求一次函数解析式教案

合集下载

新人教版八年级数学下册《十九章 一次函数 19.2 一次函数 待定系数法求一次函数的解析式》教案_0

新人教版八年级数学下册《十九章 一次函数  19.2 一次函数 待定系数法求一次函数的解析式》教案_0

八年级数学·下 新课标[人]19.2.2 一次函数(3)一、复习提问:1、什么叫做一次函数?一般地,形如y=kx+b (其中k 、b 是常数,k 不等于0)的函数,叫做一次函数,其中k 叫做比例系数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.2、一次函数图象是怎样的?一般地,一次函数y=kx+b (其中k 、b 是常数,k 不等于0)的图象是一条直线,我们称它为直线y=kx+b.当k>0时.直线y=kx+b 的图象,从左向右上升,即y 随着x 的增大而增大;当k<0时,直线y=kx+b 的图象,从左向右下降,即y 随着x 的增大而减小.提 问: 已知某个一次函数y=kx+b ,当自变量x =-2时,函数值y =-1,当x =3时,y =-3. 能否求出这个一次函数的解析式吗?解:由已知条件x =-2时,y =-1,得-1=-2k +b ;由已知条件x =3时,y =-3,得-3=3k +b .两个条件都要满足,即解关于k,b 的二元一次方程组: 解得 所以一次函数的解析式为 像上述过程,先设出解析式,再根据条件确定解析式中未知的系数,从而得到解析式的方法,叫做待定系数法.归 纳: 如何求一次函数y=kx+b 的解析式,需要具备几个条件才可以求出k 和b 的值?(1)设出一次函数解析式的一般形式为y=kx+b.(2)把自变量x 与函数y 的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数k 、b 的方程组.(3)解方程组,求出待定系数中k 、b 的值.(4)写出一次函数的解析式.二、学习新知:1=23=3k b k b.--+⎧⎨-+⎩,2=59=.5k -b -⎧⎪⎪⎨⎪⎪⎩,29=.55y x --例1:已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.解析:求一次函数y=kx+b 的解析式,关键是求出k,b 的值.因为图象过点(3,5)与(-4,-9),所以这两个点的坐标适合解析式,从而得到关于k,b 的二元一次方程组,解方程组求出k,b 即可确定一次函数解析式.解:设这个一次函数的解析式为y =kx+b (k ≠0).因为y=kx+b 的图象过点(3,5)与(-4,-9), 所以 解方程组得所以这个一次函数的解析式为y=2x -1.例2:已知一次函数的图象如图所示,求出函数的解析式.讨论:(1)根据图象你能得到哪些信息? (2)你能找到确定一次函数解析式的条件吗?解:设所求的一次函数的解析式为y=kx+b (k≠0).因为直线经过点(2,0),(0,4),所以把这两点坐标代入解析式,得 解得所以所求的一次函数的解析式是y=-2x+4.三、检测反馈:1.已知一次函数y=kx+b ,当x = - 4时y =9,当x =6时y =-1,则此函数的解析式为 .2.如图所示,求直线AB 对应的函数解析式.5=39=4k b k b.+⎧⎨--+⎩,=2=-1k b .⎧⎨⎩,0=24=k b b.+⎧⎨⎩,=-2=4k b .⎧⎨⎩,3.一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线的解析式是.四、课堂小结:1.求一次函数解析式的一般步骤有:①设出一次函数解析式y=kx+b(k≠0),②将两个点的坐标代入解析式,得到二元一次方程组,③解方程组求出k和b的值,④写出答案.2.一次函数解析式的确定通常有下列几种情况:(1)利用待定系数法,根据两对x和y的值,列出方程组确定k,b的值,进而求出一次函数的解析式.(2)根据图象上两点坐标求出一次函数的解析式.五、课后作业:第99页第3、7题、第109页第13题。

初中八年级数学教案-待定系数法求一次函数的解析式 精品

初中八年级数学教案-待定系数法求一次函数的解析式 精品

(二)教师导学:待定系数法求函数解析式的一般步骤:1.设函数解析式;2.代入点的坐标列方程或方程组;3.解方程或方程组,求出未知系数,b;4.替换未知系数,写出具体的函数解析式教师适当结合复习回顾中的题目对待定系数法求函数解析式具体操作步骤进行说明与点拨结合复习回顾的题目引导学生归纳待定系数法求函数解析式的一般步骤,为学生课堂研讨做好准备二课堂互学激情研讨,精彩展示课堂互学研讨一:已知某个一次函数的图象如图所示,求该函数的解析式(教师板演,规范格式)研讨二:一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的6min内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间(单位:min)之间的关系如图所示(1)当0≤≤4时,求y关于的函数解析式;(2)当4<≤10时,求y关于的函数解析式变式练习1 一次函数的图象经过点A和点B,已知点A(1,0),点B在y轴负半轴上,且直线与两坐标轴所围成的三角形面积为1,求该一次函数的解析式例题讲解,规范格式由浅入深选取典型例题,让学生熟练掌握待定系数法求一次函数解析式,通过不同类型的题目反复强化待定系数法求一次函数解析式的关键——找到函数图象上的两点通过实际问题培养学生提取信息的能力和严谨的学习态度变式:一次函数的图象经过点A(1,0),且直线与两坐标轴所围成的三角形面积为1,求该一次函数的解析式(课堂上引导学生分析解题思路,详细解答过程留待学生课后完成,题目的讲解已录制成微课发送到学生的平板中,学生可以根据实际情况进行学习)2.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y(单位:cm)是重物重量(单位:g)的一次函数,即y=b(为任意正数)现已测得不挂重物时,弹簧长度是5cm,挂2g质量的重物时,弹簧的长度是6cm(1)求这个一次函数的解析式;(2)当弹簧悬挂4g的重物时,求弹簧的长度拓展提升如图,过点A的一次函数的图象与函数y=-4的图象相交于点B,求这个一次函数的解析式通过变式培养学生严谨的学习态度,渗透数形结合、分类讨论的思想方法(一)小组讨论课堂互学、变式练习、拓展提升小组讨论内容:1小组长组织小组成员进行错题讲解与分析,并做好订正;2各函数图象经过哪两个点3如何确定各个点的坐标(二)小组展示变式1、研讨二、变式2、拓展提升展示要求:1礼貌、大方地展示小组最终答案,并做思路讲解;2突出小组易错点;3耐心等候其他同学的补充与点评小组讨论并订正错题,师徒结对,一对一帮扶,提高课堂效率并培养了学生的学习主动性小组展示既是例题的及时反馈,同时锻炼了学生的语言表达能力三当堂检测1.直线y=-2与轴的交点是(1,0),则的值是()A 3B 2C -2D -32.已知一次函数y=1的图象过点(1,3),则的值为()A 1B 2C -1 D323.直线y=b经过A(0,2)和B(3,0)两点,那么这个一次函数关系式为()A.32+=xy B232+-=xyC23+=xy D1+=xy4 已知一次函数y=b的图象经过点A(-1,3)和点B(2,-3)(1)求这个一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积借助“神算子”APP推送当堂检测练习,及时对本节课内容进行巩固,通过大数据反映学生的做题情况,针对性地进行讲解补充四课堂小结本节课你学到了什么知识:求一次函数解析式方法:待定系数法关键:找到图象上的两点坐标思想:数形结合思想从知识、方法、思想三个维度引导学生对本节课内容进行回顾整理,加深印象课堂反思:本节课是在学生初步学习了《待定系数法求一次函数解析式》和《一次函数解析式的应用》的基础上进行的专题学习,目的是让学生系统而熟练地掌握待定系数法求一次函数解析式的内容通过学生课堂及课后的反馈,本节课的教学效果是较为显著的,本人认为这节课有以下亮点:1 本节课的教学设计围绕一条主线而展开,从“已知一次函数图象上的两点坐标”到“需要从图象中读出两点坐标”再到“结合三角形面积或两直线交点等问题间接求出两点坐标”,由浅入深,层层递进,但题目最终又化归为如何找到一次函数图象上的两点坐标,继而用待定系数法求函数解析式的问题,帮助突破难点,形成系统的知识结构2 本节课采用先学后教的翻转课堂教学模式,熟练运用平板、希沃授课助手和神算子APP等信息技术手段开展教学,课堂上以学生为主体,小组合作研讨,组内进行一对一、一对多的辅导,对疑难问题进行针对性的展示,最后由教师作关键处点评,提高课堂学习效率另外,课堂形式多样化,在一定程度上帮助学生集中注意力,提高数学学习兴趣3 引入神算子APP开展课堂检测,可以即时获得学生做题情况的数据反馈,便于教师有针对性地分析讲解错题,补充学生课堂上掌握薄弱的知识点;另外,在批改解答题的过程中,可以标记优秀学生,让该学生协助批改,同时,教师根据软件反馈的情况,对做错的学生进行个别辅导,实现个性化教学。

《待定系数法求一次函数的解析式》教学设计

《待定系数法求一次函数的解析式》教学设计

河西中学“451学导讲练”《待定系数法求一次函数的解析式》教学设计(主备人:尹能文审核:河西中学数学组)一、教材分析本节课的内容是新人教版八年级下册数学第十九章第二节第三课时的内容,是整个初中阶段学习求解函数解析式的最基本的方法,贯穿到整个初中阶段的三种函数的教学。

本节课的内容,总体上难度不大,但是对学生数形结合思想、函数思想和方程组思想的要求比较高,是前面所学内容的应用,同时也是后续方法的基础。

【设计意图】清楚分析教材,有利于内容的准确把握和教学方法的正确设计,对教学过程作用很大。

二、学情分析乡村中学学生总体基础知识水平比较差,分层现象会比较明显。

本次课之前,学生已经有了一定的一次函数解析式和图像的相关知识,同时在初一的时候也学习了二元一次方程组的解法,故对本次课具有一定的自主探究能力。

同时,本班学生学优生对知识的理解和接受能力都比较强,可以对学习困难的学生进行帮扶,这也将是本次课中所要采用的一种重要策略。

【设计意图】根据对学生学情的全面分析,有利于设计出学生易于接受的内容和课堂组织方法,有助于本节课的展开。

三、教学方法根据学生情况,结合本节课内容特点,以我校“451学导讲练”教学模式为基础,决定采用“自学、引导、探究、分析、归纳、精讲、训练”相结合的方法进行教学,以当堂检测为达标检测评判标准,合理安排各项教学。

四、教学目标(目标引领)1.学会用待定系数法求解一次函数解析式;2.会根据所给条件找出点求解析式;3.会用待定系数法解答实际问题。

五、教学重点难点重点:能让学生学会用待定系数法求解一次函数解析式的一般方法。

难点:通过不同条件找出满足条件的点来求解一次函数解析式。

六、教学过程(一)课前预习(据案自学)复习正比例函数、一次函数解析式,图像及性质等相关知识点,并预习待定系数法。

1.复习正比例函数的解析式和图像特征;2.复习一次函数的解析式和图像特征;3.复习一次函数解析式的变量和常量。

【设计意图】学生复习正比例函数、一次函数解析式和图像,有利于对这两个函数进行区分,从而更好的将知识迁移到“正确设出函数解析式”上;学生复习一次函数的常量和变量,让学生将函数进行拆解,有利于找出什么是“待定系数”,以及k与x的关系,从而能够顺利的将点代入函数解析式中。

19.2.2待定系数法求一次函数的解析式(教案)

19.2.2待定系数法求一次函数的解析式(教案)
三、教学难点与重点
1.教学重点
(1)理解待定系数法的原理:使学生掌握待定系数法的基本原理,了解为何可以通过待定系数法求解一次函数的解析式。
举例:讲解待定系数法时,以一次函数y=kx+b为例,解释如何通过设定待定系数k和b,利用已知条件求解出k和b的值,从而得到一次函数的解析式。
(2)掌握待定系数法的步骤:指导学生按照步骤进行求解,提高解题能力。
2.教学难点
(1)从实际问题中抽象出一次函数模型:对于部分学生来说,将实际问题转化为数学模型具有一定难度。
难点解析:教师需要引导学生分析题意,找出已知条件和未知量,从而建立一次函数模型。
(2)列出方程组:在求解过程中,列出正确的方程组是关键。
难点解析:教师可以通过示例,讲解如何根据已知条件列出方程组,并强调方程组中每个方程的含义。
五、教学反思
在今天的教学中,我发现学生们对待定系数法的概念和求解过程的理解普遍较好。他们在分组讨论和实践活动中表现出较高的积极性,能够将所学知识应用到解决实际问题中。然而,我也注意到一些需要改进的地方。
首先,部分学生在构建方程组时,对于如何将已知条件转化为方程还存在一定的困扰。在今后的教学中,我需要更加注重引导学生分析题意,明确已知条件和未知量,以便他们能够更准确地构建方程组。
在课堂总结环节,学生们对于待定系数法的应用有了更加明确的认识。但我也意识到,对于一些基础较弱的学生,他们可能还需要更多的时间来消化和吸收所学知识。因此,我将在课后关注这部分学生的学习情况,提供有针对性的辅导,帮助他们弥补知识漏洞。
步骤包括:
①根据题意列出已知条件;
②设出待定系数,构建一次函数的一般形式;
③将已知条件代入,列出方程组;
④解方程组,求出待定系数的值;

人教版数学八年级下册 用待定系数法求一次函数解析式(教案与反思)

人教版数学八年级下册 用待定系数法求一次函数解析式(教案与反思)

第3课时用待定系数法求一次函数解析式路漫漫其修远兮,吾将上下而求索。

屈原《离骚》原创不容易,【关注】店铺,不迷路!前事不忘,后事之师。

《战国策·赵策》原创不容易,【关注】店铺,不迷路!原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!举世不师,故道益离。

柳宗元【知识与技能】1.学会用待定系数法确定一次函数解析式.2.了解两个条件确定一个一次函数,一个条件确定一个正比例函数. 【过程与方法】1.经历待定系数法的应用过程,提高解决数学问题的能力.2.体验一次函数中数形结合思想的运用.【情感态度】能把实际问题与数学问题相互转化,认识数学与生活的密切关系. 【教学重点】待定系数法确定一次函数解析式.【教学难点】灵活运用有关知识解决实际问题.一、情境导入,初步认识已知两个函数的图象如图所示,请根据图象写出每条直线的表达式.【教学说明】从图象知,图1中直线表示的是正比例函数,其解析式为y=kx形式,关键是如何求出k的值;由图可知图象过点(1,2),所以该点坐标必适合解析式,将坐标代入y=kx即可求出k的值.图2中直线表示的是一次函数,其解析式为y=kx+b形式,代入直线上两点坐标(2,0)与(0,3),通过解方程组即可求出k、b,确定解析式.学生讨论后,由教师小结.确定正比例函数解析式需要1个条件,确定一次函数的解析式需要2个条件,先设出相应的解析式,然后将条件代入得到方程或方程组,求解后确定解析式.二、典例精析,掌握新知先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.例1已知正比例函数的图象经过点(-4,3),求它的解析式.【分析】求解正比例函数的解析式,我们可以首先设它的解析式为y=kx,根据已知条件,求解出k的值即可.根据这个正比例函数图象经过点(-4,3),意味着当x=-4时,y=3,从而得到k的值.解:由题意可知3=-4k,k=-34所以,这个正比例函数解析式为y=-34x.例2问点A(-1,3),B(1,-1),C(3,-5)是否在同一条直线上. 解:设直线AB的解析式为y=kxb,由题意得3 1k b k b=-+⎧⎨-=+⎩解得错误!未找到引用源。

19.2.2第3课时用待定系数法求一次函数的解析式教案

19.2.2第3课时用待定系数法求一次函数的解析式教案
作业布置与反馈
1. 作业布置:
- 基础巩固题:请学生完成教材第 chapter 页的练习题,重点在于运用待定系数法求解一次函数的解析式。
- 实践应用题:选取生活中的实际问题,要求学生运用一次函数的知识建立模型并求解,如“某商品的成本价与销售价之间的关系”。
- 拓展思考题:针对学有余力的学生,设计一些需要运用一次函数及其图象性质的综合性问题,提高学生的逻辑思维和问题解决能力。
2. 加强基础知识巩固:针对学生对理论知识的掌握不足,可以通过设计前置学习任务、开展小组互帮互学等活动,帮助学生夯实基础。
3. 丰富教学资源:利用信息化手段,如教育平台、在线资源等,为学生提供更多学习材料和拓展阅读,拓宽知识视野。
4. 加强个别辅导:关注学习困难的学生,提供个性化辅导,帮助他们克服学习中的困难,提高学习效果。
(二)存在主要问题
1. 教学评价方式单一:本节课的教学评价主要依赖于课堂提问和课后作业,缺乏多元化的评价手段,不能全面反映学生的学习情况。
2. 部分学生对理论知识的掌握不够扎实:在小组讨论中发现,部分学生对一次函数的基本概念和待定系数法的理解不够深入。
(三)改进措施
1. 多元化教学评价:在今后的教学中,可以引入课堂观察、小组展示、项目作业等多种评价方式,更全面地了解学生的学习进度和掌握程度。
- 着重讲解待定系数法中的关键步骤,如选择合适的点、列出方程组、求解未知系数等。
- 强调求解过程中可能遇到的困难,如方程组求解方法、符号的注意事项等。
3. 巩固练习(15分钟)
- 设计具有代表性的习题,让学生独立完成,巩固待定系数法的应用。
- 分组讨论,让学生相互交流解题思路,培养合作解决问题的能力。
- 观看视频资料时,建议学生关注讲解者对待定系数法的解题思路和技巧,以及如何将一次函数应用于实际问题。

人教版八年级下册第十九章一次函数-求函数解析式及其应用教案

人教版八年级下册第十九章一次函数-求函数解析式及其应用教案
在教学方法上,我尝试了多种教学手段,如动态软件演示、实际案例分析和小组讨论等,以激发学生的学习兴趣。但从学生的反馈来看,可能还需要进一步优化教学手段,使其更贴近学生的认知水平。
最后,关于教学评价,我认为除了课堂表现和作业完成情况外,还应关注学生在解决问题过程中的思维过程和方法。这样,才能更全面地了解学生的学习情况,及时调整教学策略,提高教学质量。
3.增强学生的数学建模意识:将实际问题转化为数学模型,培养学生的数学建模能力,强化数学与现实生活的联系。
4.培养学生的团队协作和交流能力:在小组讨论和问题解决过程中,鼓励学生相互交流、协作,共同完成任务。
三、教学难点与重点
1.教学重点
-一次函数的定义:强调形如y=kx+b(k≠0,k、b是常数)的函数是一次函数,理解k和b分别代表的意义。
4.一次函数的应用:解决实际问题,如行程问题、价格问题等。
本节课将重点探讨如何求一次函数的解析式及其在实际问题中的应用。
二、核心素养目标
本章节的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力:通过分析实际问题,引导学生运用一次函数的解析式进行逻辑推理,解决具体问题。
2.提高学生的数据分析能力:学会从实际问题中提取数据,运用一次函数的知识分析数据,为解决问题提供依据。
人教版八年级下册第十九章一次函数-求函数解析式及其应用教案
一、教学内容
人教版八年级下册第十九章“一次函数”中的求函数解析式及其应用,主要包括以下内容:
1.一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数。
2.求一次函数的解析式:通过已知点斜率k和截距b,或两个已知点坐标来求解。
3.一次函数的性质:斜率k的正负与函数的增减性;截距b的几何意义。

人教版八年级下册数学教案19.2.2用待定系数法求一次函数的解析式

人教版八年级下册数学教案19.2.2用待定系数法求一次函数的解析式

19.2.2一次函数--------第三课时:用待定系数法求一次函数的解析式.学习目标:1.学会用待定系数法确定一次函数的解析式.2.了解两个条件确定一个一次函数的解析式,一个条件确定一个正比例函数的解析式.3.掌握一次函数的简单应用.教学重难点重点:运用待定系数法求一次函数解析式.难点:能利用一次函数图象解决有关的实际问题.教学过程一、情镜引入思考:正比例函数y=kx(k≠0)解析式中,如果确定了k的值,正比例函数的解析式就确定了,那么必须知道什么样的条件?学生思考讨论交流后总结方法,学生回答:只需知道正比例函数的一对对应值或正比例函数图象上的一个点坐标代入解析式求出k的值.,本节课就是解决这一问题.(同时展示本节课的教学目标)二、新知探究,合作交流1.提问:当x=0时,y=6;当x=4时,y=7.2.你将如何求出上述问题中的函数关系式?学生独立完成后,交流展示:解:设y与x的函数关系式为y=kx+b.所以解得k=0.3 b=6因此这个一次函数的解析式为y=0.3x+6.方法总结:先设一次函数解析式,然后把两对对应值分别代入一次函数解析式,得到两个关于k,b的方程,构成方程组,解方程组求出k,b的值即可确定一次函数的解析式,这就是我们本节课要学习的求一次函数解析式的方法——待定系数法.2.用待定系数法求一次函数的解析式提问:用待定系数法确定函数解析式的一般步骤是怎样的?学生归纳:(1)设出函数解析式的一般形式为y=kx+b.(2)把自变量x与函数y的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数的方程或方程组.(3)解方程或方程组,求出待定系数的值.(4)写出所求函数的解析式.例1.已知一次函数y=kx+b,当x=5时,y=4,当x=-2时,y=-3,求这个一次函数的解析式.分析:由于一次函数y=kx+b有k和b两个待定系数,因此用待定系数法,把x = 5时,y = 4和x=-2时,y=-3分别代入函数解析式,得到两个关于k和b的二元一次方程组成的二元一次方程组.解方程组后就能确定一次函数的解析式.解:由题意可知解得∴这个一次函数的解析式为y=x-1.例2.黄金1号”玉米种子的价格为5元∕kg,如果一次购买2 kg以上的种子,超过2 kg 部分的种子价格打8折.(1)填写下表:购买量∕kg0.5 11.522.533.54 …付款金额∕元…(2)写出付款金额关于购买量的函数解析式,并画出函数图象.探究:(1)付款金额与什么有关?种子价格是固定的吗?它与什么有关?种子的价格是如何确定的?(2)函数的图象是一条直线吗?为什么?学生独立思考,交流讨论,总结:(1)付款金额与种子价格相关.问题中种子价格不是固定不变的,它与购买量有关. 设购买种子数量为x kg,当0≤x≤2时,种子价格为5元/kg;当x>2时,其中有2 kg种子按5元/kg 计价,其余的(x-2)kg即超出2 kg的部分种子按4元/kg(即8折)计价.因此,写函数解析式与画函数图象时,应对0≤x≤2和x>2分段讨论.(2)在画实际问题中的一次函数图象时,要考虑自变量的取值范围,画出的图象往往不再是一条直线.学生完成解题过程,教师点评:解:(1)购买量∕kg0.5 11.522.533.54 …付款金额∕元2.5 57.510 12 14 16 18 …(2)设购买种子数量为x kg,付款金额为y元.当0≤x≤2时,y=5x;当x>2时,y=4(x-2)+10=4x+2. 函数图象如图所示.进一步引导学生根据函数图象思考:(1)一次购买1.5 kg种子,需付款多少元?(2)一次购买3 kg种子,需付款多少元?三.巩固练习1.已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.2.已知一次函数y=kx+b的图象如图所示,则它的函数关系式为.3.已知y是x的一次函数,当x=3时,y=1;当x=-2时,y=-4.求这个一次函数的解析式. 四.总结拓展1.课堂小结:学生讨论交流回答下面的四个问题(1).求一次函数解析式的一般步骤有:①设出一次函数解析式y=kx+b(k≠0),②将两个点的坐标代入,得二元一次方程组,③解方程组求出k和b的值,④写出答案. (2).一次函数解析式的确定通常有下列几种情况:①利用待定系数法,根据两对x和y的值,列出方程组确定k,b的值,进而求出一次函数的解析式.②根据图象上两点坐标求出一次函数的解析式.2.拓展延伸一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线与y轴的交点是.3.作业布置教材P99页习题7,8,9题.五.课堂效果测评1.一次函数的图象经过点A(-2,-1),且与直线y=2x-3平行,则此函数的解析式为( )A.y=x+1B.y=2x+3C.y=2x-1D.y=-2x-52.A(1,4),B(2,m),C(6,-1)在同一条直线上,则m的值为( )A.2B.3C.4D.53.已知一次函数y=kx+b的图象经过点A(2,4)和点B(-2,-8),这个一次函数的解析式为.4.已知一次函数y=kx+b,当x=-4时y=9,当x=6时y=-1,则此函数的解析式为.5.已知y是x的一次函数,当x=3时,y=1;当x=-2时,y=-4.求这个一次函数的解析式.6.A(1,4),B(2,m),C(6,-1)在同一条直线上,则m的值为( )A.2B.3C.4D.57.已知一条直线经过点A(0,6),且平行于直线y=-2x+1.(1)求这条直线的函数解析式;(2)若这条直线经过点B(m,2),求m的值.六.评价与反思(引导学生自己总结)1.你今天学习了什么?学到了什么?还有什么疑惑?有什么感受?在学生回答的基础上,教师点评并板书2.教学反思本节课主要学习了待定系数法及一次函数的应用,由前面的学习知道两点确定一条直线,以已知两点怎样确定这条直线即怎么样求出它的解析式.。

人教版数学七年级上册《用待定系数法求一次函数解析式》教学设计

人教版数学七年级上册《用待定系数法求一次函数解析式》教学设计

人教版数学七年级上册《用待定系数法求一次函数解析式》教学设计一. 教材分析人教版数学七年级上册中,用待定系数法求一次函数解析式的教学内容安排在第一章“一次函数与不等式”中。

这部分内容是学生学习一次函数的基础知识,为后续学习一次函数图像和应用打下基础。

教材从实际问题出发,引导学生通过待定系数法求解一次函数的解析式,培养学生的数学思维能力和问题解决能力。

二. 学情分析七年级的学生已经掌握了初中数学的基础知识,对于函数的概念和一次函数的图像有一定的了解。

但在实际问题中,如何运用待定系数法求解一次函数解析式,将数学知识应用于解决实际问题,对学生来说还是一个新的挑战。

因此,在教学过程中,需要引导学生从实际问题中提炼出数学模型,运用待定系数法求解,并解释其实际含义。

三. 教学目标1.理解待定系数法的原理,学会用待定系数法求解一次函数的解析式。

2.能够将实际问题抽象为一次函数模型,并用待定系数法求解。

3.培养学生的数学思维能力和问题解决能力。

四. 教学重难点1.重难点:待定系数法的原理和运用。

2.难点:如何将实际问题抽象为一次函数模型,如何选择合适的待定系数。

五. 教学方法1.讲授法:讲解待定系数法的原理和步骤。

2.案例教学法:通过具体案例,引导学生学会用待定系数法求解一次函数的解析式。

3.讨论法:分组讨论,分享解题思路和方法。

4.实践教学法:让学生在实际问题中运用待定系数法,巩固所学知识。

六. 教学准备1.教学PPT:制作详细的PPT,展示待定系数法的原理、步骤和案例。

2.教学案例:准备几个实际问题,作为教学案例。

3.练习题:准备一些练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT展示一次函数的实际应用场景,引导学生关注一次函数在实际问题中的应用。

2.呈现(10分钟)讲解待定系数法的原理和步骤,让学生了解待定系数法的基本概念。

3.操练(10分钟)分组讨论,让学生用待定系数法求解给定的实际问题,分享解题思路和方法。

一次函数解析式教案

一次函数解析式教案

一次函数解析式教案篇一:《待定系数法求一次函数解析式》教学设计《待定系数法求一次函数解析式》教学设计人教版义务教育课程标准实验教科书八年级下册廊坊市第九中学陈永军一、教学目标分析1知识目标:待定系数法求一次函数的解析式。

体会二元一次方程组的应用。

2能力目标:数形结合思想和归纳总结能力3情感与态度目标:充分让学生合作探究,培养学生自主学习的能力,增进学生之间的友谊。

二、教学重点、难点重点:让学生能在不同的条件下运用待定系数法求出一次函数的解析式难点:用待定系数法求一次函数的解析式,渗透数形结合思想和归纳总结能力三、教学过程设计本节课设计了九个环节:第一环节:知识回顾;第二环节:创设情境提出问题;第三环节:自学验收初露锋芒;第四环节:师生配合解决问题;第五环节:提出问题形成思路;第六环节:整理归纳提炼思想;第七环节:拓展提高再现锋芒;第八环节:课堂小结;第九环节:布置作业。

第一环节:知识回顾复习正比例函数y=2x以及一次函数y=2x+2的图像,画法,位置关系。

意图:新知识的获取和运用,离不开已学知识搭建的衔接平台。

通过复习,得出结论:画直线图象需要两点;k第二环节:创设情境提出问题在弹性限度内,弹簧的长度y(cm)是所挂物体的质量x(kg)的一次函数,研究数据如下表:1写出y与x之间的函数关系式。

2如果部分数据被污染了,还能得出y与x之间的函数关系式吗?用什么方法呢?这将是本节课我们要研究的问题,自学课本117页例题4第三环节:自学验收初露锋芒学生解决题目:已知一次函数的图象经过点(3,5)与(-4,-9).求这个一次函数的解析式。

意图:该题目是与课本例题解禁的一道题目,通过学生板演,展示学生风采,自主学习的成果,形成初步认识。

第四环节:师生配合解决问题;学生口述,教师板演,共同解决下面的题目:在弹性限度内,弹簧的长度y(cm)是所挂物体的质量x(kg)的一次函数,研究数据如下表:写出y与x之间的函数关系式。

人教版数学八下19.2.2《一次函数(3)待定系数法求一次函数解析式专题》教案

人教版数学八下19.2.2《一次函数(3)待定系数法求一次函数解析式专题》教案
-能够根据实际问题列出方程组,并通过待定系数法求解。
-熟练运用一次函数模型解决实际问题。
举例解释:在教学过程中,教师应重点关注学生对待定系数法的基本理解和运用。例如,通过讲解和练习,确保学生明白如何将实际问题转化为数学模型,特别是如何选取未知数,列出方程组,并正确使用待定系数法求解。
2.教学难点
-理解待定系数法背后的数学思想,即通过设定未知系数来构建方程组。
4.培养学生的团队协作和交流能力:通过小组讨论、合作解决问题,促进学生之间的交流与合作,提高团队协作能力。
本节课将紧紧围绕这些核心素养目标,结合课本内容,设计教学活动,确保学生在掌握知识的同时,提高学科素养。
三、教学难点与重点
1.教学重点
-理解并掌握待定系数法的概念及原理。
-学会运用待定系数法求解一次函数的解析式。
1.培养学生的逻辑推理能力:通过待定系数法求解一次函数解析式的过程,让学生体会从特殊到一般、从具体到抽象的推理方法,提高逻辑思维水平。
2.提升学生的数据分析能力:使学生能够根据实际问题提炼出一次函数模型,通过数据处理和方程组构建,求解出函数解析式,从而解决实际问题。
3.增强学生的数学建模素养:培养学生运用数学知识构建一次函数模型解决实际问题的能力,提高数学应用意识。
五、教学反思
在今天的教学中,我带领学生们学习了待定系数法求解一次函数解析式的内容。回顾整个教学过程,我觉得有几个方面值得反思。
首先,我发现学生们在理解待定系数法的概念和原理上存在一定难度。虽然我在课堂上通过生动的案例进行了讲解,但可能还需要在今后的教学中进一步加强引导,让学生更加直观地感受到这一方法的应用价值。或许可以尝试引入更多生活中的实例,让学生认识到待定系数法在解决实际问题中的重要性。

第3课时待定系数法求一次函数的解析式

第3课时待定系数法求一次函数的解析式
-1
2、已知一次函数的图像经过点(1,1)和(2,3),
求这个一次函数的解析式。
y
解:设一次函数的解析式为 y=kx+b , 3
一次函数y=kx+b经过点(1,1)和(2,3) 2
k+b=1 2k+b=3 解得 k= 2
k+b=1 2k+b=3
1
-1 0 1 2 3 x
-1
b= -1
一次函数的解析式为 y=2x-1
1
的面积为 1 2 | -3 | 3 2
-1 0 1 2 3 x
-1
-2
-3
待定系数法
1、通过这节课的学习。你知道利用什么方法确
定正比例函数或一次函数的解析式吗?
2、你还记得利用待定系数法确定函数解析式的
一般步骤吗?
一设二列三解 四写
的点,你能求出它的解析式吗?
不同的取法吗?
从数到形
函数解析式 y = kx+b
选取
满足条件的两定点 (x1,y1)与(x2,y2)
画出
一次函数的 图象:直线
1、求图中直线的函数解析式。
分析:(1)观察函数图像的特点,经过哪些点?
( 0,0 )和( 4,2 ) (2)是什么函数呢?
正比例函数
(3)确定函数解析式也就是求什么值呢?
解得 k= 2式为 y=2x-1

归纳:用待定系数法求一次函数解析式的步骤
1、设出一次函数解析式_y_=__k_x_+__b; 2、列,根据已知条件列出关于 k、b 的二元一次方程组 3、解方程组,求出__k_、__b_的值; 4、写,将 k、b 的值代入 y=kx+b,得到所求函数解析式.
从数到形

待定系数法求一次函数的解析式--教案

待定系数法求一次函数的解析式--教案

教学设计
(1)设:设一次函数的一般形式;
(2)代:把图象上的点(x 1,y 1)(x 2,y 2),代入一次函数的解析式,组成二元一次方程组; (3)解:解二元一次方程组得k,b ; (4)写:把k,b 的值代入一次函数的解析式.
练习:已知一次函数y=kx+b 的图象经过点(-1, 1)和点(1,-5) , 求这个函数解析式,并求当x=5时,函数y 的值.
练习:小明根据某个一次函数关系式填写了下表:
其中有一格不慎被墨汁遮住了,想想看,该空格里原来填的数是多少?
练习:一次函数的图象经过点(2,1)和点(1,5),则这个一次函数是( )
A.y=4x+9
B. y=4x -9
C. y=-4x+9
D. y=-4x -9
练习:若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则m 的值是( )
A.8
B.4
C.-6
D.-8
练习:一次函数的图象如图所示,则k 、b 的值分别为( ) A.k=-2,b=1 B.k=2,b=1 C.k=-2,b=-1 D.k=2,b=-1
练习:已知一次函数的图像经过点(9,0)和点(24,20),求
这个一次函数的解析式.
练习:若一次函数的图象与直线y=-3x+2交y 轴于同一点,且过点(2,-6),求此函数解析式
x -2 -1 0 1 y
3
1
1
1 2
1
x
y。

八年级下册数学教案《待定系数法求一次函数的解析式》

八年级下册数学教案《待定系数法求一次函数的解析式》

八年级下册数学教案《待定系数法求一次函数的解析式》学情分析一次函数是初中阶段学习的三种基本函数中最简单的一种函数形式,本节内容是在学生学习了变量与函数、一次函数的概念等基础上,继续对某些特殊的变量关系的考察和认识。

从知识衔接的角度看,有着承上启下的作用,符合学生的认知规律。

确定一次函数解析式,关键在于确定出一次函数y = kx+b中的k、b的值,用待定系数法确定一次函数解析式,不仅要求学生能正确地确定出解析式,还重在让学生对一次函数式与函数图象、函数式中的变量与函数图象上点的坐标之间关系的理解,将数与形联系起来,形成数形结合的数学思想意识。

为后面学习反比例函数、二次函数夯实基础。

教学目的1、会用待定系数法,确定一次函数的解析式。

2、了解两个条件确定一个一次函数的解析式,一个条件确定一个正比例函数的解析式。

3、掌握一次函数的简单应用。

教学重点用待定系数法确定一次函数的解析式。

教学难点灵活运用有关知识解决问题。

教学方法讲授法、演示法、启发式教学法、讨论法、练习法教学过程一、导入上节课我们学习了一次函数的图像与性质,在给定解析式的前提下,我们可以容易地画出函数图像,并说出它的有关性质,那反过来,如果已知一次函数图象的某些特征,能否确定函数解析式呢?这将是本节课我们要研究的问题。

二、待定系数法求一次函数解析式已知一次函数的图象经过点(3,5)与(-4,-9),求这个一次函数的解析式。

(学法指导:因为一次函数的图象是直线,所以要求直线的解析式,只需要找到直线上两个点的坐标,并将点的坐标代入一次函数解析式,得到关于k,b的二元一次方程组,即可求出系数k,b的值,进而确定一次函数的解析式)解:设这个一次函数的解析式为y = kx+b(k≠0)因为y = kx+b的图象过点(3,5)与(-4,-9),所以3k+b= 5-4k+b = -9解方程组得k = 2b = -1这个一次函数的解析式为y = 2x - 1总结:先设函数解析式,再根据条件确定解析式中未知数的系数,从而得到函数解析式的方法,叫做待定系数法。

《待定系数法求解一次函数解析式》说课

《待定系数法求解一次函数解析式》说课
八年级学生虽有合作意识,但缺乏 主动性,因此要求教师恰当创设尝试氛 围,激发学生进行尝试的兴趣,提升他 们自主探索思考问题能力。
教学过程
教材分析 学情分析 教学目标分析 教学重难点 教法学法 教学过程
知识目标
能力目标
情感目标
教材分析 学情分析 教学目标分析 教学重难点 教法学法 教学过程
1、理解待一定次系函数法和。正比例函数的 概 2、念会,用以待及定它系们数之法间求的一关次系函;数的表 3达、式能。根据已知条件写出一次函数 表达式 。
1、(必做题)已知一次函数,当时 y 的值为4,当时 y 的值为-2,求 k 与 b. 2、(必做题) 已知一次函数的图象经过点(-4, 9)和点(6, 3),求这个函 数的解析式. 3、(选做题)求与直线y=2x+5平行,且与x轴相交于点M(-2,0)的 直线的解析式。
【设计意图】以作业的形式反馈本节课内容的 掌握情况,并加以巩固提高。设置选做题则让 学有余力的同学有发挥的空间,使学生在课外 通过具有层次性的训练得到不同程度的发展。
y=3x-1 y=-2x+4
两点法——两点确定一条直线
【设计意图】 通过让学生动手画图的方式 巩固、 复习上节课的知识点。 同时为接下来所 要学的新知识“热身”。
二、学习目标
1、学会用待定系数法确定一次函数的解析式。
2、能根据函数的图象确定一次函数的解析式,体验 数形结合思想在一次函数中的应用。
函数解析式
1、求一次函数解析式的方法 ——待定系数法
2、待定系数法的一般步骤:
一设、二代、三解、四写
函数解析式
y =kx+b
选取
解出
满足条件的两 画出
定点(x1,y1) 与(x2,y2) 选取

一次函数解析式知识点详解教案

一次函数解析式知识点详解教案

一次函数解析式知识点详解教案一、教学目标1.了解一次函数的定义和基本性质;2.掌握一次函数的解析式及图像的绘制方法;3.能够运用一次函数解析式解决实际问题。

二、教学重点1.一次函数的定义和基本性质;2.一次函数的解析式及图像的绘制方法。

三、教学难点1.一次函数的图像的绘制方法;2.能够适应使用一次函数解决实际问题。

四、教学过程一、引入新知识教师出示一个3x+2的表达式,问学生这是一个什么物价函数?如何通过表格来表示出它的函数状态。

引导学生通过一组函数示例来理解物价、销售量和收益之间的联系。

二、基本知识的讲解1.一次函数的定义一次函数是指函数自变量的最高次数为1,函数公式可以表示为:y=kx+b。

其中,k和b为常数,k被称为斜率,b被称为截距,x是自变量,y是因变量。

2.一次函数的基本性质(1)线性关系性一次函数中自变量与因变量之间是线性关系。

(2)单调性当斜率k>0时,函数是单调递增的;当斜率k<0时,函数是单调递减的。

(3)奇偶性一次函数没有奇偶性。

(4)零点一次函数的零点(根)是x= -b/k。

(5)图像一次函数的图像是一条直线。

三、详细知识的讲解1.一次函数的解析式及图像的绘制方法一次函数公式可以表示为y=kx+b,其中k为斜率,b为截距。

图像的绘制方法:(1)求出函数的截距和斜率。

(2)在坐标系中选择若干点,并计算它们的x,y值。

通常选择x值为-2,-1,0,1,2等等。

(3)用一条直线连接这些点,即可得到函数的图像。

2.一次函数的应用举例(1) 题目描述小红在网上购买了苹果,购买数量与价格之间的关系存在一次函数关系,当购买数量为6斤时,花费了52元的钱,当购买数量为9斤时,花费了70元的钱。

求出这个一次函数的解析式。

解题思路:首先我们可以设购买的苹果数量为x,花费的钱数为y,则可以列出下面两个式子:当x=6时, y=52;当x=9时, y=70。

根据上面两个式子,我们可以列出如下的方程组:6k+b=52;9k+b=70。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学难点:培养数形结合解决问题的能力.
教学过程:
一、复习引入(知识链接) 1.复习:你能画出函数 y=2x 与 y=-x+3 的图象吗? 2.反思:你在作这两个函数图象时,分别描了几个点?你为何选取这几个点?可以有不同 取法吗? 3.引入:在上节课中我们学习了在给定一次函数表达式的前提下,我们可以说出它的图 象特征及有关性质;反之,如果给你信息,你能否求出函数的表达式呢?这将是本节课我们要 研究的问题.(板书:求一次函数的解析式) 二、探究新知(知识接力) 1.求下图中直线的函数表达式:
析式为
.
六.拓展探索(探索乐园)
1.A(1,4),B(2,m),C(6,-1)在同一条直线上,求 m 的值.
2.一个弹簧不挂重物时长 12cm,挂上重物后伸长的长度与所挂重物的质量成正比.如
果挂上 1kg 的物体后,弹簧伸长 2cm,求弹簧的总长 y(单位:cm)随所挂物体质量 x(单
位:kg) 变化的函数解析式.
三.应用新知(小试牛刀)
y
1.已知一次函数的图象如图所示,求出它的函数关系式.
2.已知直线 y kx b 经过点(9,0)和点(24,20),求这条直 o 2 x
线的函数解析式.
-3
四.反思小结
1.通过这节课的学习,你知道利用什么方法确定正比例函数或一次函数的解析式吗? 2.你还记得利用待定系数法确定函数解析式的一般步骤吗?
3.体验了数形结合思想在解决函数问题作用! 五.变式训练(当堂小测)
1..已知一次函数 y= kx 的图象经过(-1,-5),则这个函数的解析式为
.
2.若一次函数 y=kx+5 的图象平行于直线 y=3x,则 k =
.
3.若一次函数 y=3x+b 的图象经过点 A(0,5),则 b =
.
4.已知直线 y1 kx b 与直线 y2 2x 平行,且直线 y1 与 y 轴交于(0,3),则直线 y1 的解
式子的方法,叫做待定系数法.
②你能归纳出待定系数法求函数解析式的基本步骤吗?(结合例题)
设列解写
1
③在前面的学习过程中我们发现数与形之间是怎样结合互化的?
(选取)
(画出)
数:函数解析式
满足条件的两定点
y=kx+b
(解出) (x1,y1)(x2,y2)
(选取)
形:一次函数 的图象直线ι
数学的基本思想方法: 数形结合
国培汇报课
《求一次函数的解析式》教学设计
马溪中学 钟传德
教学目标:
1.了解待定系数法的思维方式与特点.明确两个条件确定一个一次函数、一个条件确定 一个正比例函数的基本事实.
2.会根据所给信息用待定系数法求一次函数解析式,发展解决问题的能力. 3.进一步体验并初步形成“数形结合”的思想方法.
教学重点:根据所给信息确定一次函数的表达式.
与(0,3)即可求出 k、b,确定解析式为
.
(2)小结:确定正比例函数的解析式需 1 个条件,
确定一次函数的解析式需要 2 个条件.
2.P117 例 4:已知一次函数的图象经过点(3,5)与(-4,-9).求这个一次函数的解析式.
(1)教师板演示范.
(2)回顾小结未知的系数,从而具体写出这个
3.小明将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内
钱数 y(元)与存钱月数 x(月)之间的关系如图所示,根据下图回答下列问题:
①求出 y 关于 x 的函数解析式.
②根据关系式计算,小明经过几个月才能存够 200 元?
4.已知一次函数的图像经过点 A(2,2)和点 B(-2,-4). (1)求直线 AB 的函数解析式; (2)求图像与 x 轴、y 轴的交点坐标 C、D,并求出直线 AB 与坐标轴所围成的面积;
(3)如果点 M(a, 1 )和 N(-4,b)在直线 AB 上,求 a,b 的值. 2
2
图1
图2
(1)分析与思考:
从图象知,图 1 中直线的函数是正比例函数,故其解析式必为 y=kx 形式,关键是如何求出
k 的值;同样由图可知图象经过点(1,2),所以该点坐标必适合解析式,将坐标代入 y=kx 即可
求出 k 的值.
图 2 中直线的函数是一次函数,故其解析式为 y=kx+b 形式,同样代入直线上两点(2,0)
相关文档
最新文档