经典高考概率分布类型题归纳

合集下载

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)

2012-2021十年全国高考数学真题分类汇编 概率(精解精析)一,选择题1.(2021年高考全国甲卷理科)将4个1和2个0随机排成一行,则2个0不相邻地概率为( )A .13B .25C .23D .45【结果】C思路:将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻地概率为1025103=+.故选:C .2.(2021年高考全国乙卷理科)在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74地概率为( )A .79B .2332C .932D .29【结果】B思路:如图所示:设从区间()()0,1,1,2中随机取出地数分别为,x y ,则实验地所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111SΩ=⨯=.设事件A 表示两数之和大于74,则构成地区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中地阴影部分,其面积为13323124432A S =-⨯⨯=,所以()2332A S P A S Ω==.故选:B .【点睛】本题主要考查利用线性规划解决几何概型中地面积问题,解题关键是准确求出事件,A Ω对应地区域面积,即可顺利解出.3.(2020年高考数学课标Ⅲ卷理科)在一组样本数据中,1,2,3,4出现地频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本地标准差最大地一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【结果】B思路:对于A 选项,该组数据地平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=。

(完整版)经典高考概率分布类型题归纳【精选】

(完整版)经典高考概率分布类型题归纳【精选】

经典高考概率类型题总结一、超几何分布类型二、二项分布类型三、超几何分布与二项分布的对比四、古典概型算法五、独立事件概率分布之非二项分布(主要在于如何分类)六、综合算法一、超几何分布1.甲、乙两人参加普法知识竞赛,共设有10个不同的题目,其中选择题6个,判断题4个.(1)若甲、乙二人依次各抽一题,计算:①甲抽到判断题,乙抽到选择题的概率是多少?②甲、乙二人中至少有一人抽到选择题的概率是多少?(2)若甲从中随机抽取5个题目,其中判断题的个数为X,求X的概率分布和数学期望.二、二项分布1.某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在的地区附近有A,B,C三家社区医院,并且他们对社区医院的选择是相互独立的.(1)求甲、乙两人都选择A社区医院的概率;(2)求甲、乙两人不选择同一家社区医院的概率;(3)设4名参加保险人员中选择A社区医院的人数为X,求X的概率分布和数学期望.2.某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是23,出现绿灯的概率都是13.记这4盏灯中出现红灯的数量为X ,当这排装饰灯闪烁一次时: (1)求X =2时的概率; (2)求X 的数学期望.解 (1)依题意知:X =2表示4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯,而每盏灯出现红灯的概率都是23, 故X =2时的概率P =C 24⎝⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=827. (2)法一 X 的所有可能取值为0,1,2,3,4,依题意知 P(X =k )=C k 4⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫134-k(k =0,1,2,3,4). ∴X 的概率分布列为∴数学期望E(X)=0×8+1×81+2×81+3×81+4×81=3.三、超几何分布与二项分布的对比有一批产品,其中有12件正品和4件次品,从中有放回地依 次任取3件,若X 表示取到次品的次数,则P (X )= . 辨析:1.有一批产品,其中有12件正品和4件次品,从中不放回地依 次任取3件,若X 表示取到次品的件数,则P (X )=2. 有一批产品,其中有12件正品和4件次品,从中有放回地依 次任取件,第k 次取到次品的概率,则P (X )=3.有一批产品,其中有12件正品和4件次品,从中不放回地依 次任取件,第k 次取到次品的概率,则P (X )=四、古典概型算法1.一个均匀的正四面体的四个面分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体底面上的数字分别为x 1,x 2,记X=(x 1-2)2+(x 2-2)2. (1)分别求出X 取得最大值和最小值的概率; (2)求X 的概率分布及方差.2.(2012·江苏高考)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时ξ=1. (1)求概率P (ξ=0);(2)求ξ的分布列,并求其数学期望E (ξ).3.某市公租房的房源位于A ,B ,C 三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中: (1)恰有2人申请A 片区房源的概率;(2)申请的房源所在片区的个数X 的概率分布与期望.4.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S.(1)记“使得m +n =0成立的有序数组(m ,n)”为事件A ,试列举A 包含的基本事件; (2)设ξ=m 2,求ξ的概率分布表及其数学期望E(ξ).解 (1)由x 2-x -6≤0,得-2≤x ≤3, 即S ={x|-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0,所以A 包含的基本事件为(-2,2),(2,-2), (-1,1),(1,-1),(0,0).(2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有P(ξ=0)=16,P(ξ=1)=26=13,P(ξ=4)=26=13,P(ξ=9)=16.故ξ的概率分布表为所以E(ξ)=0×16+1×13+4×13+9×16=196.5.在高中“自选模块”考试中,某考场的每位同学都选了一道数学题,第一小组选《数学史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况 .(1)求选出的4人均为选《矩阵变换和坐标系与参数方程》的概率;(2)设X为选出的4个人中选《数学史与不等式选讲》的人数,求X的分布列和数学期望.解(1)设“从第一小组选出的2人均选《矩阵变换和坐标系与参数方程》”为事件A,“从第二小组选出的2人均选《矩阵变换和坐标系与参数方程》”为事件B.由于事件A、B相互独立,所以P(A)=C25C26=23,P(B)=C24C26=25,所以选出的4人均选《矩阵变换和坐标系与参数方程》的概率为P(A·B)=P(A)·P(B)=23×25=415.(2)X可能的取值为0,1,2,3,则P(X=0)=415,P(X=1)=C25C26·C12·C14C26+C15C26·C24C26=2245,P(X=3)=C15C26·1C26=145.P(X=2)=1-P(X=0)-P(X=1)-P(X=3)=2 9.故X的分布列为所以X的数学期望E(X)=0×15+1×45+2×9+3×45=1 (人).6.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球.(I)求取出的4个球均为黑色球的概率;(II)求取出的4个球中恰有1个红球的概率;(III)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.解:(I)设“从甲盒内取出的2个球均黑球”为事件A,“从乙盒内取出的2个球为黑球”为事件B.∵事件A,B相互独立,且.∴取出的4个球均为黑球的概率为P(AB)=P(A)P(B)=.(II)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红红,1个是黑球”为事件C,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D.∵事件C,D互斥,且.∴取出的4个球中恰有1个红球的概率为P(C+D)=P(C)+P(D)=.(III)解:ξ可能的取值为0,1,2,3.由(I),(II)得,又,从而P (ξ=2)=1﹣P (ξ=0)﹣P (ξ=1)﹣P (ξ=3)=.ξ的分布列为ξ的数学期望.五、独立事件概率分布之非二项分布(主要在于如何分类)1.开锁次数的数学期望和方差有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数的数学期望和方差.分析:求时,由题知前次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如,发现规律后,推广到一般.解:的可能取值为1,2,3,…,n .;所以的分布列为:ξ)(k P =ξ1-k 3,2,1=ξξ;12112121)111()11()3(;111111)11()2(,1)1(nn n n n n n n n P n n n n n n P nP =-⋅--⋅-=-⋅--⋅-===-⋅-=-⋅-====ξξξnk n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-⋅+-+---⋅--⋅-=+-⋅+----⋅--⋅-== ξξ;2. 射击练习中耗用子弹数的分布列、期望及方差某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹后才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数的分布列,并求出的期望与方差(保留两位小数).分析:根据随机变量不同的取值确定对应的概率,在利用期望和方差的定义求解. 解: 该组练习耗用的子弹数为随机变量,可以取值为1,2,3,4,5.=1,表示一发即中,故概率为=2,表示第一发未中,第二发命中,故=3,表示第一、二发未中,第三发命中,故=4,表示第一、二、三发未中,第四发命中,故=5,表示第五发命中,故211131211+=⋅++⋅+⋅+⋅=n n n n n n E ξnn n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222⋅+-++⋅+-++⋅+-+⋅+-+⋅+-= ξ⎥⎦⎤⎢⎣⎡⋅+++++++-++++=n n n n n n 22222)21()321)(1()321(1 1214)1(2)1()12)(1(611222-=⎥⎦⎤⎢⎣⎡+++-++=n n n n n n n n n ξ ξ ξ E ξ D ξ ξ ξ ;8.0)1(==ξ P ξ ;16.08.02.08.0)8.01()2(=⨯=⨯-==ξ P ξ ;032.08.02.08.0)8.01()3(22=⨯=⨯-==ξ P ξ 0064.08.02.08.0)8.01()4(33=⨯=⨯-==ξ P ξ因此,的分布列为3. 在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A 处的命中率q 为0.25,在B 处的命中率为q ,该同学选择先在A 处投一球,以后都在B 处投,用表示该同学投篮训练结束后所得的总分,其分布列为(1)求q 的值;(2)求随机变量的数学期望E ;(3)试比较该同学选择都在B 处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.解:(1)设该同学在A 处投中为事件A ,在B 处投中为事件B ,则事件A ,B 相互独立,且P (A )=0.25,,P (B )= q ,.根据分布列知:=0时=0.03,所以,q =0.8.(2)当=2时,P 1==0.75q ()×2=1.5q ()=0.24.当=3时,P 2 ==0.01,.0016.02.01)8.01()5(44==⋅-==ξ P ξ 0016.050064.04032.0316.028.01⨯+⨯+⨯+⨯+⨯=ξ E ,25.1008.00256.0096.032.08.0 =++++=0016.0)25.15(0064.0)25.14(032.0)25.13(16.0)25.12(8.0)25.11(22222⨯-+⨯-+⨯-+⨯-+⨯-=ξ D .31.00225.00484.0098.009.005.0 =++++=12ξ2ξξ()0.75P A =22()1P B q =-ξ22()()()()0.75(1)P ABB P A P B P B q ==-210.2q -=2ξ)()()(B B A P B B A P B B A B B A P +=+)()()()()()(B P B P A P B P B P A P +=221q -221q -ξ22()()()()0.25(1)P ABB P A P B P B q ==-当=4时,P 3==0.48, 当=5时,P 4==0.24.所以随机变量的分布列为:随机变量的数学期望. (3)该同学选择都在B 处投篮得分超过3分的概率为;该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72. 由此看来该同学选择都在B 处投篮得分超过3分的概率大.4. 某科技公司遇到一个技术难题,紧急成立甲、乙两个攻关小组,按要求各自单独进行为期一个月的技术攻关, 同时决定对攻关期满就攻克技术难题的小组给予奖励.已知这 些技术难题在攻关期满时被甲小组攻克的概率为32被乙小组攻 克的概率为43. (1)设X 为攻关期满时获奖的攻关小组数,求X 的概率分布及 V(X);(2)设Y 为攻关期满时获奖的攻关小组数的2倍与没有获奖的 攻关小组数之差,求V(Y).5. 某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是,且客人是否游览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值. (Ⅰ)求的分布列及数学期望;(Ⅱ)记“函数在区间上单调递增”为事件,求事件ξ22()()()()0.75P ABB P A P B P B q ==ξ()()()P ABB AB P ABB P AB +=+222()()()()()0.25(1)0.25P A P B P B P A P B q q q =+=-+ξξ00.0320.2430.0140.4850.24 3.63E ξ=⨯+⨯+⨯+⨯+⨯=()P BBB BBB BB ++()()()P BBB P BBB P BB =++222222(1)0.896q q q =-+=0.4,0.5,0.6ξξ2()31f x x x ξ=-+[2,)+∞A A的概率. 分析:(2)这是二次函数在闭区间上的单调性问题,需考查对称轴相对闭区间的关系,就本题而言,只需即可.解:(1)分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点”为事件. 由已知相互独立,.客人游览的景点数的可能取值为0,1,2,3. 相应的,客人没有游览的景点数的可能取值为3,2,1,0,所以的可能取值为1,3.所以的分布列为(Ⅱ)解法一:因为所以函数 上单调递增,要使上单调递增,当且仅当从而 解法二:的可能取值为1,3.当时,函数上单调递增,当时,函数上不单调递增.所以6.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.322ξ≤123,,A A A 123,,A A A 123()0.4,()0.5,()0.6P A P A P A ===ξ123123(3)()()P P A A A P A A A ξ==+123123()()()()()()20.40.50.60.24P A P A P A P A P A P A =+=⨯⨯⨯=(1)10.240.76P ξ==-=ξ()10.7630.24 1.48E ξ=⨯+⨯=2239()()1,24f x x ξξ=-+-23()31[,)2f x x x ξξ=-++∞在区间()[2,)f x +∞在342,.23ξξ≤≤即4()()(1)0.76.3P A P P ξξ=≤===ξ1ξ=2()31[2,)f x x x =-++∞在区间3ξ=2()91[2,)f x x x =-++∞在区间()(1)0.76.P A P ξ===0.76(1)求乙至多击中目标2次的概率;(2)记甲击中目标的次数为Z ,求Z 的分布列、数学期望和标准差. 解 (1)甲、乙两人射击命中的次数服从二项分布,故乙至多击中目标2次的概率为1-C 33⎝ ⎛⎭⎪⎫233=1927. (2)P(Z =0)=C 03⎝ ⎛⎭⎪⎫123=18; P(Z =1)=C 13⎝ ⎛⎭⎪⎫123=38; P(Z =2)=C 23⎝⎛⎭⎪⎫123=38; P(Z =3)=C 33⎝ ⎛⎭⎪⎫123=18. Z 的分布列如下表:E(Z)=0×18+1×8+2×8+3×8=2,D(Z)=⎝ ⎛⎭⎪⎫0-322×18+⎝ ⎛⎭⎪⎫1-322×38+⎝ ⎛⎭⎪⎫2-322×38+⎝ ⎛⎭⎪⎫3-322×18=34,∴D (Z )=32.7.某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4.经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75. (1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望与方差. 解 分别记甲、乙、丙经第一次烧制后合格为事件A 1、A 2、A 3.(1)设E 表示第一次烧制后恰好有一件合格,则 P(E)=P(A 1A2A 3)+P(A 1A 2A 3)+P(A1A 2A 3)=0.5×0.4×0.6+0.5×0.6×0.6+0.5×0.4×0.4=0.38.(2)因为每件工艺品经过两次烧制后合格的概率均为p =0.3,所以ξ~B(3,0.3). 故E(ξ)=np =3×0.3=0.9, V(ξ)=np(1-p)=3×0.3×0.7=0.63.8.某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。

高考概率大题及答案

高考概率大题及答案

高考概率大题及答案1.某市高中毕业生中有80%选择进入大学,20%选择就业。

已知选择就业的学生中,70%在第一年获得满意的工作,而选择进入大学的学生中,80%在第一年获得满意的工作。

现从该市高中毕业生中任选一人,问他第一年获得满意工作的概率是多少?解答:由全概率公式可知,某毕业生获得满意工作的概率可以分为两种情况:1)选择就业的情况下获得满意工作的概率:0.2 × 0.7 = 0.14 2)选择进入大学的情况下获得满意工作的概率:0.8 × 0.8 = 0.64因此,获得满意工作的总概率为:0.14 + 0.64 = 0.78所以,任选一人的第一年获得满意工作的概率为0.78。

2.一批产品某种型号有20%的不合格品。

现从中任意抽取2个进行检查,问两个都是合格品的概率是多少?解答:抽取两个产品都是合格品的概率可以通过计算来得到。

首先,第一次抽取的产品是合格品的概率为80%(不合格品的概率为20%)。

而第二次抽取的产品也是合格品的概率会受到第一次抽取的影响。

因为第一次抽取合格品后,剩下的产品中合格品的比例会减少。

假设第一次抽取合格品后,剩下的产品中有a个合格品和b个不合格品,则第二次抽取的产品也是合格品的概率为a/(a+b)。

因此,两个都是合格品的概率为:0.8 × (a/(a+b))具体数值需要根据实际情况来计算。

3.某门考试的通过率为60%,现已知通过考试的学生中,有70%是靠自己的努力而没有借助辅导班;而未通过考试的学生中,有30%是通过辅导班的帮助提高的。

现从所有参加考试的学生中任意选取一人,问他通过考试并没有借助辅导班的概率是多少?解答:通过考试并没有借助辅导班的概率可以分为两种情况:1)通过考试的学生中靠自己的努力的概率:0.6 × 0.7 = 0.42 2)通过辅导班帮助提高通过考试的概率:0.4 × 0.3 = 0.12因此,通过考试并没有借助辅导班的总概率为:0.42 + 0.12 = 0.54所以,任选一人通过考试并没有借助辅导班的概率为0.54。

高考理科数学概率题型归纳与练习(含答案)

高考理科数学概率题型归纳与练习(含答案)

专题三:高考理科数学概率与数学期望一.离散型随机变量的期望(均值)和方差若离散型随机变量X 的分布列或概率分布如下:X 1x 2x …n xP1p 2p …n p1. 其中,120,1,2,...,,...1i n p i n p p p ≥=+++=,则称1122...n n x p x p x p +++为随机变量X 的均值或X 的数学期望,记为()E X 或μ.数学期望 ()E X =1122...n n x p x p x p +++性质 (1)()E c c =;(2)()()E aX b aE X b +=+.(,,a b c 为常数)2. 2221122()()...()n n x p x p x p μμμ-+-++-,(其中120,1,2,...,,...1i n p i n p p p ≥=+++=)刻画了随机变量X 与其均值μ的平均偏离程度,我们将其称为离散型随机变量X 的方差,记为()D X 或2σ.方差2221122()()...()n n DX x p x p x p μμμ=-+-++-2.方差公式也可用公式22221()()ni i i D X x p EX EX μ==-=-∑计算.3.随机变量X 的方差也称为X 的概率分布的方差,X 的方差()D X 的算术平方根称为X的标准差,即()D X σ=.1.设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX 。

X -1 01 P95二.超几何分布对一般情形,一批产品共N 件,其中有M 件不合格品,随机取出的n 件产品中,X 012… lP0n M N MnNC C C - 11n M N MnNC C C -- 22n M N MnNC C C -- …l n l M N MnNC C C -- 其中min(,)l n M =一般地,若一个随机变量X 的分布列为()r n r M N MnNC C P X r C --==, 其中0r =,1,2,3,…,l ,min(,)l n M =,则称X 服从超几何分布,记为(,,)XH n M N ,并将()r n r M N MnNC C P X r C --==记为(;,,)H r n M N . 1.高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同.现一次从中摸出5个球,(1)若摸到4个红球1个白球的就中一等奖,求中一等奖的概率. (2)若至少摸到3个红球就中奖,求中奖的概率.X 0 1 2 3 4 5P258423751807523751855023751380023751700237514223751从而2584807585503800700425()012345 1.66672375123751237512375123751237513E X =⨯+⨯+⨯+⨯+⨯+⨯=≈ 答:X 的数学期望约为1.6667.说明:一般地,根据超几何分布的定义,可以得到0()r n r nM N Mnr Nr C C M E X n C N --===∑.2. 在10件产品中,有3件一等品,4件二等品,3件三等品。

高中概率分布练习题及讲解

高中概率分布练习题及讲解

高中概率分布练习题及讲解一、基础概念题1. 某班级有40名学生,其中男生20名,女生20名。

随机抽取一名学生,求抽到男生的概率。

2. 一个袋子里有5个红球和3个蓝球,每次抽取一个球后放回。

求连续抽取三次,至少出现一次红球的概率。

3. 一个骰子掷出数字1的概率是多少?二、条件概率题1. 已知一个事件A发生的概率为0.3,另一个事件B在A发生的条件下发生的概率为0.5。

求事件A和B同时发生的概率。

2. 一个班级有50名学生,其中20名是男生,30名是女生。

如果从班级中随机抽取一名学生,发现他是男生,那么他是班级中成绩最好的学生的概率是多少?(假设班级中成绩最好的学生是男生的概率为0.4)三、独立事件题1. 一个袋子里有10个球,其中2个是白球,8个是黑球。

如果从袋子中随机抽取一个球,观察颜色后放回,再抽取一次。

求两次都抽到白球的概率。

2. 一个家庭有两个孩子,假设生男生女的概率各为1/2。

求这个家庭有两个男孩的概率。

四、二项分布题1. 一个硬币连续投掷10次,求至少出现5次正面的概率。

2. 一个学生在10次考试中,每次考试通过的概率为0.7。

求这个学生至少通过8次考试的概率。

五、正态分布题1. 一个班级的学生数学成绩服从均值为80分,标准差为10分的正态分布。

求数学成绩在70到90分之间的学生所占的比例。

2. 一个工厂生产的零件长度服从均值为50厘米,标准差为1厘米的正态分布。

求长度在49到51厘米之间的零件所占的比例。

六、泊松分布题1. 一个电话服务中心平均每小时接到4个电话。

求在任意一个小时内接到6个或更多电话的概率。

2. 一个网站平均每分钟有2个访问者。

求在任意一分钟内有5个或更多访问者的概率。

七、综合题1. 一个班级有50名学生,其中30名是男生,20名是女生。

如果随机抽取5名学生,求至少有3名男生的概率。

2. 一个工厂每天生产100个零件,其中每个零件都是合格品的概率为0.95。

求工厂一天中生产的零件中有超过5个不合格品的概率。

高考数学概率统计题型归纳

高考数学概率统计题型归纳

高考数学概率统计题型归纳高考数学中的概率统计是一个重要的考点,其题型多样,涵盖了众多知识点。

为了帮助同学们更好地应对高考中的概率统计题目,下面对常见的题型进行归纳和分析。

一、古典概型古典概型是概率统计中最基本的题型之一。

其特点是试验中所有可能的结果有限,且每个结果出现的可能性相等。

例如,从装有 5 个红球和 3 个白球的袋子中随机取出 2 个球,求取出的 2 个球都是红球的概率。

解决这类问题的关键是要准确计算基本事件的总数和所求事件包含的基本事件数。

在上述例子中,基本事件的总数可以通过组合数计算,即从 8 个球中取出 2 个球的组合数;所求事件包含的基本事件数为从 5 个红球中取出 2 个球的组合数。

然后用所求事件包含的基本事件数除以基本事件的总数,即可得到所求概率。

二、几何概型几何概型与古典概型的区别在于试验的结果是无限的。

通常会涉及到长度、面积、体积等几何度量。

比如,在区间0, 5上随机取一个数,求这个数小于 2 的概率。

解决几何概型问题时,需要确定几何区域的度量,并计算出所求事件对应的几何区域的度量,最后用所求事件对应的几何区域的度量除以总的几何区域的度量,得到概率。

三、相互独立事件与条件概率相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响。

例如,甲、乙两人分别独立射击,甲击中目标的概率为 08,乙击中目标的概率为 07,求两人都击中目标的概率。

条件概率则是在已知某个事件发生的条件下,求另一个事件发生的概率。

比如,已知某班级男生占 60%,女生占 40%,男生中优秀的比例为30%,女生中优秀的比例为 20%,现从班级中随机抽取一名学生为优秀,求这名学生是男生的概率。

对于相互独立事件,其概率的计算使用乘法公式;对于条件概率,使用条件概率公式进行计算。

四、离散型随机变量离散型随机变量是指取值可以一一列出的随机变量。

常见的离散型随机变量有二项分布、超几何分布等。

二项分布是指在 n 次独立重复试验中,某事件发生的次数 X 服从二项分布。

高考数学分布列专题及答案

高考数学分布列专题及答案

分布列1.(本小题满分14分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为3 5.(1)请将上面的列联表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望.(参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)2.(本小题满分14分)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产(Ⅰ)该同学为了求出y 关于x 的线性回归方程ˆˆˆybx a =+,根据表中数据已经正确计算出ˆ0.6b=,试求出ˆa 的值,并估计该厂6月份生产的甲胶囊产量数; (Ⅱ)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.某商场准备在节日期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动。

(1)试求选出的3种商品中至少有一种日用商品的概率;(2)商场对选出的商品采用有奖促销,即在该商品现价的基础上价格提高180元,同时允许顾客每购买1件促销商品有3次抽奖的机会,若中奖,则每次中奖都可获得奖金100元,假设顾客每次抽奖时中奖与否是等可能的,试分析此种有奖促销方案对商场是否有利。

在高二年级某班学生在数学校本课程选课过程中,已知第一小组与第二小组各有六位同学.每位同学都只选了一个科目,第一小组选《数学运算》的有1人,选《数学解题思想与方法》的有5人,第二小组选《数学运算》的有2人,选《数学解题思想与方法》的有4人,现从第一、第二两小组各任选2人分析选课情况.(Ⅰ)求选出的4 人均选《数学解题思想与方法》的概率;(Ⅱ)设ξ为选出的4个人中选《数学运算》的人数,求ξ的分布列和数学期望..(本小题满分14分)分布列参考答案1.(本小题满分14分)解:(1) 列联表补充如下:----------------------------------------3分(2)∵2250(2015105)8.3337.87930202525K ⨯⨯-⨯=≈>⨯⨯⨯------------------------6分 ∴在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关.---------------------7分(3)喜爱打篮球的女生人数ξ的可能取值为0,1,2.-------------------------9分其概率分别为021*******(0)20C C P C ξ===,1110152251(1)2C C P C ξ===,2010152253(2)20C C P C ξ===--------------------------12分故ξ的分布列为:--------------------------13分ξ的期望值为:7134012202205E ξ=⨯+⨯+⨯= 2.(本小题满分14分)解:(Ⅰ)11(12345)3,(44566)555x y =++++==++++=,因线性回归方程ˆ=+ybx a 过点(,)x y , ∴50.66 3.2a y bx =-=-⨯=,∴6月份的生产甲胶囊的产量数:ˆ0.66 3.2 6.8y=⨯+=…………….6分(Ⅱ)0,1,2,3,ξ=31254533991054010(0),(1),84428421C C C P P C C ξξ======== 213454339930541(2),(3).84148421C C C P P C C ξξ======== …………………….10分其分布列为5105140123 422114213E ξ∴=⨯+⨯+⨯+⨯= …………………….14分3.解:(1)从3种服装商品、2种家电商品、4种日用商品中,选出3种商品,一共有39C 种不同的选法,选出的3种商品中,没有日用商品的选法有35C 种,……2分 所以选出的3种商品中至少有一种日用商品的概率为 3539537114242C P C =-=-=……4分 (2)顾客在三次抽奖中所获得的奖金总额是一随机变量ξ,其所有可能的取值为0,100,200,300。

高考数学复习:概率与分布列题型

高考数学复习:概率与分布列题型

高考数学复习:概率与分布列题型1.已知随机变量且1211211P X P X P X μμμμ-<+-≥++≤<+=,则()A.1-B.0C.1D.22.已知随机变量ξ服从正态分布()2,N μσ,若函数()(2)f x P x x ξ=≤≤+是偶函数,则实数μ=()A.0B.12C.1D.23.随机变量ξ服从正态分布()3,4N ,且()()322P a P a ξξ-≥=≤,则=a ()A.12B.1C.43D.34.设X~N (1,σ2),其正态分布密度曲线如图所示,且P (X ≥3)=0.0228,那么向正方形OABC 中随机投掷20000个点,则落入阴影部分的点的个数的估计值为()[附:随机变量ξ服从正态分布N (1,σ2),则P (μ-σ<ξ<μ+σ)=0.6826,P (μ-2σ<ξ<μ+2σ)=0.9544]A.12076B.13174C.14056D.7539题型二:二项分布型求参二项分布:若在一次实验中事件发生的概率为p ()01p <<,则在n 次独立重复实验中恰好发生k 次概率()=p k ξ=()1n kk k n C p p --()0,1,2,,k n =⋯,称ξ服从参数为,n p 的二项分布,记作ξ~(),B n p ,E ξ=npi =D npq .1.在n 次独立重复试验(伯努利试验)中,若每次试验中事件A 发生的概率为p ,则事件A 发生的次数X 服从二项分布(),B n p ,事实上,在伯努利试验中,另一个随机变量的实际应用也很广泛,即事件A 首次发生时试验进行的次数Y ,显然1()(1)k P Y k p p -==-,1k =,2,3,…,我们称Y 服从“几何分布”,经计算得1EY p =.据此,若随机变量X 服从二项分布1,6B n ⎛⎫⎪⎝⎭时,且相应的“几何分布”的数学期望EY EX <,则n的最小值为()A.6B.18C.36D.372.已知随机变量X 服从二项分布(,)B n p ,且()9E X =,9()4D X =,则n =()A.3B.6C.9D.123.设随机变量ξ服从二项分布(),B n p ,若() 1.2E ξ=,()0.96D ξ=,则实数n 的值为__________.题型三:二项分布与正态分布综合离散型随机变量分布列、期望、方差及其性质(1)离散型随机变量ξ的分布列ξ1ξ2ξ3ξ…n ξP1p 2p 3p np ①()11,i p i n i N θ*≤≤≤≤∈;②121n p p p ++= .(2)E ξ表示ξ的期望:1122=+n n p p p E ξξξξ++…,反应随机变量的平均水平,若随机变量ξη,满足=a b ηξ+,则E aE b ηξ=+.(3)D ξ表示ξ的方差:()()()2221122=---n n E p E p E p D ξξξξξξξ+++ ,反映随机变量ξ取值的波动性。

概率经典例题及解析、近年高考题50道带答案

概率经典例题及解析、近年高考题50道带答案

【经典例题】【例1】(2012湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .1- 2πB . 12 - 1πC . 2πD . 1π【答案】A【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过C 点.S 2即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2= π2 ( 12 )2- 12 × 12 × 12 = π-28 .在扇形OAD 中 S 12 为扇形面积减去三角形OAC 面积和 S 22 , S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-24 ,扇形OAB 面积S= π4 ,选A .【例2】(2013湖北)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( )A. 126125B. 65C. 168125D. 75—【答案】B【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0×27125+1×54125+2×36125+3×8125=65,选B.【例3】(2012四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A. 14B. 12C. 34D. 78【答案】C【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意⎩⎪⎨⎪⎧0≤x≤4,0≤y≤4,满足条件的关系式为-2≤x -y≤2.根据几何概型可知,事件全体的测度(面积)为16平方单位,而满足条件的事件测度(阴影部分面积)为12平方单位,故概率为1216=34.|【例4】(2009江苏)现有5根竹竿,它们的长度(单位:m )分别为,,,,,若从中一次随机抽取2根竹竿,则它们的长度恰好相差的概率为 . 【答案】【解析】从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差的事件数为2,分别是:和,和,所求概率为 【例5】(2013江苏)现有某类病毒记作X m Y n ,其中正整数m ,n(m≤7,n≤9)可以任意选取,则m ,n 都取到奇数的概率为________.【答案】2063【解析】基本事件共有7×9=63种,m 可以取1,3,5,7,n 可以取1,3,5,7,9.所以m ,n 都取到奇数共有20种,故所求概率为2063.【例6】(2013山东)在区间[-3,3]上随机取一个数x ,使得|x +1|-|x -2|≥1成立的概率为________. 【答案】13 )【解析】当x<-1时,不等式化为-x -1+x -2≥1,此时无解;当-1≤x≤2时,不等式化为x +1+x -2≥1,解之得x≥1;当x>2时,不等式化为x +1-x +2≥1,此时恒成立,∴|x +1|-|x -2|≥1的解集为[)1,+∞.在[]-3,3上使不等式有解的区间为[]1,3,由几何概型的概率公式得P =3-13-(-3)=13.【例7】(2013北京)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望; (3)由图判断从哪天开始连续三天的空气质量指数方差最大(结论不要求证明) 【答案】213;1213;3月5日【解析】设Ai 表示事件“此人于3月i 日到达该市”(i =1,2,…,13). ?根据题意,P(Ai)=113,且Ai∩Aj =(i≠j).(1)设B 为事件“此人到达当日空气重度污染”,则B =A5∪A8. 所以P(B)=P(A5∪A8)=P(A5)+P(A8)=213.(2)由题意可知,X 的所有可能取值为0,1,2,且 P(X =1)=P(A3∪A6∪A7∪A11) =P(A3)+P(A6)+P(A7)+P(A11)=413, P(X =2)=P(A1∪A2∪A12∪A13) =P(A1)+P(A2)+P(A12)+P(A13)=413,、P(X =0)=1-P(X =1)-P(X =2)=513. 所以X 的分布列为X 0 1 2 P513$ 413413故X 的期望E(X)=0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大.【例8】(2013福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大【答案】1115;方案甲. :【解析】方法一:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X≤3”的事件为A ,则事件A 的对立事件为“X =5”,因为P(X =5)=23×25=415,所以P(A)=1-P(X =5)=1115, 即这两人的累计得分X≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2).由已知可得,X1~B ⎝⎛⎭⎫2,23,X2~B ⎝⎛⎭⎫2,25, 所以E(X1)=2×23=43,E(X2)=2×25=45, 从而E(2X1)=2E(X1)=83,E(3X2)=3E(X2)=125.,因为E(2X1)>E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响. 记“这两人的累计得分X≤3”的事件为A ,则事件A 包含有“X =0”“X =2”“X =3”三个两两互斥的事件,因为P(X =0)=⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-25=15,P(X =2)=23×⎝⎛⎭⎫1-25=25,P(X =3)=⎝⎛⎭⎫1-23×25=215,所以P(A)=P(X =0)+P(X =2)+P(X =3)=1115, 即这两人的累计得分X≤3的概率为1115.、(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:所以E(X1)=0×19+2×49+4×49=83, E(X2)=0×925+3×1225+6×425=125.因为E(X1)>E(X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大. 【例9】(2013浙江)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列; (2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a ∶b ∶c.¥【答案】3∶2∶1 【解析】(1)由题意得,ξ=2,3,4,5,6.P(ξ=2)=3×36×6=14,P(ξ=3)=2×3×26×6=13, P(ξ=4)=2×3×1+2×26×6=518. P(ξ=5)=2×2×16×6=19, P(ξ=6)=1×16×6=136, 所以ξ的分布列为#(2)由题意知η的分布列为所以Eη=a a +b +c +2b a +b +c +3c a +b +c=53,{Dη=1-532·a a +b +c +2-532·b a +b +c +3-532·c a +b +c=59,化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1.【例10】(2009北京理)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2min. (1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望. 【答案】427;38【解析】本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础知识,考查运用概率与统计知识解决实际问题的能力. [(1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A ,因为事件A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为()11141133327P A ⎛⎫⎛⎫=-⨯-⨯= ⎪ ⎪⎝⎭⎝⎭.(2)由题意,可得ξ可能取的值为0,2,4,6,8(单位:min ).事件“2k ξ=”等价于事件“该学生在路上遇到k 次红灯”(k =0,1,2,3,4),∴()()441220,1,2,3,433kkkP k C k ξ-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,∴即ξ的分布列是∴ξ的期望是0246881812781813E ξ=⨯+⨯+⨯+⨯+⨯=. 【课堂练习】1.(2013广东)已知离散型随机变量则X 的数学期望E(X)=( )A. 32 B .2 C. 52 D .32.(2013陕西)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是( )?A .1-π4B .π2-1 B .2-π2 D .π43.在棱长分别为1,2,3的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离大于3的概率为( )A .47B .37C .27D .3144.(2009安徽理)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于 ;A .175 B . 275 C .375 D .4755.(2009江西理)为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为( )A .3181 B .3381 C .4881 D .5081. ]6.(2009辽宁文)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O的距离大于1的概率为A .4πB .14π-C .8π D .18π-7.(2009上海理)若事件E 与F 相互独立,且()()14P E P F ==,则()P E F 的值等于A .0B .116C .14D .128.(2013广州)在区间[1,5]和[2,4]上分别取一个数,记为a ,b ,则方程x 2a 2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为( )A .12B .1532C .1732D .31329.已知数列{a n }满足a n =a n -1+n -1(n≥2,n ∈N ),一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子连续抛掷三次,得到的点数分别记为a ,b ,c ,则满足集合{a ,b ,c}={a 1,a 2,a 3}(1≤a i ≤6,i =1,2,3)的概率是( )A .172B .136C .124D .112 ,10.(2009湖北文)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是、、,则三人都达标的概率是 ,三人中至少有一人达标的概率是 。

概率与分布列归类(解析版)--2024年高考数学大题突破

概率与分布列归类(解析版)--2024年高考数学大题突破

概率与分布列归类目录【题型一】 超几何分布型分布列【题型二】二项分布型分布列【题型三】正态分布型【题型四】分布列均值与方差【题型五】竞技比赛型分布列【题型六】多人比赛竞技型分布列【题型七】递推数列型【题型八】三人传球递推数列型【题型九】导数计算型分布列最值【题型十】机器人跳棋模式求分布列【题型一】超几何分布型分布列总数为N的两类物品,其中一类为M件,从N中取n件恰含M中的m件,m=0,1,2⋯,k,其中k为M与n的较小者,Pξ=m=C m M C n-mN-MC n N,称ξ服从参数为N,M,n的超几何分布,记作ξ~H N,M,n,此时有公式Eξ=nM N。

一般地,假设一批产品共有N件,其中有M件次品. 从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=C k M C n-kN-MC n N,k=m,m+1,m+2,⋯,r. 其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}. 如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布_.E(X)=np.1(2023·湖北·模拟预测)某区域中的物种P 拥有两个亚种(分别记为A 种和B 种).为了调查该区域中这两个亚种的数目,某生物研究小组计划在该区域中捕捉100个物种P ,统计其中A 种的数目后,将捕获的生物全部放回,作为一次试验结果.重复进行这个试验共20次,记第i 次试验中A 种的数目为随机变量X i (i =1,2,⋯,20).设该区域中A 种的数目为M ,B 种的数目为N ,每一次试验均相互独立.(1)求X 1的分布列;(2)记随机变量X =12020i =1X i.已知E (X i +X j )=E (X i )+E (X j ),D (X i +X j )=D (X i )+D (X j );(ⅰ)证明:E (X )=E (X 1),D (X )=120D (X 1);(ⅱ)该小组完成所有试验后,得到X i 的实际取值分别为x i (i =1,2,⋯,20).数据x i (i =1,2,⋯,20)的平均值x=40,方差s 2=1.176.采用x和s 2分别代替E (X )和D (X ),给出M ,N 的估计值.【答案】(1)分布列见解析(2)(ⅰ)证明见解析;(ⅱ)M =1980,N =2971【分析】(1)根据条件,判断X i 服从超几何分布,再利用超几何分布的分布列即可求出结果;(2)(ⅰ)直接利用均值和方差的性质即可证明结果;(ⅱ)先利用第(ⅰ)中的结论,求出E (X )=100M M +N ,D (X )=5MN (M +N -100)(M +N )2(M +N -1),再结合条件建立方程组,从而求出结果.【详解】(1)依题意,X i (i =1,2,⋯,20)均服从完全相同的超几何分布,故X 1的分布列为P (X 1=k )=C k M C 100-kN C 100M +Nk ∈N ∗,max 0,100-N ≤k ≤min 100,M .(2)(ⅰ)由题可知E (X)=E12020i =1X i =120E 20i =1X i=12020i =1E (X i ) =120×20E (X 1)=E (X 1),D (X )=D 12020i =1X i=1202D 20i =1X i=120220i =1D (X i ) =1202×20D (X 1)=120D (X 1),故E (X )=E (X 1),D (X )=120D (X 1)(ⅱ)由(ⅰ)可知X 的均值E (X )=E (X 1)=100MM +N .先计算X 1的方差D (X 1)=kk 2P (X 1=k ) -E 2(X 1)=k k (k -1)C k M C 100-k N C 100M +N +k k C k M C 100-k N C 100M +N -E 2(X 1)=M (M -1)k C k -2M -2C 100-k N C 100M +N +M kC k -1M -1C 100-kN C 100M +N -E 2(X 1)=M (M -1)C 100M +N C 100-2M +N -2+M C 100M +NC 100-1M +N -1-E 2(X 1)=100MN (M +N -100)(M +N )2(M +N -1),所以D (X )=5MN (M +N -100)(M +N )2(M +N -1).依题意有100MM +N=40,5MN M +N -100M +N 2M +N -1=1.176,解得M =1980.4,N =2970.6.所以可以估计M =1980,N =2971.2(23·24高三上·江苏南通·阶段练习)某班为了庆祝我国传统节日中秋节,设计了一个小游戏:在一个不透明箱中装有4个黑球,3个红球,1个黄球,这些球除颜色外完全相同.每位学生从中一次随机摸出3个球,观察颜色后放回.若摸出的球中有X个红球,则分得X个月饼;若摸出的球中有黄球,则需要表演一个节目.(1)求一学生既分得月饼又要表演节目的概率;(2)求每位学生分得月饼数的概率分布和数学期望.【答案】(1)1556(2)分布列见解析,数学期望为98【分析】(1)由题意分析可知有两种可能:“2个红球1个黄球”和“1个黑球,1个红球,1个黄球”,进而结合组合数运算求解;(2)由题意可知X的可能取值为:0,1,2,3,结合超几何分布求分布列和期望.【详解】(1)记“一学生既分得月饼又要表演节目”为事件A,可知有两种可能:“2个红球1个黄球”和“1个黑球,1个红球,1个黄球”,所以P A=C23C11+C14C13C11C38=1556.(2)由题意可知X的可能取值为:0,1,2,3,则有:P X=0=C35C03C38=528,P X=1=C25C13C38=1528,P X=2=C15C23C38=1556,P X=3=C05C33C38=156,可得X的分布列为X0123P 52815281556156所以E X=0×528+1×1528+2×1556+3×156=98.3(2024·广东广州·二模)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区植物覆盖面积与某种野生动物数量的关系,将其分成面积相近的若干个地块,从这些地块中随机抽取20个作为样区,调查得到样本数据x i,y i(i=1,2,⋯,20),其中x i,和y i,分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量(单位:只),并计算得∑20i=1x i-x2=80,∑20i=1y i-y2=9000,∑20i=1x i-xy i-y=800.(1)求样本x i,y i(i=1,2,⋯,20)的相关系数(精确到0.01),并推断这种野生动物的数量y(单位:只)和植物覆盖面积x(单位:公顷)的相关程度;(2)已知20个样区中有8个样区的这种野生动物数量低于样本平均数,从20个样区中随机抽取2个,记抽到这种野生动物数量低于样本平均数的样区的个数为X,求随机变量X的分布列.附:相关系数r=∑ni=1x i-xy i-y∑ni=1x i-x2∑ni=1y i-y2,2≈1.414【答案】(1)0.94,相关性较强.(2)见解析【分析】(1)根据相关系数的计算公式即可代入求解,(2)根据超几何概率的概率公式求解概率,即可得分布列.【详解】(1)样本(x i,y i)(i=1,2,⋯,20)的相关系数为r=∑20i=1x i-xy i-y∑20i=1x i-x2∑20i=1y i-y2=80080×9000=223≈0.94.由于相关系数|r|∈[0.75,1],则相关性很强,|r|的值越大,相关性越强.故r=0.94∈0.75,1,故相关性越强.(2)由题意得:X的可能取值为0,1,2,20个样区中有8个样区的这种野生动物数量低于样本平均数,有12个样区的这种野生动物数量不低于样本平均数,所以P(X=0)=C212C220=66190=3395,P(X=1)=C18C112C220=96190=4895,P(X=2)=C28C220=28190=1495,所以X的分布列为:X012P 339548951495【题型二】二项分布型分布列若在一次实验中事件发生的概率为p0<p<1,则在n次独立重复实验中恰好发生k次概率pξ=k=C k n p k1-pn-k k=0,1,2,⋯,n,称ξ服从参数为n,p的二项分布,记作ξ~B n,p,Eξ=np,D i= npq.1(2024·云南昆明·一模)聊天机器人(chatterbot)是一个经由对话或文字进行交谈的计算机程序.当一个问题输入给聊天机器人时,它会从数据库中检索最贴切的结果进行应答.在对某款聊天机器人进行测试时,如果输入的问题没有语法错误,则应答被采纳的概率为80%,若出现语法错误,则应答被采纳的概率为30%.假设每次输入的问题出现语法错误的概率为10%.(1)求一个问题的应答被采纳的概率;(2)在某次测试中,输入了8个问题,每个问题的应答是否被采纳相互独立,记这些应答被采纳的个数为X,事件X=k(k=0,1,⋯,8)的概率为P(X=k),求当P(X=k)最大时k的值.【答案】(1)0.75(2)6【分析】(1)根据全概率公式即可求解,(2)根据二项分布的概率公式,利用不等式即可求解最值.【详解】(1)记“输入的问题没有语法错误”为事件A ,“一次应答被采纳”为事件B ,由题意P (A )=0.1,P B A =0.8,P B A=0.3,则P (A )=1-P (A)=0.9,P B =P AB +P A B =P A P B A +P A P B A=0.9×0.8+0.1×0.3=0.75.(2)依题意,X ∼B 8,34,P (X =k )=C k 834 k148-k,当P (X =k )最大时,有P X =k ≥P X =k +1 ,P X =k ≥P X =k -1 ,即C k834 k148-k≥C k +1834k +114 7-k ,C k 834 k 14 8-k ≥C k -1834 k -1149-k ,解得:234≤k ≤274,k ∈N ,故当P (X =k )最大时,k =6.2(2024·全国·模拟预测)某地文旅部门为了增强游客对本地旅游景区的了解,提高旅游景区的知名度和吸引力,促进旅游业的发展,在2023年中秋国庆双节之际举办“十佳旅游景区”评选活动,在坚持“公平、公正公开”的前提下,经过景区介绍、景区参观、评选投票、结果发布、颁发奖牌等环节,当地的6个“自然景观类景区”和4个“人文景观类景区”荣获“十佳旅游景区”的称号.评选活动结束后,文旅部门为了进一步提升“十佳旅游景区”的影响力和美誉度,拟从这10个景区中选取部分景区进行重点推介.(1)若文旅部门从这10个景区中先随机选取1个景区面向本地的大学生群体进行重点推介、再选取另一个景区面向本地的中学生群体进行重点推介,记面向大学生群体重点推介的景区是“自然景观类景区”为事件A ,面向中学生群体重点推介的景区是“人文景观类景区”为事件B ,求P B A ,P B ;(2)现需要从“十佳旅游景区”中选4个景区,且每次选1个景区(可以重复),分别向北京、上海、广州、深圳这四个一线城市进行重点推介,记选取的景区中“人文景观类景区”的个数为X ,求X 的分布列和数学期望.【答案】(1)P (B ∣A )=49,P (B )=25(2)分布列见解析;期望为85【分析】(1)利用条件概率的公式P (B ∣A )=P (AB )P (A )及全概率公式求解即可;(2)随机变量X 符合二项分布的两个特点“独立性”和“重复性”,故可建立二项分布模型,按二项分布求解即可.【详解】(1)由古典概型的计算公式可得,P (A )=610=35,P (AB )=6×410×9=415,由条件概率的计算公式得:P (B ∣A )=P (AB )P (A )=41535=49,同理P (A B )=4×310×9=215,则P (B )=P (AB )+P (A B )=415+215=25.(2)由题意知X 的所有可能取值为0,1,2,3,4,且X ∼B 4,25,P(X=0)=C0435425 0=81625;P(X=1)=C1435 325 1=216625;P(X=2)=C2435225 2=216625;P(X=3)=C3435 125 3=96625;P(X=4)=C4435025 4=16625.所以X的分布列为X01234P 816252166252166259662516625X的数学期望E(X)=4×25=85.3(2023·广东肇庆·二模)在数字通信中,信号是由数字“0”和“1”组成的序列.现连续发射信号n次,每次发射信号“0”和“1”是等可能的.记发射信号1的次数为X.(1)当n=6时,求P X≤2(2)已知切比雪夫不等式:对于任一随机变量Y,若其数学期望E Y 和方差D Y 均存在,则对任意正实数a,有P Y-E Y<a≥1-D Ya2.根据该不等式可以对事件“Y-E Y<a”的概率作出下限估计.为了至少有98%的把握使发射信号“1”的频率在0.4与0.6之间,试估计信号发射次数n的最小值.【答案】(1)1132(2)1250【分析】(1)根据二项分布公式计算;(2)运用二项分布公式算出E X 和D X ,再根据题意求出X-E X<a中a的表达式,最后利用切比雪夫不等式求解.【详解】(1)由已知X∼B6,1 2,所以P X≤2=P X=0+P X=1+P X=2=C06126+C1612⋅12 5+C2612 2⋅12 4=164+664+1564=1132;(2)由已知X∼B n,12,所以E X =0.5n,D X =0.25n,若0.4≤Xn≤0.6,则0.4n≤X≤0.6n,即-0.1n≤X-0.5n≤0.1n,即X-0.5n≤0.1n.由切比雪夫不等式P X-0.5n≤0.1n≥1-0.25n (0.1n)2,要使得至少有98%的把握使发射信号“1”的频率在0.4与0.6之间,则1-0.25n(0.1n)2≥0.98,解得n≥1250,所以估计信号发射次数n的最小值为1250;综上,P X≤2=1132,估计信号发射次数n的最小值为1250.【题型三】正态分布型(1)若X 是正态随机变量,其概率密度曲线的函数表达式为f x =12π⋅σe -x -μ22σ2,x ∈R (其中μ,σ是参数,且σ>0,-∞<μ<+∞)。

2024年高考数学大题--概率统计题型分类汇编(学生版)

2024年高考数学大题--概率统计题型分类汇编(学生版)

概率统计概率统计是是高考数学的热点之一,概率统计大题是新高考卷及多省市高考数学的必考内容。

回顾近几年的高考试题,主要考查古典概型、相互独立事件、条件概率、超几何分布、二项分布、正态分布、统计图表与数字特征、回归分析、离散型随机变量的分布列、期望与方差等内容,多与社会实际紧密结合,以现实生活为背景设置试题,注重知识的综合应用与实际应用。

重点考察考生读取数据、分析数据和处理数据的能力。

题型一:离散型随机变量及其分布列题型二:超几何分布与二项分布题型三:均值与方差的实际应用题型四:正态分布与标准正态分布题型五:线性回归与非线性回归题型六:独立性检验及应用题型七:条件概率/全概率公式/贝叶斯公式题型八:概率与统计图表的综合应用题型九:概率与其他知识的交汇应用题型十:利用概率解决决策类问题题型一:离散型随机变量及其分布列1(2023·广东肇庆·高三广东肇庆中学校考阶段练习)为弘扬中华优秀传统文化,荣造良好的文化氛围,某高中校团委组织非毕业年级开展了“我们的元宵节”主题知识竞答活动,该活动有个人赛和团体赛,每人只能参加其中的一项,根据各位学生答题情况,获奖学生人数统计如下:奖项组别个人赛团体赛获奖一等奖二等奖三等奖高一20206050高二162910550(1)从获奖学生中随机抽取1人,若已知抽到的学生获得一等奖,求抽到的学生来自高一的概率;(2)从高一和高二获奖者中各随机抽取1人,以X表示这2人中团体赛获奖的人数,求X的分布列和数学期望;求离散型随机变量的分布列及期望的一般步骤:(1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布,可结合其对应的概率计算公式及期望计算公式,简化计算。

)1(2024·四川成都·成都七中模拟预测)甲、乙两人进行羽毛球比赛,比赛采取七局四胜制.已知甲每局比赛获胜的概率为23,输掉的概率为13,每局的比赛结果互不影响.(1)求甲最终获胜的概率;(2)记总共的比赛局数为X,求X的分布列与数学期望.2(2024·云南德宏·高三统考期末)设有甲、乙、丙三个不透明的箱子,每个箱中装有除颜色外都相同的4个球,其中甲箱有2个蓝球和2个黑球,乙箱有3个红球和1个白球,丙箱有2个红球和2个白球.摸球规则如下:先从甲箱中一次摸出2个球,若从甲箱中摸出的2个球颜色相同,则从乙箱中摸出1个球放入丙箱,再从丙箱中一次摸出2个球;若从甲箱中摸出的2个球颜色不同,则从丙箱中摸出1个球放入乙箱,再从乙箱中一次摸出2个球.(1)若最后摸出的2个球颜色不同,求这2个球是从丙箱中摸出的概率;(2)若摸出每个红球记2分,每个白球记1分,用随机变量X表示最后摸出的2个球的分数之和,求X的分布列及数学期望.题型二:超几何分布与二项分布2(2024·广东广州·广州市培正中学校考二模)某校高二(1)班的元旦联欢会设计了一项抽奖游戏:准备了10张相同的卡片,其中只在6张卡片上印有“奖”字.(1)采取放回抽样方式,从中依次抽取3张卡片,求抽到印有“奖”字卡片张数X的分布列、数学期望及方差;(2)采取不放回抽样方式,从中依次抽取3张卡片,求第一次抽到印有“奖”字卡片的条件下,第三次抽到未印有“奖”字卡片的概率.1、独立重复试验与二项分布(1)定型:“独立”“重复”是二项分布的基本特征,“每次试验事件发生的概率都相等”是二项分布的本质特征.判断随机变量是否服从二项分布,要看在一次试验中是否只有两种试验结果,且两种试验结果发生的概率分别为p,1-p,还要看是否为n次独立重复试验,随机变量是否为某事件在这n次独立重复试验中发生的次数.(2)定参,确定二项分布中的两个参数n和p,即试验发生的次数和试验中事件发生的概率.(3)列表,根据离散型随机变量的取值及其对应的概率,列出分布列.(4)求值,根据离散型随机变量的期望和方差公式,代入相应数据求值.相关公式:已知X~B(n,p),则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,⋯,n),E(X)=np,D(X)=np(1-p).2、超几何分布的适用范围及本质(1)适用范围:考察对象分两类;已知各类对象的个数;从中抽取若干个个题,考察某一类个题个数的概率分布;(2)本质:超几何分布是不放回抽样问题,在每次试验中某一事件发生的概率是不相同的。

高考数学18题概率题型 概率大题题型归纳

高考数学18题概率题型 概率大题题型归纳

高考数学18题概率题型概率大题题型归纳高中数学必修一知识结构图如何从数学学渣逆袭成数学学霸?学霸支招:如何提高高三数学成绩高中文科数学公式大全高考数学18题概率基础知识互独立事件,用乘法做,即第二次的结果不受第一次影响;互斥事件用加法做,即第一件事发生,第二件事,就不发生。

概率实质上就是两个计数原理的问题完成一件事有不同种办法,每种办法又有不同的方法。

这样完成这件事所有的方法数就要把每种办法中的方法都加起来。

(加法原理)如果完成一件事分不同的步骤,每一步又有不同的方法。

这样完成这件事所有的方法数就要把所有步骤中的方法都乘起来。

(乘法原理)高考数学第18题概率与统计2.离散型随机变量的分布列1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量.2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质4.抽样方法与总体分布的估计抽样方法1.简单随机抽样:设一个总体的个数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线.感谢您的阅读,祝您生活愉快。

高中概率分布函数经典习题及答案

高中概率分布函数经典习题及答案

高中概率分布函数经典习题及答案一、二项分布1.某电视综艺节目每期设三道竞猜题,每题有两个选项,已知某观众对其中一题的正确率为60%,现在有一位观众对三道题均参与竞猜,求他正确全部竞猜的概率。

解:设他每道题的正确率为p,则每道题的错误率为1-p,他全部竞猜正确的概率为P(X=3)=[C(3,3)]*0.6^3*0.4^0=21.6% 所以,他全部竞猜正确的概率为21.6%。

2.在某加工厂中,总体不合格率为p,从全体产品中任意抽10件产品,以不合格件数X为随机变量,试求不合格件数X的概率分布、期望值及方差。

解:因为是抽10件产品,所以是一个10次伯努利试验,每一次试验中,产品合格的概率为1-p,不合格概率为p,所以该实验的概率分布可以用二项分布表示。

则不合格件数X的概率分布为P(X=k)=C(10,k)*p^k*(1-p)^(10-k),其中k取值为0,1,2, (10)其期望值为E(X)=np=10p,方差为D(X)=np(1-p)=10p(1-p)。

二、泊松分布1.某货场在单位时间内平均有6辆货车到达,求:(1)在一个时间段内恰有3辆货车到达的概率。

(2)在一个时间段内不超过4辆货车到达的概率。

解:(1)设单位时间内X辆货车到达的概率服从泊松分布,则X~Poisson(6),则恰有3辆货车到达的概率为P(X=3)=e^(-6)*6^3/3!=0.0504。

(2)P(X<=4)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)=e^(-6)*[6^0/0!+6^1/1!+6^2/2!+6^3/3!+6^4/4!]=0.8153。

三、指数分布1.规定20个装配工人在生产线上流水作业,平均每人处理一个产品需要10分钟,且加工时间服从指数分布,求:(1)生产线上平均每分钟加工的产品数量。

(2)任意一个人处理时间小于2分钟的概率。

(3)有3个人处理时间小于2分钟的概率。

解:(1)因为20个装配工人同时流水作业,所以生产线每分钟平均加工的产品数量为20/10=2件。

高考概率题总结全国卷

高考概率题总结全国卷

高考概率题总结全国卷引言在高考数学题中,概率题一直是考生们比较头疼的一部分。

概率题的解题思路需要考生熟练掌握概率的基本概念和计算方法,并能够灵活运用。

本文将总结全国卷中的高考概率题,从中提取出一些典型的题型和解题思路,帮助考生更好地应对概率题。

典型题型1. 互不相容事件的概率计算在概率题中,有些题目会给出一些互不相容事件的概率,要求计算它们的和或差的概率。

解题思路:首先,根据题意找出互不相容事件,并求出各个事件的概率。

然后,根据题目要求计算出所需的概率。

例如:题目:某班有60名学生,其中35名喜欢篮球,30名喜欢足球,15名既喜欢篮球又喜欢足球。

从该班中随机抽取一名学生,问该学生喜欢篮球或足球的概率是多少?解题思路:首先,喜欢篮球和足球的学生是互不相容的事件,所以我们只需计算出喜欢篮球和喜欢足球的概率,然后求和即可。

喜欢篮球的学生概率为35/60,喜欢足球的学生概率为30/60,喜欢篮球和足球的学生概率为15/60。

所以,喜欢篮球或足球的概率为(35/60) + (30/60) -(15/60) = 50/60 = 5/6。

2. 条件概率的计算在概率题中,有些题目会给出一些已知条件,并要求计算在这些条件下发生某事件的概率。

解题思路:首先,根据已知条件确定相关的事件和概率。

然后,根据概率的定义计算所需的概率。

例如:题目:某班有60名学生,其中35名喜欢篮球,30名喜欢足球。

从该班中随机抽取一名学生,已知该学生喜欢篮球,问该学生也喜欢足球的概率是多少?解题思路:首先,已知条件是该学生喜欢篮球,所以我们只需计算出喜欢篮球且喜欢足球的学生的概率,然后计算在喜欢篮球的条件下喜欢足球的概率。

喜欢篮球的学生概率为35/60,喜欢篮球且喜欢足球的学生概率为15/60。

所以,在已知该学生喜欢篮球的条件下,该学生也喜欢足球的概率为(15/60) /(35/60) = 3/7。

3. 独立事件的概率计算在概率题中,有些题目会给出一些独立事件的概率,并要求计算它们同时发生的概率。

经典高考概率分布类型题归纳

经典高考概率分布类型题归纳

t i me an dAl l t h i n g s i n t h e i r b e i n g a re go od fo rs o m=,ξtnisgnihtllAdnhe i rb ei n ga re go od fo rse队至多获胜4局的概率的最大值是多少?制,求的分布列和数学期望ξ1)设队至多获胜则=6局的概率是e an dAl l t h i ng si nt he i rb ei n ga re go od fo rs o m 2.某校要进行特色学校评估验收,有甲、乙、丙、丁、戊五位评估员将随机去三,,A B C 个不同的班级进行随班听课,要求每个班级至少有一位评估员.(1)求甲、乙同时去班听课的概率;A (2)设随机变量为这五名评估员去班听课的人数,求的分布列和数学期望.ξC ξan d的取值为=,=4××=,=4××=,e an dAl l t h i ng si nt he i rb ei n ga re gP (ξ=4)=2××=,P (ξ=5)=4××=,P (ξ=8)=,∴ξ的分布列为∴ξ的数学期望Eξ=0×+1×+2×+4×+5×+8×=3。

4.某市公租房的房源位于A ,B ,C 三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:(1)恰有2人申请A 片区房源的概率;(2)申请的房源所在片区的个数X 的概率分布与期望.5.设S 是不等式x 2-x -6≤0的解集,整数m ,n∈S.(1)记“使得m +n =0成立的有序数组(m ,n)”为事件A ,试列举A 包含的基本事件;(2)设ξ=m 2,求ξ的概率分布表及其数学期望E(ξ).解 (1)由x 2-x -6≤0,得-2≤x≤3,1)==sgnihtllAdnaemitaan dAl l t h i ng si nt he i rb ei n ga re go od fo rs o m 8.袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程次后,袋中白球的个数记为.n n X (1)求随机变量的概率分布及数学期望;2X ()2E X (2)求随机变量的数学期望关于的表达式.n X )(n x E ne an dAl l t h i ng si nt he i rb ei n ga re go od fo rs o 五、独立事件概率分布之非二项分布(主要在于如何分类)1.开锁次数的数学期望和方差有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差.分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般.解:ξ的可能取值为1,2,3,…,n .Al l t h i ng 的值;)agniee an dAl l t h i ng si nt he i rb ei n ga re go od fo rs o 5.(三项分布) 某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.(Ⅰ)求ξ的分布列及数学期望;)这是二次函数在闭区间上的单调性问题,需考查对称轴相对闭区间的关相应的,客人没有游览的景点数的可能取值为,解法二:10.76dsgnihtllAosrofdoogeragniebe an dAl l t h i n g s i n t h e i r b e i n g a re go od fo rs o2.国家公务员考试,某单位已录用公务员5人,已安排到A,B,C三个科室工作,但甲必须安排在A科室,其余4人可以随机安排.(1)求每个科室安排至少1人至多2人的概率;(2)设安排在A科室的人数为随机变量X,求X的概率分布及数学期望和方差.tnisgnihtllAdnaee an dAl l t h i n g s i n t h e i r b e i n g a re go od fo rs o m。

高考概率经典解答题及答案

高考概率经典解答题及答案

高考概率经典解答题及答案下面是一些经典的高考概率题目及其答案:1. 问题:在一副扑克牌中,从中任意抽取一张牌,求抽到红桃的概率是多少?问题:在一副扑克牌中,从中任意抽取一张牌,求抽到红桃的概率是多少?答案:扑克牌中一共有52张牌,其中红桃有13张。

因此抽到红桃的概率为13/52,即1/4。

:扑克牌中一共有52张牌,其中红桃有13张。

因此抽到红桃的概率为13/52,即1/4。

2. 问题:有一个包含5只黑球和7只白球的箱子,从中不放回地随机抽取两个球,求抽到一黑一白的概率是多少?问题:有一个包含5只黑球和7只白球的箱子,从中不放回地随机抽取两个球,求抽到一黑一白的概率是多少?答案:抽取第一个球时,有5/12的概率抽到黑球,7/12的概率抽到白球。

抽取第二个球时,则有4/11的概率抽到与第一个球不同颜色的球。

:抽取第一个球时,有5/12的概率抽到黑球,7/12的概率抽到白球。

抽取第二个球时,则有4/11的概率抽到与第一个球不同颜色的球。

因此,抽到一黑一白的概率为(5/12) * (7/11) + (7/12) * (5/11) = 35/66。

3. 问题:有标准的六面骰子,投掷两次,求两次投掷的点数之和为7的概率是多少?问题:有标准的六面骰子,投掷两次,求两次投掷的点数之和为7的概率是多少?答案:投掷两次骰子,每次投掷的点数都有6种可能结果。

共有36种不同的点数组合。

:投掷两次骰子,每次投掷的点数都有6种可能结果。

共有36种不同的点数组合。

其中,和为7的组合有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)和(6,1)这6种组合。

因此,两次投掷的点数之和为7的概率为6/36,即1/6。

以上是一些经典的高考概率题目及其答案,希望对您有帮助。

2024年高考数学总复习第十二章概率与统计真题分类49二项分布与正态分布

2024年高考数学总复习第十二章概率与统计真题分类49二项分布与正态分布

则 P(Ai+1)=P(AiAi+1)+P(BiAi+1)=P(Ai)P(Ai+1|Ai)+P(Bi)P(Ai+1|Bi),
即 pi+1=0.6pi+(1-0.8)×(1-pi)=0.4pi+0.2, 构造等比数列{pi+λ},
设 pi+1+λ=25 (pi+λ),解得 λ=-13 ,
则 pi+1-13 =25 (pi-13 ),
高考·数学
4.(2023·新高考全国Ⅰ,21,12 分)甲、乙两人投篮,每次由其中一人投篮,规则如下:
若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的
命中率均为 0.6,乙每次投篮的命中率均为 0.8.由抽签确定第 1 次投篮的人选,第 1 次投篮
的人是甲、乙的概率各为 0.5.
=0.8.
故选 A.
第3页
返回层目录 返回目录
真题分类49 二项分布与正态分布
高考·数学
2.(2014·课标全国Ⅱ,5,5 分)某地区空气质量监测资料表明,一天的空气质量为优 良的概率是 0.75,连续两天为优良的概率是 0.6,已知某天的空气质量为优良,则随后一 天的空气质量为优良的概率是( )
附:K2=(a+b)(cn+(da)d-(bac+)c2)(b+d) ,
P(K2≥k) 0.050 0.010 0.001
k
3.841 6.635 10.828
真题分类49 二项分布与正态分布
高考·数学
解:(1)记“第 i 次投篮的人是甲”为事件 Ai,“第 i 次投篮的人是乙”为事件 Bi,
所以 P(B2)=P(A1B2)+P(B1B2)=P(A1)P(B2|A1)+P(B1)P(B2|B1)
=0.5×(1-0.6)+0.5×0.8=0.6.

高考概率10大题目囊括所有考点

高考概率10大题目囊括所有考点

可以囊括高考所有考点的几个概率题目制作人:王霖普题型一直方图.1.〔 2021 广东卷理〕根据空气质量指数 API〔为整数〕的不同,可将空气质量分级如下表:对某城市一年〔 365 天〕的空气质量进行监测,获得的API 数据按照区间[ 0,50] , (50,100] , (100,150] , (150,200] , ( 200,250] , ( 250,300] 进行分组,得到频率分布直方图如图 5.〔1〕求直方图中 x 的值;〔2〕计算一年中空气质量分别为良和轻微污染的天数;〔3〕求该城市某一周至少有 2 天的空气质量为良或轻微污染的概率 .〔 结 果 用 分 数 表 示 . 已 知 5778125 , 27128 ,3 27 3 8 123, 3651825 365 182573 5 〕1825 91259125 3 2 7 3 8 123解:〔1 〕由图可知 50x 1 ( 50 150 , 365 1825 1825 ) 9125 1191825 9125 解得 x ;18250 〔 2〕 365 (11950 2 50) 219 ;18250 365〔 3〕该城市一年中每天空气质量为良或轻微污染的概率为11950250 219 3,那么空气质量不为良且不为轻微污染的概率为18250365365 513 2,一周至少有两天空气质量为良或轻微污染的概率为5 57 2 7 3 06263 1766531 C 7 ( ) ( )C 7 ( ) ( ).5 55 5 78125题型二 抽样问题2.〔 2021 全国卷Ⅱ文〕〔本小题总分值 12 分〕某车间甲组有 10 名工人,其中有 4 名女工人;乙组有 10 名工人,其中有6 名女工人。

现采用分层抽样〔层内采用不放回简单随即抽样〕从甲、乙两组中共抽取 4 名工人进行技术考核。

〔Ⅰ〕求从甲、乙两组各抽取的人数;〔Ⅱ〕求从甲组抽取的工人中恰有1 名女工人的概率;〔Ⅲ〕求抽取的 4 名工人中恰有 2 名男工人的概率。

经典高考概率分布类型题归纳

经典高考概率分布类型题归纳

经典高考概率分布类型题归纳 高考真题一、超几何分布类型 二、二项分布类型三、超几何分布与二项分布的对比 四、古典概型算法五、独立事件概率分布之非二项分布(主要在于如何分类) 六、综合算法 高考真题 2010年22、(本小题满分10分)(相互独立事件)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。

生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。

设生产各种产品相互独立。

(1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布列; (2)求生产4件甲产品所获得的利润不少于10万元的概率。

【解析】本题主要考查概率的有关知识,考查运算求解能力。

满分10分。

(1)由题设知,X 的可能取值为10,5,2,-3,且P (X=10)=0.8×0.9=0.72, P (X=5)=0.2×0.9=0.18, P (X=2)=0.8×0.1=0.08, P (X=-3)=0.2×0.1=0.02。

由此得X 的分布列为:X 10 5 2 -3 P0.720.180.080.02(2)设生产的4件甲产品中一等品有n 件,则二等品有4n -件。

由题设知4(4)10n n --≥,解得145n ≥, 又n N ∈,得3n =,或4n =。

所求概率为33440.80.20.80.8192P C =⨯⨯+= 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192。

(2012年)22.(本小题满分10分)(古典概型)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.【命题意图】本题主要考查概率分布列、数学期望等基础知识,考查运算求解能力. 【解析】(1)若两条棱相交,则交点必为正方形8个顶点中的一个,过任意一个顶点恰有3条棱,∴共有238C 对相交棱, ∴(0)P ξ==232128C C =411.(2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对,故(2)P ξ==2126C =111, (1)1(0)(2)P P P ξξξ==-=-==4111111--=611. ∴随机变量ξ的分布列是1P∴616212111111E ξ+=⨯+⨯=. (2014•江苏)(古典概型)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1,x 2,x 3,随机变量X 表示x 1,x 2,x 3中的最大数,求X 的概率分布和数学期望E (X ). (2017年)23.(本小题满分10分)已知一个口袋中有m 个白球,n 个黑球(,*,2m n n ∈N ≥),这些球除颜色外全部相同.现将口袋中的球随机地逐个取出,并放入如图所示的编号为1,2,3,,m n +的抽屉内,其中第k 次取出的球放入编号为k 的抽屉(1,2,3,,)k m n =+.123(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数学期望,证明:()()(1)nE X m n n <+-.试题解析:(1)编号为2的抽屉内放的是黑球的概率p 为:11C C n mn n m n n p m n-+-+==+. (2)随机变量X 的概率分布为X … … P……随机变量X 的期望为11C 111(1)!()C C (1)!()!n m nm nk n nk n k nm nm n k E X k k n k n -++-==++-=⋅=⋅--∑∑. 所以1(2)!1(2)!()C (1)!()!(1)C (2)!()!m nm nn n k n k n m nm nk k E X n k n n n k n ++==++--<=-----∑∑ 11C (1)C ()(1)n m n n m nn n m n n -+-+==-+-, 即()()(1)nE X m n n <+-.【考点】古典概型概率、排列组合、随机变量及其分布、数学期望 【名师点睛】求解离散型随机变量的数学期望的一般步骤为:(1)“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义; (2)“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;(3)“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;(4)“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(,)X B n p),则此随机变量的期望可直接利用这种典型分布的期望公式(()E X np)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.一、超几何分布1.袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球.试求得分X的分布列.【提示】从袋中随机摸4个球的情况为1红3黑,2红2黑,3红1黑,4红四种情况,分别得分为5分,6分,7分,8分,故X的可能取值为5,6,7,8.P(X=5)=C14C33C47=435,P(X=6)=C24C23C47=1835,P(X=7)=C34C13C47=1235,P(X=8)=C44C03C47=135.故所求的分布列为X 5 6 7 8P2.PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2013年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:PM2.5日均值(微克/立方米)[25,35](35,45](45,55](55,65](65,75](75,85]频数31111 3 (1)从这10天的PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据.记X表示抽到PM2.5监测数据超标的天数,求X的分布列.【解析】(1)记“从10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A,则P(A)=C13·C27C310=2140.(2)依据条件,X服从超几何分布,其中N=10,M=3,n=3,且随机变量X的可能取值为0,1,2,3.P(X=k)=C k3·C3-k7C310(k=0,1,2,3),所以P(X=0)=C03C37C310=724,P(X=1)=C13C27C310=2140,P(X=2)=C23C17C310=740,P(X=3)=C33C07C310=1120,因此X的分布列为X 012 3P点评:超几何分布的上述模型中,“任取n件”应理解为“不放回地一次取一件,连续取n件”. 如果是有放回地抽取,就变成了n重伯努利试验,这时概率分布就是二项分布. 所以两个分布的区别就在于是不放回地抽样,还是有放回地抽样. 若产品总数N很大时,那么不放回抽样可以近似地看成有放回抽样.3.盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球.(1)求取出的3个球中至少有一个红球的概率;(2)求取出的3个球得分之和恰为1分的概率;(3)设ξ为取出的3个球中白色球的个数,求ξ的分布列.【解】(1)P=1-C37C39=712.(2)记“取出1个红色球,2个白色球”为事件B,“取出2个红色球,1个黑色球”为事件C ,则P(B +C)=P(B)+P(C)=C 12C 23C 39+C 22C 14C 39=542.(3)ξ可能的取值为0,1,2,3,ξ服从超几何分布,且P(ξ=k)=C k 3C 3-k6C 39,k =0,1,2,3.故P(ξ=0)=C 36C 39=521,P(ξ=1)=C 13C 26C 39=1528,P(ξ=2)=C 23C 16C 39=314,P(ξ=3)=C 33C 39=184,ξ的分布列为ξ 0123P二、二项分布1.某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在的地区附近有A ,B ,C 三家社区医院,并且他们对社区医院的选择是相互独立的. (1)求甲、乙两人都选择A 社区医院的概率; (2)求甲、乙两人不选择同一家社区医院的概率;(3)设4名参加保险人员中选择A 社区医院的人数为X ,求X 的概率分布和数学期望.2.某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是23,出现绿灯的概率都是13.记这4盏灯中出现红灯的数量为X ,当这排装饰灯闪烁一次时:(1)求X =2时的概率; (2)求X 的数学期望.解 (1)依题意知:X =2表示4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯,而每盏灯出现红灯的概率都是23, 故X =2时的概率P =C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=827.(2)法一 X 的所有可能取值为0,1,2,3,4,依题意知P(X =k)=C k 4⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫134-k(k =0,1,2,3,4).∴X 的概率分布列为X 0 1 2 3 4P∴数学期望E(X)=0×18+1×881+2×881+3×3281+4×1681=83.3.羽毛球A 队与B 队进行对抗比赛,在每局比赛中A 队获胜的概率都是P (01)P ≤≤. (1)若比赛6局,且P =23, 求A 队至多获胜4局的概率是多少?(2)若比赛6局,求A 队恰好获胜 3局的概率的最大值是多少?(3) 若采用“五局三胜”制,求A 队获胜时的比赛局数ξ的分布列和数学期望. 解析:(1)设“比赛6局,A 队至多获胜4局”为事件A则[]66()1(5)(6)P A P P =-+=5566662221()(1)()333C C ---=2564731729729-=[来源:学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典高考概率分布类型题归纳高考真题一、超几何分布类型二、二项分布类型三、超几何分布与二项分布的对比四、古典概型算法五、独立事件概率分布之非二项分布(主要在于如何分类)六、综合算法高考真题2010年22、(本小题满分10分)(相互独立事件)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。

生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。

设生产各种产品相互独立。

(1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;(2)求生产4件甲产品所获得的利润不少于10万元的概率。

【解析】本题主要考查概率的有关知识,考查运算求解能力。

满分10分。

(1)由题设知,X 的可能取值为10,5,2,-3,且P (X=10)=0.8×0.9=0.72, P (X=5)=0.2×0.9=0.18,P (X=2)=0.8×0.1=0.08, P (X=-3)=0.2×0.1=0.02。

由此得X 的分布列为:(2)设生产的4件甲产品中一等品有n 件,则二等品有4n -件。

由题设知4(4)10n n --≥,解得145n ≥, 又n N ∈,得3n =,或4n =。

所求概率为33440.80.20.80.8192P C =⨯⨯+= 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192。

(2012年)22.(本小题满分10分)(古典概型)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=.(1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.【命题意图】本题主要考查概率分布列、数学期望等基础知识,考查运算求解能力.【解析】(1)若两条棱相交,则交点必为正方形8个顶点中的一个,过任意一个顶点恰有3条棱,∴共有238C 对相交棱, ∴(0)P ξ==232128C C =411.(2)若两条棱平行,则它们的距离为1的共有6对,故(P ξ==2126C =111,(1)1(0)(P P P ξξξ==-=-==4111111--=611. ∴随机变量ξ的分布列是∴6161111111E ξ+=⨯+=.(2014?江苏)(古典概型)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1,x 2,x 3,随机变量X 表示x 1,x 2,x 3中的最大数,求X 的概率分布和数学期望E (X ).(2017年)23.(本小题满分10分)已知一个口袋中有m 个白球,n 个黑球(,*,2m n n ∈N ≥),这些球除颜色外全部相同.现将口袋中的球随机地逐个取出,并放入如图所示的编号为1,2,3,,m n +L 的抽屉内,其中第k 次取出的球放入编号为k 的抽屉(1,2,3,,)k m n =+L .(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数学期望,证明:()()(1)nE X m n n <+-.试题解析:(1)编号为2的抽屉内放的是黑球的概率p 为:11C C n m n n m n n p m n-+-+==+. (2)随机变量X 的概率分布为X… …P… …随机变量X 的期望为11C 111(1)!()C C (1)!()!n m nm nk n nk n k n m n m nk E X k k n k n -++-==++-=⋅=⋅--∑∑. 所以1(2)!1(2)!()C (1)!()!(1)C (2)!()!m nm nn n k n k nm nm nk k E X n k n n n k n ++==++--<=-----∑∑ 11C (1)C ()(1)n m n n m nn n m n n -+-+==-+-, 即()()(1)nE X m n n <+-.【考点】古典概型概率、排列组合、随机变量及其分布、数学期望【名师点睛】求解离散型随机变量的数学期望的一般步骤为:(1)“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;(2)“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;(3)“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;(4)“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(,)X B n p:),则此随机变量的期望可直接利用这种典型分布的期望公式(()E X np)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.一、超几何分布1.袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球.试求得分X的分布列.【提示】从袋中随机摸4个球的情况为1红3黑,2红2黑,3红1黑,4红四种情况,分别得分为5分,6分,7分,8分,故X的可能取值为5,6,7,8.P(X=5)=C14C33C47=435,P(X=6)=C24C23C47=1835,P(X=7)=C34C13C47=1235,P(X=8)=C44C03C47=135.故所求的分布列为2.PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2013年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:(1)从这10天的PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据.记X表示抽到PM2.5监测数据超标的天数,求X的分布列.【解析】(1)记“从10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A ,则P (A )=C 13·C 27C 310=2140.(2)依据条件,X 服从超几何分布,其中N =10,M =3,n =3,且随机变量X 的可能取值为0,1,2,3.P (X =k )=C k 3·C 3-k7C 310(k =0,1,2,3),所以P (X =0)=C 03C 37C 310=724,P (X =1)=C 13C 27C 310=2140,P (X =2)=C 23C 17C 310=740,P (X =3)=C 33C 07C 310=1120,因此X 的分布列为点评:超几何分布的上述模型中,“任取 n 件”应理解为“不放回地一次取一件,连续取n 件”. 如果是有放回地抽取,就变成了 n 重伯努利试验,这时概率分布就是二项分布. 所以两个分布的区别就在于是不放回地抽样,还是有放回地抽样. 若产品总数N很大时,那么不放回抽样可以近似地看成有放回抽样.3.盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球.(1)求取出的3个球中至少有一个红球的概率;(2)求取出的3个球得分之和恰为1分的概率;(3)设ξ为取出的3个球中白色球的个数,求ξ的分布列.【解】(1)P=1-C37C39=712.(2)记“取出1个红色球,2个白色球”为事件B,“取出2个红色球,1个黑色球”为事件C,则P(B+C)=P(B)+P(C)=C12C23C39+C22C14C39=542.(3)ξ可能的取值为0,1,2,3,ξ服从超几何分布,且P(ξ=k)=C k3C3-k6C39,k=0,1,2,3.故P(ξ=0)=C36C39=521,P(ξ=1)=C13C26C39=1528,P(ξ=2)=C 23C 16C 39=314,P(ξ=3)=C 33C 39=184,ξ的分布列为二、二项分布1.某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在的地区附近有A ,B ,C 三家社区医院,并且他们对社区医院的选择是相互独立的.(1)求甲、乙两人都选择A 社区医院的概率;(2)求甲、乙两人不选择同一家社区医院的概率;(3)设4名参加保险人员中选择A 社区医院的人数为X ,求X 的概率分布和数学期望. 2.某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是23,出现绿灯的概率都是13.记这4盏灯中出现红灯的数量为X ,当这排装饰灯闪烁一次时:(1)求X =2时的概率;(2)求X 的数学期望.解 (1)依题意知:X =2表示4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯,而每盏灯出现红灯的概率都是23,故X =2时的概率P =C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=827.(2)法一 X 的所有可能取值为0,1,2,3,4,依题意知P(X =k)=C k 4⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫134-k(k =0,1,2,3,4).∴X 的概率分布列为∴数学期望E(X)=0×18+1×881+2×881+3×3281+4×1681=83.3.羽毛球A 队与B 队进行对抗比赛,在每局比赛中A 队获胜的概率都是P (01)P ≤≤.(1)若比赛6局,且P =23, 求A 队至多获胜4局的概率是多少?(2)若比赛6局,求A 队恰好获胜 3局的概率的最大值是多少?(3) 若采用“五局三胜”制,求A 队获胜时的比赛局数ξ的分布列和数学期望.解析:(1)设“比赛6局,A 队至多获胜4局”为事件A则[]66()1(5)(6)P A P P =-+=5566662221()(1)()333C C ---=2564731729729-=[来源:学。

相关文档
最新文档