测量牛顿环数据处理(含数据)
解析牛顿环测透镜曲率半径实验的实验数据处理方法与误差评估
解析牛顿环测透镜曲率半径实验的实验数据处理方法与误差评估牛顿环测透镜曲率半径实验是光学实验中常用的一种方法,通过测量牛顿环的直径可以确定透镜曲率半径。
本文将详细介绍牛顿环实验的实验数据处理方法以及误差评估方法。
一、实验数据处理方法在进行牛顿环测量实验时,首先需要获取一组牛顿环的直径数据。
实验中常用的方法是通过显微镜观察透镜中心与环缘交接处的明暗交替情况,并记录下相应的直径数值。
得到一组直径数据之后,接下来需要进行数据处理以计算透镜的曲率半径。
1. 数据预处理在进行数据处理之前,需要进行数据预处理工作。
首先,检查所得到的直径数据是否存在异常值,如若存在,则需要进行剔除或者修正。
其次,需要将直径数据转换为透镜中心与环缘的距离数据,通常使用公式D = d²/4λ ,其中 D 为距离,d 为直径,λ 为波长。
最后,将距离数据进行排序,以便后续的计算和分析。
2. 曲率半径计算在得到距离数据之后,就可以计算透镜的曲率半径了。
常用的计算方法是利用牛顿环的几何关系,根据下式计算曲率半径 R : R = ( r² +R² ) / ( 2r ) ,其中 R 为光源到透镜的距离, r 为对应牛顿环的半径。
3. 数据拟合在计算曲率半径之后,为了进一步提高精度,可以进行数据拟合。
拟合方法常用的有最小二乘法和非线性最小二乘法。
通过拟合可以得到更准确的曲率半径数值。
二、误差评估方法对于牛顿环测透镜曲率半径实验而言,误差评估是非常重要的,它可以说明测量结果的可靠性和精确度,帮助确定其可信程度。
1. 随机误差评估随机误差是实验测量结果的波动性,不可避免地存在于实验过程中。
可以采用重复测量法评估随机误差,通过多次重复测量可以得到一系列测量结果。
然后,根据这一系列结果计算均值和标准偏差,标准偏差越小,表示测量结果越稳定。
2. 系统误差评估系统误差是实验过程中的固定误差,其造成的偏差相对固定。
可以通过校正和调整实验装置以降低系统误差的影响。
牛顿环测透镜曲率半径实验的数据处理方法
牛顿环测透镜曲率半径实验的数据处理方法牛顿环测透镜曲率半径实验是一种常用的光学实验方法,用于测量透镜的曲率半径。
本文将介绍牛顿环测量方法以及常用的数据处理方法,帮助读者了解该实验并正确进行数据处理。
一、牛顿环测量方法牛顿环测量方法是通过观察牛顿环的圆心与边缘的环形干涉图案来确定透镜的曲率半径。
具体步骤如下:1. 实验准备首先,我们需要准备一块光滑的透镜和一块玻璃基片。
将透镜和基片放在光源下方,保证光线垂直照射。
2. 形成干涉图案调整透镜和基片的间距,使得玻璃基片上形成一组明暗相间的圆环。
这个圆环就是我们所说的牛顿环。
3. 测量半径使用读数显微镜或目镜放大牛顿环图案。
从内环的直径开始,分别测量每个环的直径。
通常情况下,选取3-5个环作为测量点。
4. 记录数据将每个环的直径数据记录下来。
为了减小误差,需要重复多次测量。
二、数据处理方法牛顿环测量实验会得到一系列环的直径数据,我们需要对这些数据进行处理才能得到透镜的曲率半径。
下面介绍两种常用的数据处理方法。
1. 计算平均值首先,将每次测量得到的环直径求平均值。
这样可以减小由于实验误差导致的数据波动。
2. 曲线拟合通过拟合实验数据的曲线,我们可以得到更精确的透镜曲率半径。
常用的拟合方法有最小二乘法和直线拟合法。
最小二乘法是通过最小化实验数据与拟合曲线之间的距离来确定最优的拟合曲线。
直线拟合法则是将实验数据作为点,通过拟合直线的斜率来得到曲率半径。
三、实验注意事项在进行牛顿环测量实验时,需要注意以下几点。
1. 保持环境稳定实验环境应尽量保持稳定,避免外界震动和温度变化对实验结果的影响。
2. 测量精度使用高精度仪器进行测量,并尽量减小读数误差。
对于每个环的直径测量,应进行多次重复以提高精度。
3. 数据处理准确性在数据处理过程中,需要严格按照公式进行计算,并保留足够的有效数字。
避免舍入误差对最终结果的影响。
四、实验结果的分析与讨论根据实验得到的透镜曲率半径数据,可以进行结果的分析与讨论。
牛顿环实验数据处理方法
=
n
x
2 i
-
i= 1
关联系数为:
n
x iyi
i= 1
n
n
x
2 i
i= 1
= 2 062( mm2)
n
n
n
x iy i
x iyi -
i= 1
i= 1
n
=
n
n
n
x
2 i
y
2 i
x
2 i
-
i= 1
i= 1
n
y
2 i
-
i= 1
i= 1
n
= 0 9999
应用式( 2) 可得:
R= 4 = 4
2 58 9
用读数显微镜测量的数据
D
2 n
/
m
m
2
m
D左/ mm
16 386
11
19 350
18 378
12
19 268
20 494
13
19 190
22 572
14
19 111
24 651
15
19 029
26 615
16
18 958
28 708
17
18 888
30 803
18
18 808
32 959
19
18 740
34 928
20
18 671
D 右/ mm 25 441 25 518 25 600 25 691 25 762 25 835 25 907 25 982 26 049 26 121
D
2 m
/
mm2
37 100
牛顿环测透镜曲率半径实验中的数据处理与结果分析
牛顿环测透镜曲率半径实验中的数据处理与结果分析实验目的牛顿环测透镜曲率半径实验是用来测量透镜的曲率半径的方法之一。
通过实验,我们可以获得透镜的曲率半径,并进一步了解透镜的性质和特点。
本文旨在介绍牛顿环测透镜曲率半径实验中的数据处理方法和结果分析。
实验原理牛顿环实验是基于干涉原理来测量透镜曲率半径的。
光源照射到透镜表面上,形成由干涉引起的环状亮暗条纹。
当透镜与平行玻璃片叠加时,亮暗条纹的半径与透镜的曲率半径有关。
通过测量亮暗条纹的半径,可以计算出透镜的曲率半径。
实验步骤1. 将光源置于光学台上,并调节好透镜的位置;2. 在光源的下方放置一张玻璃平板作为参考面;3. 将透镜放置在平板上,并调整透镜的位置,使其与平板平行;4. 调节望远镜的位置和焦距,使其能够清楚地观察到牛顿环;5. 使用望远镜观察牛顿环,并通过微调透镜位置,使得环形条纹清晰;6. 测量不同环圆的直径,记录数据。
数据处理根据实验原理,并结合实验步骤中所测量的数据,我们可以进行如下的数据处理:1. 对每个环圆的直径进行测量,并记录下来;2. 计算每个环圆的半径,即直径的一半;3. 利用公式r = (m-0.5)\*λR/d,其中r为透镜曲率半径,m为环数,λ为光波长,R为透镜与平板的距离,d为环圆半径;4. 将上述的计算结果整理为一个数据表或图表,便于结果的分析和比较。
结果分析通过实验数据的处理,我们可以得到透镜的曲率半径。
根据实验中测量得到的环圆半径以及上述的计算公式,我们可以计算出透镜的曲率半径并进行结果的分析。
1. 分析透镜的曲率半径的大小和正负:通过对计算得出的曲率半径进行分析,可以确定透镜是凸透镜还是凹透镜,并判断其曲率半径的大小。
2. 分析透镜的焦距:根据透镜的曲率半径,我们可以利用透镜的透镜公式来计算透镜的焦距,进一步了解透镜的性质和特点。
3. 比较不同环数的曲率半径:将不同环数对应的曲率半径进行比较,可以研究曲率半径与环数之间的关系,进一步加深对透镜性质的理解。
牛顿环实验报告数据
牛顿环实验报告数据引言牛顿环实验是光学实验中的经典实验之一,通过观察和测量干涉环的直径,我们可以推导出材料的透明度和薄片的厚度等物理参数。
本文将介绍牛顿环实验的实验原理以及我们进行的实验过程和数据分析。
实验原理牛顿环实验基于干涉现象,即光波的叠加和相消干涉。
当一束平行光垂直入射到一个平凸透镜和平凸透镜上的薄透镜组成的薄层处时,由于光的波长特性,入射光在透镜和薄片之间反射,产生反射光束和透射光束。
当反射光束和透射光束再次相遇时,它们会发生干涉,形成一系列环状的明暗交替的干涉环,即牛顿环。
实验过程我们首先需要准备一套实验装置。
将一块光学平凸透镜倒置在平凹透镜上,以保证两个透镜之间的空气夹层非常薄。
其次,将光源对准透镜组的中心,并通过一个半透镜来从反射光到达我们的观察屏幕上。
最后,使用显微镜观察屏幕上形成的牛顿环。
在实验过程中,我们测量了牛顿环的直径,并将数据记录下来。
我们在不同厚度的薄片上进行了多组实验,以探究厚度和透明度之间的关系。
数据分析通过实验测量得到的牛顿环直径可以用来计算薄片的厚度。
根据光的相位差和波长之间的关系,可以得到以下公式:厚度d = (m * λ) / (2 * n)其中,d为薄片的厚度,m为牛顿环的顺序数,λ为波长,n为薄片的折射率。
我们可以通过多组实验数据来验证这个公式。
根据实验中测量得到的牛顿环直径,并通过已知的波长值以及透明材料的折射率,我们可以计算出薄片的厚度。
通过比较计算结果和实际测量的厚度,我们可以评估该公式的准确性。
但需注意,实验中可能存在一些误差来源,如仪器的测量误差、光源的稳定性等。
在进行数据分析时,应对这些误差进行合理的修正和考虑。
结论通过牛顿环实验,我们得到了一系列数据,并用这些数据验证了计算薄片厚度的公式的准确性。
实验结果与理论相符合,说明我们的实验方法和数据分析是可靠的。
牛顿环实验作为光学实验中的重要内容,不仅可以帮助我们理解干涉现象,还可以应用于实际生活中,如光学元件的制造、光学设备的校正等。
牛顿环实验数据处理分析
牛顿环实验数据处理分析引言牛顿环实验是一个经典的物理实验,用于研究干涉现象和光的波动性质。
通过测量牛顿环实验中的光干涉圆环的半径,可以得到关于光的波长和介质的折射率等重要参数的信息。
在本文中,我们将进行牛顿环实验的数据处理和分析,以了解如何从实验数据中提取有用的信息并推导相应的物理量。
实验方法在牛顿环实验中,一束单色光垂直入射到一块光学平凸透镜上,形成干涉圆环。
通过调节透镜与玻璃片之间的距离,可以观察到一系列明暗交替的圆环。
实验中记录了透镜与玻璃片之间的距离及对应的明暗交替的圆环数量。
数据处理与分析数据处理一般包括数据整理、数据可视化和数据分析三个步骤。
首先,我们将实验数据整理为一个表格。
如下所示:表1. 牛顿环实验数据距离(mm)圆环数量-------------------0 01 52 103 154 205 256 30接下来,我们可以使用数据可视化的方法,如绘制散点图或折线图,来直观地表示实验数据的分布情况。
通过观察图形,我们可以看到数据之间可能存在的关系。
根据牛顿环实验的原理,我们预期圆环数量将随着距离的增加而增加。
在本实验中,我们可以选择绘制距离与圆环数量的散点图。
横坐标表示距离,纵坐标表示圆环数量。
通过连接散点,我们可以得到一条趋势线。
如果趋势线是直线,说明该实验数据符合线性关系。
如果趋势线是曲线,说明存在非线性关系。
根据实验数据,绘制的散点图如下所示:图1. 距离与圆环数量的关系图从图中可以看出,距离与圆环数量之间呈现出线性关系。
这意味着圆环数量随着距离的增加而增加,符合理论预期。
接下来,我们可以根据实验数据和理论知识进行数据分析。
在牛顿环实验中,圆环的半径与距离之间存在一种近似的线性关系。
根据这一关系,我们可以使用线性拟合方法来确定该关系的数学表达式。
我们可以使用最小二乘法进行线性拟合。
最小二乘法的目标是找到一条直线,使得所有数据点到该直线的距离之和最小。
通过拟合得到的直线方程,我们可以计算光的波长和介质的折射率。
牛顿环实验报告数据处理
牛顿环实验报告数据处理牛顿环实验报告数据处理引言:牛顿环实验是一种经典的光学实验,通过观察干涉环的形态和大小,可以得到有关光的波长和透明介质的厚度等信息。
本文将对牛顿环实验的数据进行处理和分析,以探索实验结果的物理意义。
一、实验装置与原理牛顿环实验通常采用的装置是一块平凸透镜和一块平凹透镜,它们之间夹着一片透明的圆形玻璃片。
当透镜与玻璃片之间存在一薄膜时,光线经过反射和折射后在玻璃片上形成一系列干涉环。
这些干涉环的直径与薄膜的厚度有关,通过测量干涉环的直径可以得到薄膜的厚度。
二、实验数据的采集在实验中,我们使用了一台高分辨率的显微镜来观察牛顿环,并使用显微镜的刻度尺来测量干涉环的直径。
我们选取了不同位置的干涉环进行测量,并记录下了相应的直径数据。
三、数据处理和分析1. 干涉环直径与薄膜厚度的关系根据光学理论,牛顿环的半径与薄膜的厚度呈线性关系。
我们将实验测得的干涉环直径与相应的薄膜厚度进行绘图,并通过线性拟合得到拟合直线。
通过拟合直线的斜率,我们可以得到薄膜的平均厚度。
2. 干涉环直径的变化规律通过观察干涉环的直径随距离变化的规律,我们可以推断出薄膜的性质。
当干涉环的直径随距离的增加呈现周期性变化时,说明薄膜是均匀的。
而当干涉环的直径变化不规律时,说明薄膜存在不均匀性或者有多层结构。
3. 干涉环的颜色牛顿环的颜色与光的波长和薄膜的厚度有关。
通过观察干涉环的颜色变化,我们可以推断出光的波长或者薄膜的厚度是否发生了变化。
当干涉环的颜色由红到紫依次变化时,说明光的波长较大;而当干涉环的颜色由紫到红依次变化时,说明光的波长较小。
四、实验结果与讨论通过对实验数据的处理和分析,我们得到了牛顿环的直径与薄膜厚度的关系,并通过拟合直线得到了薄膜的平均厚度。
同时,观察干涉环的直径变化规律和颜色变化,我们可以推断出薄膜的性质和光的波长。
然而,需要注意的是,实验中可能存在一些误差。
首先,显微镜的刻度尺可能存在一定的读数误差。
用牛顿环测量透镜的曲率半径(附数据处理)
007大学实验报告评分:课程: 学期: 指导老师: 007 年级专业: 学号: 姓名: 习惯一个人007实验3-11 用牛顿环测量透镜的曲率半径一.实验目的1. 进一步熟悉移测显微镜使用, 观察牛顿环的条纹特征。
2. 利用等厚干涉测量平凸透镜曲率半径。
3.学习用逐差法处理实验数据的方法。
二. 实验仪器三.牛顿环仪, 移测显微镜, 低压钠灯四.实验原理牛顿环装置是由一块曲率半径较大的平凸玻璃透镜, 以其凸面放在一块光学玻璃平板(平晶)上构成的, 如图1所示。
平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加, 若以平行单色光垂直照射到牛顿环上, 则经空气层上、下表面反射的二光束存在光程差, 它们在平凸透镜的凸面相遇后, 将发生干涉。
从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环(如图2所示), 称为牛顿环。
由于同一干涉环上各处的空气层厚度是相同的, 因此它属于等厚干涉。
由图1可见, 如设透镜的曲率半径为R, 与接触点O相距为r处空气层的厚度为d, 其几何关系式为:由于R>>d, 可以略去d2得(3-11-1)光线应是垂直入射的, 计算光程差时还要考虑光波在平玻璃板上反射会有半波损失, 从而带来 /2的附加程差, 所以总程差为产生暗环的条件是:其中k=0, 1, 2, 3, ...为干涉暗条纹的级数。
综合(23-1)、(23-2)和(23-3)式可得第k级暗环的半径为:(3-11-2)由(4)式可知, 如果单色光源的波长 已知, 测出第m级的暗环半径rm, 即可得出平凸透镜的曲率半径R;反之, 如果R已知, 测出rm 后, 就可计算出入射单色光波的波长 。
但是用此测量关系式往往误差很大, 原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变, 使接触处成为一个圆形平面, 干涉环中心为一暗斑。
或者空气间隙层中有了尘埃, 附加了光程差, 干涉环中心为一亮(或暗)斑, 均无法确定环的几何中心。
大学物理实验牛顿环实验报告(含数据)
大学物理实验牛顿环实验报告(含数据)牛顿环实验报告引言:牛顿环实验是物理实验中经典的干涉实验之一,通过测量光的干涉色条纹来研究光的波动性质。
本实验旨在探究牛顿环的特点及其与透明介质的厚度之间的关系。
通过对实验数据的收集和分析,我们得到了关于牛顿环的一些有趣的结论。
实验装置与方法:1. 实验装置:我们使用了一台平行板构成的牛顿环实验装置。
装置包括一个透明玻璃平板、一束白光源、一台显微镜及光屏等。
2. 实验方法:(1) 首先,我们在实验室中搭建牛顿环实验装置。
(2) 将光源打开,使其照射在透明玻璃平板上。
(3) 调节显微镜位置,使其焦距与透明玻璃平板接近,并将显微镜对准光源的光斑。
(4) 通过调节透明玻璃平板的厚度,观察和记录不同厚度下的牛顿环干涉色条纹。
(5) 使用光屏记录实验数据,包括透明玻璃平板的厚度和对应的干涉色条纹。
实验数据与结果分析:实验中,我们记录了不同透明玻璃平板厚度下的牛顿环干涉色条纹的数据。
根据我们的观察和记录,我们进行了以下主要分析:1. 牛顿环的特点:我们观察到牛顿环是由一系列同心圆环组成的,且颜色从中心向外渐变。
颜色的变化是由于光的干涉效应引起的。
2. 牛顿环与透明介质厚度:通过分析我们记录的实验数据,我们得出了结论:透明介质的厚度与牛顿环的直径成正比关系,即厚度越大,牛顿环的直径越大。
3. 干涉色的原因:牛顿环的干涉色是由于光的干涉效应引起的。
当光线通过透明玻璃平板和空气之间的边界时,光线会发生折射和反射。
不同波长的光在折射和反射过程中会产生不同的相位差,从而导致干涉色的形成。
结论:通过本实验,我们验证了牛顿环实验的重要性,并获得了有关牛顿环的实验数据,并分析了数据的结果。
我们得出的结论是:牛顿环的直径与透明介质的厚度成正比关系。
这一实验结果对于进一步理解光的干涉效应和光的波动性质具有重要意义。
致谢:在此,我们要特别感谢实验中的指导老师及实验室助理们的帮助和支持。
没有他们的指导和帮助,我们无法顺利完成这一实验报告。
牛顿环实验报告数据处理
牛顿环实验报告数据处理牛顿环实验报告数据处理引言:牛顿环实验是一种经典的光学实验,通过观察干涉圆环的直径变化,可以测量出透明薄片的厚度。
本文将对牛顿环实验中的数据进行处理和分析,以得出准确的厚度数值。
实验步骤:1. 实验准备:将透明薄片放置在平坦的玻璃片上,确保两者之间没有气泡或异物。
2. 实验装置:使用一台干涉仪,将光源置于一侧,将目镜调整到合适的位置。
3. 观察干涉圆环:通过目镜观察干涉圆环的形状和颜色,并记录下每个干涉圆环的直径。
数据处理:1. 数据记录:将观察到的干涉圆环的直径记录下来,可以使用一张纸或电子表格进行记录。
2. 干涉圆环的半径计算:将每个干涉圆环的直径除以2,得到相应的半径数值。
3. 干涉圆环半径的平均值计算:将所有干涉圆环的半径数值相加,然后除以观察到的总干涉圆环数量,得到平均值。
4. 干涉圆环半径的标准差计算:对于每个干涉圆环的半径数值,计算与平均值的差值的平方,然后将所有差值的平方相加。
将得到的和除以观察到的总干涉圆环数量,再开平方根,即可得到标准差。
结果分析:1. 平均值的意义:平均值代表了干涉圆环的平均半径大小,通过与已知的标准值进行比较,可以得出透明薄片的厚度。
2. 标准差的意义:标准差代表了干涉圆环半径数据的离散程度,标准差越小,说明实验数据的准确性越高。
3. 异常值的处理:如果在数据处理过程中发现某个干涉圆环的半径与其他数据相差较大,可能是由于实验误差或其他因素导致的。
可以将该数据排除在外,重新计算平均值和标准差。
结论:通过对牛顿环实验数据的处理和分析,我们可以得出透明薄片的厚度数值,并评估实验数据的准确性。
在实际应用中,可以通过不同厚度的透明薄片进行多次实验,以提高数据的可靠性和准确性。
牛顿环实验是一种简单而有效的方法,用于测量透明薄片的厚度,对于光学研究和应用具有重要意义。
【word】对牛顿环实验的数据处理及不确定度评定
【word】对牛顿环实验的数据处理及不确定度评定对牛顿环实验的数据处理及不确定度评定第33卷第2期延边大学(自然科学版)2007年6月JournalofYanbianUniversity(NaturalScience)Vo1.33No.2June2007文章编号:1004—4353(2007)02—0105—04对牛顿环实验的数据处理及不确定度评定金逢锡,索建彪(延边大学理学院物理系,吉林延吉133002)摘要:介绍了在牛顿环实验的数据处理过程中,对等精度和不等精度的测量进行不确定度的计算方法.通过等精度测量的数据处理及不确定度的评定后,加权取平均法即可以解决非线性的不等精度的数据处理问题及进行不确定度的评定.关键词:等精度;不确定度;牛顿环;不等精度;干涉条纹中图分类号:04—33文献标识码:A牛顿环实验测量球面曲率半径是普通物理实验中最常见的实验之一.在实验中,人们讨论了多种数据处理的方法,如逐差法,最小二乘法,等精度测量的数据处理法,加权取平均法等等.除此之外,通过等精度测量的数据处理及不确定度的评定后加权取平均法亦是一种切实可行的数据处理方法.以下我们用此方法讨论牛顿环实验的数据处理及不确定度的评定.1实验原理牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,以其凸面放在一块光学玻璃平板(平晶)上构成的,如图1所示.平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单色光垂直照射到牛顿环上,则经空气层上,下表面反射的两光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉.从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环(如图2所示),称为牛顿环llj.牛顿环第级暗环的半}\}llilj尺tl\\\<,r///,….1一d‘…_f图1牛顿环装置图2牛顿环径为厂2=R,可知,如果单色光源的波长已知,测出第级的暗环半径厂,即可得出平凸透镜的曲率半径R;反之,如果R已知,测出r后,就可计算出入射单色光波的波长.但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触,接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑,或者空气间隙层中有了尘埃,附加了光程差,干涉环中心为一亮(或暗)斑,这些均无法确定环的几何中心.实际收稿日期:2006—10—17作者简介:金逢锡(1963一),男(朝鲜族),吉林延吉人,副教授,研究方向为光信息106延边大学(自然科学版)第33卷测量时,我们可以通过测量距中心较远的两个暗环的半径r和的平方差来计算曲率半径R.因为r2=mR2,r2=nR2,两式相减可得r一r2=R(m一),所以R=或R=.由上式可知,只要测出.与.(分别为第与第条暗环的直径)的值,就能算出R或.2等精度的测量及数据处理测量干涉条纹的暗环直径采取等精度的测量,即测第k环和k+m环的直径,要求k取16,17,18,19,20,m取1O.在测这1O个环的直径时,至少要重复测量5次以上,测量数据见表1.所测数据分别代入公式:,:1,2,3,4,5,可分别算出5组等精度测量的透镜的平均曲率半径,计算结果见表2.表1各牛顿环直径的原始测量数据mm次数m+k左右D+k左右DkD…一D2130.29.10021.0178.0832028.40021.7086.69220.52223029.10121.0128.0892028.40321.7116.69220.64933029.10221.0158.0872028.40221.7126.69020.64343029.10221.0148.0892028.40221.7156.68720.71653029.10321.0198.0812028.40121.7136.68820.57312929.03821.0757.9631928.31721.7886.52920.78222929.03721.0807.9571928.31821.7916.52720.71232929.04021.0777.9631928.31321.7896.52420.84742929.04221.0817.9611928.32121.7856.53620.65852929.03921.0827.9571928.32021.7926.52820.69912828.97221.1407.8321828.23821.8646.37420.71222828.97921.1377.8421828.24221.8696.37320.88232828.97821.1467.8321828.23921.8736.36620.814.42828.97921.1527.8271828.24121.8716.37020.68552828.97021.1477.8291828.24021.8736.36720.75512728.90821.2127.6961728.15321.9506.20320.75122728.90921.2157.6941728.15121.9596.19220.85732728.91021.2177.6921728.16121.9566.20320.69042728.97221.2187.6951728.16221.9596.20220.74852728.90621.2197.6871728.15921.9616.20120.63812628.84121.2787.5631628.06122.0396.02220.93422628.83721.2797.5581628.06922.0426.02720.79932628.84221.2807.5621628.07222.0436.02920.83542628.84521.2857.5601628.07322.0496.02420.86552628.83921.2847.5551628.07222.0466.02620.7653等精度测量的不确定度的评定3.1标准A类不确定度的评定第2期金逢锡,等:对牛顿环实验的数据处理及不确定度评定107根据被测量的平均值的标准偏差,可得所测每一干涉暗环的A类标准不确定度的评定:S(D)=或S(D+)=A(D)=t0.683S(D)或A(D+)=t0.683S(D+).t0.683为与测量的次数有关的比例系数[](当7z=5时,t0.683=1.114),计算结果见表3.3.2标准B类不确定度的评定一般情况下,物理实验中的B类不确定度采用均匀分布,即B=?/?3,?为移测显微镜的极限误差,由此可得本实验所测的每一环直径的B类不确定度:B(D16):B(D17):…:B(D3.):会::0.00289mm.’?jj3.3合成标准不确定度根据所估算出的A类和B类标准的不确定度,可合成所测每一干涉条纹直径的标准不确定度:c(D):?(D)+(D)或c(D+)=?(D+)+?(D+),计算结果见表3.由于各干涉条纹直径是相互独立的,所以可分别得到各组平均曲率半径的不确定度c(R1)=R1『2D16,,].『2D26,r,,].『尘1:In,一n,Ckg16I十In,一n,”c\L126I【.J(R2/I2D,7]2+[D27)]+其中DD+卅,D+一D;均采用平均值.此时所测5组透镜的平均曲率半径可分别表示为1?ttC(1),…,一R5?ttC(5),P=0.683,它们分别为等精度测量的结果,数据记录见表2所示.表2各个环的半径及不确定度的计算结果mm表3各个环的直径及不确定度的计算结果mm108延边大学(自然科学版)第33卷4,非等精度测量的数据处理及不确定度的评定从牛顿环实验的干涉条纹第k级暗环半径公式=?kRA可知,除零级暗环外,各环的直径D的关系为D】:D2:D3_..?=1:?2:?3_..?.随着干涉条纹级数k的增大,干涉条纹变密,因此该测量是非线性的不等精度测量,直接用逐差法处理数据解决不了不等精度测量问题,也就不能进行不确定度的评定l2J.若通过等精度测量的数据处理及不确定度的评定后加权取平均法,即可以解决非线性的不等精度测量数据处理及进行不确定度的评定.由于R1,R2,R3,R4,R5为非等精度测量的结果,假设其权分别为P1,P2,P3,P4,P5且一R与P成反比[,则有P=,其中i=1,2,…,5,N为比例常数,所测透镜的平均曲U-cL55厂了———?_率半径__P?i=1880?086mm,不确定度)_1/?志316mm,测量结果为R?Uc(R)=880.086?1.316mm(P=0.683),若用Uc表示扩展不确定度,则Uc=kuc(R)=2.632mm(k=2时,P=0.95)l5J.5结束语采用此方法处理数据及进行不确定度的评定,解决了非线性的不等精度测量问题,所以它更具合理性和适用性,它既可适用于牛顿环测量透镜的曲率半径的实验,也可适用于牛顿环测液体折射率的实验,但目前用此方法处理数据的缺点是测量数据多且计算比较繁琐.如果能利用计算软件,将实验数据处理得到简化,那么就会节省整个实验时间,提高工作效率.参考文献:[1]任隆良,谷晋骐.物理实验[M].天津:天津大学出版社,2003:3-6.[2]虞仲博,屠全良.牛顿环实验等精度测量及其不确定度的评定与表示[J].物理实验,2000,20(5):17.19[3]刘才明大学物理实验中测量不确定度的评定与表示[J].大学物理,1997,16(8):21.23.[4]杨述武.普通物理实验(电磁学部分)[M].北京:高等教育出版社,2000:2.5.[5]刘智敏.不确定度与分布合成[J].物理实验,1999,19(5):58.6O.DataProcessingandEvaluationofUncertaintyDegreeintheExperimen tofNewton’SRingsJINFeng—xi,SUOJian—biao(DepartmentofPhysics,CollegeofScience,YanbianUniversity,YanjiJilin13 3002,China)Abstract:Computingmethodofuncertaintydegreeforthedataofequalprecisio nmeasurementintheexperi—mentofNewton’Sringsisintroduced.Andthe problemofunequalprecisiondata anduncertaintydegreeevaluationissolvedbythemethodthroughweightedmean.Keywords:equalprecision;degreeofuncertainty;Newton’Srings;unequalpr ecision;interferencefringe。
牛顿环实验数据处理分析
牛顿环实验数据处理分析一、引言牛顿环实验是光学实验中的经典内容,主要用于研究光的干涉现象以及波动性质。
通过此实验,我们可以深入理解波的叠加原理,验证光的波动性质,并探究光学元件的表面质量对光学现象的影响。
本文将详细阐述牛顿环实验的数据处理和分析方法。
二、实验原理牛顿环实验利用了光的干涉现象。
当两束光波叠加时,如果它们的相位差是2nπ(n为整数),则它们相互增强,形成明亮的干涉条纹;如果相位差是(2n+1)π,则它们相互抵消,形成暗的干涉条纹。
在牛顿环实验中,入射光被分成两束,分别反射和透射于光学元件的表面,然后再重新组合。
三、数据处理方法在进行牛顿环实验后,我们收集了一系列数据,包括每个环的半径、明暗条纹的数量、背景光的强度等。
以下是我们进行数据处理的主要步骤:1、数据清洗:去除异常值和重复值,确保数据的质量和准确性。
2、数据整理:将数据整理成适合进一步分析的格式,如制作表格或绘制图形。
3、数据可视化:利用图表将数据可视化,如条形图、饼图、散点图等,以便更直观地观察和分析数据。
4、数据分析:通过计算平均值、标准差等统计指标,分析数据的分布特征和规律。
5、数据建模:建立数学模型,对数据进行拟合和预测,如使用回归分析、时间序列分析等方法。
6、结果呈现:将分析结果以图表和文字的形式呈现出来,便于理解和应用。
四、数据分析结果通过数据分析,我们可以得出以下1、随着实验的进行,牛顿环的半径逐渐增大,这是因为入射光的波长逐渐减小。
2、明暗条纹的数量逐渐增多,这表明光的干涉现象越来越明显。
3、背景光的强度基本保持不变,这表明实验过程中环境的温度和湿度等参数保持稳定。
4、通过对比实验前后的数据,我们可以发现光学元件的表面质量对干涉现象有明显影响。
表面质量越好,明暗条纹越清晰,干涉现象越明显。
五、结论与展望牛顿环实验是研究光的干涉现象的重要手段,通过对此实验的数据处理和分析,我们可以深入理解光的波动性质和光学元件的表面质量对光学现象的影响。
大学物理实验牛顿环实验报告含数据
大学物理实验牛顿环实验报告含数据一、实验目的1、观察等厚干涉现象——牛顿环。
2、掌握用牛顿环测量平凸透镜曲率半径的方法。
3、学习使用读数显微镜。
二、实验原理牛顿环是将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜凸面和玻璃平面之间形成一空气薄层,其厚度从中心接触点到边缘逐渐增加。
当一束单色平行光垂直照射到牛顿环装置上时,在空气薄层的上、下表面反射的两束光将产生干涉。
在反射光中,由于空气薄层的厚度不同,会形成以接触点为中心的一系列明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为$R$,形成的第$m$ 级暗环的半径为$r_m$,对应的空气薄层厚度为$d_m$。
由于暗环处光程差为半波长的奇数倍,所以有:\\begin{align}2d_m +\frac{\lambda}{2} &=(2m + 1)\frac{\lambda}{2}\\2d_m &= m\lambda\\d_m &=\frac{m\lambda}{2}\end{align}\又因为$d_m$ 可以近似表示为:\d_m = R \sqrt{R^2 r_m^2} \approx \frac{r_m^2}{2R}\将其代入上式可得:\r_m^2 = mR\lambda\则透镜的曲率半径为:\R =\frac{r_m^2}{m\lambda}\三、实验仪器1、读数显微镜2、钠光灯3、牛顿环装置四、实验步骤1、调节读数显微镜调节目镜,使十字叉丝清晰。
转动调焦手轮,使镜筒自下而上缓慢移动,直至从目镜中看到清晰的牛顿环图像。
移动牛顿环装置,使十字叉丝交点对准牛顿环中心。
2、测量牛顿环直径转动测微鼓轮,使叉丝从牛顿环中心向左移动,依次记下第 30 到21 级暗环的位置读数。
继续转动鼓轮,越过干涉圆环中心,记下第 20 到 11 级暗环的位置读数。
3、重复测量重复上述测量步骤 3 次。
4、数据处理计算各级暗环直径$D_m =|X_{m右} X_{m左}|$。
牛顿环实验报告数据处理
一、实验目的1. 通过实验观察和分析牛顿环的等厚干涉现象;2. 利用牛顿环现象测量平凸透镜的曲率半径;3. 学会使用读数显微镜进行精确测量。
二、实验原理牛顿环是由一块平面玻璃与一个曲率半径较大的平凸透镜接触,在其间形成一层空气膜,当单色光垂直照射时,空气膜上、下表面反射的光束发生干涉,形成明暗相间的环状干涉条纹。
根据干涉条纹的分布,可以推导出透镜的曲率半径。
三、实验仪器1. 牛顿环装置:包括平凸透镜、平面玻璃板、金属框架;2. 读数显微镜:用于测量干涉条纹的半径;3. 准单色光源:如钠光灯;4. 移测显微镜:用于调整光路,使入射光垂直于透镜表面。
四、实验步骤1. 将平凸透镜和玻璃板放入金属框架中,确保透镜与玻璃板接触紧密;2. 将准单色光源照射到牛顿环装置上,通过移测显微镜调整光路,使入射光垂直于透镜表面;3. 使用读数显微镜观察干涉条纹,记录第k级暗环的半径rk;4. 重复步骤3,记录多组数据。
五、数据处理1. 根据实验数据,绘制rk与k的图像,分析图像规律;2. 利用以下公式计算透镜的曲率半径R:R = k λ (Dm - Dn) / (2 (rk^2 - (rk - 1)^2))其中,λ为入射光波长,Dm和Dn分别为第m级和第n级暗环的半径。
六、结果与分析1. 通过实验,我们得到了一系列rk与k的实验数据,绘制出图像,可以看出rk 与k之间存在线性关系;2. 根据图像,选取两点(k1, rk1)和(k2, rk2),代入上述公式计算透镜的曲率半径R;3. 对比多次实验结果,分析误差来源,如测量误差、光路调整误差等。
七、结论1. 牛顿环实验验证了等厚干涉现象,通过测量干涉条纹的半径,可以计算出平凸透镜的曲率半径;2. 实验结果表明,牛顿环实验具有较高的测量精度,可以用于实际测量工作中。
八、讨论1. 在实验过程中,应注意光路调整,确保入射光垂直于透镜表面,以减少误差;2. 实验过程中,应选取多个干涉条纹进行测量,以提高实验结果的可靠性;3. 在数据处理过程中,应注意误差分析,以提高实验结果的准确性。
大学物理实验牛顿环实验报告(含数据)
2 2
R = R ± 2uc ( R ) = 149.4 ± 1.2 mm H = H 测 ± 3uc ( H ) = 0.437 ± 0.003 mm
n = n ± 2u c (n) = 1.16 ± 0.02
http://210.41.245.158/jc/symb/1/200505282054.htm
2 2 Dm − Dn
Dm
mm
2、劈尖干涉测纸片厚度
mm
Dn
mm
M 0 = 12.669 mm M 20 = 16.572 mm l= M 10 − M 20 = 0.1912 10 mm
M 10 = 14.660 mm M S = 41.30 mm
L = M S − M 0 = 28.631 mm H = 0.437 mm
当平行单色光垂直入射时在空气劈尖上下表面所引起的反射光线为相干光在劈尖厚度为处e光线光程差暗纹条件为实验课程物理实验实验名称光的干涉实验人实验时间任何两个相邻的暗条纹所对应的空气膜厚度之差
西南石油学院实验报告 西南石油学院实验报告 实验课程 实验人
一、实验目的 1.观察牛顿环和劈尖产生的干涉现象条纹特征; 2.学习用光的干涉做微小长度的测量; 3.通过实验掌握移测显微镜的使用方法。 二、实验内容 1.利用牛顿环干涉测量平凸透镜的曲率半径; 2.利用劈尖干涉测量纸片的厚度。 三、实验原理 1、牛顿环
H=N
四、实验仪器 钠光灯 GP20Na-B 移测显微镜 JXD-B 牛顿环仪,劈尖。 五、实验步骤
λ Lλ = 2 l 2
分度 值0.01mm
1、观测牛顿环干涉条纹 :首先 通过 肉眼 观察, 调节 牛顿环上的 旋钮,将 牛顿调至居中,然后 放 置 在 移测显微镜载物台上合适位置。使显微镜位于 标尺中部附近(约 25mm 处)。 2、调节 显微镜 目 镜 看清叉丝,并 使其一条 线 与标尺平行, 调节 45 ° 玻璃片,使 目 镜 中出 现 明亮、均 匀的视场。调节调 焦鼓抡,使显微镜自下而上 缓缓上升,看到 干涉条纹,移 动牛顿环仪找到干涉环中心位 置,对准测量环次仔细调焦,以消视差为准。 3、测量: 移 动移测显微镜 从中心位置 向外数 45 圈,再回到 第40 圈开始记数(消除回 程差), 记录 第 40-30 圈、第 20-10 圈、反向 第10-20 圈、反向 第30-40 圈干涉条纹的绝对位置。(注意 移测显微镜一直向同 一个方向移 动,不能回转。) 4、观测劈尖干涉条纹(两种方法): 1)将 劈尖 搭好 后 放至 移测显微镜 下合 适 位置,测量条纹 初始 暗 纹 坐标,第 10 条暗 纹 坐 标,第 20 条 暗 纹坐标以及最后一条暗纹坐标。利用公式进行计算。 2)或 者 从两 玻璃片的交线处开始,至 待测 物体 边缘,数出暗 纹条数 ,条纹 数 × λ / 2 就是 待 测 物体 厚 度。