北师大版九年级数学下册课件:2.2 第4课时 二次函数y=ax2+bx+c的图象与性质
北师大版九年级数学下册.2二次函数的图象与性质课件
3
y 2x2
y 2x 2 1 向上
y轴
(0,1) 当x=0时, y随x的增 ymin 1 大而增大
y随x的增 大而减小
-4 -2
o2 4
y 2x2 1
x y 2x 2 1 向上
y轴
(0,-1)
当x=0时, ymin 1
y随x的增 大而增大
y随x的增 大而减小
任务二:二次函数 y ax 2 c 的图象与性质(指向目标二) 二次函数 y ax2与 y ax 2 c 的图象的关系: 二次函数 y ax 2 c 的图象可以由 y ax2 的图象平移得到:
任务一:二次函数 y ax2的图象与性质(指向目标一)
猜想:二次函数 y 1 x2 ,y 2x 2 ,y x 2 的图象是什么样的呢? 2
其开口大小与a又有什么关系呢?
y
-4 -2 0 2 4 x
当a<0时,a越小,开口越小.
-3
y 1 x2 2
-6
y -92x 2 y x2
总结: a决定了抛物线的开口方向和开口大 小,a>0,图象开口向上,a<0,图象 开口向下,|a|越大,开口越小.
x<0递减 x>0递增
x<0递增 x>0递减
任务一:二次函数 y ax2的图象与性质(指向目标一) 画二次函数 y 2x 2的图象. 1.列表:完成下表:
x ··· -2 -1 0 1 2 ··· y ··· 8 2 0 2 8 ···
坐标
(-2,8) (-1,2) (0,0) (1,2) (2,8)
答案:1m > 1 2m < 2 3m 1或m 3 4m 2
2
评价标准: 答案正确加4分.
最新北师大版九年级数学下册《二次函数的图象与性质》优质教学课件
解:y=(x-4)2-15
开口向上,顶点坐标为(4,-15)
对称轴为直线 x=4
类型2:a=1,b为奇数
5.(例2)求抛物线y=x2+x+1的顶点坐标.
解:∵y=x2+x+1
1
1
2
=x +x+ 4 +1-
4
3
1
2
=(x +x+ )+
1 4 3 4
=(x+ 2 )2+ 4
(3)对称轴为直线x=1.25,顶点坐标为(1.25,-1.125).
(4)对称轴为直线x=0.75,顶点坐标为(0.75,9.375).
【例题】
如图,桥梁的两条钢缆具有相同的抛物线形状.按照图中的
直角坐标系,左面的一条抛物线可以用y=
9
400
表示,而且左、右两条抛物线关于y轴对称.
y/m
10
桥面
我们知道,作出二次函数y=3x2的图象,通过平移抛
物线y=3x2可以得到二次函数y=3x2-6x+5的图象.
那是怎样平移的呢?
只要将表达式右边进行配方就可以知道了.
y=3x2-6x+5
=3(x-1)2+2
配方后的表达式通常称为配方
式或顶点式
y 3x 6 x 5
2
3(x 2x) 5
,-3).
.
(2)画抛物线 y=ax2+bx+c 的草图,
(4)若抛物线与 x 轴的两个交点为 A,B,与 y 轴的交点为 C,求 S△ABC.
= (x2+2x+1)- - = (x+1)2-3,∴抛物线的顶点
4a
要确定五点,即①开口方向;②对
北师大版九年级数学下册《二次函数——二次函数的图象与性质》教学PPT课件(4篇)
5
这两种呢?有没有其他形式的二次
3
函数?
4Байду номын сангаас
2
1
–4
–3
–2
–1
O
–1
–2
–3
–4
–5
–6
–7
–8
–9
–10
1
2
3
4
x
y =-x2
新知讲解
在画有y
=x2直角坐标系中,画出
=
,y
=2x2的图象.
①列表; ②描点; ③连线.
10
y
y=2x2
9
x
··· -2 -1
y =x2
8
0
1
2
···
7
6
D.抛物线y=-3x2向上平移1个单位得到
新知讲解
在同一坐标系中,画出二次函数 = − ,y=− + ,
y=−
− 的图象,并分别指出它们的开口方向,对称轴和顶
点坐标,指明抛物线y=− + 通过怎样的平移可得到抛物线
=
−
-4
− .
如图所示
关于y轴对称,对称轴方程是直线x=0
顶点坐标是原点(0,0)
当x=0时,y最小值=0
当x=0时,y最大值=0
在对称轴左侧递减
在对称轴右侧递增
在对称轴左侧递增
在对称轴右侧递减
典例精析
已知二次函数y=x2.求:
(1)当x=5时,y的值;
(2)当y=4时,x的值;
(3)当x为何值时,y随x的增大而增大?
九年级数学 二次函数y=ax2bxc(a≠0)的图像与性质(知识讲解1)Word版含解析
专题2.12 二次函数y=ax2+bx+c(a≠0)的图像与性质(知识讲解1)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.12 二次函数y=ax²+bx+c(a≠0)的图象与性质(知识讲解1) 【学习目标】1.会用描点法画二次函数2(0)y ax bx c a =++≠的图象;会用配方法将二次函数2y ax bx c =++的解析式写成2()y a x h k =-+的形式;2.通过图象能熟练地掌握二次函数2y ax bx c =++的性质;3.经历探索2y ax bx c =++与2()y a x h k =-+的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想. 【要点梳理】要点一、二次函数2(0)y ax bx c a =++≠与2(1)(0)y a x t k a =-+≠之间的相互关系 1.顶点式化成一般式从函数解析式2()y a x h k =-+我们可以直接得到抛物线的顶点(h ,k),所以我们称2()y a x h k =-+为顶点式,将顶点式2()y a x h k =-+去括号,合并同类项就可化成一般式2y ax bx c =++. 2.一般式化成顶点式 22222()()()22b b b b y ax bx c a x x c a x x c a a a a ⎡⎤=++=++=++-+⎢⎥⎣⎦224()24b ac b a x a a-=++.对照2()y a x h k =-+,可知2b h a =-,244ac b k a-=.∴抛物线2y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24(,)24b ac b a a--. 特别说明:1.抛物线2y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24(,)24b ac b a a--,可以当作公式加以记忆和运用.2.求抛物线2y ax bx c =++的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点二、二次函数2(0)y ax bx c a =++≠的图象的画法 1.一般方法:列表、描点、连线; 2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.(2)求抛物线2y ax bx c =++与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 特别说明:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象, 要点三、二次函数2(0)y ax bx c a =++≠的图象与性质 1.二次函数2(0)y ax bx c a =++≠图象与性质2.二次函数2(0)y ax bx c a =++≠图象的特征与a 、b 、c 及b2-4ac 的符号之间的关系要点四、求二次函数2(0)y ax bx c a =++≠的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当2b x a =-时,244ac b y a-=.特别说明:如果自变量的取值范围是x1≤x≤x2,那么首先要看2ba-是否在自变量的取值范围x1≤x≤x2内,若在此范围内,则当2b x a =-时,244ac b y a-=,若不在此范围内,则需要考虑函数在x1≤x≤x2范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当x =x2时,22y bx c ++;当x =x1时,211y ax bx c =++,如果在此范围内,y 随x 的增大而减小,则当x =x1时,2max 11y ax bx c =++;当x =x2时,2min 22y ax bx c =++,如果在此范围内,y 值有增有减,则需考察x =x1,x =x2,2bx a=-时y 值的情况. 特别说明: 【典型例题】类型一、二次函数2(0)y ax bx c a =++≠化为顶点式1.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0). (1)求抛物线的解析式; (2)求抛物线的顶点坐标. 举一反三: 【变式1】2.用配方法把二次函数y=12x 2–4x+5化为y=a(x+m)2+k 的形式,再指出该函数图象的开口方向、对称轴和顶点坐标. 【变式2】3.已知二次函数2y x 4x 3=-+.()1用配方法将其化为2y a(x h)k =-+的形式;()2在所给的平面直角坐标系xOy 中,画出它的图象.【变式3】4.已知二次函数y =﹣2x 2+bx +c 的图象经过点A (0,4)和B (1,﹣2). (1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标; (3)设抛物线的顶点为C ,试求∴CAO 的面积. 类型二、画二次函数2(0)y ax bx c a =++≠的图象5.已知:二次函数243y x x =++ (1)求出该函数图象的顶点坐标; (2)在所提供的网格中画出该函数的草图.举一反三: 【变式1】6.已知二次函数y =﹣x 2+4x .(1)写出二次函数y =﹣x 2+4x 图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线); (3)根据图象,写出当y <0时,x 的取值范围. 【变式2】7.已知二次函数y =12x 2﹣x ﹣32. (1)在平面直角坐标系内,画出该二次函数的图象; (2)根据图象写出:①当x 时,y >0; ②当0<x <4时,y 的取值范围为 .【变式3】8.已知抛物线22232(0)y ax ax a a =--+≠. (1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点()1,P m y ,()23,Q y 在抛物线上,若12y y <,求m 的取值范围. 类型三、二次函数2(0)y ax bx c a =++≠的性质9.把抛物线21:23C y x x =++先向右平移4个单位长度,再向下平移5个单位长度得到抛物线2C .(1)直接写出抛物线2C 的函数关系式;(2)动点(),6P a -能否在拋物线2C 上?请说明理由;(3)若点()()12,,,A m y B n y 都在抛物线2C 上,且0m n <<,比较12,y y 的大小,并说明理由. 举一反三: 【变式1】10.在平面直角坐标系xOy 中,关于x 的二次函数2y x px q +=+的图象过点(1,0)-,(2,0).(1)求这个二次函数的表达式;(2)求当21x -≤≤时,y 的最大值与最小值的差;(3)一次函数(2)2y m x m =-+-的图象与二次函数2y x px q +=+的图象交点的横坐标分别是a 和b ,且3a b <<,求m 的取值范围. 【变式2】11.如图,已知抛物线y=x 2-2x -3与x 轴交于A 、B 两点.(1)当0<x <3时,求y 的取值范围;(2)点P 为抛物线上一点,若S △PAB =10,求出此时点P 的坐标.【变式3】12.已知抛物线2y ax bx c =++,如图所示,直线1x =-是其对称轴,()1确定a ,b ,c ,24b ac =-的符号;()2求证:0a b c -+>;()3当x 取何值时,0y >,当x 取何值时0y <.类型四、二次函数的图象及各项的系数13.如图,抛物线y=﹣x2+(m﹣1)x+m与y轴交于点(0,3).(1)m的值为________;(2)当x满足________时,y的值随x值的增大而减小;(3)当x满足________时,抛物线在x轴上方;(4)当x满足0≤x≤4时,y的取值范围是________.举一反三:【变式1】14.已知二次函数y=ax2+bx+c的图象如图所示,给出下列结论:∴abc>0;∴a﹣b+c<0;∴2a+b﹣c<0;∴4a+2b+c>0,∴若点(﹣23,y1)和(73,y2)在该图象上,则y1>y2.其中正确的结论是_____(填入正确结论的序号)类型五、一次函数、二次函数图象的综合判断15.如图,已知直线y=-2x+m与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求m 的值; (2)求抛物线的解析式;(3)若点P 是x 轴上一点,当∴ABP 为直角三角形时直接写出点P 的坐标. 举一反三: 【变式1】16.已知二次函数()2229y mx m x m =++++.()1如果二次函数的图象与x 轴有两个交点,求m 的取值范围;()2如图,二次函数的图象过,点()4,0A ,与y 轴交于点B ,直线AB 与这个二次函数图象的对称轴交于点P ,求点P 的坐标.【变式2】17.如图所示,已知直线y=12-x 与抛物线y=2164x -+交于A 、B 两点,点C 是抛物线的顶点.(1)求出点A 、B 的坐标; (2)求出∴ABC 的面积;(3)在AB 段的抛物线上是否存在一点P ,使得∴ABP 的面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案:1.(1)2y x 2x 3=-++(2)(1,4)【详解】解:(1)∴抛物线2y x bx c =-++经过点A (3,0),B (-1,0), ∴抛物线的解析式为;()()y x 3x 1=--+,即2y x 2x 3=-++, (2)∴抛物线的解析式为()22y x 2x 3x 14=-++=--+, ∴抛物线的顶点坐标为:(1,4).(1)根据抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0),直接由交点式得出抛物线的解析式.(2)将抛物线的解析式化为顶点式,即可得出答案.2.抛物线的开口向上,对称轴是直线x =4,顶点坐标是(4,-3). 【分析】用配方法把一般式化为顶点式,根据二次函数的性质解答即可. 【详解】解:∵y =12x 2-4x +5=12(x -4)2-3,∴抛物线的开口向上,对称轴是直线x =4,顶点坐标是(4,-3).【点睛】本题考查的是二次函数的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.3.(1)2(x 2)1--;(2)见解析.【分析】(1)利用配方法把二次函数解析式化成顶点式即可; (2)利用描点法画出二次函数图象即可.【详解】解:()21y x 4x 3=-+=222x 4x 223-+-+ =2(x 2)1--()22y (x 2)1=--,∴顶点坐标为()2,1-,对称轴方程为x 2=.函数二次函数2y x 4x 3=-+的开口向上,顶点坐标为()2,1-,与x 轴的交点为()3,0,()1,0, ∴其图象为:故答案为(1)2(x 2)1--;(2)见解析.【点睛】本题考查二次函数的配方法,用描点法画二次函数的图象,掌握配方法是解题的关键.4.(1)y =﹣2x 2﹣4x +4;(2)对称轴为直线x =﹣1,顶点坐标为(﹣1,6);(3)∴CAO 的面积为2.【分析】(1)利用待定系数法把A (0,4)和B (1,﹣2)代入y =﹣2x 2+bx +c 中,可以解得b ,c 的值,从而求得函数关系式即可; (2)利用配方法求出图象的对称轴和顶点坐标;(3)由(2)可得顶点C 的坐标,再根据三角形的面积公式即可求出△CAO 的面积. 【详解】解:(1)把A (0,4)和B (1,﹣2)代入y =﹣2x 2+bx +c ,得:24212c b c =⎧⎨-⨯++=-⎩,解得:44b c =-⎧⎨=⎩, 所以此抛物线的解析式为y =﹣2x 2﹣4x +4; (2)∴y =﹣2x 2﹣4x +4 =﹣2(x 2+2x )+4 =﹣2[(x +1)2﹣1]+4 =﹣2(x +1)2+6,∴此抛物线的对称轴为直线x =﹣1,顶点坐标为(﹣1,6); (3)由(2)知:顶点C (﹣1,6), ∴点A (0,4),∴OA =4, ∴S △CAO =12OA •|xc |=12×4×1=2,即△CAO 的面积为2.故答案为(1)y =﹣2x 2﹣4x +4;(2)对称轴为直线x =﹣1,顶点坐标为(﹣1,6);(3)△CAO 的面积为2.【点睛】本题考查了用待定系数法求二次函数的解析式,二次函数解析式的三种形式,二次函数的性质以及三角形的面积,难度适中.正确求出函数的解析式是解题的关键. 5.(1) (-2,-1);(2)见解析【分析】(1)将二次函数化为顶点式即可得出顶点坐标; (2)利用五点法画二次函数的图象即可.【详解】(1)243y x x =++化为顶点式为2(2)1y x =+- 则该函数图象的顶点坐标为(2,1)--;(2)先求出自变量x 在4,3,2,1,0----处的函数值,再列出表格 当4x =-和0x =时,3y =当3x =-和=1x -时,2(1)4(1)30y =-+⨯-+= 当2x =-时,1y =- 列出表格如下:由此画出该函数的草图如下:【点睛】本题考查了二次函数的顶点式、画二次函数的图象,掌握函数图象的画法是解题关键.6.(1)对称轴是过点(2,4)且平行于y轴的直线x=2;(2)见解析;(3)x<0或x>4.【详解】试题分析:(1)把一般式化成顶点式即可求得;(2)首先列表求出图象上点的坐标,进而描点连线画出图象即可.(3)根据图象从而得出y<0时,x的取值范围.试题解析:(1)∴y=-x2+4x=-(x-2)2+4,∴对称轴是过点(2,4)且平行于y轴的直线x=2;(2)列表得:描点,连线.(3)由图象可知,当y<0时,x的取值范围是x<0或x>4.7.(1)见解析;(2)①x<﹣1或x>3;②﹣2≤y<52.【分析】(1)先把解析式配成顶点式得到抛物线的顶点坐标为(1,2);再分别求出抛物线与坐标轴的交点坐标,然后利用描点法画二次函数图象;(2)∴利用函数图象写出抛物线在x轴上方所对应的自变量的范围即可;∴先确定x=4时,y=52,然后利用函数图象写出当0<x<4时对应的函数值的范围.【详解】解:(1)∴y=12(x﹣1)2﹣2,∴抛物线的对称轴为直线x=1,顶点坐标为(1,2);当x=0时,y=12x2﹣x﹣32=﹣32,则抛物线与y轴交点坐标为(0,﹣32)当y =0时,12 x 2﹣x ﹣32=0,解得x 1=﹣1,x 2=3,抛物线与x 轴的交点坐标为(﹣1,0)、(3,0), 如图,(2)∴当x <﹣1或x >3时,y >0; ∴当0<x <4时,﹣2≤y <52;故答案为x <﹣1或x >3;﹣2≤y <52.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.8.(1)1x =;(2)233322y x x =-+或221y x x =-+-;(3)当a >0时,13m -<<;当a <0时,1m <-或3m >.【分析】(1)将二次函数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到a 的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q 关于对称轴的对称点,再结合二次函数的图象与性质,即可得到m 的取值范围.【详解】(1)∴22232y ax ax a =--+, ∴22(1)32y a x a a =---+, ∴其对称轴为:1x =.(2)由(1)知抛物线的顶点坐标为:2(1,23)a a --,∴抛物线顶点在x 轴上, ∴2230a a --=, 解得:32a =或1a =-, 当32a =时,其解析式为:233322y x x =-+, 当1a =-时,其解析式为:221y x x =-+-, 综上,二次函数解析式为:233322y x x =-+或221y x x =-+-. (3)由(1)知,抛物线的对称轴为1x =, ∴()23,Q y 关于1x =的对称点为2(1,)y -, 当a >0时,若12y y <, 则-1<m <3;当a <0时,若12y y <, 则m <-1或m >3.【点睛】本题考查了二次函数对称轴,解析式的计算,以及根据二次函数的图象性质求不等式的取值范围,熟知相关计算是解题的关键.9.(1)2(3)3y x =--;(2)不在,见解析;(3)12y y >,见解析【分析】(1)先求出抛物线1C 的顶点坐标,再根据向右平移横坐标加,向下平移纵坐标减求出平移后的抛物线的顶点坐标即可;(2)根据抛物线2C 的顶点的纵坐标为3-,即可判断点()6P a -,不在拋物线2C 上; (3)根据抛物线2C 的增减性质即可解答.【详解】(1)抛物线221:23(1)2C y x x x =++=++,∴抛物线1C 的顶点坐标为(﹣1,2),根据题意,抛物线2C 的顶点坐标为(-1+4,2-5),即(3,﹣3), ∴抛物线2C 的函数关系式为:2(3)3y x =--; (2)动点P 不在抛物线2C 上. 理由如下:∴抛物线2C 的顶点为()3,3-,开口向上, ∴抛物线2C 的最低点的纵坐标为3-. ∴63P y =-<-,∴动点P 不在抛物线2C 上; (3)12y y >. 理由如下:由(1)知抛物线2C 的对称轴是3x =,且开口向上, ∴在对称轴左侧y 随x 的增大而减小. ∴点()()12,,,A m y B n y 都在抛物线2C 上,且03m n <<<, ∴12y y >.【点睛】本题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,熟练掌握平移的规律“左加右减,上加下减”以及熟练掌握二次函数的性质是解题的关键. 10.(1)2y x x 2=--;(2)254;(3)1m <. 【分析】(1)利用待定系数法将点(1,0)-,(2,0)代入解析式中解方程组即可; (2)根据(1)中函数关系式得到对称轴12x =,从而知在21x -≤≤中,当x=-2时,y 有最大值,当12x =时,y 有最小值,求之相减即可; (3)根据两函数相交可得出x 与m 的函数关系式,根据有两个交点可得出∆>0,根据根与系数的关系可得出a ,b 的值,然后根据3a b <<,整理得出m 的取值范围. 【详解】解:(1)∴2y x px q +=+的图象过点(1,0)-,(2,0),∴10420p q p q -+=⎧⎨++=⎩解得12p q =-⎧⎨=-⎩ ∴2y x x 2=--(2)由(1)得,二次函数对称轴为12x =∴当21x -≤≤时,y 的最大值为(-2)2-(-2)-2=4,y 的最小值为21192224⎛⎫--=- ⎪⎝⎭ ∴y 的最大值与最小值的差为925444⎛⎫--= ⎪⎝⎭;(3)由题意及(1)得()2222y m x my x x ⎧=-+-⎨=--⎩整理得()()2340x m x m ----=即()(1)40x x m +--=⎡⎤⎣⎦∴一次函数(2)2y m x m =-+-的图象与二次函数2y x px q +=+的图象交点的横坐标分别是a 和b ,∴()()23440m m ∆=-+-> 化简得210250m m -+> 即()250m -> 解得m≠5∴a ,b 为方程()(1)40x x m +--=⎡⎤⎣⎦的两个解 又∴3a b << ∴a=-1,b=4-m 即4-m>3 ∴m<1综上所述,m 的取值范围为1m <.【点睛】本题考查了利用待定系数法求二次函数解析式,二次函数图象的性质,根与系数的关系等知识.解题的关键是熟记二次函数图象的性质. 11.(1) ﹣4≤y <0;(2) P 点坐标为(﹣2,5)或(4,5)【详解】分析:(1)、首先将抛物线配成顶点式,然后根据x 的取值范围,从而得出y 的取值范围;(2)、根据题意得出AB 的长度,然后根据面积求出点P 的纵坐标,根据抛物线的解析式求出点P 的坐标.详解:(1)∴抛物线的解析式为y=x 2﹣2x ﹣3,∴y=x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴顶点坐标为(1,﹣4),由图可得当0<x <3时,﹣4≤y <0. (2)当y=0时,x 2﹣2x ﹣3=0, 解得:x 1=-1 x 2=3 ∴A (﹣1,0)、B (3,0), ∴AB=4.设P (x ,y ),则S △PAB =AB•|y|=2|y|=10, ∴|y|=5, ∴y=±5. ∴当y=5时,x 2﹣2x ﹣3=5,解得:x 1=﹣2,x 2=4, 此时P 点坐标为(﹣2,5)或(4,5); ∴当y=﹣5时,x 2﹣2x ﹣3=﹣5,方程无解; 综上所述,P 点坐标为(﹣2,5)或(4,5).点睛:本题主要考查的是二次函数的性质,属于基础题型.求函数值取值范围时,一定要注意自变量的取值范围是否是在对称轴的一边.12.(1)0a <,0b <,0c >,240b ac =->;(2)详见解析;(3)当31x -<<时,0y >;当3x <-或1x >时,0y <.【分析】(1)根据开口方向确定a 的符号,根据对称轴的位置确定b 的符号,根据抛物线与y 轴的交点确定c 的符号,根据抛物线与x 轴交点的个数确定b 2-4ac 的符号; (2)根据图象和x=-1的函数值确定a -b+c 与0的关系; (3)抛物线在x 轴上方时y >0;抛物线在x 轴下方时y <0. 【详解】()1∵抛物线开口向下, ∴0a <, ∵对称轴12bx a=-=-, ∴0b <,∵抛物线与y 轴的交点在x 轴的上方, ∴0c >,∵抛物线与x 轴有两个交点, ∴240b ac =->;()2证明:∵抛物线的顶点在x 轴上方,对称轴为1x =-,∴当1x =-时,0y a b c =-+>;()3根据图象可知,当31x -<<时,0y >;当3x <-或1x >时,0y <.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是熟练的掌握二次函数图象与系数的关系.13.(1)3;(2)x >1;(3)-1<x <3;(4)-5≤y ≤4 【分析】根据函数的图象和性质即可求解.【详解】解:(1)将(0,3)代入y =﹣x 2+(m ﹣1)x +m 得,3=m , 故答案为3;(2)m =3时,抛物线的表达式为y =﹣x 2+2x +3, 函数的对称轴为直线x =2ba-=1, ∴﹣1<0,故抛物线开口向下,当x >1时,y 的值随x 值的增大而减小, 故答案为x >1;(3)令y =﹣x 2+2x +3,解得x =﹣1或3, 从图象看,当﹣1<x <3时,抛物线在x 轴上方; 故答案为﹣1<x <3;(4)当x =0时,y =3;当x =4时,y =﹣x 2+2x +3=﹣5, 而抛物线的顶点坐标为(1,4),故当x 满足0≤x ≤4时,y 的取值范围是﹣5≤y ≤4, 故答案为﹣5≤y ≤4.【点睛】本题主要考查二次函数的图像与性质及系数的关系,熟练掌握二次函数的图像与性质及系数的关系是解题的关键. 14.∴∴∴【详解】解:∴抛物线开口向下, ∴a <0,∴对称轴在y 轴右边, ∴b >0,∴抛物线与y 轴的交点在x 轴的上方, ∴c >0,∴abc <0,故∴错误;∴二次函数y =ax 2+bx +c 图象可知,当x =﹣1时,y <0,∴a ﹣b +c <0,故∴正确;∴二次函数图象的对称轴是直线x =1,c >0, ∴2b a-=1, ∴2a +b =0,∴2a +b <c ,∴2a +b ﹣c <0,故∴正确;∴二次函数y =ax 2+bx +c 图象可知,当x =2时,y >0,∴4a +2b +c >0,故∴正确;∴二次函数图象的对称轴是直线x =1,∴抛物线上x =23-时的点与当x =83时的点对称, ∴x >1,y 随x 的增大而减小,∴y 1<y 2,故∴错误;故答案为∴∴∴.【点睛】本题考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:∴二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;∴一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)∴常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).15.(1)m =6;(2)y =﹣x 2+2x +3;(3)点P 的坐标为(7,0)或(1,0).【分析】(1)将点A 坐标代入y=-2x+m ,即可求解;(2)y=-2x+6,令y=0,则x=3,故点B (3,0),则二次函数表达式为:y=a (x -1)2+4,将点B 的坐标代入上式,即可求解;(3)分∴BAP=90°、∴AP (P′)B=90°两种情况,求解即可.【详解】解:(1)将点A 坐标代入y =﹣2x+m 得:4=﹣2+m ,解得:m =6;(2)y =﹣2x+6,令y =0,则x =3,故点B (3,0),则二次函数表达式为:y =a (x ﹣1)2+4,将点B 的坐标代入上式得:0=a (3﹣1)2+4,解得:a =﹣1,故抛物线的表达式为:y =﹣(x ﹣1)2+4=﹣x 2+2x+3;(3)∴当∴BAP =90°时,直线AB 的表达式为:y =﹣2x+6,则直线PB 的表达式中的k 值为12,设直线PB 的表达式为:y =12x+b ,将点A 的坐标代入上式得:4=12×1+b , 解得:b =72, 即直线PB 的表达式为:y =12x+72, 当y =0时,x =﹣7,即点P (7,0);∴当∴AP (P′)B =90°时,点P′(1,0);故点P 的坐标为(7,0)或(1,0).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的基本知识,要注意类讨论,避免遗漏,本题较为简单.16.(1)45m <且0m ≠;(2)P 点坐标为()1,6. 【分析】解:(1)根据题意得0m ≠且()24(2)490m m m =+-⋅+>;(2)先求二次函数的解析式,再求抛物线的对称轴,用待定系数法求直线AB 的解析式,再求AB 与对称轴的交点P.【详解】解:()1根据题意得0m ≠且()24(2)490m m m =+-⋅+>, 所以45m <且0m ≠; ()2把()4,0A 代入()2229y mx m x m =++++得()168290m m m ++++=,解得1m =-,所以抛物线解析式为2228(1)9y x x x =-++=--+,所以抛物线的对称轴为直线1x =,当0x =时,2288y x x =-++=,则()0,8B ,设直线AB 的解析式为y kx b =+,把()4,0A ,()0,8B 代入得{408k b b +==,解得{28k b =-=,所以直线AB 的解析式为28y x =-+,当1x =时,286y x =-+=,所以P 点坐标为()1,6.【点睛】本题考核知识点:二次函数与一次函数. 解题关键点:理解二次函数图象的交点问题.17.(1)点A 、B 的坐标分别为:(6,﹣3),(﹣4,2);(2)30;(3)当a =1时,∴ABP 的面积最大,此时点P 的坐标为(1,234). 【分析】(1)由直线1y x 2=-与抛物线21y x 64=-+交于A 、B 两点,可得方程211x x 624-=-+,解方程即可求得点A 、B 的坐标;(2)首先由点C 是抛物线的顶点,即可求得点C 的坐标,又由S △ABC =S △OBC +S △OAC 即可求得答案;(3)首先过点P 作PD∴OC ,交AB 于D ,然后设21P a,a 64⎛⎫-+ ⎪⎝⎭,即可求得点D 的坐标,可得PD 的长,又由S △ABP =S △BDP +S △ADP ,根据二次函数求最值的方法,即可求得答案.【详解】解:(1)∴直线1y x 2=-与抛物线21y x 64=-+交于A 、B 两点, ∴211x x 624-=-+, 解得:x =6或x =﹣4,当x =6时,y =﹣3,当x =﹣4时,y =2,∴点A 、B 的坐标分别为:(6,﹣3),(﹣4,2);(2)∴点C 是抛物线的顶点.∴点C 的坐标为(0,6),∴S △ABC =S △OBC +S △OAC =12×6×4+12×6×6=30;(3)存在.过点P 作PD∴OC ,交AB 于D ,设P(a ,﹣14a 2+6), 则D(a ,﹣12a), ∴PD =﹣14a 2+6+12a , ∴S △ABP =S △BDP +S △ADP =12×(﹣14a 2+6+12a)×(a+4)+12×(﹣14a 2+6+12a)×(6﹣a)=25125(a 1)44--+ (﹣4<a <6), ∴当a =1时,∴ABP 的面积最大,此时点P 的坐标为(1,234).【点睛】此题考查了二次函数与一次函数的交点问题,三角形面积的求解以及二次函数的最值问题等知识.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.。
2 二次函数的图象与性质2.二次函数y=ax2+bx+c的图象与性质第4课时PPT课件(华师大版)
>-
>-
时,y随x的增大而增大.
(4)抛物线有最低点,当x=
-
最小值,y最小值=
-
时,y随x的增大而减小.
时,y有 (4)抛物线有最高点,当x=
-
大值,y最大值=
-
时,y有最
以选项 D 错误.
第4课时
二次函数y=ax2+bx+c的图象与性质
【归纳总结】求二次函数最大(小)值的方法:
(1)直接观察函数图象得最大(小)值;(2)配方法;(3)用顶点的坐标公
式求最大(小)值.
第4课时
二次函数y=ax2+bx+c的图象与性质
例 3 [高频考题]
2
如果二次函数 y=ax +bx+c 的图象如图
2
2
y=ax +bx+c 的形式.反过来,二次函数 y=ax +bx+c 也可以通过配方法转
2
化为 y=a(x-h) +k 的形式.具体过程如下:
第4课时
二次函数y=ax2+bx+c的图象与性质
2
y=ax +bx+c
=a + +
=a + ·
=a +
+
-
第4课时
二次函数y=ax2+bx+c的图象与性质
反思
已知二次函数 y=x2+(m-1)x+1,当 x>1 时,y 随 x 的增大而增大,试
二次函数的图象与性质(第4课时)-2022-2023学年九年级数学下册教材配套教学课件(北师大版)
∴a-1>0,
解得a>1.
故选:A.
3.点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,当x1
>x2>1时,y1与y2的大小是( )
A.y1≤y2 B.y1<y2 C.y1≥y2 D.y1>y2
【答案】D
【详解】解:∵抛物线y=(x-1)2-3,a=1>0开口向上,
(3)将抛物线C先向左平移2个单位长度、再向上平移
1个单位长度后,所得抛物线为` .请直接写出抛物
线` 的函数解析式.
【答案】(1)抛物线C的开口向下,对称轴为直线
x=1,顶点坐标为(1,2);
(2)y的取值范围为-2≤y≤2;
(3)y=-(x+1)2+3
(1)
解:∵y=-x2+2x+1=-(x-1)2+2,
典例精析
例1.已知二次函数y=a(x-1)2-c的图象如图所示,
则一次函数y=ax+c的大致图象可能是( A )
解析:根据二次函数开口向上则a>0,根据-c是
二次函数顶点坐标的纵坐标,得出c>0,故一次函数
y=ax+c的大致图象经过第一、二、三象限.故选A.
知识点二 二次函数y=a(x-h)2+k与y=ax2的关系
对称轴为直线x=1,当x>1时,y随x的增大而增大,
点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,
∴x1>x2>1,
∴y1>y2.
故选:D.
4.如图,在平面直角坐标系中,O为坐标原点,正
方形OABC的顶点A在y轴的负半轴上,点C在x轴的
正半轴上,经过点A、B的抛物线y=a(x-2)2+c(a>0)
九年级数学北师大版初三下册--第二单元2.2 《二次函数的图象和性质(第四课时)》课件
负半轴上,所以不与x轴相交;函数y=
3 2
x2-1与y=
3 (x-1)2的二次项系数相同,所以抛物线的形状相同,
2
因为对称轴和顶点的位置不同,所以抛物线的位置不同;
抛物线y=
1 2
x
1 2
2
的顶点坐标为
1 2
,0
;抛物线y=
1 2
x+
1 2
2
的对称轴是直线x=-
1 2
.
总结
知2-讲
本题运用了性质判断法和数形结合思想,运用二 次函数的性质,画出图象进行判断.
y 1 (x 1)2 …
2
-2 -0.5
0 -0.5
-2 -4.5 -8 …
y 1 (x 1)2 … -8 -4.5 -2 -0.5 0 -0.5 -2 …
2
y
画出二次函数 y = - 1 ( x + 1)2
与
y= -
1(x-
2 1)2 的图像,
2
1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
知识点 1 二次函数y=a(x-h)2的图象
知1-导
议一议
二次函数y= 1 (x-1)2的图象与二次函数y= 1 x2
2
2
的图象有什么关系?
类似地,你能发现二次函数y= 1 (x+1)2的图象与
二次函数y=
1
2 (x-1)2的图象有什么关系吗?
2
知1-导
x … -3 -2 -1 0 1 2 3 …
的开口方向、对称
轴、顶点坐标、增减性和最值?
(2)抛物线
y= -
1(x2
1)2
北师大版初中九年级下册数学课件 《二次函数与一元二次方程》二次函数PPT课件7
解:(1)当h=15时, t2-4t+3=0 t1=1,t2=3
20t–5t2=15
当球飞行1s和3s时,它的高度为15m.
15m
1s
3s
20m 2s
(2)当h=20时, t2-4t+4=0 t1=t2=2
20t–5t2=20
当球飞行2s时,它的高度为20m.
(3)当h=20.5时,
20t–5t2=20.5
第二章二次函数
二次函数与一元二次方程
回顾旧知
二次函数的一般式:
y ax2 bx c (a≠0)
x y x ______是自变量,____是____的函数。
当y=0时,
ax²+bx+c=0
ax²+bx+c=0
这是什么方程?
一元二次方程与二次函数有什么 关系?
九年级上册中我们学习了 “一元二次方程”
实际问题
以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛 物线,如果不考虑空气阻力,球的飞行高度h (单位:m)与飞行时间t (单位:s)之间 具有关系:h=20t–5t2 考虑下列问题: (1)球的飞行高度能否达到15m? 若能,需要多少时间? (2)球的飞行高度能否达到20m? 若能,需要多少时间? (3)球的飞行高度能否达到20.5m?为什么? (4)球从飞出到落地要用多少时间?
已知二次函数,求自变量的值
解一元二次方程的根
探究
下列二次函数的图象与x轴有交点吗? 若有,求出交点坐标.
(1)y=2x2+x-3
(2)y=4x2-4x+1
y
(3)y=x2–x+1
o
x
令y=0,解一元二次方程的根
新北师大版九年级数学下册第二章《二次函数的图像与性质》优质课件
4
y
2 y=-x2+3
-1 0
-5
函数y=-x2-2的图
象可由y=-x2的图
象沿y轴向下平移
2个单位长度得到.
O
5x
10
y=-x2
-2
-4
-6
y=-x2-2
-8
图象向上移还是向下移,移多少个 单位长度,有什么规律吗?
二次函数y=ax2+k的性质
y=ax2+k 图象 开口
a>0
a<0
y
y
(0,k)
o
增大而
减小,
当x= 0 时,取得最 大 值,这个
值等于
5。
(5)抛物线y=7x2-3的开口 向上 ,
对称轴是 y轴 ,顶点坐标
是 (0,-3) ,在对称轴的左侧,y随
x的增大而 减小 ,在对称轴的右侧,
y随x的增大而
增大,
当x= 0 时,取得最 小 值,这个
值等于
-3 。
(6).二次函数y=ax2+c (a≠0)的图象经过
x
开口向上
o (0,k) x
开口向下
a的绝对值越大,开口越小
Hale Waihona Puke 对称性 顶点 增减性关于y轴对称
(0,k)
顶点是最低点 (最小值为k)
顶点是最高点 (最大值为k)
在对称轴左侧递减 在对称轴右侧递增
在对称轴左侧递增 在对称轴右侧递减
函数y=ax2 (a≠0)和函数y=ax2+k(a≠0) 的图象形状 相同 ,只是位置不同; 当k>0时,函数y=ax2+k的图象可由 y=ax2的图象向 上 平移 k 个单位得 到,当k<0时,函数y=ax2+k的图象可由 y=ax2的图象向 下 平移 |k| 个单位 得到。
2.2.2 二次函数的图象与性质(课件)九年级数学下册课件(北师大版)
解: 依题意有: m2+m=2 ②
解②得:m1=-2, m2=1
由①得:m>-1
∴ m=1 此时,二次函数为: y=2x2.
随堂练习
1.若二次函数y=axa2-2 的图象开口向下,则a 的值为( )
A.2
B. -2
C.4
D. -4
2.已知二次函数y=(2-a)xa2-14,在其图象对称轴的左侧,y
问题1. 抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么
?
二次函数 开口 方向
顶点 坐标
对称轴
10 8
y =2x2 向上 (0,0) y轴
6
y =2x2+ 1
向上 (0,1)
y轴
4 2
y=2x2-1 向上 (0,-1) y轴 -4 -2 -2
y = 2x2+1 y = 2x2-1
开口方向 对称轴 顶点
a>0,开口向上, a<0,开口向下
y轴
原点(0,0)
(0,c)
增减性
a>0时,在对称轴左侧递 a>0时,在对称轴左侧递减, 减,在对称轴右侧递增; 在对称轴右侧递增;a<0时, a<0时,在对称轴左侧递 在对称轴左侧递增,在对 增,在对称轴右侧递减 称轴右侧递减
最值 最大(小)值是0 最大(小)值是c
(1)比较a,b,c,d 的大小; (2)说明a与c,b与d的数量关系.
解:(1)由抛物线的开口方向, 知a > 0,b > 0,c < 0,d < 0. 由抛物线的开口大小,知|a| > |b|,|c| > |d|, 因此a > b,c < d.∴ a > b > d > c. (2)∵①与③,②与④分别关于x 轴对称, ∴①与③,②与④的开口大小相同,方向相反. ∴ a+c=0,b+d=0.
2.4.1北师大版九年级数学下册课件第二章第四节二次函数的应用第一课时最大面积
+300
(或用公式:当 x=
-
b 2a=25
时,y
最大值=300)
∵- 2152<0 ∴ 当 x = 25m 时,y 的值最大,最大面积为 300m2
如果设AB=xm,BC如何表示,最大面积是多少? (随堂练习)
第11页,共26页。
变式练习4: 如图,已知△ABC是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm.若在△ABC上截出一矩形零件DEFG,使得EF在BC上,点D、 G分别在边AB、AC上.问矩形DEFG的最大面积是多少?
((12))求当Sx取与何x的值函时数所关围系成式的及花自圃变面量积的最取大值,范最围大;值是多S少=-?4x2+24x (3)若墙的最大可用长度为8米,求围成花圃的最大面积 .
24-4x≤8 (3)由题知24-4x>0 解得 4≤x<6
A
D
x>0
∵-4<0 且对称轴是直线 x=3
B
C
∴当 4≤x<6 时,y 随 x 增大而减少
(2)设五边形APQCD的面积为Scm2 ,写出S与t的函数关系式,t为何 值时S最小?求出S的最小值。
(2)由题意得
S=12×6 -
1 2
×2t(6-t)
=t2-6t+72=(t-3)2+63
∵1>0 ∴当 t=3 时 S 最小值=63
即 t=3cm 时 S 有最小值 63cm2
D
C
Q
2t cm
A t cm
解:(1)S=x(80-2x)= -2x2+80x
A
D
80-2x≤50
xm
xm
由题知80-2x≥40 解得 15≤x<40
第二章 二次函数-2022-2023学年九年级数学下册教材配套教学课件(北师大版)
【答案】-4≤x≤1
【点睛】本题考查了二次函数与不等式的关系,
主要利用了数形结合的思想,解题关键在于对图
像的理解,谁大谁的图象在上面.
典例精析
12.仙桃市大力推进义务教育均衡发展,加强学校
标准化建设,计划用三年时间对全市学校的设施和
设备进行全面改造,2020年市政府已投资7.5亿元人
D.2≤m≤3或m≥6
【答案】D
【详解】解:∵抛物线解析式为y=x2-4x+3,
∴对称轴为x=2,由二次函数的对称性可知,
当x=-1和x=5时,函数值y相等,
当x=1和x=3时,函数值y相等,
即当满足-1<x<1和3<x<5的函数值相同,
当-1<x1<1,存在一个正数m,当m-1<x2<m
时,都有y1≠y2,
知识点7 二次函数的应用
知识点总结
知识点一、二次函数的定义
1.一般地,如果y=ax2+bx+c(a,b,c是常数,
a≠0),那么y叫做x的二次函数.特别地,当a≠0,b=
c=0时,y=ax2是二次函数的特殊形式.
2.二次函数的三种基本形式
(1)一般式:y=ax2+bx+c(a,b,c是常数,a≠0);
B,若点B关于( ,0)的对称点C恰好落在抛物线上,
则a值为_____.
【答案】−
【分析】先根据二次函数的性质及题意求出点B的
坐标,再根据对称的性质求出点C的坐标,最后将
点C的坐标代入二次函数解析式求解即可.
典例精析
11.如图,已知抛物线y=ax2+c与直线y=kx+m交
于A(-4,y1),B(1,y2)两点,则关于x的不等式
北师大版九年级数学下册《二次函数——确定二次函数的表达式》教学PPT课件(4篇)
1.设:
(表达式)
(0,-3)代入y=ax2+bx+c得
2.代:
a=-1,
9a
-
3b+c=0,
(坐标代入)
a-b+c=0, 解得 b=-4,
3.解:
c=-3,
c=-3.
方程(组)
4.还原:
∴所求的二次函数的表达式是
(写表达式)
y=-x2-4x-3.
第二章 二次函数
3 确定二次函数的表达式
CONTENTS
目
录
1
学习目标
2
新课导入
3
新课讲解
4
课堂小结
5
当堂小练
6
拓展与延伸
学习目标
1.用一般式(三点式)确定二次函数表达式
2.用顶点式确定二次函数表达式
3.用交点式确定二次函数表达式(重点、难点)
新课导入
1. 一次函数的表达式是什么?如何求出它的表达式?
2
(2)△ABC的面积是6.
O
B
A
C
x
随堂即练
6.已知一条抛物线经过E(0,10),F(2,2),G
(4,2),H(3,1)四点,选择其中两点用待定系
a b c 6
9a 3b c 0
c 3
解这个方程组,得a= 0.5,b= – 2.5,c=3
∴所求得的函数解析式为y=0.5x²– 2.5x+3
当堂小练
已知:二次函数的图像的对称轴为直线x= –3,并且函数有最
大值为5,图像经过点(–1,–3),求这个函数的解析式。
九年级数学北师大版初三下册--第二单元2.1《二次函数》课件
设人民币一年定期储蓄的年利率是x,一年到期后, 银行将本金和利息自动按一年定期储蓄转存.如果存 款是100元,那么请你写出两年后的本息和y(元)的表 达式(不考虑利息税).
思索归纳 定义:一般地,形如y=ax²+bx+c(a,b,c 是常数,a≠ 0)的函数叫做x的二次函数.
提问:
1.上述概念中的a为什么不能是0? 2.二次函数y=ax2+bx+c中的b和c可否为0?若b和c各自为0
或均为0,上述函数的式子可以改写成怎样?你认为它们还是 不是二次函数? 3.由问题1和2,你能否总结:一个函数是否是二次函数,关键 看什么?
北师大版初中数学九年级下册
第二章
第1课
温故知新
复习: 1、什么是函数?
在某个变化过程中,有两个变量x 和y ,如果对于x 的每 一个可取的值,都有唯一一个y 值与它对应,那么y 称为x 的 函数。
2、什么叫做一次函数? 形如y=kx+b (k、b为常数,k≠0) 3、什么叫做反比例函数? 形如y= k (k为常数,k≠0)
导入新课
某果园有100棵橙子树,每一棵 树平均结600个橙子。现准备多种 一些橙子树以提高产量,但是如 果多种树,那么树之间的距离和 每一棵树所接受的阳光就会减少 .根据经验估计,每多种一棵树 ,平均每棵树就会少结5个橙子。
(2)假设果园增种x棵橙子树, 那么果园共有多少棵橙子树?这 时平均每棵树结多少个橙子?
(2)y=ax²+c ------ (a≠0,b=0,c≠0).
(3)y=ax²+bx ---- (a≠0,b≠0,c=0).
二次函数的图象与性质(第一课时) 课件(共34张PPT)北师大版初中数学九年级下册
此外,二次函数在建筑学上也有重要应用,如抛物线型隧道、抛物线型拱桥、抛物线型吊桥、抛物线型弯道等.要确定这些抛物线的形状,需要对地质、地形、气象、水力、材料等因素进行综合分析.
这节课 你学到了什么?
同学们再见!
授课老师:
时间:2024年9月15日
1.某一物体的质量为m,它运动时的能量E与它的运动速度v之间的关系是:
(m为定值)
2.导线的电阻为R,当导线中有电流通过时,单位时间所产生的热量Q与电流强度I之间的关系是:
(R为定值)
Q=RI2
3.g表示重力加速度,当物体自由下落时,下落的距离s与下落时间t之间的关系是:
二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线 y=x2.
开口向上
(2)图象与x轴有交点吗?如果有,交点坐标是什么?
有,(0,0)
是,对称轴是 y 轴.
(-2,4)和(2,4);
(-3,9)和(3,9)等等.
(-1,1)和(1,1);
(3)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点.
探究1 请作出二次函数 y=x2 的图象.
x
…
…
y
…
…
-3
-2
-1
0
1
2
3
(2)在直角坐标系中描点.
(3)用光滑的曲线顺次连接各点,便得到函数 y=x2 的图象.
y=x2
x
…
-3
-2
-1
0
1
2
3
…
y
…
9
4
1
0
1
4
9
…
(1)你能描述图象的形状吗?
2.2.4北师大版九年级数学下册课件第二章第二节二次函数的图象和性质第四课时二次函数y=ax2+bx+c图象和性质
函数表达式
开口方 向
a>0, 开口 向上; a<0, 开口 向下.
对称轴
y轴(直线x 0)
y轴(直线x 0)
顶点坐标
y ax2 y ax2 c
y ax h
2 2
( 0 ,0 ) ( 0, c ) ( h ,0 ) (h , k )
直 线x h
⑴.钢缆的最低点到桥面的距离是少?你是怎样计算的?与同伴 交流. 可以将函数y=0.0225x2+0.9x+10配方,求得顶点坐标,从而获得钢缆 的最低点到桥面的距离;
y 0.0225 x2 0.9x 10
4000 2 0.0225 x 40x 9 桥面 -5 0 5 4000 2 2 2 0.0225 x 40x 20 20 9 400 2 0.0225 x 20 9
y 0.0225 x2 0.9x 10 y/m 10
x/m
这条抛物线的顶点坐标 是 20,1.
x 20 1. 0.0225
2
由此可知桥面最低点到 桥面的距离是 1m.
⑵两条钢缆最低点之间的距离是多少?你是怎样计算的?与同伴 交流. 想一想,你知道图中右面钢缆的表达式是什么吗?
增减性
在对称轴的左侧,y随 着x的增大而增大. 在 对称轴的右侧, y随着 x的增大而减小.
最值
b 当x 时, 2a 4ac b 2 最小值为 4a
b 当x 时, 2a 4ac b 2 最大值为 4a
随堂练习
1.确定下列二次函数的开口方向、对称轴和顶点坐标. (1 ). y = 5 ( x -1) 2 ; 2. y 2x2 12x 3 3. y 5x2 8x 319;
北师大版九年级数学下册2.2 二次函数的图像与性质课件
y ax2 当a<0时,在对称轴的 右侧,y随着x的增大而 减小。
二次函数y=ax2的性质
y=ax2
a>0
a<0图象开口 对性顶点 增减性O O
开口向上
开口向下
a的绝对值越大,开口越小 关于y轴对称
-5
-6
-7
-8 -9
y=-21 x2
-10 y=-2x2
函数y=- 1 x2,y=-2x2的图像与y=-x2的
2
图像相比,有什么共同点和不同点?
共同点: 开口向下,顶点是原点,对称轴是y轴, 顶点是抛物线的最高点
除顶点外,图像都在x轴下方
不同点: 开口大小不同
y 1
性质:当a<0时,图象
开口向下,顶点是抛物
4.5 2 0.5
y 10
9 8 7 6 5 4
3 2 1
0 0.5
1 1.5
2 4.5
2…
8…
-5 -4 -3 -2 -1 o 1 2 3 4 5 x
函数y=
1 2
x2,y=2x2的图像与函数y=x2的
图像相比,有什么共同点和不同点?
共同点: 开口向上,顶点是原点,顶点是抛物线 的最低点,对称轴是y轴, 除顶点外,图像都在x轴上方 y= 2x2 y=x2
y
y=x2
o
x
y
o
x
y=-x2
从图象可以看出,二次函数 y=x2和y=-x2的图象都是轴对 称图形,y轴是它们的对称轴.
抛物线与对称轴的交点叫做抛物线的顶点.
抛物线y=x2的顶点(0,0)是它的最低点.
抛物线y=-x2的顶点(0,0)是它的最高点.
实际上,每条抛物线都有对称轴, 抛物线与对称轴的交点叫做抛物线 的顶点;顶点是抛物线的最低点或 最高点
2.4.2北师大版九年级数学下册课件第二章第四节二次函数的应用第二课时最大利润
x y 160 x 120 6 当x 20时,y最大 19440 10 这时每间客房的日出租金为160+20=180元 3 x 2 24 x 19200 5
3 x 20 2 19440 5
x 0, 且120 0 x 200
解:设单价是 x 元时可以获利为 y 元. 13-x 则 y=(x - 10)(5000 + 500× )=-5000(x-12)2 +20000 0.1 因此厂家批发单价是 12 元时可以获得最大利润
探究活动一 例2:某旅社有客房120间,每间房的日租金为160元时,每天都 客满,经市场调查发现,如果每间客房的日租金每增加10元时, 那么客房每天出租数会减少6间.不考虑其他因素,旅社将每间客 房的日租金提高到多少元时,客房日租金的总收入最高?
y=(x-8)[100-10(x-10)] =-10x2+280x-1600
=-10(x-14)2+360
解:设每间客房的日租金提高 x 个 10 元, 则每天客房出租数会减少 6x 间。 设客房日租金总收入为 y 元 则 y=(160+10x)(120-6x)= - 60(x-2)2+19440 ∵x≥0,且 120-6x>0 ∴0≤x<20 ∵- 60<0 ∴当 x=2 时,y 有最大值 19440。 这时每间客房的日租金为 160+10×2=180 元。 客房总收入最高为 19440 元。 答:每Байду номын сангаас客房的日租金提高到 180 元时,客房日租金总收入 最高为 19440 元。
b b 4ac b 2 对称轴是直线 x 顶点坐标是 , 2a 2a 4 a b 4ac b 2 当x 时, y有最大或最小值 . 2a 4a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最值
x=h时,y最小
x=h时,y最大
抛物线y=a(x-h)2+k可=以k看作是由抛物线y=ax2=经k 过平移得到的.
例题讲解
例1 求二次函数y=2x2-8x+7图象的对称轴和顶点坐标.
解: y=2x2-8x+7 y=2(x2-4x)+7
(第一步:提,提出二次项系数)
y=2(x2-4x+4)-8+7 (第二步:配,加上一次项系数一半的平方)
4.把二次函数y=-2x2-4x+1配成y=a(x-h)2+k的形式 为_y_=__-__2_(x_+__1_)2_+__3,所以其图象的开口向_下__,对称轴 是直线_x_=_-_1_,顶点坐标为_(_-_1_,3_)_.
5. 下图所示桥梁的两条钢缆具有相同的抛物线形状,而
且左、右两条抛物线关于y轴对称.按照图中的直角坐标
(顶点式)
对称轴: x b
2a
4. 成功的信念在人脑中的作用就如闹钟,会在你需要时将你唤醒 4 、当你的才华还撑不起你的野心时,那你就应该静下心来学习。 10. 树立远大的目标,现在看起来似乎是遥不可及,但是不要怀疑,每天持续地努力,累积下来,一定可以达到。 16. 伟大的事业不是靠力气、速度和身体的敏捷完成的,而是靠性格、意志和知识的力量完成的 10 、读书改变命运,刻苦成就事业,态度决定一切。 3. 月考分数高低何足挂齿,平时名次浮动纯属正常。 1 、人生就像一口大锅,当你走到了锅底时,无论朝哪个方向走,都是向上的。最困难的时刻也许就是拐点的开始,改变一下思维方式就可能
C.3
D.4
解析:由图象开口向下可得a<0,由对称轴在y轴左侧可得b<0, 由图象与y轴交于正半轴可得c>0,则abc>0,故①正确;
由对称轴x>-1可得2a-b<0,故②正确;
由图象上横坐标为 x=-2的点在第三象限可得4a-2b+c<0,故③正确;
由图象上x=1的点在第四象限得a+b+c<0,由图象上x=-1的点在第 二象限得出 a-b+c>0,则(a+b+c)(a-b+c)<0,即(a+c)2-b2<0, 可得(a+c)2<b2,故④正确.
4ac b2
,
).
2a 4a
如果a>0,
当x< b 时,y随x的增大而减小;
2a
当x> b 时,y随x的增大而增大;
2a
当x=
b 2a
时,函数达到最小值,
最小值为 4ac b2 .
4a
x b . 2a
y
O
x
最小值:ymin
4ac b2 4a
(a>0)
如果a<0,
当x< b 时,y随x的增大而增大;
+
c
=
a
x+
b 2a
2
+
4ac - b2 4a
.
类似于一元二次 方程的求根公式
因此,二次函数y=ax2+bx+c图象的对称轴是直线 x = - b ,
2a
顶点坐标为
-
b 2a
,4ac 4a
b2
.
获取新知
二次函数y=ax2+bx+c图象和性质:
对称轴: x b . 2a
顶点:
(
b
随堂演练
1. 关于二次函数y=2x2+4x-1,下列说法正确的是( D ) A.图象与y轴的交点坐标为(0,1) B.图象的对称轴在y轴的右侧 C.当x<0时,y的值随x值的增大而减小 D.y的最小值为-3
2. 一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+ c(a≠0)在同一平面直角坐标系中的图象可能是( C )
3.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=-1
是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③
a-b+c= -9a;④若(-3,y1),(3 ,y2)是抛物线上两点
,则y1>y2.其中正确的是( )B
y
A.①②③ C.①②④
B.①③④ D.②③④
O 2x x=-1
系,左面一条抛物线可以用 y = 9 x2 + 9 x + 10 表示.
400 10
(1)钢缆的最低点到桥面的距离是多少?
(2)两条钢缆最低点之间的距离是多少?
桥面
10 y/m
5
-5O 5
x/m
解: y 9 x2 9 x 10
400 10
9
顶点坐标
x
b 2a
10 2 9
20
400
顶点坐标 y
y=2(x-2)2-1 (第三步:化,化成顶点式)
∴对称轴是x=2,顶点坐标为(2,-1)
例2 求二次函数y=ax2+bx+c图象的对称轴和顶点坐标.
解:把二次函数y=ax2+bx+c的右边配方,得
y= ax2+bx+c
=
Байду номын сангаас
a
x2+b a
x
+
c
=
a
x
2
+
2•
b
2a
x+
b 2a
2
-
b 2a
2
图象的特征
开口向上 开口向下 对称轴在y轴左侧
对称轴在y轴右侧 图象过原点
与y轴正半轴相交 与y轴负半轴相交
例题讲解 例3 已知二次函数y=ax2+bx+c的图象如图所示,下列结论: ①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2.
其中正确的个数是 ( D )
A.1
B.2
4ac b2
4
9 400
10
9 10
2
1
4a
4 9
400
∴钢缆的最低点到桥面的距离是1m
两条钢缆最低点之间的距离是|-20|×2=40m
课堂小结
y=ax2+bx+c(a ≠0) (一般式)
配方法 公式法
y a(x b )2 4ac b2
2a
4a
顶点:
( b , 4ac b2 ) 2a 4a
2a
当x> b 时,y随x的增大而减小;
2a
当x= b 时,函数达到最大值,
2a
最大值为
4ac b2 4a
.
y
最大值:ymax
4ac b2 4a
O x b .
x
2a
(a<0)
二次函数y=ax2+bx+c的图象与a、b、c的关系
项目 字母
a
b
c
字母的符号
a>0 a<0 ab>0(a,b同号)
ab<0(a,b异号) c=0 c>0 c<0
2.2 第4课时 二次函数y=ax2+bx+c的图象与性质
知识回顾 完全平方公式是什么?
(a+b)2=a 2 +2ab+b 2 (a-b)2=a 2 -2ab+b 2
y=a(x-h)2+k 开口方向 顶点坐标
对称轴
a>0 向上 (h ,k) x=h
a<0 向下 (h ,k) x=h
增减性
当x<h时,y随着x的增 当x<h时,y随着x的增大 大而减小;当x>h时, 而增大;当x>h时,y随 y随着x的增大而增大. 着x的增大而减小.
迎来转机。乐观豁达的人,能把平凡的生活变得富有情趣,能把苦难的日子变得甜美珍贵,能把繁琐的事情变得简单可行。以平常心看世界, 花开花谢都是风景。