树状图如右图所示,共有12种等可能的结果数,摸出的两个球上的数字和为奇数占8种,摸出的两个球上的数字和为偶数的占4种,所以P(奇数)==,P(偶数)==,因为,所以这个游戏规则不公平.19.解:连接P A、PB,过点P作PM⊥AD于点M;延长BC,交PM于点N 则∠APM=45°,∠BPM=60°,NM=10米设PM=x米在Rt△PMA中,AM=PM×tan∠APM=x tan45°=x(米)在Rt△PNB中,BN=PN×tan∠BPM=(x﹣10)tan60°=(x﹣10)(米)由AM+BN=46米,得x+(x﹣10)=46解得,=18﹣8,∴点P到AD的距离为米.20.解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=6,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设甲工程队施工a天,乙工程队施工b天刚好完成绿化任务,由题意得:100a+50b=3600,则a==﹣b+36,根据题意得:1.2×+0.5b≤40,解得:b≥32,答:至少应安排乙工程队绿化32天.21.解:延长DC交EA的延长线于点F,则CF⊥EF,∵山坡AC上坡度i=1:2.4,∴令CF=km,则AF=2.4km,在Rt△ACF中,由勾股定理得,CF2+AF2=AC2,∴k2+(2.4k)2=262,解得k=10,∴AF=24m,CF=10m,∴EF=30m,在Rt△DEF中,tan E=,∴DF=EF•tan E=30×tan48°=30×1.11=33.3(m),∴CD=DF﹣CF=23.3m,因此,古树CD的高度约为23.3m.22.解:(1)∵宾馆客房部有50个房间供游客居住,每个房间每天的定价每增加10元时,就会有一个房间空闲,∴房间每天的入住量y关于x的函数关系式为y=50﹣;(2)当客房部的总收入为12000元时,有(50﹣)(200+x)=12000,解得:x1=100,x2=200,200+100=300(元),200+200=400(元),∴每个房间的定价是300元或400元;(3)根据题意,得w=(200+x﹣20)(50﹣)=﹣+32x+9000=﹣+11560,∵﹣<0,∴当x=160时,w max=11560,此时定价为160+200=360(元),∴当每个房间定价为每天360元时,w有最大值,最大值是11560元.23.解:直接应用,如图2,连接BM,则BM的长就是DN+NM的最小值.在直角△BCM中,BC=8,CM=8﹣2=6,则BM===10;变式练习:如图3,作B关于MN的对称点C,则C在圆上,且∠AOC=90°,连接AC,则AC的长就是AP+BP的最小值.△AOC是等腰直角三角形,则AC=OA=,即AP+BP的最小值是;深化拓展:(1)图4.作出N关于AM的对称点N′,作BH⊥AC于H.∵BM+MN=BM+MN′,又∵BM+MN′≥BH,∴BH的长就是BM+MN的最小值,∵∠BAC=45°,∴△ABH是等腰直角三角形,∴BH=×4=4.(2)作点B关于直线AC的对称点B',连接DB'交AC于点P,即为所求.24.解:(1)如图1,连接BD交AC于点O,作AE⊥BC于点E,则∠AEB=90°,∵四边形ABCD是菱形,AB=5cm,AC=6cm,∴BC=AB=5cm,BD⊥AC,OA=OC=AC=3cm,∴∠AOB=90°,∴OD=OB===4(cm),∴S菱形ABCD=AC•OD+AC•OB=×6×4+×6×4=24(cm2),∴5AE=24,∴AE=(cm),∴菱形ABCD的高为cm;∵BE===(cm),∴BE:AE:AB=7:24:25,∴cos∠ABC==,∴cos∠ABC的值为,故答案为:,.(2)存在,如图2,∵四边形MPQB为平行四边形,且∠M=90°,∴四边形MPQB是矩形,∴∠PQB=90°,∴=cos∠ABC=,∴BQ=BP,∵BP=CQ=t,∴BQ=5﹣t,∴5﹣t=t,解得t=,∴t的值为.(3)存在,如图1,∵PM∥BC,∴∠BPM=∠ABC,∴=cos∠BPM=cos∠ABC=,=sin∠BPM=sin∠ABC=,∴PM=t,BM=t,∵S四边形MPQB=S菱形ABCD,∴×t(t+5﹣t)=×24,整理得18t2﹣125t+100=0,解得t1=,t2=(不符合题意,舍去).∴t的值为.(4)不存在,理由:如图3,作MR⊥QP交直线QP于点R,∵∠MBQ=180°﹣∠PMB=90°,∴MB⊥QB,∵=tan∠BPM=tan∠ABC=,∴MP=MB,∴MP<MB,∵MR≤MP,∴MR<MB,∴点M不可能在∠PQB的平分线上,∴不存在某一时刻t,使点M在∠PQB的角平分线上.。
2022-2023学年全国初中九年级上数学青岛版同步练习(含答案)121538
2022-2023学年全国初中九年级上数学青岛版同步练习试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________1.如图所示,已知四边形是圆内接四边形,=,则=( )A.B.C.D.2. 如图,点、、在上,,则的度数是( )A.B.C.D.3. 如图,在中,,,动点沿折线以恒定的速度运动,动点从点出发,以每秒个单位长度的速度向点运动,,同时到达点,已知的面积与时间之间的关系图象如右图所示,则的值为( )A.B.C.D.4. 如图,是的直径,点在上,若,则的度数为 ABDC ∠1112∘∠CDE 56∘68∘66∘58∘A B C ⊙O ∠AOB =40∘∠ACB 10∘20∘30∘40Rt △ABC ∠ACB =90∘CB =4M C −A−B N C 1B M N B △CMN y x b 292394AB ⊙O C ⊙O ∠A =40∘∠B ()B.C.D.5. 如图,是的直径,点,在上,如果,那么的大小是( ) A.B.C. D.6. 下列图形中,一定满足的是( )A.B.C.D.7. 如图,是的一条弦,经过点的切线与的延长线交于点,若=,则的度数为( )A.B.C.50∘60∘40∘AB ⊙O C D ⊙O ∠BAC =20∘∠ADC 130∘120∘110∘100∘∠A =∠B 12BC ⊙O B CO A ∠C 23∘∠A 38∘40∘42∘8. 如图,是圆的直径,、、都是圆上的点,其中、在下方,在上方,则等于( )A.B.C.D.9. 如图,内接四边形中,点在延长线上,,则________.10. 如图,四边形内接于,已知=,则=________.11. 如图,,,,是圆上的四个点,点是弧的中点,如果,那么________.12.如图,为的直径,,为上两点,若,则的大小为________.13. 如图,菱形的边长为,,点是边上任意一点(端点除外),线段的垂直平分线交,分别于点,,,的中点分别为,.AB O C D E C D AB E AB ∠C +∠D 60∘75∘80∘90∘⊙O ABCD E BC ∠BOD =160∘∠DCE =ABCD ⊙O ∠ADC 140∘∠AOC ∘A B C D O B AC ∠ABC =72∘∠ADB =AB ⊙O C D ⊙O ∠BCD =40∘∠ABD ABCD 1∠ABC =60∘E AB CE BD CE F G AE EF M N求证:;求的最小值;当点在上运动时,的大小是否变化?为什么?14. 商洛市最大的广场——商鞅广场,坐落于广场中心的大型主题性城市雕塑“商鞅”也成为该市的标志性雕塑.某学习小组把测量商鞅雕塑的最高点离地面的距离作为一次课题活动,由于雕塑周围摆满了小花盆,他们无法到达雕塑的底部,于是他们制定了如下的测量方案:如图所示,小丽通过调整测角仪的位置,在雕塑周围的点处用测角仪测得雕塑顶部的仰角为(测角仪的高度忽略不计).接着,小丽沿着方向向前走米(即米),到达雕塑在太阳光下的影子末端处,此时小明测得小丽在太阳光下的影长为米.已知小丽的身高 为米,、、、四点在同一直线上,,,求商鞅雕塑的最高点离地面的高度.15.如图,,,,四点共圆,且.求证:是等边三角形.16. 已知,以为直径的分别交于,于,连接,若.求证:;若,,求的长.参考答案与试题解析2022-2023学年全国初中九年级上数学青岛版同步练习试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】A(1)AF =EF (2)MN +NG (3)E AB ∠CEF B C A 45∘BC 3CD =3D DF 2DE 1.5B C D F AB ⊥BF DE ⊥BF AB A B C D ∠ACB =∠ACD =60∘△ABD △ABC AB ⊙O AC D BC E ED ED =EC (1)AB =AC (2)AB =4BC =23–√CD圆内接四边形的性质【解析】首先利用圆周角定理求得的度数,然后利用圆内接四边形的外角等于其内对角的性质直接求解即可.【解答】∵=,∴=,∴==,2.【答案】B【考点】圆周角定理【解析】根据圆周角定理得到,即可计算出.【解答】解:∵,∴.故选.3.【答案】D【考点】动点问题三角形的面积勾股定理【解析】【解答】解:由图可知,当在线段上时,与时间之间的关系是开口向上的抛物线,即在时,与重合.设点的速度为,则,,在中,,即,解得.当时,,,∴.故选4.∠A ∠1112∘∠A =∠11256∘∠DCE ∠A 56∘∠ACB =∠AOB 12∠ACB ∠AOB =40∘∠ACB =∠AOB =1220∘B M AC y x x =1.5M A M a AC =1.5a AB =2.5a Rt △ABC A +B =A C 2C 2B 2+=1.5242 2.52a =2x =1.5CM =AC =3CN =1.5=CN ⋅CM =S △CMN 1294D.B【考点】圆周角定理【解析】由是的直径,根据直径所对的圆周角是直角,即可求得,又由直角三角形中两锐角互余,即可求得答案.【解答】解:∵是的直径,∴.∵,∴.故选.5.【答案】C【考点】圆周角定理圆内接四边形的性质【解析】连接,利用是直径得出,进而利用圆周角解答即可.【解答】解:连接,∵是的直径,,∴,∴.故选.6.【答案】D【考点】圆周角定理【解析】利用圆周角定理将各个图形中两角之间的关系求出即可得到答案.【解答】AB ⊙O ∠C =90∘AB ⊙O ∠C =90∘∠A =40∘∠B =−∠A =90∘50∘B BC AB ∠ABC =70∘BC AB ⊙O ∠BAC =20∘∠ABC=−=90∘20∘70∘∠ADC=−=180∘70∘110∘C解:选项中,;选项中,;选项中,;选项中,.故选.7.【答案】D【考点】切线的性质圆周角定理【解析】连接,如图,先利用切线的性质得=,然后根据等腰三角形的性质和三角形外角性质可计算出的度数.【解答】连接,如图,∵为切线,∴,∴=,∵=,∴==,∴==,∵=,∴==.8.【答案】D【考点】圆周角定理【解析】连接,根据圆周角定理即可求出答案.【解答】连接,根据圆周角定理可知:=,则==,A ∠A =∠B B ∠A+∠B =12180∘C ∠A+∠B =180∘D ∠A =∠B 12D OB ∠OBA 90∘∠A OB AB OB ⊥AB ∠OBA 90∘OC OB ∠C ∠OBC 23∘∠BOC −2×180∘23∘134∘∠BOC ∠A+∠OBA ∠A −134∘90∘44∘OE OE ∠C ∠AOE ∠BOE ∠C +∠D (∠AOE+∠BOE)90∘二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】圆周角定理圆内接四边形的性质【解析】根据圆周角定理求出,根据圆内接四边形的性质解答.【解答】由圆周角定理得,,∵四边形是内接四边形,∴,10.【答案】【考点】圆内接四边形的性质圆周角定理【解析】根据圆内接四边形的性质求出的度数,根据圆周角定理计算即可.【解答】∵四边形内接于,∴=,又=,∴=,由圆周角定理得,==,11.【答案】【考点】圆周角定理圆内接四边形的性质圆心角、弧、弦的关系【解析】根据圆内接四边形的性质可知=,由此可得度数,再依据等弧所对圆周角相等可得==.80∘∠A ∠A =∠BOD =1280∘ABCD ⊙O ∠DCE =∠A =80∘80∠B ABCD ⊙O ∠B+∠ADC 180∘∠ADC 140∘∠B 40∘∠AOC 2∠B 80∘54∘∠ABC +∠ADC 180∘∠ADC 110∘∠ADB ∠BDC =∠ADC =×1212110∘55∘【解答】解:∵四边形内接于,∴,∴.∵点是弧的中点,∴,∴,∴.故答案为:.12.【答案】【考点】圆周角定理【解析】连接,先根据圆周角定理得出及的度数,再由直角三角形的性质即可得出结论.【解答】解:连接,∵为的直径,∴.∵,∴,∴.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】证明:如图,连接,.∵四边形是菱形,∴与互相垂直且平分,∴,又直线为的垂直平分线,∴,∴.ABCD ⊙O ∠ABC +∠ADC =180∘∠ADC =−=180∘72∘108∘B AC =AB ˆBCˆ∠ADB =∠BDC ∠ADB =∠ADC =×=1212108∘54∘54∘50∘AD ∠A ∠ADB AD AB ⊙O ∠ADB =90∘∠BCD =40∘∠A =∠BCD =40∘∠ABD =−∠A =90∘−=90∘40∘50∘50∘(1)1AC FC ABCD AC BD AF =CF FG CE EF =CF AF =EF解:∵点,分别为,的中点,∴是的中位线,∴,又是斜边上的中线,∴.由知,∴,即的最小值为的最小值,易知的最小值是菱形对角线的一半.∵,,∴为等边三角形,∴,∴,故的最小值为 .解:当点在上运动时,的大小不会变化.理由如下:如图,连接,,分别交于点,,连接.易知点是的中点,又点是的中点,∴,∵,∴,∵,点为的中点,∴,在中,,∴,∴,∵,,∴,,,四点共圆,∴,故的大小不会变化.【考点】线段垂直平分线的性质菱形的性质三角形中位线定理直角三角形斜边上的中线等边三角形的性质与判定线段最值问题四点共圆圆心角、弧、弦的关系【解析】(2)M N AE EF MN △AFE MN =AF 12NG Rt △FGE NG =EF 12(1)AF =EF MN +NG =AF AF MN +NG AF AC ∠ABC =60∘AB =CB △ABC AC =AB =1A =AC =F min 1212MN +NG 12(3)E AB ∠CEF 2AC MG BD O H FM G CE M AE MG//AC AC ⊥BD ∠MHF =90∘AF =FE M AE ∠FMB =90∘Rt △FMB ∠FBM =30∘∠MFB =60∘∠FMH =30∘∠FME =90∘∠FGE =90∘F M E G ∠CEF =∠FMH =30∘∠CEF(1)连接,根据垂直平分线的性质和菱形的对称性得到=和=即可得证;(2)连接,根据菱形对称性得到最小值为,再根据中位线的性质得到的最小值为的一半,即可求解;(3)延长,交于,利用外角的性质证明=,再由==,得到=,=,从而推断出==,从而可求出==,即可证明.证明:连接,∵垂直平分,∴,∵四边形为菱形,∴和关于对角线对称,∴,∴.解:连接,交于点,∵和分别是和的中点,点为中点,∴,,即,当点与菱形对角线交点重合时,最小,即此时最小,∵菱形边长为,,∴为等边三角形,,即的最小值为.解:当点在上运动时,的大小不变.理由如下:延长,交于,∵,,∴,∵点在菱形对角线上,根据菱形的对称性可得:,∵,∴,,∴,∴,∵,∴,为定值.CF CF EF CF AF AC AF +CF AC MN +NG AC EF DC H ∠AFC ∠FCE+∠FEC +∠FAE+∠FEA AF CF EF ∠AEF ∠EAF ∠FEC ∠FCE ∠AFD ∠FAE+∠ABF ∠FEA+∠CEF ∠ABF ∠CEF 30∘(1)CF FG CE CF =EF ABCD A C BD CF =AF AF =EF (2)AC BD O M N AE EF G CE MN =AF 12NG =CF 12MN +NG =(AF +CF)12F ABCD O AF +CF MN +NG ABCD 1∠ABC =60∘△ABC AC =AB =1MN +NG 12(3)E AB ∠CEF EF DC H ∠CFH =∠FCE+∠FEC ∠AFH =∠FAE+∠FEA ∠AFC =∠FCE+∠FEC +∠FAE+∠FEA F ABCD BD ∠AFD =∠CFD =∠AFC 12AF =CF =EF ∠AEF =∠EAF ∠FEC =∠FCE ∠AFD =∠FAE+∠ABF =∠FEA+∠CEF ∠ABF =∠CEF ∠ABC =60∘∠ABF =∠CEF =30∘【解答】证明:如图,连接,.∵四边形是菱形,∴与互相垂直且平分,∴,又直线为的垂直平分线,∴,∴.解:∵点,分别为,的中点,∴是的中位线,∴,又是斜边上的中线,∴.由知,∴,即的最小值为的最小值,易知的最小值是菱形对角线的一半.∵,,∴为等边三角形,∴,∴,故的最小值为 .解:当点在上运动时,的大小不会变化.理由如下:如图,连接,,分别交于点,,连接.易知点是的中点,又点是的中点,∴,∵,∴,∵,点为的中点,∴,在中,,∴,∴,∵,,∴,,,四点共圆,∴,(1)1AC FC ABCD AC BD AF =CF FG CE EF =CF AF =EF (2)M N AE EF MN △AFE MN =AF 12NG Rt △FGE NG =EF 12(1)AF =EF MN +NG =AF AF MN +NG AF AC ∠ABC =60∘AB =CB △ABC AC =AB =1A =AC =F min 1212MN +NG 12(3)E AB ∠CEF 2AC MG BD O H FM G CE M AE MG//AC AC ⊥BD ∠MHF =90∘AF =FE M AE ∠FMB =90∘Rt △FMB ∠FBM =30∘∠MFB =60∘∠FMH =30∘∠FME =90∘∠FGE =90∘F M E G ∠CEF =∠FMH =30∘故的大小不会变化.14.【答案】解:设商鞅雕塑的最高点离地面的高度为米.∵,,∴为等腰直角三角形,∴米.∵,,∴ .∵太阳光线是平行光线,∴,∴,∴,∴,即,解得 .答:商鞅雕塑的最高点离地面的高度为米.【考点】相似三角形的性质与判定【解析】【解答】解:设商鞅雕塑的最高点离地面的高度为米.∵,,∴为等腰直角三角形,∴米.∵,,∴ .∵太阳光线是平行光线,∴,∴,∴,∴,即,解得 .答:商鞅雕塑的最高点离地面的高度为米.15.【答案】证明:∵,∴,,∴,∴,∴是等边三角形.【考点】圆周角定理等边三角形的判定三角形内角和定理【解析】∠CEF AB x ∠ACB =45∘AB ⊥BC △ABC BC =AB =x AB ⊥BF DE ⊥BF ∠ABD =∠EDF =90∘∠EFD =∠ADB △EDF ∽△ABD =DE DF AB BD =1.52x x+32x =1.5(x+3)x =9AB 9AB x ∠ACB =45∘AB ⊥BC △ABC BC =AB =x AB ⊥BF DE ⊥BF ∠ABD =∠EDF =90∘∠EFD =∠ADB △EDF ∽△ABD =DE DF AB BD =1.52x x+32x =1.5(x+3)x =9AB 9∠ACB =∠ACD =60∘∠ABD =∠ACD =60∘∠ADB =∠ACB =60∘∠BAD =−∠ABD−∠ADB =180∘60∘∠ABD =∠ADB =∠BAD △ABD无【解答】证明:∵,∴,,∴,∴,∴是等边三角形.16.【答案】证明:∵,∴,∵四边形是的内接四边形,∴,,∴,∴,∴.解:连接,∵为直径,∴,设,由知,则.在中,由勾股定理可得:,在中,由勾股定理可得:,∴整理得:,即.【考点】等腰三角形的判定与性质圆内接四边形的性质勾股定理圆周角定理【解析】(1)由等腰三角形的性质得到=,由圆内接四边形的性质得到=,由此推得=,由等腰三角形的判定即可证得结论;(2)连接,由为直径,可证得,由(1)知=,证明后即可求得的长.【解答】证明:∵,∴,∵四边形是的内接四边形,∴,,∴,∠ACB =∠ACD =60∘∠ABD =∠ACD =60∘∠ADB =∠ACB =60∘∠BAD =−∠ABD−∠ADB =180∘60∘∠ABD =∠ADB =∠BAD △ABD (1)ED =EC ∠EDC =∠C ABCD ⊙O ∠EDC +∠ADE =180∘∠B+∠ADE =180∘∠EDC =∠B ∠B =∠C AB =AC (2)BD AB BD ⊥AC CD =a (1)AC =AB =4AD =4−a Rt △ABD B =A −A =−(4−a D 2B 2D 242)2Rt △CBD B =B −C =(2−D 2C 2D 23–√)2a 2−(4−a =42)2(2−3–√)2a 2a =32CD =32∠EDC ∠C ∠EDC ∠B ∠B ∠C AE AB AE ⊥BC AB AC △CDE ∽△CBA CD (1)ED =EC ∠EDC =∠C ABCD ⊙O ∠EDC +∠ADE =180∘∠B+∠ADE =180∘∠EDC =∠B∴,∴.解:连接,∵为直径,∴,设,由知,则.在中,由勾股定理可得:,在中,由勾股定理可得:,∴整理得:,即.∠B =∠C AB =AC (2)BD AB BD ⊥AC CD =a (1)AC =AB =4AD =4−a Rt △ABD B =A −A =−(4−a D 2B 2D 242)2Rt △CBD B =B −C =(2−D 2C 2D 23–√)2a 2−(4−a =42)2(2−3–√)2a 2a =32CD =32。
2013-2014学年九年级数学(下)(青岛版)第5章 对函数的再探索 检测题(答案解析)
第5章 对函数的再探索检测题本检测题满分:100分,时间:90分钟一、选择题(每小题3分,共30分)1. 函数的自变量的取值范围是( )A .>1B .>1且≠3C .≥1D .≥1且≠3 2. 当x >0时,函数y =的图象在( )A .第四象限B .第三象限C .第二象限D .第一象限3. 如图所示,在平面直角坐标系中,直线y = 与矩形ABCO 的边OC ,BC 分别交于点E ,F ,已知OA =3,OC =4,则△CEF 的面积是( ) A .6 B .3 C .12 D .4. 如图所示,坐标平面上有四条直线l 1,l 2,l 3,l 4.若这四条直线中,有一条直线为方程3x -5y +15=0的图象,则此直线为( )A .l 1B .l 2C .l 3D .l 4 5. 二次函数522-+=x x y 取最小值时,自变量的值是( ) A . 2 B . -2 C . 1 D . -1 6. 已知点A (-2,),B (-1,),C (3,)都在反比例函数4y x=的图 象上,则的大小关系是( )A .B .C .D .7. 已知二次函数,当取(≠)时,函数值相等,则当取时,函数值为( ) A .B .C .D .c8. 已知二次函数,当取任意实数时,都有,则的取值范围是( )A .B .C .D .9. 如图,已知正方形ABCD 的边长为1,E ,F ,G ,H 分别为各边上的点(不与点A ,B ,C ,D 重合),且AE=BF=CG=DH ,设小正方形EFGH 的面积为,AE =,则关于的函数图象大致是( )A BC D10. 如图所示是二次函数y =ax 2+bx +c 图象的一部分,其对称轴为直线x =-1,且过点(-3,0),下列说法: ①abc <0;②2a -b =0;③4a +2b +c <0;④若(-5,y 1),,y 2)是抛物线上两点,则y 1>y 2.其中说法正确的是( ) A .①② B .②③C .①②④D .②③④二、填空题(每小题3分,共24分)11. 已知函数y =(-1)+1是一次函数,则= .12. 如图所示,一次函数y =kx +b (k <0)的图象经过点A ,当y <3时,x 的取值范围是 .13. 若一次函数y =kx +1(k 为常数,k ≠0)的图象经过第一、二、三象限,则k 的取值范围是 . 14. 如果函数是二次函数,那么k 的值一定是 . 15. 将二次函数化为的形式,则.16. 据有关资料统计,两个城市之间每天的电话通话次数T •与这两个城市的人口数(单位:万人)以及两个城市间的距离d (单位:km )有T =2kmnd 的关系(k 为常数).现测得A ,B ,C 三个城市的人口及它们之间的距离如图所示,且已知A ,B 两个城市间每天的电话通话次数为t ,那么B ,C 两个城市间每天的电话通话次数为_______(用t 表示). 17. 若一次函数的图象与反比例函数的图象没有公共点,则实数k 的取值范围是 .第9题图第12题图18. 如图所示,已知二次函数的图象经过(-1,0)和(0,-1)两点,则化简代数式= .三、解答题(共46分)19. (6分)已知一次函数y =ax +b 的图象经过点A (2,0)与 B (0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y 的值在-4≤y ≤4范围内,求相应的x 值在什么范围内. 20. (6分)如图,一次函数y =kx +b 的图象与反比例函数y =mx的图象交于A ,B 两点. (1)利用图中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.21.(8分)如图所示,一个运动员推铅球,铅球在点A 处出手,出手时球离地面约.铅球落地点在B 处,铅球运行中在运动员前4 m 处(即)达到最高点,最高点高为3 m .已知铅球经过的路线是抛物线,根据图示的直角坐标系,你能算出该运动员的成绩吗?22.(8分)某文具商店销售功能相同的A ,B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需 122元.(1)求这两种品牌计算器的单价.(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售.设购买x 个A 品牌的计算器需要y 1元,购买x 个B 品牌的计算器需要y 2元,分别求出y 1,y 2关于x 的函数解析式.(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由. 23. (8分)已知抛物线与轴有两个不同的交点.(1)求的取值范围; (2)抛物线与轴的两交点间的距离为2,求的值.24. (10分)某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成销售量p (件) p =50-x第18题图+当21≤x≤40时,q=20+(2)求该网店第x天获得的利润y关于x的函数解析式.(3)这40天中该网店第几天获得的利润最大?最大利润是多少?第5章对函数的再探索检测题参考答案1.D 解析:根据题意,得x-1≥0,x-3≠0,解得x≥1且x≠3.故选D.2. A 解析:因为函数y=中k= -5<0,所以其图象位于第二、四象限,当x>0时,其图象位于第四象限.3. B 解析:当y=0时,= 0,解得=1,∴点E的坐标是(1,0),即OE=1.∵OC=4,∴EC=OC-OE=4-1=3.∵点F的横坐标是4,∴其纵坐标y=×4-=2,即CF=2.∴△CEF的面积=×CE×CF=×3×2=3.故选B.4. A 解析:将=0代入3-5+15=0得=3,∴方程3-5+15=0的图象与轴的交点为(0,3).将=0代入3-5+15=0得=-5,∴方程3-5+15=0的图象与轴的交点为(-5,0).观察图象可得直线1与轴的交点恰为(-5,0),(0,3),∴方程3-5+15=0的图象为直线1.故选A.5. D 解析:原二次函数,当取最小值时,x的值为-1.6. D 解析:因为反比例函数4yx的图象位于第一、三象限,且在每个象限内y随x的增大而减小,所以y1 >y2.又因为当x<0时,y<0,当x>0时,y>0,所以y3>0,y2 <y1<0,故选D.7. D 解析:由题意可知所以所以当8. B 解析:因为当x取任意实数时,都有,又二次函数的图象开口向上,所以图象与x轴没有交点,所以9. B 解析:因为,正方形的边长为1,所以,所以,即,化简可得,所以其图象为抛物线,故排除D.因为边长为正值,所以排除A,又抛物线的开口向上,所以排除C,故选B.10.C 解析:本题考查了二次函数的图象和性质.由图象开口向上,对称轴在y轴的左侧,与y轴的交点在x轴的下方,得a>0,<0,c<0,∴b>0,abc<0,故①正确;∵抛物线的对称轴是直线x=-1,∴=-1,即2a=b,∴ 2a-b=0,故②正确;∵抛物线上的点(-3,0)关于直线x=-1的对称点是(1,0),即当x=1时,y=0,根据抛物线的对称性,知当x>-1时,y随x的增大而增大,∴当x=2时,y=4a+2b+c>0,故③错误;抛物线上的点(-5,y 1)关于直线x =-1的对称点是(3,y 1),∵3> ,∴ y 1>y 2,故④正确.故正确的说法是①②④.11. -1 解析:若两个变量x 和y 间的关系式可以表示成y =k x +b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为x 的函数).因而有=1,解得m =±1.又m -1≠0,∴ m =-1.12.> 解析:观察图象知:y 随x 的增大而减小,且x =2时y =3,故y <3时x >2. 13.k >0 解析:本题考查了一次函数的图象与性质.因为直线与y 轴交于正半轴,且过第一、二、三象限,所以y 随x 的增大而增大,所以k >0.14. 0 解析:根据二次函数的定义,得,解得.又∵,∴.∴ 当时,这个函数是二次函数.15.解析:16. 解析:根据题意,有t= ,∴ k=.因此,B ,C 两个城市间每天的电话通话次数为T BC =k×2801003253205642t t =⨯⨯=.17. k <-41 解析:若一次函数y=kx +1的图象与反比例函数y =x1的图象没有公共点,则方程kx +1=x 1没有实数根,将方程整理得,解得k <-41.18. 解析:把(-1,0)和(0,-1)两点的坐标分别代入中,得,∴.由图象可知,抛物线的对称轴为直线,且,∴∴.∴=,故填.19. 解:(1)由题意得20,2,4,4,a b a b b +==-⎧⎧⎨⎨==⎩⎩解得∴ 这个一次函数的解析式为,函数图象如图所示.(2)∵,-4≤≤4,∴ -4≤≤4,∴ 0≤≤4.20. 解:(1)由图中条件可知,反比例函数的图象经过点A (2,1),第19题答图∴ 1=2m,∴ m =2,∴ 反比例函数的解析式为y =2x .又点B 也在反比例函数的图象上,∴ n =21=-2,∴ 点B 的坐标为(-1,-2).∵ 直线y =kx +b 经过点A ,B ,∴解得∴ 一次函数的解析式为y =x -1.(2)根据图象可知,一次函数的图象在反比例函数的图象的上方时,一次函数的值大于反比例函数的值,即x >2或-1<x <0.21. 解:能.∵,∴ 顶点的坐标为(4,3),设抛物线的解析式为 +3,把点的坐标代入上式,得,∴,∴ 即.令,得∴(舍去),故该运动员的成绩为.22. 分析:(1)等量关系:2个A 品牌计算器的费用+3个B 品牌计算器的费用=156元,3个A 品牌计算器的费用+1个B 品牌计算器的费用=122元;(2)根据“y 1=0.8×A 品牌计算器的单价×A 品牌计算器的数量”写出y 1关于x 的函数解析式,而写y 2关于x 的函数解析式时,要分“0≤x ≤5”和“x >5”两种情况讨论;(3)由y 1>y 2,y 1= y 2,y 1<y 2三种情况分别讨论x 的取值范围,从而确定优惠方法.解:(1)设A 品牌计算器的单价为x 元,B 品牌计算器的单价为y 元.根据题意,得解得即A ,B 两种品牌计算器的单价分别为30元和32元. (2)根据题意,得y 1=0.8×30x ,即y 1=24x . 当0≤x ≤5时,y 2=32x ;当x >5时,y 2=32×5+32(x -5)×0.7, 即y 2=22.4x +48.(3)当购买数量超过5个时,y 2=22.4x +48. ①当y 1<y 2时,24x <22.4x +48,∴ x <30.故当购买数量超过5个而不足30个时,购买A 品牌的计算器更合算. ②当y 1=y 2时,24x =22.4x +48,∴ x =30.故当购买数量为30个时,购买A品牌与B品牌的计算器花费相同.③当y1>y2时,24x>22.4x+48,∴x>30.故当购买数量超过30个时,购买B品牌的计算器更合算.点拨:选择优惠方法时,要通过比较函数值的大小来确定选择哪种方法,本题体现了分类讨论的数学思想.23.解:(1)∵抛物线与轴有两个不同的交点,∴>0,即解得c<.(2)设抛物线与轴的两交点的横坐标分别为,∵两交点间的距离为2,∴.由题意,得,解得,∴,.24.分析:(1)把q=35分别代入q=30+ x和q=20+ 中求出x;(2)根据“第x天获得的利润=第x天每件商品的利润×第x天的销售量p”写出y与x 之间的函数解析式;(3)分两种情况求出最大利润后进行比较,从中选取利润最大的作为最后的结果.解:(1)当1≤x≤20时,令30+x=35,得x=10.当21≤x≤40时,令20+=35,得x=35.即第10天或第35天该商品的销售单价为35元/件.(2)当1≤x≤20时,y=(30+x-20)(50-x)= - x2+15x+500;当21≤x≤40时,y=(20+-20)(50-x)=-525.∴(3)当1≤x≤20时,y= -x2+15x+500= -(x-15)2+612.5.∵-<0,∴当x=15时,y有最大值y1,且y1=612.5.当21≤x≤40时,∵ 26 250>0,∴随着x的增大而减小,∴当x=21时,最大.于是,当x=21时,y = -525有最大值y2,且y2= -525=725.∵y1<y2,∴这40天中第21天时该网店获得的利润最大,最大利润为725元.点拨:本题为分段函数问题,因此应先根据自变量的不同取值范围确定不同的函数解析式,再根据不同函数的性质确定最大(小)值.。
2024年青岛版六三制新九年级数学上册阶段测试试卷976
2024年青岛版六三制新九年级数学上册阶段测试试卷976考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共5题,共10分)1、二次函数y=ax2+bx+c的图象如图所示,那么下列四个结论:①a<0;②a+b+c>0;③b2-4ac>0;④>0中,正确的结论有()A. 1个B. 2个C. 3个D. 4个2、【题文】如图,水平放置的一个油管的截面半径为13cm,其中有油部分油面宽为24cm,则截面上有油部分油面高(单位:cm)等于()A. 8cmB. 9cmC. 10cmD. 11cm3、下列几何体中,主视图是三角形的是()A.B.C.D.4、在计算样本方差的公式中,表示()A. 样本容量B. 样本平均数C. 样本方差D. 样本标准差5、如图,已知矩形纸片ABCD,AD=2,AB=以A为圆心,AD的长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A. 1B.C.D.评卷人得分二、填空题(共5题,共10分)6、如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于N,且S△ABC=24,那么S四边形ANME-S△DMN=.7、(2009•赤峰)如图是由几个相同的小正方体搭成的几何体的主视图和俯视图,则搭成这个几何体的小正方体的个数最少是个.8、如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,则楼房CD 的高度为____m .(≈1.7)9、有公共顶点的两个全等三角形,其中一个三角形绕公共顶点旋转180°后与另一个重合,那么不共点的四个顶点的连线构成形.10、如图,Rt△ABC中在AC边上取点O画圆使⊙O经过A、B两点,下列结论中:①②③以O为圆心,以OC为半径的圆与AB相切;④延长BC交⊙O与D,则A、B、D是以OA为半径的⊙O的三等分点.正确的序号是(多填或错填不给分,少填或漏填酌情给分).评卷人得分三、判断题(共5题,共10分)11、收入-2000元表示支出2000元.()12、如果A、B两点之间的距离是一个单位长度,那么这两点表示的数一定是两个相邻的整数()13、定理不一定有逆定理14、在同圆中,优弧一定比劣弧长..(判断对错)15、一条直线有无数条平行线.()评卷人得分四、其他(共4题,共16分)16、某次商品交易会上,所有参加会议的商家每两家之间都签订了一份合同,共签订合同36份.共有家商家参加了交易会.17、有1个人得了H1N1流感,经过两轮传染共有81人感染,则每轮传染中平均一人传染人.18、参加一次商品交易会的每两家公司之间都签订一份合同,所有公司共签订了45份合同,设共有x家公司参加商品交易会,则可列方程为.19、有一人患了流感,经过两轮传染后,共有121人患了流感,若设每轮传染中平均每人传染了x人,那么可列方程为.评卷人得分五、综合题(共1题,共3分)20、已知A是x轴正半轴上一个动点,以线段OA为直径作⊙B,圆心为点B,直径OA=m,线段EF是⊙B的一条弦,EF∥x轴,点C为劣弧EF的中点,过点E作DE垂直于EF,交抛物线C1:y=ax2+bx(a>0)于点G;抛物线经过点O和点A.(1)求证:DG=m;(2)拖动点A,如果抛物线C1与⊙B除点O和点A外有且只有一个交点,求b的值;(3)拖动点A,抛物线C1交⊙B于点O;E、F、A;①求证:DE=m-;②直接写出FC2的值(用a,m的代数式表示)参考答案一、选择题(共5题,共10分)1、B【分析】【分析】观察图象得到:开口向下,与x轴有两个公共点,对称轴在y轴的右侧,根据二次函数y=ax2+bx+c(a≠0)的图象与系数的关系分别进行判断即可.【解析】【解答】解:抛物线的开口向下,则a<0,所以①正确;坐标系中没有数据,不能确定x=1的位置,其对应的函数值a+b+c不能确定正负,所以②错误;抛物线与x轴有两个交点,则△=b2-4ac >0,所以③正确;抛物线的对称轴在y轴的右侧,则x=- >0,而a<0,则b>0;所以④错误.故选B.2、A【分析】【解析】分析:根据垂径定理;易知AC;BC的长;连接OA,根据勾股定理即可求出OC的长,进而可求出CD的值.解答:解:如图;连接OA;根据垂径定理;得AC=BC=12cm;Rt△OAC中;OA=13cm,AC=12cm;根据勾股定理;得:OC==5cm;∴CD=OD-OC=8cm;故选A.【解析】【答案】A3、A【分析】解:A主视图是三角形;故选项正确;B;主视图是长方形;故选项错误;C;主视图是中间有1条实心线的长方形;故选项错误;D;主视图是圆形;故选项错误.故选:A.分别得到几何体中的主视图;找到其中是三角形即为所求.此题主要考查了简单几何体的三视图,根据已知得出几何体的三视图是解决问题的关键.【解析】A4、B【分析】【分析】根据方差的定义直接求解,判定正确选项.【解析】【解答】解:一组数据中;各数据与它们的平均数的差的平方叫做方差,所以x表示样本平均数.故选B.5、C【分析】cos∠BAE=∴∠BAE=30°,∴∠DAE=60°,∴圆锥的侧面展开图的弧长为:π,∴圆锥的底面半径为π÷2π=.故选C.【解析】【答案】C二、填空题(共5题,共10分)6、略【分析】∵DE是△ABC的中位线;∴DE∥BC,DE=BC;∴△ADE∽△ABC;∴S△ADE=S△ABC=6.连接AM.∵M是DE的中点;∴S△ADM=S△ADE=3.∵DE∥BC,DM=BC;∴DN=BN;∴DN=BD=AD.∴S△DNM=S△ADM=1;∴S四边形ANME=S△ADE-S△DNM=6-1=5;∴S四边形ANME-S△DMN=5-1=4.故答案为4.【解析】【答案】连接AM,由于DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,且DE= BC.由M是DE中点,可知DM= BC,在△BCN中,利用平行线分线段成比例定理,可得DN= BD,即DN= AD,于是S△DMN= S△ADM,而S△ADM= S△ADE= S△ABC=3,那么S四边形ANME也可求;两者面积之差也就可求.7、略【分析】综合主视图和俯视图;底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.【解析】【答案】主视图;俯视图是分别从物体正面、上面看;所得到的图形.8、32.4【分析】【解答】解:如图;过点B作BE⊥CD于点E;根据题意;∠DBE=45°,∠CBE=30°.∵AB⊥AC;CD⊥AC;∴四边形ABEC为矩形.∴CE=AB=12m.在Rt△CBE中,cot∠CBE=∴BE=CE•cot30°=12× =12 .在Rt△BDE中;由∠DBE=45°;得DE=BE=12 .∴CD=CE+DE=12(+1)≈32.4.答:楼房CD的高度约为32.4m.故答案为:32.4m.【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.9、略【分析】【分析】根据旋转的性质,知该四边形的对角线互相平分,再根据对角线互相平分的四边形是平行四边形,得该四边形是平行四边形.【解析】【解答】解:其中一个三角形绕公共顶点旋转180°后与另一个重合;则四边形的对角线互相平分;则该四边形是平行四边形.故答案为:平行四边形.10、略【分析】试题分析:连接OB,∵OA=OB,则∠OBA=∠A=30°,则∠OBC=30°,则OB=2OC,即OA=2OC,∴①正确、②错误;过点O作OE⊥AB,∵OB平分∠ABC,则OC=OE,即以O为圆心,以OC为半径的圆与AB相切,∴③正确;延长之后可得∠B=∠BAD=∠ADB=60°,即A、B、D为三等分点,∴④正确.考点:圆的性质.【解析】【答案】①、③、④三、判断题(共5题,共10分)11、√【分析】【分析】在一对具有相反意义的量中,其中一个为正,则另一个就用负表示.【解析】【解答】解:“正”和“负”相对;收入-2000元即表示支出2000元.故答案为:√.12、×【分析】【分析】根据题意,可通过举反例的方法即可得出答案.【解析】【解答】解:根据题意:可设A点位1.1;B点为2.1;A;B两点之间的距离是一个单位长度;但这两点表示的数不是两个相邻的整数.故答案为:×.13、√【分析】【解析】试题分析:可以任意举出一个反例即可判断.“对顶角相等”是定理,但“相等的角是对顶角” 是错误的,不是逆定理,故本题正确.考点:定理,逆定理【解析】【答案】对14、√【分析】【分析】同圆中,优弧是大于半圆的弧,而劣弧是小于半圆的弧.【解析】【解答】解:在同圆中;优弧一定比劣弧长,说法正确;故答案为:√.15、√【分析】【分析】根据平行线的定义:在同一平面内,不相交的两条直线叫平行线即可作出判断.【解析】【解答】解:由平行线的定义可知;一条直线有无数条平行线是正确的.故答案为:√.四、其他(共4题,共16分)16、略【分析】【分析】如果设有x家商家参加交易会,因此每个商家要签订的合同有(x-1)份,由于“每两家之间都签订了一份合同”,因此总合同数可表示为:x(x-1),再根据题意列出方程即可.【解析】【解答】解:设有x家商家参加交易会;根据题意列出方程得;x(x-1)=36;解得x=9或-8(舍去)则x=9;答:共有9家商家参加了交易会.17、略【分析】【分析】设每轮传染中平均一人传染x人,那么经过第一轮传染后有x人被感染,那么经过两轮传染后有x(x+1)+x+1人感染,又知经过两轮传染共有81人被感染,以经过两轮传染后被传染的人数相等的等量关系,列出方程求解.【解析】【解答】解:设每轮传染中平均一人传染x人;则第一轮后有x+1人感染,第二轮后有x(x+1)+x+1人感染;由题意得:x(x+1)+x+1=81;即:x1=8,x2=-10(不符合题意舍去)所以,每轮平均一人传染8人.18、略【分析】【分析】本题可根据每两家签订一份合同,共x家参与可知签订的合同数为:x(x-1),然后根据已知条件等于45即可列出方程.【解析】【解答】解:依题意得签订的合同数为1+2+3+ +x-1;∴x(x-1)=45.故填空答案:x(x-1)=45.19、略【分析】【分析】如果设每轮传染中平均每人传染了x人,那么第一轮传染中有x人被传染,第二轮则有x (x+1)人被传染,已知“共有121人患了流感”,那么即可列方程.【解析】【解答】解:设每轮传染中平均每人传染了x人;则第一轮传染中有x人被传染;第二轮则有x(x+1)人被传染;又知:共有121人患了流感;∴可列方程:1+x+x(x+1)=121.故答案为:1+x+x(x+1)=121.五、综合题(共1题,共3分)20、略【分析】【分析】(1)连接BC;EC、FG;如图1,只需证到DC=CF,BG=BF,然后运用三角形的中位线定理即可解决问题;(2)由图可知OA的中垂线是抛物线C1与⊙B公共的对称轴,故抛物线C1与⊙B除点O和点A 外唯一交点为C,然后把A、C的坐标代入抛物线的解析式,消去m,就可求出b的值;(3)①连接AE,如图2,设点E的坐标为(x,y),则OH=x,EH=-y,AH=OA-OH=m-x.易证△OHE∽△EHA,从而可得EH2=OH•AH,则有(-y)2=x(m-x).由点A在抛物线上可得m=-,从而得到y2=x(- -x)=- (ax2+bx)=- y,求得y=- ,即EH= .然后根据垂径定理可得GH=EH= ,即可证到结论;②只需运用割线定理即可解决问题.【解析】【解答】解:(1)连接BC、EC、FG,如图1.∵点C为劣弧EF的中点;∴EC=FC;∴∠CEF=∠CFE.∵DE⊥EF;即∠DEF=90°;∴∠DEC+∠CEF=90°;∠EDF+∠DFE=90°;∴∠DEC=∠EDF;∴CE=CD;∴CD=CF.∵∠GEF=180°-∠DEF=90°;∴GF是⊙B的直径;即BG=BF;根据三角形中位线定理可得DG=2BC=OA=m;(2)由图可知:OA的中垂线是抛物线C1与⊙B公共的对称轴;若抛物线C1与⊙B除点O和点A外有且只有一个交点;则该交点必在OA的中垂线上;即点C.∵A(m,0),C(,- );∴;由①得m1=0(舍去),m2=- ;把m=- 代入②并整理得:b2+2b=0;解得:b1=0(舍去),b2=-2.∴b的值为-2.(3)①证明:连接AE;如图2.设点E的坐标为(x,y),则OH=x;EH=-y,AH=OA-OH=m-x.∵EF∥OA;DG⊥EF,∴DG⊥OA;∴∠OHE=∠EHA=90°.∵OA是⊙B的直径;∴∠OEA=90°;∴∠OEH=∠EAH=90°-∠HEA;∴△OHE∽△EHA;∴= ,即EH2=OH•AH;∴(-y)2=x(m-x).∵点A(m,0)在抛物线y=ax2+bx上;∴am2+bm=0.∵m≠0,∴m=- ;∴y2=x(- -x)=- (ax2+bx)=- y.∵y≠0,∴y=- ,即EH= .∵直径OA⊥EG,∴GH=EH= ;∴DE=DG-EH-GH=m- ;②根据割线定理可得:DE•DG=DC•DF;∴(m- )•m=CF•2CF;∴FC2= (m- )•m= - .。
九年级数学期末试题及答案(青岛版)
2010—2011学年度上学期期末质量分析九年级数学试题一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,填写在表格中.满分36分。
)1、2009年7月22日上午,长江流域的居民有幸目睹了罕见的日全食天文奇观,下面是天文爱好者拍摄的三个瞬间,其中白色的圆形是太阳,逐渐覆盖太阳的黑色圆形是月亮.如果把太阳和月亮的影像视作同一平面中的两个圆,则关于这两圆的圆心距与两圆的半径之间的关系的下列说法,正确的是A .三张图片中圆心距都大于两圆的半径之和.B .第一幅图片中圆心距等于两圆的半径之和.C .第三幅图片中圆心距小于两圆的半径之差.D .三张图片中圆心距都大于两圆的半径之差且小于两圆的半径之和.2、在半径为3的圆中,150°的圆心角所对的弧长是A .π415B .π215C .π45D .π253、下列说法正确的有①任意一个三角形都有且只有一个外接圆②任意一个圆都有且只有一个外切三角形③三角形的外心到三角形三个顶点的距离相等④三角形的内心可能在三角形内部也可能在三角形外部⑤三角形任意两边垂直平分线的交点是三角形的外心⑥若三角形的外心与内心重合,则这个三角形一定是等边三角形。
A .2个B .3个C .4个D .5个4、如图,⊙O 的直径AB =4,BC 切⊙O 于点B ,OC 平行于弦AD ,OC =5,则AD 的长为 A .56 B .58C.57 D .5325、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有A .1个B .2个C .3个D .4个6、已知二次函数()k y x +=-123的图象上有A (y 1,2),B (2,y 2),C (y 3,5-)三个点,则y 1、y 2、y 3的大小关系是A .y y y 321>>B .y y y 312>>C .yy y 213>> D .y y y 123>> 7、函数k kx y -=与xky =(0≠k )在同一直角坐标系中的图象可能是8、视力表对我们来说并不陌生,如图是视力表的一部分,其中开口向上的两个“E ”之间的变化是A .平移B .旋转C .对称D .位似9、若关于x 的一元二次方程01)1(22=-++-a x x a 有一根为零,则a 的值为 A .1 B .一l C .1或一l D .2110、如图,已知四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是( )A B CDA .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不变D .线段EF 的长与点P 的位置有关11、已知函数c bx ax y ++=2的图象如图所示,那么关于x 的方程022=+++c bx ax 的根的情况是A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根12、关于图形的旋转,下列说法中错误的是A .对应点到旋转中心的距离一定相等B .旋转角是指对应点与旋转中心所连成的夹角C .由旋转得到的图形也一定可以由平移得到D .旋转不改变图形的大小形状 二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上.满分18分。
24-25八年级数学期中模拟卷(考试版A4)【测试范围:八年级上册第1章-第3章】(青岛版)
2024-2025学年八年级数学上学期期中模拟卷(青岛版)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:青岛版八年级上册 第1章~第3章。
5.难度系数:0.85。
一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列图案中,是轴对称图形的是( )A .B .C .D .2.已知等腰三角形的一个内角等于110°,则它的两个底角是( )A .55°,55°B .35°,35°C .55°,35°D .30°,50°3.如图,已知AE =CF ,AD ∥BC ,添加一个条件后,仍无法判定△ADF≌△CBE 的是( )A .DF =BEB .AD =CBC .∠B =∠D D .BE ∥DF4.化简x―2x ÷x )A .x+2x B .x―2x C .1x―2D .1x+25.如图,在△ABC 中,AC =5,AB =7,AD 平分∠BAC ,DE ⊥AC ,DE =2,则△ABD 的面积为( )A .14B .12C .10D .76.如图,把长方形纸片ABCD 沿EF 对折,若∠1=52°,则∠AEF 的度数为()A .114°B .115°C .116°D .117°7.光明家具厂生产一批学生课椅,计划在30天内完成并交付使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x 把,根据题意,可列分式方程为( )A .30x+200x+100=23B .30x―200x+100=23C .30x+200x―100=23D .30x―200x―100=238.已知关于x 的方程2x+mx―2=3的解是正数,则m 的取值范围为( )A .m <-6B .m >-6C .m >-6且m≠-4D .m≠-49.如图1,四边形ABCD 是长方形纸带,其中AD ∥BC ,∠DEF =20°,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,则图3中∠CFE 的度数是( )图1图2 图3A .110°B .120°C .140°D .150°10.如图,在ΔABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG .连接FG ,交DA 的延长线于点E ,连接BG ,CF .则下列结论:①BG =CF ;②BG ⊥CF ;③EF =EG ;④BC =2AE ;⑤S ΔABC =S ΔFAG ,其中正确的有( )A.①②③B.①②③④C.①②③⑤D.①②③④⑤二、填空题(本题共6小题,每小题3分,共18分.)11.若分式4有意义,则x的取值范围是.x―212.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.13.在平面直角坐标系中,已知点M(m―1,2m+4)在x轴上,则点M的坐标为.14.如图,平面上有△ACD与△BCE,其中AD与BE相交于点P,若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠ACB的度数为.15.如图,已知等边三角形ABC的边长为3,过AB边上一点P作PE⊥AC于点E,Q为BC延长线上一点,取PA=CQ,连接PQ,交AC于点M,则ME的长为.16.如图所示,在四边形ABCD 中,AD =2,∠A =∠D =90°,∠B =60°,BC =2DC ,在AD 上找一点P ,使PC +PB的值最小,则PC +PB 的最小值为 .三.解答题(本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)解方程:(1)1x =2x+1;(2)x -2x+2-16x 2-4=1.18.(8÷xx―1,再从―3<x <2的范围内选取一个合适的整数代入求值.19.(10分)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)△ABC的面积为;(2)在图中作出△ABC关于直线MN的对称图形△A′B′C′.(3)利用网格纸,在MN上找一点P,使得PB+PC的距离最短.(保留痕迹)20.(10分)如图,在△ABC中,=AC,点D,E,F分别在AB,BC,AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DEF的度数.21.(10分)某校组织学生去郭永怀纪念馆进行研学活动.纪念馆距学校120千米,部分学生乘坐大型客车先行,出发12分钟后,另一部分学生乘坐小型客车前往,结果同时到达.已知小型客车的速度是大型客车速度的1.2倍,求大型客车的速度.22.(12分)阅读材料,并解决问题:我们知道,分子比分母小的分数叫做“真分数”,分子大于或等于分母的分数,叫做“假分数”.类似的,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于字母的次数时,我们称之为“真分式”.如x―1x+1,x 2x+1这样的分式就是假分式;再如3x+1,2x x 2+1这样的分式就是真分式,假分数74可以化成1+34(即134)带分数的形式,类似的,假分式也可以化为带分式(整式与真分式的和或差)的形式,如:x+1x―1=x―1+2x―1=x―1x―1+2x―1=1+2x―1,再如:3x 2+4x―1x+1=3x (x+1)+x―1x+1=3x (x+1)+x+1―2x+1=3x (x+1)x+1+x+1x+1―2x+1=3x +1―2x+1,这样,分式就被拆分成了带分式(即一个整式3x +1与一个分式2x+1的差)的形式.解决问题:(1)判断:x+2x+1是真分式还是假分式: (填“真分式”或“假分式”);如果是,化成带分式的形式: ;(2)思考:当x 取什么整数时,分式5x 4+9x 2+6x 2+2的值为整数?(3)探索:当a 为何值时,分式3a 2―12a+17a 2―4a+5有最大值?最大值是多少?23.(12分)(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上∠BAD,上述结论是否仍然成立?说明理由;的点,且∠EAF=12(3O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以80海里/小时的速度前进,舰艇乙沿北偏东50°的方向以100海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且两舰艇之间的夹角为70°(即:∠EOF=70°),试直接写出此时两舰艇之间的距离.。
肥城市2013—2014学年度上学期期末考试初三数学试题2(青岛版)含答案
肥城市2013—2014学年度上学期期末考试初三数学试题(青岛版)一.选择题(共15小题)1.(2013•葫芦岛)装有一些液体的长方体玻璃容器,水平放置在桌面上时,液体的深度为6,其正面如图1所示,将容器倾斜,其正面如图2所示.已知液体部分正面的面积保持不变,当AA1=4时,BB1=()A.10 B.8C.6D.42.(2013•德州)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.3.(2013•大庆)已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形4.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.85.(2011•淄博)一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为()A.75cm2B.(25+25)cm2C.(25+)cm2D.(25+)cm26.(2013•牡丹江)若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A.2018 B.2008 C.2014 D.20127.(2010•芜湖)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.(2013•襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E 是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A.B.C.D.9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.10.(2011•兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20°B.30°C.40°D.50°11.(2013•淄博)如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2)C.(,2)D.(2,)12.(2013•柳州)如图,点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是()A.3B.4C.D.13.(2013•乐山)如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cosA=,则k的值为()A.﹣3 B.﹣4 C.﹣D.﹣214.(2013•菏泽)已知b<0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.﹣2 B.﹣1 C.1D.215.(2008•咸宁)如图,在Rt△ABC中,AB=AC.D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2.其中正确的是()A.②④B.①④C.②③D.①③二.填空题(共5小题)16.(2007•乌兰察布)如图,菱形ABCD的对角线的长分别为6和8,点P是对角线AC上的任意一点(点P不与点A,C重合),且PE∥BC交AB于点E,PF∥CD交AD于点F,则阴影部分的面积是_________.17.(2011•长春)如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连接PA、PB.则∠APB的大小为_________度.18.(2013•河南)如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为_________.19.(2013•崇左)崇左市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分.则水喷出的最大高度是_________米.20.(2010•双鸭山)如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2M1,对角线A1M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;…,依此类推,这样作的第n个正方形对角线交点M n的坐标为_________.三.解答题(共6小题)21.(2013•太原)解方程:(2x﹣1)2=x(3x+2)﹣7.22.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.23.(2013•达州)已知反比例函数的图象与一次函数y=k2x+m的图象交于A(﹣1,a)、B(,﹣3)两点,连结AO.(1)求反比例函数和一次函数的表达式;(2)设点C在y轴上,且与点A、O构成等腰三角形,请直接写出点C的坐标.24.(2013•兰州)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.25.(2004•内江)某商场在“五•一”节里实行让利销售,全部商品一律按九折销售.这样每天所获得的利润恰是销售收入的,如果第一天的销售收入是4万元,并且每天的销售收入都有增长,第三天的利润是1.25万元.(1)求第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率是多少?26.(2013•湛江)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,﹣5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l 与⊙C有什么位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.初三上学期期末考试数学试题(青岛版)参考答案与试题解析一.选择题(共15小题)1.(2013•葫芦岛)装有一些液体的长方体玻璃容器,水平放置在桌面上时,液体的深度为6,其正面如图1所示,将容器倾斜,其正面如图2所示.已知液体部分正面的面积保持不变,当AA1=4时,BB1=()A.10 B.8C.6D.4考点:梯形;矩形的性质.专题:增长率问题.分析:设A1B1=a,则根据长方形和梯形的面积公式得出6a=(4+BB1)•a,求出即可.解答:解:设A1B1=a,则根据面积公式得出:6a=(4+BB1)•a,BB1=8,故选B.点评:本题考查了长方形和梯形的面积的应用,关键是能根据题意得出方程.2.(2013•德州)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.点评:本题考查了中心对称及轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(2013•大庆)已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形考点:菱形的判定;矩形的判定;正方形的判定.专题:压轴题.分析:根据平行四边形、菱形的判定与性质分别判断得出即可.解答:解:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误;B、当AB=AD,CB=CD时,无法得到,四边形ABCD是菱形,故此选项错误;C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确;D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误;故选C.点评:此题主要考查了菱形的判定以及矩形和正方形的判定,熟练掌握相关判定是解题关键.4.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.8考点:线段垂直平分线的性质;勾股定理;矩形的性质.专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.5.(2011•淄博)一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为()A.75cm2B.(25+25)cm2C.(25+)cm2D.(25+)cm2考点:解直角三角形;旋转的性质.专题:计算题.分析:过G点作GH⊥AC于H,则∠GAC=60°,∠GCA=45°,GC=10cm,先在Rt△GCH中根据等腰直角三角形三边的关系得到GH与CH的值,然后在Rt△AGH中根据含30°的直角三角形三边的关系求得AH,最后利用三角形的面积公式进行计算即可.解答:解:过G点作GH⊥AC于H,如图,∠GAC=60°,∠GCA=45°,GC=10cm,在Rt△GCH中,GH=CH=GC=5cm,在Rt△AGH中,AH=GH=cm,∴AC=(5+)cm,∴两个三角形重叠(阴影)部分的面积=•GH•AC=×5×(5+)=(25+)cm2.故选C.点评:本题考查了解直角三角形:求直角三角形中未知的边和角的过程叫解直角三角形.也考查了含30°的直角三角形和等腰直角三角形三边的关系以及旋转的性质.6.(2013•牡丹江)若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A.2018 B.2008 C.2014 D.2012考点:一元二次方程的解.分析:将x=1代入到ax2+bx+5=0中求得a+b的值,然后求代数式的值即可.解答:解:∵x=1是一元二次方程ax2+bx+5=0的一个根,∴a•12+b•1+5=0,∴a+b=﹣5,∴2013﹣a﹣b=2013﹣(a+b)=2013﹣(﹣5)=2018.故选A.点评:此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式a+b的值.7.(2010•芜湖)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5考点:根的判别式.分析:由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.解答:解:(1)当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;(2)当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.所以a的取值范围为a≥1.故选A.点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.(2013•襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A.B.C.D.考点:扇形面积的计算;弧长的计算.专题:压轴题.分析:首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC﹣S扇形BOE=图中阴影部分的面积求出即可.解答:解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=30°,∵弧BE的长为π,∴=π,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC==3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=﹣=﹣.故选:D.点评:此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出∴△BOE和△ABE面积相等是解题关键.9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.考点:圆周角定理;圆内接四边形的性质;相似三角形的判定与性质.专题:计算题;压轴题.分析:根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC==,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=•PC=PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.解答:解:∵AB为⊙O的直径,∴AB=5,∠ACB=90°,∵tan∠ABC=,∴=,∵CP⊥CQ,∴∠PCQ=90°,而∠A=∠P,∴△ACB∽△PCQ,∴=,∴CQ=•PC=PC,当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=×5=.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.10.(2011•兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20°B.30°C.40°D.50°考点:切线的性质;圆周角定理.专题:计算题;压轴题.分析:先连接BC,由于AB 是直径,可知∠BCA=90°,而∠A=25°,易求∠CBA,又DC是切线,利用弦切角定理可知∠DCB=∠A=25°,再利用三角形外角性质可求∠D.解答:解:如右图所示,连接BC,∵AB 是直径,∴∠BCA=90°,又∵∠A=25°,∴∠CBA=90°﹣25°=65°,∵DC是切线,∴∠BCD=∠A=25°,∴∠D=∠CBA﹣∠BCD=65°﹣25°=40°.故选C.点评:本题考查了直径所对的圆周角等于90°、弦切角定理、三角形外角性质.解题的关键是连接BC,构造直角三角形ABC.11.(2013•淄博)如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2)C.(,2)D.(2,)考点:二次函数综合题.专题:综合题.分析:首先根据点A在抛物线y=ax2上求得抛物线的解析式和线段OB的长,从而求得点D的坐标,根据点P的纵坐标和点D的纵坐标相等得到点P的坐标即可;解答:解:∵Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,∴4=a×(﹣2)2,解得:a=1∴解析式为y=x2,∵Rt△OAB的顶点A(﹣2,4),∴OB=OD=2,∵Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴CD∥x轴,∴点D和点P的纵坐标均为2,∴令y=2,得2=x2,解得:x=±,∵点P在第一象限,∴点P的坐标为:(,2)故选:C.点评:本题考查了二次函数的综合知识,解题过程中首先求得直线的解析式,然后再求得点D的纵坐标,利用点P的纵坐标与点D的纵坐标相等代入函数的解析式求解即可.12.(2013•柳州)如图,点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是()A.3B.4C.D.考点:反比例函数系数k的几何意义;等边三角形的性质.专题:压轴题.分析:如图,根据反比例函数系数k的几何意义求得点P的坐标,则易求PD=4.然后通过等边三角形的性质易求线段AD=,所以S△POA=OA•PD=××4=.解答:解:如图,∵点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,∴16=a2,且a>0,解得,a=4,∴PD=4.∵△PAB是等边三角形,∴AD=.∴OA=4﹣AD=,∴S△POA=OA•PD=××4=.故选D.点评:本题考查了反比例函数系数k的几何意义,等边三角形的性质.等边三角形具有等腰三角形“三合一”的性质.13.(2013•乐山)如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cosA=,则k的值为()A.﹣3 B.﹣4 C.﹣D.﹣2考点:反比例函数综合题.专题:计算题;压轴题.分析:过A作AE⊥x轴,过B作BF⊥x轴,由OA与OB垂直,再利用邻补角定义得到一对角互余,再由直角三角形BOF中的两锐角互余,利用同角的余角相等得到一对角相等,又一对直角相等,利用两对对应角相等的三角形相似得到三角形BOF与三角形OEA相似,在直角三角形AOB中,由锐角三角函数定义,根据cos∠BAO的值,设出AB与OA,利用勾股定理表示出OB,求出OB与OA的比值,即为相似比,根据面积之比等于相似比的平方,求出两三角形面积之比,由A在反比例函数y=上,利用反比例函数比例系数的几何意义求出三角形AOE的面积,进而确定出BOF的面积,再利用k的集合意义即可求出k的值.解答:解:过A作AE⊥x轴,过B作BF⊥x轴,∵OA⊥OB,∴∠AOB=90°,∴∠BOF+∠EOA=90°,∵∠BOF+∠FBO=90°,∴∠EOA=∠FBO,∵∠BFO=∠OEA=90°,∴△BFO∽△OEA,在Rt△AOB中,cos∠BAO==,设AB=,则OA=1,根据勾股定理得:BO=,∴OB:OA=:1,∴S△BFO:S△OEA=2:1,∵A在反比例函数y=上,∴S△OEA=1,∴S△BFO=2,则k=﹣4.故选B点评:此题属于反比例函数综合题,涉及的知识有:相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及反比例函数k的几何意义,熟练掌握相似三角形的判定与性质是解本题的关键.14.(2013•菏泽)已知b<0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.﹣2 B.﹣1 C.1D.2考点:二次函数图象与系数的关系.专题:压轴题;数形结合.分析:根据抛物线开口向上a>0,抛物线开口向下a<0,然后利用抛物线的对称轴或与y轴的交点进行判断,从而得解.解答:解:由图可知,第1、2两个图形的对称轴为y轴,所以x=﹣=0,解得b=0,与b<0相矛盾;第3个图,抛物线开口向上,a>0,经过坐标原点,a2﹣1=0,解得a1=1,a2=﹣1(舍去),对称轴x=﹣=﹣>0,所以b<0,符合题意,故a=1,第4个图,抛物线开口向下,a<0,经过坐标原点,a2﹣1=0,解得a1=1(舍去),a2=﹣1,对称轴x=﹣=﹣>0,所以b>0,不符合题意,综上所述,a的值等于1.故选C.点评:本题考查了二次函数y=ax2+bx+c图象与系数的关系,a的符号由抛物线开口方向确定,难点在于利用图象的对称轴、与y轴的交点坐标判断出b的正负情况,然后与题目已知条件b<0比较.15.(2008•咸宁)如图,在Rt△ABC中,AB=AC.D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2.其中正确的是()A.②④B.①④C.②③D.①③考点:相似三角形的判定;全等三角形的判定;勾股定理;旋转的性质.专题:综合题;压轴题.分析:由△ADC绕点A顺时针旋转90°得△AFB,可知△ADC≌△AFB,∠FAD=90°,由∠DAE=45°可判断∠FAE=∠DAE,可证①△AED≌△AEF.由已知条件可证△BEF为直角三角形,则有④BE2+DC2=DE2是正确的.解答:解:∵△ADC绕点A顺时针旋转90°得△AFB,∴△ADC≌△AFB,∠FAD=90°,∴AD=AF,∵∠DAE=45°,∴∠FAE=90°﹣∠DAE=45°,∴∠DAE=∠FAE,AE为△AED和△AEF的公共边,∴△AED≌△AEF∴ED=FE在Rt△ABC中,∠ABC+∠ACB=90°,又∵∠ACB=∠ABF,∴∠ABC+∠ABF=90°即∠FBE=90°,∴在Rt△FBE中BE2+BF2=FE2,∴BE+DC=DE③显然是不成立的.故正确的有①④,不正确的有③,②不一定正确.故选B点评:本题考查的知识点较多,由图形的旋转变换、图形的全等、图形的相似、勾股定理等知识点,通过判断可知①④是正确的.二.填空题(共5小题)16.(2007•乌兰察布)如图,菱形ABCD的对角线的长分别为6和8,点P是对角线AC上的任意一点(点P不与点A,C重合),且PE∥BC交AB于点E,PF∥CD交AD于点F,则阴影部分的面积是12.考点:菱形的性质.专题:计算题.分析:易知四边形AEPF是平行四边形,设AP与EF相交于O点,则S△POF=S△AOE.所以阴影部分的面积等于菱形面积的一半.解答:解:设AP与EF相交于O点.∵ABCD为菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴AEFP是平行四边形.∴S△POF=S△AOE.∴阴影部分的面积就是△ABC的面积,△ABC的面积=菱形的面积=×(×6×8)=12,则阴影部分的面积是12.故答案为12.点评:此题的关键是得出阴影部分的面积就是△ABC的面积,再利用菱形的面积公式计算.17.(2011•长春)如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连接PA、PB.则∠APB的大小为45度.考点:圆周角定理.专题:计算题.分析:∠AOB与∠APB为所对的圆心角和圆周角,已知∠AOB=90°,利用圆周角定理求解.解答:解:∵∠AOB与∠APB为所对的圆心角和圆周角,∴∠APB=∠AOB=×90°=45°.故答案为:45.点评:本题考查了圆周角定理的运用.关键是确定同弧所对的圆心角和圆周角,利用圆周角定理.18.(2013•河南)如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为12.考点:二次函数图象与几何变换.专题:压轴题.分析:根据平移的性质得出四边形APP′A′是平行四边形,进而得出AD,PP′的长,求出面积即可.解答:解:连接AP,A′P′,过点A作AD⊥PP′于点D,由题意可得出:AP∥A′P′,AP=A′P′,∴四边形APP′A′是平行四边形,∵抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),∴PO==2,∠AOP=45°,∴△ADO是等腰直角三角形,∴PP′=2×2=4,∴AD=DO=×3=,∴抛物线上PA段扫过的区域(阴影部分)的面积为:4×=12.故答案为:12.点评:此题主要考查了二次函数图象与几何变换以及平行四边形面积求法和勾股定理等知识,根据已知得出AD,PP′是解题关键.19.(2013•崇左)崇左市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分.则水喷出的最大高度是4米.考点:二次函数的应用.分析:根据题意可以得到喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,利用配方法或公式法求得其顶点坐标的纵坐标即为本题的答案.解答:解:∵水在空中划出的曲线是抛物线y=﹣x2+4x,∴喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,∴y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点坐标为:(2,4),∴喷水的最大高度为4米,故答案为:4.点评:本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.20.(2010•双鸭山)如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2M1,对角线A1M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;…,依此类推,这样作的第n个正方形对角线交点M n的坐标为(,).考点:正方形的性质;坐标与图形性质.专题:压轴题;规律型.分析:先观察图形,了解正方形的性质,例如正方形对角线的性质,然后列出几个M点的坐标,推出公式.解答:解:设正方形的边长为1,则正方形四个顶点坐标为O(0,0),C(0,1),B1(1,1),A1(1,0);根据正方形对角线定理得M1的坐标为();同理得M2的坐标为(,);M3的坐标为(,),…,依此类推:M n坐标为(,)=(,)点评:准确掌握正方形的性质,正确认识坐标图.三.解答题(共6小题)21.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.考点:切线的判定;相似三角形的判定与性质.专题:压轴题.分析:(1)证明△ADC∽△BAC,可得∠BAC=∠ADC=90°,继而可判断AC是⊙O的切线.(2)根据(1)所得△ADC∽△BAC,可得出CA的长度,继而判断∠CFA=∠CAF,利用等腰三角形的性质得出AF的长度,继而得出DF的长,在Rt△AFD中利用勾股定理可得出AF的长.解答:解:(1)∵AB是⊙O的直径,∴∠ADB=∠ADC=90°,∵∠B=∠CAD,∠C=∠C,∴△ADC∽△BAC,∴∠BAC=∠ADC=90°,∴BA⊥AC,∴AC是⊙O的切线.(2)∵△ADC∽△BAC(已证),∴=,即AC2=BC×CD=36,解得:AC=6,在Rt△ACD中,AD==2,∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,∴CA=CF=6,∴DF=CA﹣CD=2,在Rt△AFD中,AF==2.点评:本题考查了切线的判定、相似三角形的判定与性质,解答本题的关键是熟练掌握切线的判定定理、相似三角形的性质,勾股定理的表达式.22.(2013•太原)解方程:(2x﹣1)2=x(3x+2)﹣7.考点:解一元二次方程-配方法.分析:根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.解答:解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.点评:此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.23.(2013•达州)已知反比例函数的图象与一次函数y=k2x+m的图象交于A(﹣1,a)、B(,﹣3)两点,连结AO.(1)求反比例函数和一次函数的表达式;(2)设点C在y轴上,且与点A、O构成等腰三角形,请直接写出点C的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)将点A(﹣1,a)、B(,﹣3)代入反比例函数中得:﹣3×=(﹣1)×a=k1,可求k1、a;再将点A(﹣1,a)、B(,﹣3)代入y2=k2x+m中,列方程组求k2、m即可;(2)分三种情况:①OA=OC;②AO=AC;③CA=CO;讨论可得点C的坐标.解答:解:(1)∵反比例函数的图象经过B(,﹣3),∴k1=3××(﹣3)=﹣3,∵反比例函数的图象经过点A(﹣1,a),∴a=1.由直线y2=k2x+m过点A,B得:,解得.∴反比例函数关系式为y=﹣,一次函数关系式为y=﹣3x﹣2;(2)点C在y轴上,且与点A、O构成等腰三角形,点C的坐标为:(0,﹣)或(0,)或(0,2)或(0,1).如图,线段OA的垂直平分线与y轴的交点,有1个;以点A为圆心、AO长为半径的圆与y轴的交点,有1个;以点O为圆心、OA长为半径的圆与y轴的交点,有2个.以上四个点为所求.点评:此题综合考查了待定系数法求函数解析式的方法、等腰三角形的性质等知识,注意分类思想的运用.24.(2013•兰州)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.考点:平行四边形的判定与性质;等边三角形的性质;翻折变换(折叠问题).分析:(1)首先根据直角三角形中斜边上的中线等于斜边的一半可得DO=DA,再根据等边对等角可得∠DAO=∠DOA=30°,进而算出∠AEO=60°,再证明BC∥AE,CO∥AB,进而证出四边形ABCE是平行四边形;(2)设OG=x,由折叠可得:AG=GC=8﹣x,再利用三角函数可计算出AO,再利用勾股定理计算出OG 的长即可.解答:(1)证明:∵Rt△OAB中,D为OB的中点,∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=8×=4,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.点评:此题主要考查了平行四边形的判定与性质,以及勾股定理的应用,图形的翻折变换,关键是掌握平行四边形的判定定理.25.(2004•内江)某商场在“五•一”节里实行让利销售,全部商品一律按九折销售.这样每天所获得的利润恰是销售收入的,如果第一天的销售收入是4万元,并且每天的销售收入都有增长,第三天的利润是1.25万元.(1)求第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率是多少?考点:一元二次方程的应用.专题:增长率问题;销售问题;压轴题.分析:(1)直接根据这样每天所获得的利润恰是销售收入的进行计算;(2)设第二天和第三天销售收入平均每天的增长率是m,则根据第一天的4万元增长到6.25万元列方程求解.解答:解:(1)1.25÷=6.25(万元)所以第三天的销售收入是6.25万元;(2)设第二天和第三天销售收入平均每天的增长率是m,则4(1+m)2=6.25.解得m1=25%,m2=﹣2.25%(不合题意舍去).答:第二天和第三天销售收入平均每天的增长率约是25%.点评:理解每天的销售收入和利润之间的关系,能够正确运用增长率表示每一天的销售收入.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.26.(2013•湛江)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,﹣5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l 与⊙C有什么位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.。
初三数学(青岛版)图形的变换复习(中考题选)带答案
初三数学第二章图形与变换复习(NO:005)知识总结1、(2012浙江)如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为 102、(2012绍兴)在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD ,点A 的坐标是(0,2).现将这张胶片平移,使点A 落在点A′(5,﹣1)处,则此平移可以是( B )A . 先向右平移5个单位,再向下平移1个单位B . 先向右平移5个单位,再向下平移3个单位C . 先向右平移4个单位,再向下平移1个单位D . 先向右平移4个单位,再向下平移3个单位3、(2012湖北咸宁,6,3分)如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为( C ).A .(2,0)B .(23,23) C .(2,2) D .(2,2)4、(2012年广西玉林市,10,3)如图,正方形ABCD 的两边BC 、AB 分别在平面直角坐标系内的x 轴、y 轴的正半轴上,正方形A ′B ′C ′D ′与正方形ABCD 是以AC 的中点O ′为中心的位似图形,已知AC=23,若点A ′的坐标为(1,2),则正方形A ′B ′C ′D ′与正方形ABCD 的相似比是( B )5、(2012聊城)如图,在方格纸中,△ABC 经过变换得到△DEF,正确的变换是( B ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180° D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180°6、(2012山东德州)由图中左侧三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是( C )A B DF(第6题)(A ) (C ) (D )(B )7、(2007潍坊)如图,两个全等的长方形ABCD 与CDEF ,旋转长方形ABCD 能和长方形CDEF 重合,则可以作为旋转中心的点有( A )A .1个B .2个C .3个D .无数个8、(2008潍坊)如图,在平面直角坐标系中,Rt OAB △的顶点A的坐标为,若将OAB △绕O 点逆时针旋转60后,B 点到达B '点,则B '点的坐标是)23,33(第7题 第8题 第9题9、(2009潍坊)如图,已知Rt ABC △中,9030ABC BAC AB ∠=∠==°,°,,将ABC △绕顶点C 顺时针旋转至A B C '''△的位置,且A C B '、、三点在同一条直线上,则点A 经过的最短路线的长度是( D )cm .A .8B.C .32π3D .8π310、(2012广东汕头)如图,将△ABC 绕着点C 顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是 80011、(2012贵州六盘水)两块大小一样斜边为4且含有30°角的三角板如图5水平放置.将△CDE 绕C 点按逆时针方向旋转,当E 点恰好落在AB 上时,△CDE 旋转了 30 度.第10题第11题 第12题12、(2012中考)如图,在△ABC 中,∠ACB =90º,∠B =30º,AC =1,AC 在直线l 上.将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得 到点P 2,此时AP 2=2+3;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3 +3;…,按此规律继续旋转,直到得到点P 2012为止,则AP 2012=【 】A .2011+671 3B .2012+671 3C .2013+671 3D .2014+671 3'B①② ③1P 2 P 3 … l又∵2012÷3=670…2,∴AP 2012=670(3+3)+(2+3)=2012+6713故选B .13、(2012山东泰安)如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B=120°,OA=2,将菱形OABC 绕点O 顺时针旋转105°至OA B C '''的位置,则点B '的坐标为(2,2-)14、(2012广州)如图4,在等边△ABC 中,AB=6,D 是BC 上一点,且BC=3BD ,△ABD 绕点A 旋转后得到△ACE ,则CE 的长度为 2 。
2014-2015青岛版九年级数学上学期期末复习4
(3)在抛物线上除 点C外,是否还存在另外一个点
P,使 △ABP是直角三角形,若存在,请求出点P 的
坐标,若不存在,请说明理由.
P 2, 2
已知抛物线y=ax2+bx+c与x轴正、负半轴分别交于A、 B两点,与y轴负半轴交于点C。若OA=4,OB=1, ∠ACB=90°,求抛物线解析式。
2
B. ( x 2)2 2 D.
C. ( x 2)2 2
( x 2) 6
2
6.在平面直角坐标系中,如果抛物线y=2x2分别向 上、向右平移2个单位,那么新抛物线的解析式是 (B) A.y=2(x + 2)2-2 C.y=2(x-2)2-2 B.y=2(x-2)2 + 2 D.y=2(x + 2)2 + 2
则小明赢,否则小亮赢.这个游戏规则对双方公平
吗?请你利用树状图或列表法说明理由.
20.一次函数 y
m kx b 的图像与反比例函数 y x
的图象交于A(-2 ,1),B(1 ,n)两点。
(1)试确定上述反比例函数和一次函数的表达式;
(2)求△OAB的面积。
(3)写出反比例函数值大于一次函数值的自变量x 的取值范围。
7.在同一直角坐标系中,函数y=-kx+k与 (k≠0)的图像大致是( D )
k yx
8.函数
(
C)
x 3 中自变量x的取值范围是 y x4
A x3
B
x3
C
x3
且 x4
D x3
如果反比例函数 A、 第一、三象限
C、第二、四象限
y
(历年真题)青岛版九年级上册数学期末测试卷及含答案(综合题)
青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知x=2是一元二次方程x2+x+m=0的一个解,则m的值是()A.-6B.6C.0D.0或62、已知∠1与∠2互为对顶角,∠2与∠3互余,若∠3=45°,则∠1的度数()A.45°B.90°C.135°D.450或135°3、已知m,n是方程x2-2x-5=0的两个实数根,则m2+2n的值为()A.7B.9C.11D.134、如图,CE是圆O的直径,⊙O的直径,AB为⊙O的弦,EC⊥AB,垂足为D,下面结论正确的有()①AD=BD;②= ;③= ;④OD=CD.A.1个B.2个C.3个D.4个5、一元二次方程2x2﹣3x+1=0化为(x+a)2=b的形式,正确的是()A. B. C. D.以上都不对6、下列阴影三角形分别在小正方形组成的网格中,则与左图中的三角形相似的是()A. B. C.D.7、如图,直线l与半径为10cm的⊙O相交于A,B两点,且与半径OC垂直,垂足为H,已知AB=16厘米,若将直线l通过平移使直线l与⊙O相切,那么直线l平移的距离为()A.4cmB.6cmC.4 cm或14cmD.4cm或16cm8、如图,四边形,四边形,四边形都是正方形.则图中与相似的三角形为()A. B. C. D.9、如图,以点O为位似中心,把△ABC放大为原来的2倍,得到△A´B´C´,以下说法错误的是()A. B.△ABC∽△A´B´C´ C. ∥A´B´ D.点C,点O,点三点共线10、如图⊙O的半径为5,弦AB=,C是圆上一点,则∠ACB的度数是()A.30°B.45°C.60°D.90°11、用配方法解方程时,配方后正确的是()A. B. C. D.12、如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,若CE=2,连接CF.以下结论:①∠BAF=∠BCF;②点E到AB的距离是2 ;③S△CDF :S△BEF=9:4;④tan∠DCF= .其中正确的有()A.4个B.3个C.2个D.1个13、钟面上的分针的长为1,从3点到3点30分,分针在钟面上扫过的面积是()A. πB. πC. πD.π14、如图,△ABC与△DEF形状完全相同,且AB=3.6,BC=6,AC=8,EF=2,则DE的长度为()A.1.2B.1.8C.3D.7.215、如图,在平整的桌面上面一条直线l,将三边都不相等的三角形纸片ABC 平放在桌面上,使AC与边l对齐,此时△ABC的内心是点P;将纸片绕点C顺时针旋转,使点B落在l上的点B'处,点A落在A'处,得到△A'B'C'的内心点P'.下列结论正确的是()A.PP'与l平行,PC与P'B'平行B.PP'与l平行,PC与P'B'不平行 C.PP'与l不平行,PC与P'B'平行 D.PP'与l不平行,PC与P'B'不平行二、填空题(共10题,共计30分)16、方程(x﹣2)2=9的解是________.17、如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为________.18、如图,正方形ABCD的边长为2,E,F,G,H分别为各边中点,EG,FH相交于点O,以O为圆心,OE为半径画圆,则图中阴影部分的面积为________.19、如图,D为△ABC外接圆上一点,且∠ADB=60°,∠ADC=45°,则∠BAC =________.20、已知D是等边△ABC边AB上的一点,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上.如图,若AD∶DB=1∶4,则CE∶CF=________.21、如图,在△ABC中,∠ACB=90°,AC=BC=2,D是边AC的中点,CE⊥BD 于E.若F是边AB上的点,且使△AEF为等腰三角形,则AF的长为________.22、正方形面积为25,则它的边长为________.23、如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为 ________24、如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA,PB,PC,若PA=a,则点A到PB和PC的距离之和AE+AF=________.25、若x2+3xy﹣2y2=0,那么=________三、解答题(共5题,共计25分)26、解方程:27、如图,在楼房MN前有两棵树与楼房在同一直线上,且垂直于地面,为了测量树AB、CD的高度,小明爬到楼房顶部M处,光线恰好可以经过树CD的顶站C点到达树AB的底部B点,俯角为37°,此时小亮测得太阳光线恰好经过树CD的顶部C点到达楼房的底部N点,与地面的夹角为30°,树CD的影长DN为15米,请求出树AB和楼房MN的高度.(, , , ,结果精确到0.1m)28、如图1,点表示我国古代水车的一个盛水筒.如图2,当水车工作时,盛水筒的运行路径是以轴心为圆心,为半径的圆.若被水面截得的弦长为,求水车工作时,盛水筒在水面以下的最大深度.29、如图,AB为⊙O的直径,从圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O 于P,求证:.30、如图,四边形ABCD是正方形,点E,F分别在BC,AB上,点M在BA的延长线上,且CE=BF=AM,过点M,E分别作NM⊥DM,NE⊥DE交于N,连接NF.(1)求证:DE⊥DM;(2)猜想并写出四边形CENF是怎样的特殊四边形,并证明你的猜想.参考答案一、单选题(共15题,共计45分)1、A2、A3、B4、C5、C6、D7、D8、B9、A10、C11、B12、B13、A14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。
青岛版数学九年级上册单元、期中、期末测试题及答案(共6套)
青岛版数学九年级上册单元、期中、期末测试题第一单元测试题一、选择题1.如果把三角形的三边按一定的比例扩大,则下列说法正确的是()A.三角形的形状不变,三边的比变大B.三角形的形状变,三边的比变大C.三角形的形状变,三边的比不变D.三角形的形状不变,三边的比不变2.中,,,,和它相似的三角形的最短边是,则最长边是()A. B. C. D.3.如图,五边形和五边形是位似图形,且,则等于()A. B. C. D.4.如图,下列条件:①;②;③;④,能使的条件的个数为()A.个B.个C.个D.个5.如图,以点为位似中心,作的一个位似三角形,,,的对应点分别为,,,与的比值为,若两个三角形的顶点及点均在第1页(共64页)如图所示的格点上,则的值和点的坐标分别为()A.,B.,C.,D.,6.以为斜边作等腰直角,再以为斜边在外侧作等腰直角,如此继续,得到个等腰直角三角形(如图),则图中与的面积比值是()A. B. C. D.7.下列说法不正确的是()A.含角的直角三角形与含角的直角三角形是相似的B.所有的矩形是相似的C.所有边数相等的正多边形是相似的D.所有的等边三角形都是相似的8.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为米的竹竿的影长为米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为米,一级台阶高为米,如图所示,若此时落在地面上的影长为米,则树高为()A.米B.米C.米D.米第2页(共64页)9.如图,小明在时测得某树的影长为,时又测得该树的影长为,若两次日照的光线互相垂直,则树的高度为.A. B. C. D.10.如图,已知,,,为边上一点,且,为边上一点(不与、重合),若与相似,则A. B. C.或 D.或二、填空题11.在中,,,在中,已知,,要使与相似,需添加的一个条件是________.12.若,且相似比,当时,则________ .13.在中,点、分别在边、上,,,,则________.14.四边形与四边形位似,为位似中心,若,那么________.第3页(共64页)。
青岛版九年级上册压轴题数学模拟试卷
青岛版九年级上册压轴题数学模拟试卷一、压轴题1.如图1,抛物线M 1:y =﹣x 2+4x 交x 正半轴于点A ,将抛物线M 1先向右平移3个单位,再向上平移3个单位得到抛物线M 2,M 1与M 2交于点B ,直线OB 交M 2于点C . (1)求抛物线M 2的解析式;(2)点P 是抛物线M 1上AB 间的一点,作PQ ⊥x 轴交抛物线M 2于点Q ,连接CP ,CQ .设点P 的横坐标为m ,当m 为何值时,使△CPQ 的面积最大,并求出最大值; (3)如图2,将直线OB 向下平移,交抛物线M 1于点E ,F ,交抛物线M 2于点G ,H ,则EG HF的值是否为定值,证明你的结论.2.将抛物线2:(2)C y x =-向下平移6个单位长度得到抛物线1C ,再将抛物线1C 向左平移2个单位长度得到抛物线2C .(1)直接写出抛物线1C ,2C 的解析式;(2)如图(1),点A 在抛物线1C 对称轴l 右侧上,点B 在对称轴l 上,OAB 是以OB 为斜边的等腰直角三角形,求点A 的坐标;(3)如图(2),直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,M 为线段EF 的中点;直线4y x k=-与抛物线2C 交于G ,H 两点,N 为线段GH 的中点.求证:直线MN 经过一个定点. 3.二次函数22(0)63m m y x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .(1)当m =1时,求顶点P 的坐标;(2)若点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD .①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.4.如图1,在平面直角坐标系中,抛物线与x 轴交于点 A (-1,0) ,B (点A 在点B 的左侧),交y 轴与点(0,-3),抛物线的对称轴为直线x =1,点D 为抛物线的顶点. (1)求该抛物线的解析式;(2)已知经过点A 的直线y =kx +b (k >0)与抛物线在第一象限交于点E ,连接AD ,DE ,BE ,当2ADE ABE S S ∆∆=时,求点E 的坐标.(3)如图2,在(2)中直线AE 与y 轴交于点F ,将点F 向下平移233+个单位长度得到Q ,连接QB .将△OQB 绕点O 逆时针旋转一定的角度α(0°<α<360°)得到OQ B '',直线B Q ''与x 轴交于点G .问在旋转过程中是否存在某个位置使得OQ G '是等腰三角形?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.5.在平面直角坐标系xOy 中,函数1F 和2F 的图象关于y 轴对称,它们与直线(0)x t t =>分别相交于点,P Q .(1)如图,函数1F 为1y x =+,当2t =时,PQ 的长为_____; (2)函数1F 为3y x =,当6PQ =时,t 的值为______; (3)函数1F 为2(0)y ax bx c a =++≠,①当b t b=时,求OPQ △的面积; ②若0c >,函数1F 和2F 的图象与x 轴正半轴分别交于点(5,0),(1,0)A B ,当1c x c ≤≤+时,设函数1F 的最大值和函数2F 的最小值的差为h ,求h 关于c 的函数解析式,并直接写出自变量c 的取值范围.6.如图1,抛物线221y x x =-+-的顶点A 在x 轴上,交y 轴于B ,将该抛物线向上平移,平移后的抛物线与x 轴交于,C D ,顶点为()1,4E .(1)求点B的坐标和平移后抛物线的解析式;(2)点M在原抛物线上,平移后的对应点为N,若OM ON=,求点M的坐标;(3)如图2,直线CB与平移后的抛物线交于F.在抛物线的对称轴上是否存在点P,使得以,,C F P为顶点的三角形是直角三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.7.公司经销某种商品,经研究发现,这种商品在未来40天的销售单价1y(元/千克)关于时间t的函数关系式分别为11602y t=-+(040t<≤,且t为整数);()()21030,3033040,20t ttyt t⎧<≤-+⎪=⎨<≤⎪⎩且为整数且为整数,他们的图像如图1所示,未来40天的销售量m(千克)关于时间t的函数关系如图2的点列所示.(1)求m关于t的函数关系式;(2)那一天的销售利润最大,最大利润是多少?(3)若在最后10天,公司决定每销售1千克产品就捐赠a元给“环保公益项目”,且希望扣除捐赠后每日的利润不低于3600元以维持各种开支,求a的最大值(精确到0.01元).8.如图,在平面直角坐标系中,点O 为坐标原点,抛物线21y x bx c 3=-++交x 轴于点A 、点B(点A 在点B 的左边),交y 轴于点C ,直线()y kx 6k k 0=-≠经过点B ,交y 轴于点D ,且CD OD =,1tan OBD 3∠=. ()1求b 、c 的值;()2点()P m,m 在第一象限,连接OP 、BP ,若OPB ODB ∠∠=,求点P 的坐标,并直接判断点P 是否在该抛物线上;()3在()2的条件下,连接PD ,过点P 作PF //BD ,交抛物线于点F ,点E 为线段PF 上一点,连接DE 和BE ,BE 交PD 于点G ,过点E 作EH BD ⊥,垂足为H ,若DBE 2DEH ∠∠=,求EG EF的值.9.如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =?若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒25OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M在正方形EFGH内(含边界)的时长;若不可能,请说明理由.10.如图,抛物线y=mx2﹣4mx+2m+1与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2﹣x1=2.(1)求抛物线的解析式;(2)E是抛物线上一点,∠EAB=2∠OCA,求点E的坐标;(3)设抛物线的顶点为D,动点P从点B出发,沿抛物线向上运动,连接PD,过点P做PQ⊥PD,交抛物线的对称轴于点Q,以QD为对角线作矩形PQMD,当点P运动至点(5,t)时,求线段DM扫过的图形面积.11.如图,在矩形ABCD中,AB=6,BC=8,点E,F分别在边BC,AB上,AF=BE=2,连结DE,DF,动点M在EF上从点E向终点F匀速运动,同时,动点N在射线CD上从点C沿CD方向匀速运动,当点M运动到EF的中点时,点N恰好与点D重合,点M到达终点时,M,N同时停止运动.(1)求EF的长.(2)设CN=x,EM=y,求y关于x的函数表达式,并写出自变量x的取值范围.(3)连结MN,当MN与△DEF的一边平行时,求CN的长.12.如图,在平面直角坐标系xOy中,直线y=12x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=32且经过A、C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.13.如图,在直角ABC ∆中,90C ∠=︒,5AB =,作ABC ∠的平分线交AC 于点D ,在AB 上取点O ,以点O 为圆心经过B 、D 两点画圆分别与AB 、BC 相交于点E 、F (异于点B ).(1)求证:AC 是O 的切线;(2)若点E 恰好是AO 的中点,求BF 的长;(3)若CF 的长为34. ①求O 的半径长;②点F 关于BD 轴对称后得到点F ',求BFF '∆与DEF '∆的面积之比.14.如图1,已知Rt ABC ∆中,90ACB ∠=,2AC =,23BC =,它在平面直角坐标系中位置如图所示,点,A C 在x 轴的负半轴上(点C 在点A 的右侧),顶点B 在第二象限,将ABC ∆沿AB 所在的直线翻折,点C 落在点D 位置(1)若点C 坐标为()1,0-时,求点D 的坐标;(2)若点B 和点D 在同一个反比例函数的图象上,求点C 坐标;(3)如图2,将四边形BCAD 向左平移,平移后的四边形记作四边形1111B C A D ,过点1D的反比例函数(0)k y k x=≠的图象与CB 的延长线交于点E ,则在平移过程中,是否存在这样的k ,使得以点1,,E B D 为顶点的三角形是直角三角形且点11,,D B E 在同一条直线上?若存在,求出k 的值;若不存在,请说明理由15.已知,在平面直角坐标系中,二次函数212y x bx c =++的图象与x 轴交于点A B ,,与y 轴交于点C ,点A 的坐标为()3,0-,点B 的坐标为()1,0.(1)如图1,分别求b c 、的值;(2)如图2,点D 为第一象限的抛物线上一点,连接DO 并延长交抛物线于点E ,3OD OE =,求点E 的坐标;(3)在(2)的条件下,点P 为第一象限的抛物线上一点,过点P 作PH x ⊥轴于点H ,连接EP 、EH ,点Q 为第二象限的抛物线上一点,且点Q 与点P 关于抛物线的对称轴对称,连接PQ ,设2AHE EPH α∠+∠=,tan PH PQ α=⋅,点M 为线段PQ 上一点,点N 为第三象限的抛物线上一点,分别连接MH NH 、,满足60MHN ∠=︒,MH NH =,过点N 作PE 的平行线,交y 轴于点F ,求直线FN 的解析式.16.如图,在平面直角坐标系中,以原点O 为中心的正方形ABCD 的边长为4m ,我们把AB y ∥轴时正方形ABCD 的位置作为起始位置,若将它绕点O 顺时针旋转任意角度α时,它能够与反比例函数(0)k y k x=>的图象相交于点E ,F ,G ,H ,则曲线段EF ,HG 与线段EH ,GF 围成的封闭图形命名为“曲边四边形EFGH”.(1)①如图1,当AB y ∥轴时,用含m ,k 的代数式表示点E 的坐标为________;此时存在曲边四边形EFGH ,则k 的取值范围是________;②已知23k m =,把图1中的正方形ABCD 绕点O 顺时针旋转45º时,是否存在曲边四边形EFGH ?请在备用图中画出图形,并说明理由.当把图1中的正方形ABCD 绕点O 顺时针旋转任意角度α时,直接写出使曲边四边EFGH 存在的k 的取值范围.③若将图1中的正方形绕点O 顺时针旋转角度()0180a a ︒<<︒得到曲边四边形EFGH ,根据正方形和双曲线的对称性试探究四边形EFGH 是什么形状的四边形?曲边四边形EFGH 是怎样的对称图形?直接写出结果,不必证明;(2)正方形ABCD 绕点O 顺时针旋转到如图2位置,已知点A 在反比例函数(0)k y k x=>的图象上,AB 与y 轴交于点M ,8AB =,1AM =,试问此时曲边四边EFGH 存在吗?请说明理由.17.如图,在平面直角坐标系中,抛物线()20y ax bx c a =++>与x 轴交于点()1,0A -和点()3,0B ,与y 轴交于点C ,且30OBC ∠=︒.点E 在第四象限且在抛物线上.(1)如(图1),当四边形OCEB 面积最大时,在线段BC 上找一点M ,使得12EM BM +最小,并求出此时点E 的坐标及12EM BM +的最小值; (2)如(图2),将AOC △沿x 轴向右平移2单位长度得到111AO C △,再将111AO C △绕点1A 逆时针旋转α度得到122AO C △,且使经过1A 、2C 的直线l 与直线BC 平行(其中0180α︒<<︒),直线l 与抛物线交于K 、H 两点,点N 在抛物线上.在线段KH 上是否存在点P ,使以点B 、C 、P 、N 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.18.在平面直角坐标系xoy 中,点A (-4,-2),将点A 向右平移6个单位长度,得到点B .(1)若抛物线y =-x 2+bx +c 经过点A ,B ,求此时抛物线的表达式;(2)在(1)的条件下的抛物线顶点为C ,点D 是直线BC 上一动点(不与B ,C 重合),是否存在点D ,使△ABC 和以点A ,B ,D 构成的三角形相似?若存在,请求出此时D 的坐标;若不存在,请说明理由;(3)若抛物线y =-x 2+bx +c 的顶点在直线y =x +2上移动,当抛物线与线段AB 有且只有一个公共点时,求抛物线顶点横坐标t 的取值范围.19.如图,在平面直角坐标系中,四边形ABCD 的顶点A 、B 在函数(0)m y x x =>的图象上,顶点C 、D 在函数(0)n y x x =>的图象上,其中0m n <<,对角线//BD y 轴,且BD AC ⊥于点P .已知点B 的横坐标为4.(1)当4m =,20n =时,①点B 的坐标为________,点D 的坐标为________,BD 的长为________.②若点P 的纵坐标为2,求四边形ABCD 的面积.③若点P 是BD 的中点,请说明四边形ABCD 是菱形.(2)当四边形ABCD 为正方形时,直接写出m 、n 之间的数量关系.20.如图所示,在Rt ABC ∆中,90B ∠=︒,3BC =30C ∠=︒,点D 从点C 出发沿CA 方向以每秒2个单位长度的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长度的速度向点B 匀速运动,当其中一点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(0)t >,过点D 作DF BC ⊥于点F ,连接DE 、EF .(1)求证:AE DF =;(2)四边形AEFD 能够成为菱形吗?若能,求出t 的值;若不能,请说明理由; (3)当t =________时,DEF ∆为直角三角形.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)y =﹣x 2+10x ﹣18;(2)4,6;(3)定值1,见解析【解析】【分析】(1)先将抛物线M 1:y=-x 2+4x 化为顶点式,由平移规律“上加下减,左加右减”可直接写出抛物线M 2的解析式;(2)分别求出点A ,点B ,点C 的坐标,求出m 的取值范围,再用含m 的代数式表示出△CPQ 的面积,可用函数的思想求出其最大值;(3)设将直线OB 向下平移k 个单位长度得到直线EH ,分别求出点E ,F ,G ,H 的横坐标,分别过G ,H 作y 轴的平行线,过E ,F 作x 轴的平行线,构造相似三角形△GEM 与△HFN ,可通过相似三角形的性质求出EG HF的值为1. 【详解】解:(1)∵y =﹣x 2+4x =﹣(x ﹣2)2+4,∴将其先向右平移3个单位,再向上平移3个单位的解析式为:y =﹣(x ﹣5)2+7=﹣x 2+10x ﹣18;(2)∵抛物线M 1与M 2交于点B ,∴﹣x 2+4x =﹣x 2+10x ﹣18,解得,x =3,∴B (3,3),将点B (3,3)代入y =kx ,得,k =1,∴y OB =x ,∵抛物线M 2与直线OB 交于点C ,∴x =﹣x 2+10x ﹣18,解得,x1=3,x2=6,∴C(6,6),∵点P的横坐标为m,∴点P(m,﹣m2+4m),则Q(m,﹣m2+10m﹣18),∴QP=﹣m2+10m﹣18﹣(﹣m2+4m)=6m﹣18,∴S△PQC=12(6m﹣18)(6﹣m)=﹣3m2+27m﹣54,=﹣3(m﹣92)2+274,在y=﹣m2+4m中,当y=0时,x1=0,x2=4,∴A(4,0),∵B(3,3),∴3≤m≤4,∴在S=﹣3(m﹣92)2+274中,根据二次函数的图象及性质可知,当m=4时,△PCQ有最大值,最大值为6;(3)EGHF的值是定值1,理由如下:设将直线OB向下平移k个单位长度得到直线EH,则y EH=x﹣k,∴令x﹣k=﹣x2+4x,解得,x1394k++,x2394k-+∴x F 394k++,x E394k-+令x﹣k=﹣x2+10x﹣18,解得,x1994k++,x2994k-+∴x H 994k++x G994k-+∴ME=x G﹣x E=9942k+﹣3942k+=3,FN=x H﹣x F 994394k k++++3,分别过G,H作y轴的平行线,过E,F作x轴的平行线,交点分别为M,N,Q,则∠HFN =∠GEM ,∠HNF =∠GME =90°,∴△GEM ∽△HFN , ∴GE HF =EM FN =33=1, ∴GE HF的值是定值1.【点睛】本题考查了二次函数的图象平移规律,二次函数的图象及性质,相似三角形的判定与性质等,解题关键是掌握用函数的思想求极值等.2.(1)抛物线1C 的解析式为: y=x 2-4x-2;抛物线2C 的解析式为:y=x 2-6;(2)点A 的坐标为(5,3)或(4,-2);(3)直线MN 经过定点(0,2)【解析】【分析】(1)根据函数图象上下平移:函数值上加下减;左右平移:自变量左加右减写出函数解析式并化简即可;(2)先判断出点A 、B 、O 、D 四点共圆,再根据同弧所对的圆周角相等得到∠BDA=∠BOA=45°,从而证出DAC △是等腰直角三角形.设点A 的坐标为(x ,x 2-4x-2),把DC 和AC 用含x 的代数式表示出来,利用DC=AC 列方程求解即可,注意有两种情况;(3)根据直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,联立两个解析式,得到关于x 的一元二次方程,根据根与系数的关系求出点M 的横坐标,进而求出纵坐标,同理求出点N 的坐标,再用待定系数法求出直线MN 的解析式,从而判断直线MN 经过的定点即可.【详解】解:(1)∵抛物线2:(2)C y x =-向下平移6个单位长度得到抛物线1C ,再将抛物线1C 向左平移2个单位长度得到抛物线2C ,∴抛物线1C 的解析式为:y=(x-2)2-6,即y=x 2-4x-2,抛物线2C 的解析式为:y=(x-2+2)2-6,即y=x 2-6.(2)如下图,过点A 作AC ⊥x 轴于点C ,连接AD ,∵OAB 是等腰直角三角形,∴∠BOA =45°,又∵∠BDO=∠BAO=90°,∴点A 、B 、O 、D 四点共圆,∴∠BDA=∠BOA=45°,∴∠ADC=90°-∠BDA=45°,∴DAC △是等腰直角三角形,∴DC=AC .∵点A 在抛物线1C 对称轴l 右侧上,点B 在对称轴l 上,∴抛物线1C 的对称轴为x=2,设点A 的坐标为(x ,x 2-4x-2),∴DC=x-2,AC= x 2-4x-2,∴x-2= x 2-4x-2,解得:x=5或x=0(舍去),∴点A 的坐标为(5,3);同理,当点B 、点A 在x 轴的下方时,x-2= -(x 2-4x-2),x=4或x=-1(舍去),∴点A 的坐标为(4,-2),综上,点A 的坐标为(5,3)或(4,-2).(3)∵直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,∴26y kx y x =⎧⎨=-⎩, ∴x 2-kx-6=0,设点E 的横坐标为x E ,点F 的横坐标为x F ,∴x E +x F =k ,∴中点M 的横坐标x M =2E F x x +=2k , 中点M 的纵坐标y M =kx=22k , ∴点M 的坐标为(2k ,22k ); 同理可得:点N 的坐标为(2k -,28k), 设直线MN 的解析式为y=ax+b (a ≠0),将M (2k ,22k )、N (2k -,28k )代入得: 222282k k a b a b k k ⎧=+⎪⎪⎨⎪=-+⎪⎩, 解得:242k a k b ⎧-=⎪⎨⎪=⎩,∴直线MN 的解析式为y= 24k k-·x+2(0k ≠), 不论k 取何值时(0k ≠),当x=0时,y=2,∴直线MN 经过定点(0,2).【点睛】本题考查二次函数综合应用,熟练掌握图象平移的规律、判断点A 、B 、O 、D 四点共圆的方法、用待定系数法求函数解析式的步骤是解题的关键.3.(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4.【解析】【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可;(2)把点Q (a ,b )代入二次函数22(0)63m m y x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可; (3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可.【详解】解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m m b a a m =-+, 即:2263m m b m a a -=- ∵0b m ->,∴2263m m a a ->0, ∵m >0,∴2263a a ->0, 解得:a <0或a >4,∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3m ), 当x=0时,y=m ,∴点A (0,m ),∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0),把点A (0,m ),点P (2,3m )代入,得: 23m b m k b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m -x+m , 当y=0时,x=3,∴点B (3,0);∴OB=3;∵四边形ABCD 是正方形,∴AD=AB ,∠DAF+∠FAB=90°,且∠OAB+∠FAB =90°,∴∠DAF=∠OAB ,在△ADF 和△ABO 中, DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,∴点D 的坐标为:(m ,m+3);②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m m m m -+≤+,化简得:32418m m -≤. ∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m -->, ∴符合条件的正整数m =1,2,3,4;当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥,∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解, 当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m ++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4.【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.4.(1)223y x x =--;(2)点E 的坐标为(113,289);(3)存在;点Q '的坐标为:(232-)或(32,2)或(,32)或(32-, 【解析】【分析】(1)利用待定系数法代入计算,结合对称轴,即可求出解析式;(2)取AD 中点M ,连接BM ,过点A 作AE ∥BM ,交抛物线于点E ;然后求出直线AE 的解析式,结合抛物线的解析式,即可求出点E 的坐标;(3)由题意,先求出点F 的坐标,然后得到点Q 的坐标,得到OQ 和OB 的长度,然后结合等腰三角形的性质进行分类讨论,可分为四种情况进行分析,分别求出点Q '的坐标即可.【详解】解:(1)根据题意,设二次函数的解析式为2y ax bx c =++, ∵对称轴为12b x a=-=,则2b a =-, 把点(-1,0),点(0,-3)代入,有 03a b c c -+=⎧⎨=-⎩, 又∵2b a =-,∴1a =,2b =-,3b =-,∴抛物线的解析式为:223y x x =--;(2)由(1)223y x x =--可知,顶点D 的坐标为(1,4-),点B 为(3,0),∵点A 为(1-,0),∴AD 的中点M 的坐标为(0,-2);如图,连接AD ,DE ,BE ,取AD 中点M ,连接BM ,过点A 作AE ∥BM ,交抛物线于点E ;此时点D 到直线AE 的距离等于点B 到直线AE 距离的2倍, 即2ADE ABE S S ∆∆=,设直线BM 为y kx h =+,把点B 、点M 代入,有302k h h +=⎧⎨=-⎩, ∴直线BM 为223y x =-, ∴直线AE 的斜率为23, ∵点A 为(1-,0),∴直线AE 为2233y x =+, ∴2223323y x y x x ⎧=+⎪⎨⎪=--⎩,解得:10x y =-⎧⎨=⎩(舍去)或113289x y ⎧=⎪⎪⎨⎪=⎪⎩; ∴点E 的坐标为(113,289); (3)由(2)可知,直线AE 为2233y x =+, ∴点F 的坐标为(0,23), ∵将点F 向下平移233+Q , ∴点Q 的坐标为(0,3- ∴3OQ∵点B 为(3,0),则OB=3,在Rt △OBQ 中,3tan 33OB OQB OQ ∠===, ∴60OQB ∠=︒, 由旋转的性质,得60Q OQB '∠=∠=︒,3OQ OQ '==, ①当3OG OQ '==时,OQ G '∆是等边三角形,如图:∴点G 的坐标为(3,0),∴点Q '的横坐标为3, ∴点Q '的坐标为(3,32-); ②当3OQ Q G ''==,OQ G '∆是等腰三角形,如图:∵60OQ B ''∠=︒,∴30Q OG '∠=︒,∵3OQ '∴点Q '的坐标为(323 ③当3OG OQ '==OQ G '∆是等边三角形,如图:此时点G 的坐标为(3-,0),∴点Q '的坐标为(3-,32); ④当3Q G OQ ''==时,OQ G '∆是等腰三角形,如图:此时30Q OG '∠=︒,∴点Q '的坐标为(32-,3); 综合上述,点Q '332-)或(323332)或(32-,3). 【点睛】本题考查了二次函数的综合问题,也考查了解直角三角形,旋转的性质,等边三角形的性质,等腰三角形的性质,一次函数的性质,以及坐标与图形,解题的关键是熟练掌握图形的运动问题,正确的确定点Q '的位置是关键;注意运用数形结合的思想,分类讨论的思想进行解题.5.(1)4;(2)1;(3)①1OPQ S ∆=;②322169(02)5552(2)c c c c h c c c ⎧++<≤⎪=⎨⎪+>⎩.【解析】【分析】(1)由题意,先求出2F 的解析式,再求出P 、Q 两点的坐标,即可求出PQ 的长度; (2)由题意,先求出2F 的解析式,结合PQ 的长度,即可求出t 的值;(3)①根据题意,先求出2F 的解析式,然后求出点P 和点Q 的纵坐标,得到PQ 的长度,利用三角形的面积公式即可求出面积;②根据题意,先求出函数1F 和2F 的解析式,然后求出两个函数的对称轴,利用二次函数的对称性和增减性进行分类讨论:当02c <≤时,以及当2>c 时,分别求出h 与c 的关系式即可.【详解】解:(1)∵函数1F 为1y x =+,函数1F 和2F 的图象关于y 轴对称,∴函数2F 为1y x =-+,当2x t ==时,有121=3y =+;2211y =-+=-;∴点P 为(2,3),点Q 为(2,1-),∴PQ 的长为3(1)4PQ =--=;故答案为:4;(2)∵函数1F 为3y x =,函数1F 和2F 的图象关于y 轴对称, ∴函数2F 为3y x =-; ∵(0)x t t =>,∴点P 在第一象限,点Q 在第四象限,设点P 为(t ,3t ),点Q 为(t ,3t -), ∵6PQ =, ∴33()6t t--=, 解得:1t =;故答案为:1;(3)①∵函数1F 为2(0)y ax bx c a =++≠,函数1F 和2F 的图象关于y 轴对称,∴函数2F 为:2()()y a x b x c =•-+•-+,即2y ax bx c =-+;∵t =,∴把t b =代入函数1F,则2a y a b c c b =•+=+;把t b=代入函数2F,则2a y a b c c b =•+=-;∴()a a PQ c c b b=+-=∴112OPQ S ∆==; ②由①可知,函数1F 为2y ax bx c =++,函数2F 为2y ax bx c =-+,∵函数1F 和2F 的图象与x 轴正半轴分别交于点(5,0),(1,0)A B ,∴25500a b c a b c ++=⎧⎨-+=⎩, 解得:1545a c b c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴函数1F 可化为:2455c c y x x c =-++,函数2F 可化为:2455c c y x x c -=-+; ∴函数1F 的对称轴为:4522()5c x c =-=⨯-, 函数2F 的对称轴为:4522()5cx c -=-=-⨯-, ∵0c >,则05a c =-<, 则函数1F ,函数2F 均是开口向下;∴函数1F 在02x <<上,y 随x 增大而增大,在2x >上是y 随x 增大而减小; 函数2F 在2x >-上,y 随x 增大而减小;∵1c x c ≤≤+,0c >,当02c <≤时,则函数1F 在2x =时取到最大值;函数2F 在1x c =+时取到最小值,则 ∴244(42)[(1)(1)]5555c c c c h c c c c =-⨯+⨯+--•+-•++, 即32169555h c c c =++(02c <≤);当2>c 时,则函数1F 在x c =时取到最大值;函数2F 在1x c =+时取到最小值,则2244()[(1)(1)]5555c c c c h c c c c c c =-•+•+--•+-•++, 即22h c c =+(2>c );综合上述,h 关于c 的函数解析式为:322169(02)5552(2)c c c c h c c c ⎧++<≤⎪=⎨⎪+>⎩. 【点睛】本题考查了二次函数的综合问题,考查了二次函数的对称性、增减性,也考查了一次函数的图像和性质,待定系数法求函数的解析式,以及两点之间的距离,求三角形的面积等知识,解题的关键是熟练掌握二次函数和一次函数的性质进行解题,注意运用数形结合、分类讨论的思想进行分析,从而进行解题.6.(1)B 点坐标(0,-1),平移后的抛物线为2y=-x +2x+3;(2)点M的坐标为或;(3)存在,1P (1,1),2P (1,6)-,3P (12),,4P (1,8)-,详解见解析.【解析】【分析】(1)将x=0代入抛物线公式2y=-x +2x-1求出y 值,即可得到抛物线与y 轴交点B 的坐标,平移后的抛物线的顶点为E(1,4),可根据顶点式求出平移后抛物线的解析式;(2)因为抛物线向上平移4个单位,所以MN=4,又因为OM=ON ,可知点M 的纵坐标为-2,将y=-2代入原抛物线2y=-x +2x-1,即可求出x 值,点M 的坐标就可以表示出来. (3)要使C 、F 、P 为顶点的三角形为直角三角形,可以画一个以C 、F 为直径的圆(直径对应圆周角为直角),交抛物线对称轴x=-1可得点1P 、2P 的坐标解,另外可以使∠PCF=90°或∠CFP=90°,可分别得出点3P 、4P 的坐标解.【详解】解:(1)抛物线2y=-x +2x-1与y 轴相交于点B ,将x=0代入,求得y=-1,∴B 点坐标(0,-1).∵设平移后的抛物线为2y=-(x-h)+k ,顶点为E(1,4),即h=1,k=4,∴2y=-(x-1)+4,即平移后的抛物线为22y=-(x-1)+4=-x +2x+3.(2)如上图所示,∵原坐标顶点A(1,0),平移后抛物线顶点为E(1,4),∴抛物线向上平移了4个单位,即MN //y 轴,MN ⊥x 轴,又∵OM=ON ,MN=4,∴点O 在垂直平分线上,点M 、N 关于x 轴对称,∴M 点的纵坐标为–2,将y=-2代入2y=-x +2x-1,得:222-x +2x-1=-2-(x -2x+1)=-2(x-1)=2x=12±解得:x=12±,∴点M 的坐标为(1+2-2),或(1-2-2),. (3)存在,且1P (1,1),2P (1,6)-,3P (12),,4P (1,8)-. 如图所示,点P 一共有四种结果,∵C 点为平移后的解析式与x 轴的左交点,将y=0代入2y=-x +2x+3,得x=-13或, ∴C(-1,0),且点B(0,-1),将点B(0,-1)、C(-1,0)代入直线BC 解析式为:y=kx+b , ∴-k+b=0b=-1⎧⎨⎩,解得:k=-1b=-1⎧⎨⎩,即直线BC 解析式:y=-x-1, 根据题意可知,直线BC 与平移后的解析式相交于点F ,∴2y=-x-1y=-x +2x+3⎧⎨⎩,解得:x=-1(舍)或4,y=-5,即F(4,-5), ∵要使C 、F 、P 为顶点的三角形为直角三角形,可以画一个以C 、F 为直径的圆,该圆与抛物线对称轴x=-1交点即为点P (因为圆的直径对应的圆周角为90°,即∠CPF=90°) ∴以C 、F 为直径的圆,圆心为线段CF 的中点(32,5-2),直径为线段CF的长∴圆的方程为:22235x-+y+=22()(),将x=1代入圆的方程,得:y=1或-6, 即1P (1,1),2P (1,6)-, ∵直线CF 解析式:y=-x-1,即斜率k=-1,即直线CF 与x 轴夹角为45°,要使C 、F 、P 为顶点的三角形为直角三角形,则使∠PCF=90°,直线CP 与x 轴夹角也为45°,即直线CP 斜率为1,直线CP 的解析式为:y=x+1,此时该直线与抛物线对称轴x=1的交点为3P (1,2),又∵直线CF 解析式:y=-x-1,即斜率k=-1,即直线CF 与x 轴夹角为45°,要使C 、F 、P 为顶点的三角形为直角三角形,则使∠CFP=90°,直线FP 与x 轴夹角也为45°,即直线FP 斜率为1,直线FP 的解析式为:y=x-9,此时该直线与抛物线对称轴x=1的交点为4P (1,-8).【点睛】本题考查了一元二次函数与坐标轴、直线的交点,一元二次函数的平移及应用,圆的直径所对应的圆周角为直角等知识点,该题有一定的难度,所以一定要结合图形进行分析,这样才不会把解遗漏.7.(1)m=()()21200304603040t t t t +≤≤⎧⎪⎨+<≤⎪⎩, (2) t=40时w 最大=13200,(3)a 的最大值是85=2a . 【解析】【分析】(1)由图2知m 与t 是一次函数关系,设0≤t≤30时的解析式为m=k 1t+b 1,由图形的点(0,120),(30,180)在函数图像上代入解析式即可,设3040t <≤时的解析式为m=k 2t+b 2,由图形的点(40,220),(30,180)在函数图像上代入解析式即可,(2)由商品没有成本价,为此只要商品的销售额最大,利润就最大,设y 1的总价为w 1,y 2的总价为w 2,总价=销售单价×销售量m 即可列出,w 1=2260720022103600t t t t ⎧-++⎨-++⎩与w 2=222036003801200t t t ⎧-++⎪⎨⎪+⎩两种总销售w=w 1+w 2,把w 函数配方讨论当030t ≤≤,第一段w 最大与3040t <≤,在第二段,w 最大经比较即可(3)根据题意决定每销售1千克产品就捐赠a 元给“环保公益项目”,则捐赠额a(4t+60)后10天每日销售额Q=w-am=-2t 2+(290-4a)t+4800-60a ,Q≥3600,构造抛物线Q 在Q=3600直线上方有解即可,在-2<0,开口向下,在3600上方取值,且满足3040t ≤≤,对称轴=2904-24b a a -=,只要对称轴介于30与40之间即可. 【详解】 (1)由图2知m 与t 是一次函数关系,设0≤t≤30时的解析式为m=k 1t+b 1,由图形的点(0,120),(30,180)在函数图像上,则11112030180b k b =⎧⎨+=⎩①②, 解得112120k b =⎧⎨=⎩, m=2t+120,设3040t <≤时的解析式为m=k 2t+b 2,由图形的点(40,220),(30,180)在函数图像上, 则22224022030180k b k b +=⎧⎨+=⎩③④, 解得22460k b =⎧⎨=⎩, m=4t+60,m=()()21200304603040t t t t ⎧+≤≤⎪⎨+<≤⎪⎩,(2)由商品没有成本价,为此只要商品的销售总值最大,利润就最大,设y 1的总价为w 1,y 2的总价为w 2,w 1=()()1-60212021-604602t t t t ⎧⎛⎫++ ⎪⎪⎪⎝⎭⎨⎛⎫⎪++ ⎪⎪⎝⎭⎩, 整理得w 1=2260720022103600t t t t ⎧-++⎨-++⎩, w 2=()()1-302120320460t t t ⎧⎛⎫++⎪ ⎪⎝⎭⎨⎪+⎩, 整理得w 2=222036003801200t t t ⎧-++⎪⎨⎪+⎩, 总销售w=w 1+w 2=22580108003-22904800t t t t ⎧-++⎪⎨⎪++⎩, 配方得w=()225-24117603145215312.52t t ⎧-+⎪⎪⎨⎛⎫⎪--+ ⎪⎪⎝⎭⎩, 当030t ≤≤,第一段w 最大=11760,而3040t <≤,145=2t >40,在第二段,w 随t 的增大而增大,t=40,w 最大=13200,经比较11760<13200,t=40时w 最大=13200,(3)根据题意决定每销售1千克产品就捐赠a 元给“环保公益项目”,则捐赠额a(4t+60), 后10天每日销售额Q=w-am=-2t 2+(290-4a)t+4800-60a ,则Q-3600=-2t 2+(290-4a)t+1200-60a ,∵-2<0,开口向下,在3600上方取值,且满足3040t ≤≤,对称轴为t=2904-24b a a -=只要3040t ≤≤, 290430404a -≤≤, 658522a ≤≤, a 的最大值是85=2a .【点睛】本题考查分段函数的解析式的求法与利用,两图象结合并利用,求日销售最大利润,抛物线顶点式,分段比较,在最后又利用捐赠构造新函数,求对称轴,利用对称轴解决问题,此题难度较大,综合能力强,必须掌握好函数的各方面的知识.8.(1)4,43b c == ;(2)()P 4,4,点P 在抛物线上;(3)2. 【解析】【分析】(1)直线y=kx-6k ,令y=0,则B(6,0),便可求出点D 、C 的坐标,将B 、C 代入抛物线中,即可求得b 、c 的值;(2)过点P ,作PL x ⊥轴于点L ,过点B 作BT OP ⊥于点T ,先求出点P 的坐标为(4,4),再代入抛物线进行判断即可;(3)连接PC ,过点D 作DM ⊥BE 于点M ,先证△PCD ≌△PLB ,再分别证四边形EHKP 、FDKP 为矩形,求得EG EF=2. 【详解】解:()1如图,直线()y kx 6k k 0=-≠经过点B ,令y 0=,则x 6=,即()B 6,0, 1tan OBD 3∠=,OD 2∴=,()D 0,2∴,。
2014-2015青岛版九年级数学上册期末试卷(含答案解析)
2014-2015学年度初三数学期末测试题(青岛版)一、选择题(每小题只有一个正确的选项,每小题3分,共45分)1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.方程x2-5x=0的解是()A.x1=0,x2=-5 B.x=5 C.x1=0,x2=5 D.x=03.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4 B.x-6=4 C.x+6=4 D.x+6=-44.顺次连接等腰梯形四边中点所得的四边形一定是()A.矩形 B.正方形 C.菱形 D.直角梯形5.已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解.6.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AD=AB B.∠BOC=2∠D C.∠D+∠BOC=90° D.∠D=∠B(第6题图)(第7题图)7.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°8.在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是()A.∠BDC=∠BCD B.∠ABC=∠DAB C.∠ADB=∠DAC D.∠AOB=∠BOC9.如图,在□ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD 于点F,连接AE、CF.则四边形AECF是()A.梯形 B.矩形 C.菱形 D.正方形(第8题图)(第9题图)(第11题图)10.两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是()A.内切 B.相交 C.外切 D.外离11.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC= 12∠BOD,则⊙O的半径为()A.B.5 C.4 D.312.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.314..四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种15.在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,﹣1)B.(1.5,2)C.(1.6,1)D.(2.4,1)(第15题图)(第17题图)16.在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为12,把△EFO缩小,则点E的对应点E′的坐标是()A.(-2,1) B.(-8,4) C.(-8,4)或(8,-4) D.(-2,1)或(2,-1)17.如图,在平面直角坐标中,等腰梯形ABCD 的下底在x 轴上,且B 点坐标为(4,0),D 点坐标为(0,3),则AC 长为( )A .4B .5C .6D .不能确定18.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-. 若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年九年级数学上学期期末模拟试卷(青岛版附答案)一、选择题(每小题3分,共60分) 1.方程(2)20x x x -+-=的解是( ). A .2 B .-2或1 C .-1 D .2或-12. 用配方法解方程2870x x ++=,则配方正确的是( ) A .()249x -= B .()249x += C .()2816x -= D .()2857x +=3、在菱形ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F , 若EC=2BE ,则BFFD的值是( )(A) 21 (B) 31 (C) 41(D) 51(第3题) (第4题)4.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似. 对于两人的观点,下列说法正确的是( )5.如图在Rt ∆ABC 中,∠C=90º,AC=BC,点D 在AC 上,∠CBD=30º,则DC的值是( ) (A )3 (B )22(C )3-1 (D )不能确定30A D6.在∆ABC 中,∠B=45º,∠C=60º,BC 边上的高AD=3,则BC 的长为( ) (A )3+33 (B )3+3 (C )2+3 (D )3+67.如图,用高为6cm ,底面直径为4cm 的圆柱A 的侧面积展开图,再围成不同于A 的另一个圆柱B ,则圆柱B 的体积为( )A.24πcm³B. 36πcm³C. 36cm³D. 40cm³8.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为( )A .17cmB .4cmC .15cmD .3cm9.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是 ( )10.下列语句中不正确的有:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④半圆是弧.( )A .1个 B.2个 C .3个 D.4个 11.如图4,⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE=OB, ∠AOC=84°,则∠E 等于( )A .42 °B .28°C .21°D .20°12.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( ) A 、2cmBC、 D、13. 根据下表中一次函数的自变量x 与函数y 的对应值, 可得pA .1B .-1C .3D .-314.把直线y=﹣x+3向上平移m 个单位后,与直线y=2x+4的交点在第一象限,则m 的取值范围是( )A .1<m <7B .3<m <4C .m >1D .m <415 . 已知点A (1,y 1)、B (2,y 2)、C (﹣3,y 3)都在反比例函数xy 6=的16. 若函数y=mx 2+(m+2)x+m+1的图象与x 轴只有一个交点,那么m 的值为( ) A .0 B . 0或2 C . 2或﹣2 D . 0,2或﹣217.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率为( )18.已知函数y=(x ﹣m )(x ﹣n )(其中m <n )的图象如图所示,则一次函数y=mx+n 与反比例函数xnm y +=的图象可能是( )A .BCD .19. 已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列说法错误的是( ) A .图象关于直线x=1对称B .函数ax 2+bx+c (a ≠0)的最小值是﹣4C .﹣1和3是方程ax 2+bx+c (a ≠0)的两个根D .当x <1时,y 随x 的增大而增大20. 若抛物线y=x 2+bx+c 与x 轴只有一个交点,且过点A (m ,n ),B (m+6,n ),则n= .A .3B .﹣3C .9D .﹣9一.选择题答案二.填空题 (每小题3分)21.现定义运算“★”,对于任意实数a 、b ,都有a ★b=a 2﹣3a+b , 如:3★5=32﹣3×3+5,若x ★2=6,则实数x 的值是 . 22.函数y=1x 与y=x -2图象交点的横坐标分别为a ,b ,则11a b+的值为_______________.23.同时抛掷A 、B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x 、y ,并以此确定点P (x ,y ),那么点P落在抛物线y=﹣x 2+3x 上的概率为 。
24.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .三. 解答题25(8分).如图,在平面直角坐标系中,双曲线x my =和直线b kx y +=交于A ,B两点,点A 的坐标为(-3,2),BC ⊥y 轴于点C ,且BC OC 6=.(1)求双曲线和直线的解析式;(2)直接写出不等式b kx x m+>的解集.26.(8分) 如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,DE 交AB 的延长线于点E ,连结AD 、BD .A(1)求证:∠ADB =∠E ;(2)当AB =5,BC =6时,求⊙O 的半径.27.(10分)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y 与生产数量x 之间是一次函数关(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z (台)与售价a (万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)28.(10分)如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC 2=AB •AD ;(2)求证:CE ∥AD(3)若AD=4,AB=6,求的值.29. (12分)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时点P的坐标。
答案21. 4,-1 22 . -2 23.181 24.712或225.解:(1) ∵点A (-3,2)在双曲线上,∴,∴∴双曲线的解析式为. ·················· 2分∵点B 在双曲线上,且,设点B 的坐标为(,),∴,解得:(负值舍去).∴点B 的坐标为(1,). ·················· 4分∵直线过点A ,B ,∴ 解得:∴直线的解析式为:················· 6分(2)不等式的解集为:或········· 8分26 (1)证明:∵在△ABC 中,AB=AC , ∴∠ABC=∠C .∵DE∥BC,∴∠ABC=∠E,∴∠E=∠C,又∵∠ADB=∠C,∴∠ADB=∠E;(2)【解析】当点D是弧BC的中点时,DE是⊙O的切线.理由是:∵当点D是弧BC的中点时,AB=AC,∴AD是直径,∴AD⊥BC,∴AD过圆心O,又∵DE∥BC,∴AD⊥ED.∴DE是⊙O的切线;(3)【解析】过点A作AF⊥BC于F,连接BO,则点F是BC的中点,BF=BC=3,连接OF,则OF⊥BC(垂径定理),∴A、O、F三点共线,∵AB=5,∴AF=4;设⊙O的半径为r,在Rt△OBF中,OF=4-r,OB=r,BF=3,2=32+(4-r)2∴r解得r=,∴⊙O的半径是.27(1)y=x+65。
(2)由题意,得xy=2000,即,即解得:x1=50,x2=80>70(舍去)(3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为,由函数图象,得∴z=﹣a+90。
当z=25时,a=65;当x=50时,y=40,总利润为:25(65﹣40)=625(万元).28(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应2=AB•AD;边成比例,证得AC(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,继而可证得∠DAC=∠ECA,得到CE∥AD;(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得的值.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,2=AB•AD;∴AC(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)【解析】∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.29(1)y=﹣x2﹣2x+3, (2)(﹣1,4)或(﹣2,3);。