高三数学单元练习题概率与统计(Ⅲ)

合集下载

高中数学概率统计练习题

高中数学概率统计练习题

y 2015年12月31日期末复习题(二)一.选择题(共12小题)1.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,则此样本的容量为()A.40B.80C.160D.3202.某县教育局为了解本县今年参加一次大联考的学生的成绩,从5000名参加今年大联考的学生中抽取了250名学生的成绩进行统计,在这个问题中,下列表述正确的是()A.5000名学生是总体B.250名学生是总体的一个样本C.样本容量是250D.每一名学生是个体3.(2015?抚顺模拟)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法.抽取4个班进行调查,若抽到的最小编号为3,则抽取最大编号为()A.15B.18C.21D.224.一个频率分布表(样本容量为30)不小心倍损坏了一部分,只记得样本中数据在[20,60)上的频率为0.8,则估计样本在[40,50),[50,60)内的数据个数共为()A.15B.16C.17D.195.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为()A.11B.11.5C.12D.12.56.某公司在2014年上半年的收入x(单位:万元)与月支出(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系7.下列事件是随机事件的是()(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引(3)在标准大气压下,水在1℃时结冰(4)任意掷一枚骰子朝上的点数是偶数.A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)8.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么对立的两个事件是()A.至少有1个白球,至少有1个红球B.至少有1个白球,都是红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是白球9.抛掷一枚质地均匀的硬币,如果连续抛掷2011次,那么第2010次出现正面朝上的概率是()A.B.C.D.10.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是()A.0.42B.0.28C.0.3D.0.711.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4B.0.6C.0.8D.112.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.二.填空题(共4小题)13.在棱长为2的正方体内随机取一点,取到的点到正方体中心的距离大于1的概率.14.从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为。

高三数学单元测试《概率与统计》

高三数学单元测试《概率与统计》
(1)取得的4个元件均为正品的概率;
(2)取得正品元件个数 的数学期望.
(参考数据:4个元件中有两个正品的概率为 ,三个正品的概率为 )
18.(本小题满分12分)已知10件产品中有3件是次品.
(1)任意取出3件产品作检验,求其中至少有1件是次品的概率;
(2)为了保证使3件次品全部检验出的概率超过0.6,最少应抽取几件产品作检验?
A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法
C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法
3.设随机变量ξ的概率分布列为P(ξ=k)= ,k=1,2,3,4……6,其中c为常数,则P
(ξ≤2)的值为()
A. B. C. D.
4.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()
高三数学单元测试《概率与统计》
一、选择题(本题每小题5分,共60分)
1.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为()
A. B. C. D.
参考答案
一、选择题(每小题5分,共60分):
(1).D (2).B (3).B (4). C(5).D (6) B (7).B (8).C (9).C (10). B (11).C (12).C
二、填空题(每小题4分,共16分)
(13). (文) 5 (14). 24 (15). (p+0.1)a(16).
A. B. C. D.
5.一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是()

高中数学-阶段验收评价(三)统计与概率跟踪测试卷及答案

高中数学-阶段验收评价(三)统计与概率跟踪测试卷及答案

阶段验收评价(三)统计与概率一、单项选择题(本大题共8小题,每小题5分,共40分)1.某学校共有36个班级,每班50人,现要求每班派3名代表参加会议,在这个问题中,样本容量是( )A .30B .50C .108D .150解析:选C 由样本的定义知,样本容量n =36×3=108.2.小波一星期的总开支分布如图①所示,一星期的食品开支如图②所示,则小波一星期的鸡蛋开支占总开支的百分比为( )A .1%B .2%C .3%D .5%解析:选C 由题图②知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%.3.某校高三级部分为甲、乙两个级部,现用分层抽样的方法从高三级部中抽取30名老师去参加教研会.已知乙级部中每名老师被抽到的可能性都为13,则高三级部的全体老师的人数为( )A .10B .30C .60D .90解析:选D 因为乙级部中每名老师被抽到的可能性都为13,所以高三年级中每名老师被抽到的可能性都为13,由30÷13=90(人),可得全体老师人数.4.从装有5个红球和3个白球的口袋内任取3个球,那么,互斥而不对立的事件是 ( )A .至少有一个红球;都是红球B .至少有一个红球;都是白球C .至少有一个红球;至少有一个白球D .恰有一个红球;恰有两个红球解析:选D 根据互斥事件、对立事件的定义可得.5.已知一组数据8,9,10,x ,y 的平均数为9,方差为2,则x 2+y 2= ( )A .162B .164C .168D .170解析:选D 由题意可知15(8+9+10+x +y )=9,15[(8-9)2+(9-9)2+(10-9)2+(x -9)2+(y -9)2]=2,解得x 2+y 2=170.6.如图是一容量为100的样本的质量的频率分布直方图,则由图可估计样本质量的中位数为( ) A .11 B .11.5 C .12D .12.5解析:选C 由频率分布直方图得组距为5,故样本质量在[5,10),[10,15)内的频率分别为0.3和0.5,从而中位数为10+0.20.5×5=12,故选C. 7.种植两株不同的花卉,若它们的成活率分别为p 和q ,则恰有一株成活的概率为( )A .p +q -2pqB .p +q -pqC .p +qD .pq解析:选A 恰有一株成活的概率为p (1-q )+q (1-p )=p +q -2pq .8.(2020·新高考山东卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42%解析:选C 不妨设该校学生总人数为100,既喜欢足球又喜欢游泳的学生人数为x ,则100×96%=100×60%-x +100×82%,解得x =46,所以既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.故选C. 二、多项选择题(本大题共4小题,每小题5分,共20分) 9.下列说法正确的是( )A .一组数据不可能有两个众数B.一组数据的方差必须是正数C.将一组数据中的每一个数据都加上或减去同一常数后,方差不变D.在频率分布直方图中,每个小长方形的面积等于相应小组的频率解析:选CD A错,众数可以有多个;B错,方差可以为0.10.不透明的口袋内装有红色、绿色和蓝色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而非对立的事件是()A.2张卡片都不是红色B.2张卡片恰有一张红色C.2张卡片至少有一张红色D.2张卡片都为绿色解析:选ABD从6张卡片中一次取出2张卡片的所有情况有“2张都为红色”“2张都为绿色”“2张都为蓝色”“1张红色1张绿色”“1张红色1张蓝色”“1张绿色1张蓝色”,在选项给出的四个事件中,与“2张卡片都为红色”互斥而非对立的事件有“2张卡片都不是红色”“2张卡片恰有一张红色”“2张卡片都为绿色”,而“2张卡片至少有一张红色”包含事件“2张卡片都为红色”,二者并非互斥事件.故选A、B、D.11.在一个古典概型中,若两个不同的随机事件A,B发生的概率相等,则称A和B是“等概率事件”,如:随机抛掷一个骰子一次,事件“点数为奇数”和“点数为偶数”是“等概率事件”.关于“等概率事件”,以下判断正确的是()A.在同一个古典概型中,所有的样本点之间都是“等概率事件”B.若一个古典概型的事件总数大于2,则在这个古典概型中除样本点外没有其他“等概率事件”C.因为所有必然事件的概率都是1,所以任意两个必然事件都是“等概率事件”D.同时抛掷三枚硬币一次,则事件“仅有一个正面”和“仅有两个正面”是“等概率事件”解析:选AD对于A,由古典概型的定义知,所有样本点的概率都相等,故所有的样本点之间都是“等概率事件”,故A正确;对于B,如在1,3,5,7,9五个数中,任取两个数,所得和为8和10这两个事件发生的概率相等,故B错误;对于C,由题可知“等概率事件”是针对同一个古典概型的,故C错误;对于D,同时抛掷三枚硬币一次共有8种不同的结果,其中“仅有一个正面”包含3种结果,其概率为38,“仅有两个正面”包含3种结果,其概率为38,故这两个事件是“等概率事件”,故D正确.故选A、D.12.下列对各事件发生的概率判断正确的是 ( )A .某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为427B .三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C .从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是13D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A不发生的概率相同,则事件A 发生的概率是29解析:选AC 对于A ,该生在第3个路口首次遇到红灯的情况为前2个路口不是红灯,第3个路口是红灯,所以概率为 1-132×13=427,故A 正确; 对于B ,用A ,B ,C 分别表示甲、乙、丙三人能破译出密码,则P (A )=15,P (B )=13,P (C )=14,“三个人都不能破译出密码”发生的概率为45×23×34=25,所以此密码被破译的概率为1-25=35B 错误;对于C ,该试验的样本空间Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},记A 为“取出的2个数之差的绝对值为2”,则A ={(1,3),(2,4)},故所求概率为13,故C 正确;对于D ,易得P (A ∩B )=P (B ∩A ), 即P (A )P (B )=P (B )P (A ), 即P (A )[1-P (B )]=P (B )[1-P (A )], 所以P (A )=P (B ),又P (A ∩B )=19,所以P (A )=P (B )=13所以P (A )=23,故D 错误.故选A 、C.三、填空题(本大题共4小题,每小题5分,共20分)13.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人):篮球组 书画组 乐器组 高一 45 30 a 高二151020学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________. 解析:由题意知,1245+15=30120+a,解得a =30.答案:3014.一个三位自然数百位、十位、个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“有缘数”的概率为________.解析:由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数为6个,由1,3,4组成的三位自然数为6个,由2,3,4组成的三位自然数为6个,共有24个.由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个,所以三位数为“有缘数”的概率为1224=12. 答案:1215.(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________. 解析:∵x =10×0.97+20×0.98+10×0.9910+20+10=0.98,∴经停该站高铁列车所有车次的平均正点率的估计值为0.98. 答案:0.9816.一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出白球的概率为______;摸出红球的概率为________.解析:由题意知A =“摸出红球或白球”与B =“摸出黑球”是对立事件,又P (A )=0.58,∴P (B )=1-P (A )=0.42,又C =“摸出红球或黑球”与D =“摸出白球”也是对立事件,∵P (C )=0.62,∴P (D )=0.38.设事件E =“摸出红球”,则P (E )=1-P (B ∪D )=1-P (B )-P (D )=1-0.42-0.38=0.2. 答案:0.38 0.2四、解答题(本大题共6小题,共70分)17.(10分)某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:天数111221 2用水量/吨22384041445095(1)在这10天中,该公司用水量的平均数是多少?(2)在这10天中,该公司每天用水量的中位数是多少?(3)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量更合适?解:(1)x=110(22+38+40+2×41+2×44+50+2×95)=51(吨).(2)中位数为41+442=42.5(吨).(3)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下,故用中位数描述每天的用水量更合适.18.(12分)小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;(2)这三列火车至少有一列正点到达的概率.解:用A,B,C分别表示这三列火车正点到达的事件,则P(A)=0.8,P(B)=0.7,P(C)=0.9,所以P(A-)=0.2,P(B-)=0.3,P(C-)=0.1.(1)由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为P1=P(A-BC)+P(A B-C)+P(AB C-)=P(A-)P(B)P(C)+P(A)P(B-)P(C)+P(A)P(B)P(C-)=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为P2=1-P(A-B-C-)=1-P(A-)P(B-)P(C-)=1-0.2×0.3×0.1=0.994.19.(12分)两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲:1,0,2,0,2,3,0,4,1,2.乙:1,3,2,1,0,2,1,1,0,1.(1)哪台机床次品数的平均数较小?(2)哪台机床的生产状况比较稳定?解:(1)x甲=(1+0+2+0+2+3+0+4+1+2)×110 1.5,x乙=(1+3+2+1+0+2+1+1+0+1)×110=1.2.∵x甲>x乙,∴乙机床次品数的平均数较小.(2)s2甲=110×[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理s2乙=0.76,∵s2甲>s2乙,∴乙机床的生产状况比较稳定.20.(12分)甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢.(1)若以A表示和为6的事件,求P(A).(2)现连玩三次,若以B表示甲至少赢一次的事件,C表示乙至少赢两次的事件,试问B与C是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.解:(1)样本空间与点集S={(x,y)|x∈N*,y∈N*,1≤x≤5,1≤y≤5}中的元素一一对应.因为S中点的总数为5×5=25(个),所以样本点总数为n=25.事件A包含的样本点共5个,即(1,5),(2,4),(3,3),(4,2),(5,1),所以P(A)=525=15.(2)B与C不是互斥事件,因为事件B与C可以同时发生,如甲赢一次,乙赢两次的事件即符合题意.(3)这种游戏规则不公平.结合(1)知和为偶数的样本点个数为13个,即甲赢的概率为13 25,乙赢的概率为12 25,所以这种游戏规则不公平.21.(12分)某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数x与数学成绩相应分数段的人数y之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 解:(1)由频率分布直方图知(2a+0.02+0.03+0.04)×10=1,解得a=0.005.(2)由频率分布直方图知这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为0.005×10×100=5,0.04×10×100=40,0.03×10×100=30,0.02×10×100=20.由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5,40×12=20,30×43=40,20×54=25.故数学成绩在[50,90)之外的人数为100-(5+20+40+25)=10.22.(12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付方式支付金额不大于2 000元大于2 000元仅使用A27人3人仅使用B24人1人(1)估计该校学生中上个月A,B两种支付方式都使用的人数.(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率.(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000 元的人数有变化?说明理由.解:(1)由题知,样本中仅使用A的学生有27+3=30(人),仅使用B的学生有24+1=25(人),A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100-30-25-5=40(人).估计该校学生中上个月A,B两种支付方式都使用的人数为40100×1 000=400.(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C)=125=0.04.(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E)=0.04.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.。

高三数学概率和统计

高三数学概率和统计

专题18 概率、统计★★★高考在考什么【考题回放】1.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么甲是乙的( B ) A .甲是乙的充分但不必要条件 B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件 2.在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为( C ) A .17 B .27 C .37 D .473.某班有50名学生,其中 15人选修A 课程,另外35人选修B 课程.从班级中任选两名学生,他们是选修不同课程的学生的慨率是73.(结果用分数表示) 4.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是49. 5.某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为 ( D ) (A )1 (B )2 (C )3 (D )4 6.某射手进行射击训练,假设每次射击击中目标的概率为53,且各次射击的结果互不影响。

(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答); (2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答); (3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列. 【专家解答】(Ⅰ)记“射手射击1次,击中目标”为事件A ,则在3次射击中至少有两次连续击中目标的概率1()()()P P A A A P A A A P A A A =⋅⋅+⋅⋅+⋅⋅33223333363555555555125=⨯⨯+⨯⨯+⨯⨯=(Ⅱ)射手第3次击中目标时,恰好射击了4次的概率2223323162()555625p C =⨯⨯⨯=(Ⅲ)由题设,“k ξ=”的概率为()P k ξ=233123()()55k k C --=⨯⨯(*k N ∈且3k ≥)所以,ξ的分布列为:★★★高考要考什么【考点透视】等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差.【热点透析】1.相互独立事件同时发生的概率,其关键是利用排列组合的内容求解m ,n . 2.独立重复试验,其关键是明确概念,用好公式,注意正难则反的思想.3.离散型随机变量的分布列、期望和方差,注意ξ取值的完整性以及每一取值的 实际含义.★★★突破重难点【范例1】某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(Ⅰ)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望; (Ⅱ)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率.解(1)0,1,2,3ξ=22342255189P( 0)=10050C C C C ξ=∙==, 211123324422225555C 24P( 1 )=C 50C C C C C C C ξ=∙+∙=,11122324422222555515(2)50C C C C C P C C C C ξ==∙+∙=, 124222552(3)50C C P C C ξ==∙=所以ξ的分布列为ξ的数学期望E(ξ)=0123 1.250505050⨯+⨯+⨯+⨯=(2) P(2ξ≥)=15217(2)(3)505050P P ξξ=+==+=【点晴】本题以古典概率为背景,其关键是利用排列组合的方法求出m ,n ,主要考察分布列的求法以及利用分布列求期望和概率。

高三数学练习题集

高三数学练习题集

高三数学练习题集一、函数与方程1. 已知函数f(x)=3x+5,求f(2)的值。

2. 如果函数g(x)满足g(x+3)=2x+7,求函数g(x)的表达式。

3. 解方程2x+3=7,并判断方程的解是否唯一。

4. 求方程组 { 2x+y=5 { x-2y=3 的解。

5. 已知函数h(x)=(x-1)(x+2),求h(x)的零点。

二、三角函数1. 求直角三角形中的一个角度θ,其中sinθ=0.6。

2. 已知角A的正弦值为0.8,求角A的余弦值。

3. 计算tan(45°)的值。

4. 已知三角形ABC,角A=30°,角B=60°,求角C的度数。

5. 转化下列角度为弧度制:a) 45°,b) 120°,c) -60°。

三、概率与统计1. 掷一枚骰子,求得到奇数的概率。

2. 从一副52张扑克牌中随机抽取一张,求抽到红桃的概率。

3. 有一个装有5个红球和3个蓝球的盒子,从盒子中不放回地抽取两个球,求抽到两个红球的概率。

4. 一组数据为:5, 7, 3, 8, 4,求这组数据的平均值。

5. 对于一组数据:2, 3, 5, 4, 6,求数据的中位数。

四、数列与级数1. 已知等差数列的首项为3,公差为5,求第10项的值。

2. 求等差数列1, 3, 5, ...的前n项和Sn。

3. 求等比数列2, 4, 8, ...的前n项和S_n。

4. 求级数1+0.5+0.25+0.125+...的和。

5. 求级数1+2+4+8+...+128的和。

五、立体几何1. 一个正方体的棱长为a,求它的表面积和体积。

2. 在平面直角坐标系中,已知四个点A(2, 3),B(5, 7),C(-1, 4),D(3, -2),判断四边形ABCD是否为矩形。

3. 已知一个圆的半径为r,求它的周长和面积。

4. 已知直角三角形的两条直角边长分别为a和b,求它的斜边长c。

5. 一个椎体的底面是一个半径为r的圆,高为h,求它的体积。

模块二讲重点 概率与统计(3)统计及统计案例小题-2021届高考数学二轮复习课件(新高考版)

模块二讲重点 概率与统计(3)统计及统计案例小题-2021届高考数学二轮复习课件(新高考版)

提取频率分布直方图中的数据
(1)组距、频率:频率分布直方图中每个矩形的宽表示
组距,高表示
频率 组距
,面积表示该组数据的频率,各个矩形
的面积之和为1;
(2)众数:最高小长方形底边中点的横坐标;
(3)中位数:平分频率分布直方图面积且垂直于横轴的
直线与横轴交点的横坐标;
(4)平均数:频率分布直方图中每个小长方形的面积乘
【分析】 由茎叶图,可得甲的中位数是65,从而可知乙 的中位数也是65,可得到y=5,再利用二者平均数也相等,可 求出x的值,即可得到答案.
【解析】 由茎叶图,可知甲的中位数为65,则乙的中位 数也是65,故y=5,
因为甲、乙的平均数相等, 所以56+62+65+5 74+70+x=59+61+657+65+78, 解得x=3.故选D.
小长方形底边中点的横坐标,再求和;
(5)参数:若纵轴上存在参数,则根据所有小长方形的
面积之和为1,列方程即可求得参数值.
用样本的数字特征估计总体的数字特征 (1)众数:一组数据中出现次数最多的数; (2)方差和标准差反映了数据波动程度的大小. ①方差:s2=1n[(x1--x )2+(x2--x )2+…+(xn--x )2]; ②标准差: s= n1[(x1--x )2+(x2--x )2+…+(xn--x )2]. 性质:标准差(或方差)越小,说明数据波动越小,越稳 定;标准差越大,说明数据越分散,越不稳定.
模 块 二 讲 重 点 第 1 0讲 概 率 与统 计(3) 统计及 统计案 例小题 -2021 届高考 数学二 轮复习 课件( 新高考 版)
模 块 二 讲 重 点 第 1 0讲 概 率 与统 计(3) 统计及 统计案 例小题 -2021 届高考 数学二 轮复习 课件( 新高考 版)

新课标高中数学选修23(统计与概率)测试题

新课标高中数学选修23(统计与概率)测试题

新课标高中数学选修2—3(统计与概率)测试题命题:广东省汕头市潮阳林百欣中学 许吟裕(2006-4-8)一、选择题(本题共10小题,每小题5分,共50分,在每小题给出的4个选项中,只有1项是符合题目要求的。

) 1.从总体中抽得的样本数据为3.8,6.8,7.4则样本平均数x 为:( )A. 6.5B. 6C. 5D. 5.52.高三年级有12个班,每班50人按1—50排学号,为了交流学习经验,要求每班学号为 18的同学留下进行交流,这里运用的是( )抽样法:A.抽签法B.系统抽样C.分层抽样D.随机数表法3.如果数据x 1,x 2,x 3,…,x n 的平均数为 ,方差为62,则数据3x 1+5,3x 2+5,…,3x n +5的平均数和方差分别是 ( ) A . B . C . D . 4.甲、乙两个水文站同时作水文预报,如果甲站、乙站各自预报的准确率为0.8和0.7,那么,在一次预报中两站都准确预报的概率为 ( ) A .0.7 B .0.56 C .0.7 D .0.85.从分别写有A 、B 、C 、D 、E 的5张卡片中,任取两张,这两张卡片上的字母恰好是按字母顺序相邻的概率为 ( )A .B .C .D .6.已知盒子中有散落的围棋棋子15粒,其中6粒黑子,9粒白子,从中任意取出2粒恰好是同一色的概率 ( )A .B .C .D .7)A .B .C .D .8.甲、乙两人独立解答某道题,解不出来的概率分别为a 和b ,那么甲、乙两人都解出这道题的概率是 ( ) A .1-ab B .(1-a )(1-b ) C .1-(1-a )(1-b ) D .a (1-b )+b (1-a ) 9.有3个相识的人某天各自乘火车外出,假设火车有10节车厢,那么至少有两人在车厢内相遇的概率为 ( )A .B .C .D .26和x 2653和+x 29653和+x 2363和x 51521031073517711051635342014121107200292571442918710.一患者服用某种药品后被治愈的概率是95%,则患有相同症状的四位病人中至少有3人被治愈的概率为 ( ) A .0.86 B .0.90 C .0.95 D .0.99二,填空题(本题共4小题,每小题5分,共20分)11.甲投篮的命中率为0.7,乙投篮的命中率为0.8,每人各投3次,每人恰好都投中2次的概率为___________。

高三数学大题专项训练 概率与统计(答案)

高三数学大题专项训练 概率与统计(答案)

1.【2012高考真题辽宁理19】(本小题满分12分)电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查。

下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”。

(Ⅰ)根据已知条件完成下面的22⨯列联表,并据此资料你是否认为“体育迷”与性别 有关?(Ⅱ)将上述调查所得到的频率视为概率。

现在从该地区大量电视观众中,采用随机抽 样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X 。

若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X 。

附:22112212211212(),n n n n n n n n n χ++++-=【答案】【点评】本题主要考查统计中的频率分布直方图、独立性检验、离散型随机变量的分布列,期望()E X 和方差()D X ,考查分析解决问题的能力、运算求解能力,难度适中。

准确读取频率分布直方图中的数据是解题的关键。

9.【2012高考真题四川理17】(本小题满分12分)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故障的概率分别为110和p 。

(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值; (Ⅱ)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ。

【答案】本题主要考查独立事件的概率公式、离散型随机变量的分布列、数学期望等基础知识,考查实际问题的数学建模能力,数据的分析处理能力和基本运算能力.【解析】10.【2012高考真题湖北理】(本小题满分12分)根据以往的经验,某工程施工期间的降水量X (单位:mm )对工期的影响如下表:历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9. 求:(Ⅰ)工期延误天数Y 的均值与方差;(Ⅱ)在降水量X 至少是300的条件下,工期延误不超过6天的概率. 【答案】(Ⅰ)由已知条件和概率的加法公式有:(300)0.3,P X <=(300700)(700)(300)0.70.30.4P X P X P X ≤<=<-<=-=,降水量X 300X <300700X ≤< 700900X ≤<900X ≥工期延误天数Y2610(700900)(900)(700)0.90.70.2P X P X P X ≤<=<-<=-=. (900)1(900)10.90.1P X P X ≥=-<=-=.所以Y 的分布列为:于是,()00.320.460.2100.13E Y =⨯+⨯+⨯+⨯=;2222()(03)0.3(23)0.4(63)0.2(103)0.19.8D Y =-⨯+-⨯+-⨯+-⨯=.故工期延误天数Y 的均值为3,方差为9.8. (Ⅱ)由概率的加法公式,(300)1(300)0.7P X P X ≥=-<=,又(300900)(900)(300)0.90.30.6P X P X P X ≤<=<-<=-=.由条件概率,得(6300)(900300)P Y X P X X ≤≥=<≥(300900)0.66(300)0.77P X P X ≤<===≥.故在降水量X 至少是300mm 的条件下,工期延误不超过6天的概率是67.11.【2012高考江苏25】(10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.【答案】解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,∴共有238C 对相交棱。

概率与统计测试题及详解

概率与统计测试题及详解

统计与概率一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

)1.(2011·淄博一中期末)某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二680人、高三720人中,抽取50人进行问卷调查,则高一、高二、高三抽取的人数分别是( )A .15,16,19B .15,17,18C .14,17,19D .14,16,20[答案] B [解析]50600+680+720=140,600×140=15,680×140=17,720×140=18,故选B.2.(文)(2011·山东实验中学期末)完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次是( )A .①简单随机抽样,②系统抽样B .①分层抽样,②简单随机抽样C .①系统抽样,②分层抽样D .①②都用分层抽样[答案] B[解析] ①总体中高收入、中等收入、低收入家庭有明显差异,故用分层抽样;②总体容量与样本容量都较小,故采用简单随机抽样.(理)(2011·黄冈期末)某市进行一次高三数学质量抽样检测,考试后统计所有考生的数学成绩服从正态分布,已知数学成绩平均分为90分,60分以下的人数占5%,则数学成绩在90分至120分之间的考生人数所占百分比约为( )A .10%B .15%C .30%D .45%[答案] D[解析] ∵正态曲线对称轴为μ=90,P(x<60)=0.05, ∴P(90<x<120)=12(1-2P(x<60))=0.45,故选D.3.(文)(2011·四川资阳市模拟)对总数为m 的一批零件抽取一个容量为25的样本,若每个零件被抽取的概率都为14,则m 的值为( )A .200B .150C .120D .100 [答案] D[解析] ∵25m =14,∴m =100. (理)(2011·黄冈期末)某农科院在3×3的9块试验田中选出3块种植某品种水稻进行试验,则每行每列都有一块试验田种植水稻的概率为( )A.156 B.17 C.114D.314[答案] C[解析] 从9块试验田中选3块有C 39种选法,其中每行每列都有一块试验田种植水稻的选法有6种,∴p =6C 39=114.4.(文)连掷两次骰子得到的点数分别为m 和n ,向量a =(m ,n)和向量b =(1,-1)的夹角为θ,则θ为锐角的概率是( )A.56B.16C.712D.512[答案] D[解析] ∵夹角θ为锐角,∴错误!,∴错误!, 又∵m ,n ∈{1,2,3,4,5,6},∴满足条件的结果数为15. 而连掷两次骰子得到的结果数为36, ∴满足条件的概率是P =1536=512. (理)(2011·福州市期末)如图所示,正方形的四个顶点分别为O(0,0)、A(1,0)、B(1,1)、C(0,1),曲线y =x 2经过点B ,现将一个质点随机投入正方形中,则质点落在图中阴影区域的概率是( )A.12B.14C.13D.25[答案] C[解析] 阴影部分的面积S =⎠⎛01x 2dx =13x 3|10=13,正方形面积为1,∴p =13,故选C.5.(文)(2011·福州市期末)如图是歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1,a 2,则一定有( )A .a 1>a 2B .a 2>a 1C .a 1=a 2D .a 1、a 2的大小不确定[答案] B[解析] ∵甲、乙分数在70、80、90各分数段的打分评委人数一样多,故只须看个位数的和,乙的个位数总和37,甲的个位数字和为20+m<37,∴a 2>a 1,故选B.(理)(2011·巢湖质检)在如图所示的茎叶图中,若甲、乙两组数据的中位数分别为λ1,λ2,平均数分别为μ1,μ2,则下列判断正确的是( )A.λ1>λ2,μ1<μ2 B .λ1>λ2,μ1>μ2 C .λ1<λ2,μ1<μ2 D .λ1<λ2,μ1>μ2[答案] B[解析] 由茎叶图知λ1=20.5,λ2=18.5,μ1=19.9,μ2=18.9,∴λ1>λ2,μ1>μ2,故选B.6.(文)(2011·温州八校期末)已知α,β,γ是不重合平面,a ,b 是不重合的直线,下列说法正确的是( )A .“若a ∥b ,a ⊥α,则b ⊥α”是随机事件B .“若a ∥b ,a ⊂α,则b ∥α”是必然事件C .“若α⊥γ,β⊥γ,则α⊥β”是必然事件D .“若a ⊥α,a∩b=P ,则b ⊥α”是不可能事件 [答案] D[解析]⎭⎪⎬⎪⎫a ∥b a ⊥α⇒b ⊥α,故A 错;⎭⎪⎬⎪⎫a ∥b a ⊂α⇒b ∥α或b ⊂α,故B 错;当α⊥γ,β⊥γ时,α与β可能平行,也可能相交(包括垂直),故C 错;如果两条直线垂直于同一个平面,则此二直线必平行,故D 为真命题.(理)(2011·丰台区期末)有5名同学被安排在周一至周五值日,已知同学甲只能值周一或周二,那么5名同学值日顺序的编排方案共有( )A .24种B .48种C .96种D .120种[答案] B[解析] 先安排甲有2种方法,其余4名同学可安排余下4天的任意一天值日,∴共有2A 44=48种不同安排方法.7.(文)已知函数f(x)=sin aπ3x ,a 等于抛掷一颗骰子得到的点数,则y =f(x)在[0,4]上至少有5个零点的概率是( )A.13B.12C.23D.56 [答案] C[解析] 抛掷一颗骰子共有6种情况.当a =1,2时,y =f(x)在[0,4]上的零点少于5个;当a =3,4,5,6时,y =f(x)在[0,4]上的零点至少有5个,故P =46=23,选C.(理)(2011·蚌埠二中质检)(3y +x)5展开式的第三项为10,则y 关于x 的函数图象的大致形状为( )[答案] D[解析] T 3=C 25(3y)5-2(x)2=10xy =10,∴y =1x(x>0),故选D.8.(2011·咸阳模拟)样本容量为100的频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在[2,10)内的频率为a ,则a 的值为( )A .0.1B .0.2C .0.3D .0.4[答案] D[解析] 样本数据落在[2,10)内的频率为a =(0.02+0.08)×4=0.4.9.将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设两条直线l 1:ax +by =2,l 2:x +2y =2平行的概率为P 1,相交的概率为P 2,则复数P 1+P 2i 所对应的点P 与直线l 2:x +2y =2的位置关系是( )A .点P 在直线l 2的右下方B .点P 在直线l 2的右上方C .点P 在直线l 2上D .点P 在直线l 2的左下方[答案] D[解析] 易知当且仅当a b ≠12时,两条直线只有一个交点,而a b =12时有三种情况:a =1,b =2(此时两直线重合);a =2,b =4(此时两直线平行);a =3,b =6(此时两直线平行).而投掷一颗骰子两次的所有情况有6×6=36种,所以两条直线相交的概率P 2=1-336=1112;两条直线平行的概率为P 1=236=118,P 1+P 2i 所对应的点为P(118,1112,易判断点P(118,1112在直线l 2:x +2y =2的左下方,选D.10.(2011·河北冀州期末)某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y|的值为( )A .1B .2C .3D .4[答案] D[解析] 由条件知⎩⎪⎨⎪⎧x +y +10+11+9=50x -102+y -102+1+1=10,∴⎩⎪⎨⎪⎧x =12y =8或⎩⎪⎨⎪⎧x =8y =12,∴|x -y|=4.11.(2011·北京学普教育中心联考版)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12 C.π6D .1-π6[答案] B[解析] 以点O 为圆心,半径为1的半球的体积为V =12×43πR 3=2π3,正方体的体积为23=8,由几何概型知:点P 到点O 的距离大于1的概率为P(A)=1-238=1-π12B.12.(2011·江西吉安质检)下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产品x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为y =0.7x +0.35,那么表中t 的值为( )A.4.5 C .3.15 D .3[答案] D[解析] 线性回归直线过样本点的中心(x -,y -),∵x -=4.5,y -=11+t4,∴11+t 4=0.7×4.5+0.35,∴t =3,故选D.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2011·浙江宁波八校联考)已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.[答案] 1211[解析] 抽样比150 3000=1 20,第1组抽出号码为11,故第61组抽出号码为11+20×(61-1)=1211.14.(文)设集合A ={x|x 2-3x -10<0,x ∈Z},从集合A 中任取两个元素a ,b 且a·b≠0,则方程x 2a +y 2b=1表示焦点在x 轴上的椭圆的概率为________.[答案]310[解析] A ={x|-2<x<5,x ∈Z}={-1,0,1,2,3,4},由条件知,(a ,b)的所有可能取法有:(-1,1),(-1,2),(-1,3),(-1,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(1,-1),(2,-1),(3,-1),(4,-1),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3),共20种,方程x 2a +y 2b =1表示焦点在x 轴上的椭圆,应有a>b>0,∴有(2,1,),(3,1),(4,1),(3,2),(4,2),(4,3)共6种,∴所求概率P =620=310. (理)如图是一个正方体纸盒的展开图,若把1,2,3,4,5,6分别填入小正方形后,按虚线折成正方体,则所得到的正方体相对面上的两个数的和都相等的概率是________.[答案]115[解析] 6个数任意填入6个小正方形中有6!=720种方法;将6个数分三组(1,6),(2,5),(3,4),每组中的两个数填入一对面中,共有不同填法6×2×2×2=48种,故所求概率P =48720=115. 15.(文)(2011·浙江宁波八校联考)已知k ∈Z ,AB →=(k,1),AC →=(2,4),若|AB →|≤4,则△ABC 是直角三角形的概率是________.[答案]37[解析] ∵|AB →|=k 2+1≤4,∴-15≤k≤15, ∵k ∈Z ,∴k =-3,-2,-1,0,1,2,3,当△ABC 为直角三角形时,应有AB ⊥AC ,或AB ⊥BC ,或AC ⊥BC ,由AB →·AC →=0得2k +4=0,∴k =-2,∵BC →=AC →-AB →=(2-k,3),由AB →·BC →=0得k(2-k)+3=0,∴k =-1或3, 由AC →·BC →=0得2(2-k)+12=0,∴k =8(舍去),故使△ABC 为直角三角形的k 值为-2,-1或3,∴所求概率p =37.(理)(2011·豫南九校联考)(1-ax)2(1+x)6的展开式中,x 3项的系数为-16,则实数a的值为________.[答案] 2或3[解析] 展开式中x 3的系数为1×C 36-2aC 46+a 2C 56=-16,∴a 2-5a +6=0,∴a =2或3.16.(文)(2011·山西太原调研)在圆O 上有一定点A ,则从这个圆上任意取一点B ,使得∠AOB≤30°的概率是________.[答案]16[解析] 如图∠AOE =∠AOF =30°,当点B 落在EAF 上时,∠AOB≤30°, ∵∠EOF =60°,∴所求概率p =60°360°=16.(理)(2011·河北冀州期末)从集合{-1,-2,-3,0,1,2,3,4}中,随机选出4个数组成子集,使得这4个数中的任何两个数之和不等于...1,则取出这样的子集的概率为________. [答案]835[解析] 从8个数中任取4个共有C 48=70种取法,两数之和为1的取法有:-1+2,-2+3,-3+4,0+1共4种,要使取出的四个数中任何两数之和不等于1,则每组中的两个数只能取1个,故共有24种取法,故所求概率p =1670=835.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(2011·山西太原调研)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据,并写出乙组数据的中位数;(2)经过计算知甲、乙两人预赛的平均成绩分别为x -甲=85,x -乙=85,甲的方差为S 2甲=35.3,S 2乙=41.现要从中选派一人参加数学竞赛,你认为选派哪位学生参加较合适?请说明理由.(3)若将预赛成绩中的频率视为概率,记“甲在考试中的成绩不低于80分”为事件A ,其概率为P(A);记“乙在考试中的成绩不低于80分”为事件B ,其概率为P(B).则P(A)+P(B)=P(A +B)成立吗?请说明理由.[解析] (1)作出如图所示茎叶图,易得乙组数据的中位数为84.(2)派甲参赛比较合适,理由如下: ∵x -甲=85,x -乙=85,S 2甲=35.5,S 2乙=41, ∴x -甲=x -乙,S 2甲<S 2乙,∴甲的成绩较稳定,派甲参赛比较合适. (3)不成立.由已知可得P(A)=68,P(B)=78,P(A)+P(B)=138.而0<P(A +B)<1.所以P(A)+P(B)=P(A +B)不成立.[点评] P(A +B)=P(A)+P(B)成立的条件是A 和B 互斥,而此问题中的A 和B 是不互斥的,故P(A)+P(B)=P(A +B)不成立.18.(本小题满分12分)某校高三数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,若130~140分数段的人数为2人.(1)估计这所学校成绩在90~140分之间学生的参赛人数; (2)估计参赛学生成绩的中位数;(3)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶学习小组,若选出的两人成绩之差大于20,则称这两人为“黄金搭档组”,试求出的两人为“黄金搭档组”的概率.[解析] (1)设90~140分之间的人数是n ,由130~140分数段的人数为2人,可知0.005×10×n=2,得n =40.(2)设中位数为x,则0.35+(x-110)×0.045=0.2+(120-x)×0.045,解得x=3403≈113,即中位数约为113分.(3)依题意,第一组共有40×0.01×10=4人,记作A1、A2、A3、A4;第五组共有2人,记作B1、B2从第一组和第五组中任意选出两人共有下列15种选法:{A1,A2}、{A1,A3}、{A1,A4}、{A2,A3}、{A2,A4}、{A3,A4};{A1,B1}、{A2,B1}、{A3,B 1}、{A4,B1};{A1,B2}、{A2,B2}、{A3,B2}、{A4,B2};{B1,B2}设事件A:选出的两人为“黄金搭档组”,若两人成绩之差大于20,则两人分别来自于第一组和第五组,共有8种选法,故P(A)=815.19.(本小题满分12分)(文)(2011·湖南长沙一中期末)某班高一某班的一次数学测试成绩的茎叶图和频率分布图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.[解析] (1)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知:分数在[50,60)之间的频数为2,所以全班人数为20.08=25.(2)分数在[80,90)之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90)间的矩形的高为425÷10=0.016.(3)将[80,90)之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6,在[80,100]之间的试卷中任取两份的基本事件为:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个,其中,至少有一个在[90,100]之间的基本事件有9个,故至少有一份分数在[90,100]之间的概率是915=0.6.(理)某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K 和D 两个动作.比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩.假设每个运动员完成每个系列中的两个动作的得分是相互独立的.根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表:表1:甲系列 表2:乙系列(1)若该运动员希望获得该项目的第一名,应选择哪个系列?说明理由,并求其获得第一名的概率;(2)若该运动员选择乙系列,求其成绩ξ的分布列及其数学期望E(ξ). [解析] (1)若该运动员希望获得该项目的第一名,应选择甲系列 理由如下:选择甲系列最高得分为100+40=140>115可能获得第一名 而选择乙系列最高得分为90+20=110<115,不可能获得第一名 记“该运动员完成K 动作得100分”为事件A “该运动员完成D 动作得40分”为事件B 则P(A)=34,P(B)=34记“该运动员获得第一名”为事件C 依题意得P(C)=P(AB)+P(A -B) =34×34+14×34=34. ∴运动员获得第一名的概率为34.(2)若该运动员选择乙系列,ξ的可能取值是50,70,90,110,则P(ξ=50)=110×110=1100,P(ξ=70)=110×910=9100,P(ξ=90)=910×110=9100;P(ξ=110)=910×910=81100ξ的分布列为∴E(ξ)=50×1100+70×100+90×100+110×100=104.20.(本小题满分12分)(文)(2011·广东佛山市质检)某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽样进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(1)补全频率分布直方图,并求p 、x 的值;(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选到的领队中恰有1人年龄在[40,45)岁的概率.[解析] (1)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为0.35=0.06,频率直方图如下:第一组的人数为1200.6=200,频率为0.04×5=0.2,所以n =2000.2=1000.由上可知,第二组的频率为0.3,所以第二组的人数为1000×0.3=300,所以p =195300=0.65.第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以x =150×0.4=60.(2)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60 30=2 1,所以采用分层抽样法抽取6人,[40,45)岁中抽取4人,[45,50)岁中抽取2人.设[40,45)岁中的4人为a 、b 、c 、d ,[45,50)岁中的2人为m 、n ,则选取2人作为领队的有(a ,b)、(a ,c)、(a ,d)、(a ,m)、(a ,n)、(b ,c)、(b ,d)、(b ,m)、(b ,n)、(c ,d)、(c ,m)、(c ,n)、(d ,m)、(d ,n)、(m ,n),共15种;其中恰有1人年龄在[40,45)岁的有(a ,m)、(a ,n)、(b ,m)、(b ,n)、(c ,m)、(c ,n)、(d ,m)、(d ,n),共8种.所以选取的2名领队中恰有1人年龄在[40,45)岁的概率为P =815.(理)(2011·河北冀州期末)甲、乙、丙、丁4名同学被随机地分到A 、B 、C 三个社区参加社会实践,要求每个社区至少有一名同学.(1)求甲、乙两人都被分到A 社区的概率; (2)求甲、乙两人不在同一个社区的概率;(3)设随机变量ξ为四名同学中到A 社区的人数,求ξ的分布列和期望E(ξ)的值. [解析] (1)设甲、乙两人同时到A 社区为事件E A ,则 P(E A )=A 22C 24A 33=118,即甲、乙两人同时到A 社区的概率是118.(2)设甲、乙两人在同一社区为事件E ,那么 P(E)=3A 22C 24A 33=16,所以,甲、乙两人不在同一社区的概率是 P(E -)=1-P(E)=56.(3)随机变量ξ可能取的值为1,2,事件“ξ=i(i =1,2)”是指有i 个同学到A 社区,则P(ξ=2)=C 24A 22C 24A 33=13.所以P(ξ=1)=1-P(ξ=2)=23,ξ的分布列是∴E(ξ)=1×23+2×13=43.21.(本小题满分12分)(文)(2011·巢湖市质检)《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml(不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属醉酒驾车,对于酒后驾车和醉酒驾车的驾驶员公安机关将给予不同程度的处罚.据《法制晚报》报道,2010年8月1日至8月28日,某市交管部门共抽查了1000辆车,查出酒后驾车和醉酒驾车的驾驶员80人,下图是对这80人血液中酒精含量进行检查所得结果的频率分布直方图.(1)根据频率分布直方图完成下表:(3)若用分层抽样的方法从血液酒精浓度在[70,90)范围内的驾驶员中抽取一个容量为5的样本,并将该样本看成一个总体,从中任取2人,求恰有1人属于醉酒驾车的概率.[解析] (1)(3)因为血液酒精浓度在[70,80)范围内有12人,[80,90)范围内有8人,要抽取一个容量为5的样本,[70,80)内范围内应抽3人,记为a ,b ,c ,[80,90)范围内应抽2人,记为d ,e ,则从总体中任取2人的所有情况为(a ,b),(a ,c),(a ,d),(a ,e),(b ,c),(b ,d),(b ,e),(c ,d),(c ,e),(d ,e),恰有一人的血液酒精浓度在[80,90)范围内的情况有(a ,d),(a ,e),(b ,d),(b ,e),(c ,d),(c ,e),共6种,设“恰有1人属于醉酒驾车”为事件A ,则P(A)=610=35.(理)(2011·黄冈市期末)为预防“甲型H1N1流感”的扩散,某两个大国的研究所A 、B 均对其进行了研究.若独立地研究“甲型H1N1流感”疫苗,研究成功的概率分别为13和14;若资源共享,则提高了效率,即他们合作研究成功的概率比独立研究时至少有一个研制成功的概率提高了50%.又疫苗研制成功获得经济效益a 万元,而资源共享时所得的经济效益只能两个研究所平均分配.请你给A 研究所参谋:是否应该采取与B 研究所合作的方式来研制疫苗,并说明理由.[解析] 若A 研究所独立地研究“甲型H1N1流感”疫苗,则其经济效益的期望为 0×23+a×13=a3万元.而两个研究所独立地研究时至少有一个研制成功的概率为 1-⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14=12所以两个研究所合作研究成功的概率为 12×(1+50%)=34于是A 研究所采用与B 研究所合作的方式来研制疫苗,所获得的经济效益的期望为0×14+12a×34=38a 万元,而38a>13a ,故应该建议A 研究所采用与B 研究所合作的方式来研制疫苗. 22.(本小题满分12分)(2011·辽宁铁岭六校联考)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=bx +a ;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(注:b ^=∑i =1nx i y i -n x -y-∑i =1nx 2i-n x -2=∑i =1nx i-x -y i-y -∑i =1nx i-x -2,a ^=y --b ^x -)[解析] (1)设抽到不相邻两组数据为事件A ,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,所以P(A)=1-410=35. 故选取的2组数据恰好是不相邻2天数据的概率是35(2)由数据,求得x -=13(11+13+12)=12,y -=13(25+30+26)=27,3x -y -=972.∑i =13x iy i=11×25+13×30+12×26=977,∑i =13x 2i=112+132+122=434,3x -2=432. 由公式求得b ^=∑i =1nx iy i-n·x -·y -∑i =1nx 2i-n x -2=977-972434-432=52,a ^=y --b ^x -=27-52×12=-3,所以y 关于x 的线性回归方程为y ^=52x -3.(3)当x =10时,y ^=523=22,|22-23|<2;同样,当x =8时,y ^=52×8-3=17,|17-16|<2.所以,该研究所得到的线性回归方程是可靠的.。

高考数学一轮复习概率与统计单元专项练习题附参考答案

高考数学一轮复习概率与统计单元专项练习题附参考答案

高考数学一轮复习概率与统计单元专项练习题附参考答案1.(理)设,那么的展开式中的系数不可能是( )A.10B.40C.50D.80(文)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是( )A.20B.30C.40D.502.(理)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是平安的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么平安存放的不同方法种数为( )A.96B.48C.24D.0(文)从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A. B. C. D.3.甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么( )A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件4.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,,270;使用系统抽样时,将学生统一随机编号1,2,,270,并将整个编号依次分为10段。

如果抽得号码有以下四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的以下结论中,正确的选项是( )A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样5.在正方体上任选3个顶点连成三角形,那么所得的三角形是直角非等腰三角形的概率为( )A. B. C. D.6.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就()A.越大B.越小C.无法判断D.以上都不对7.(理)抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,那么在10次试验中,成功次数的期望是( )A. B. C. D.(文)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将局部数据丧失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,那么a, b的值分别为( )A.0,27,78B.0,27,83C.2.7,78D.2.7,838.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.这组数据的平均数为10,方差为2,那么|x-y|的值为( )A.1B.2C.3D.49.一项研究要确定是否能够根据施肥量预测作物的产量。

高三理科数学复习题《概率统计》

高三理科数学复习题《概率统计》

CDBAE概率与统计专项训练一、选择题:1、4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .342、调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表: 你认为婴儿的性别与出生时间有关系的把握为( ) A.80% B.90% C.95% D.99%3、在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为( )(A )511 (B )681 (C )3061 (D )40814、某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是( ) A.256625B.192625C.96625D.166255、已知样本7,8,9,,x y 的平均数是8,标准差是2,则xy 的值为( )A、8 B、32 C、60 D、806、把一根匀均匀木棒随机地按任意点拆成两段,则“其中一段的长度大于另一段长度的2倍”的概率为( )(A)23 (B)25 (C)35 (D)137、如图,四边形ABCD 为矩形,3=AB ,1=BC ,以A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是( ). (A)31 (B)23 (C)25 (D)358.某学生通过计算初级水平测试的概率为21,他连续测试两次, 则恰有1次获得通过的概率为 ( )43.41.21.31.D C B A 9.下面事件①若a 、b ∈R ,则a·b=b·a ;②某人买彩票中奖;③6+3>10;④抛一枚硬币出现正面向上,其中必然事件有 ( ) A .① B .② C .③④ D .①②10.在4次独立重复实验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率的范围是 ( )A .[O .4,1]B .(O ,0.4]C .(O ,0.6]D .[0.6,1)11.设袋中有8个球,其中3个白球,3个红球,2个黑球,除了颜色不同外,其余均相同.若取得1个白球得1分,取得1个红球扣1分,取得一个黑球既不得分,也不扣分,则任摸3个球后的所得总分为正分的概率为( )5623.289.74.5619.D C B A 12.从1、2、3、4、5中随机抽取3个数字(允许重复)组成一个三位数,则和等于9的概率为 ( )12513.12416.12518.12519.D C B A 13.甲、乙两人独立地对同一目标各射击一次,其命中率一分别为0.6和0.5,现已知目标被击中,则它恰是甲射中的概率为 ( )A .0.45B .0.6C .0.65D .0.75 14. 教某气象站天气预报的准确率为80%.则5次预报中至少有4次准确的概率为 ( ) A ,0.2 B .0.41 C .0.74 D .0.6715.有一道试题,A 解决的概率为21,B 解决的概率为31,C 解决的概率为41,则A 、B 、C三人独立解答此题,只有1人解出的概率为 ()31.2417.2411.241.D C B A则两人射击成绩的稳定程度是__________________。

高三数学经典习题集

高三数学经典习题集

高三数学经典习题集一、综合题题目1:已知函数$f(x) = \frac{ax+b}{x+c}$,其中$a,b,c$为常数,且$f(x+1)-f(x) = \frac{1}{x}$,求函数$f(x)$的表达式。

解答:根据题意,我们可以得到如下等式:$\frac{a(x+1)+b}{x+1+c} - \frac{ax+b}{x+c} = \frac{1}{x}$化简上式,得到:$\frac{a(x+1)+b}{x+1+c} - \frac{ax+b}{x+c} = \frac{a(x+c)-(ax+b)}{(x+c)(x+1+c)} = \frac{1}{x}$进一步化简,得到:$\frac{ac+b}{(x+c)(x+1+c)} = \frac{1}{x}$两边交叉相乘,得到:$x(ac+b) = (x+c)(x+1+c)$化简上式,得到:$acx + bx = x^2 + cx + x^2 + 2cx + c + c^2$合并同类项,得到:$2x^2 + (2c-b)x + (2c+c^2) = 0$根据等式左边为多项式的形式,我们可以得到两个等式:$2c + c^2 = 0 \Rightarrow c = -2$$2c-b = 0 \Rightarrow b = -4$将$b$和$c$的值代入函数$f(x)$的表达式,得到:$f(x) = \frac{ax - 4}{x - 2}$综上所述,函数$f(x)$的表达式为$\frac{ax - 4}{x - 2}$。

题目2:已知等差数列$\{a_n\}$满足$a_1 = 2$,$a_2 = 5$,$a_3 = 8$,求$a_{100}$的值。

解答:根据等差数列的性质,我们可以得到通项公式为:$a_n = a_1 + (n-1)d$其中$a_1$为首项,$d$为公差。

代入已知条件,得到:$2 = a_1 + d$$5 = a_1 + 2d$$8 = a_1 + 3d$解方程组,得到:$a_1 = 2$$d = 3$将$a_1$和$d$的值代入通项公式,得到:$a_n = 2 + (n-1)3$$a_{100} = 2 + 99 \times 3 = 299$综上所述,$a_{100}$的值为299。

高三数学练习题:概率与统计

高三数学练习题:概率与统计

高三数学练习题:概率与统计
问题1:
某班有40名学生,其中有30名学生参加了一个数学竞赛。

现在我们从这些学生中随机抽取一名学生,请计算以下概率:
a) 抽中一位参加了数学竞赛的学生;
b) 抽中一位未参加数学竞赛的学生。

问题2:
某班有50名学生,其中30人喜欢数学,20人喜欢英语,15人同时喜欢数学和英语。

现在我们从这些学生中随机选择一位学生,请计算以下概率:
a) 抽中一位喜欢数学的学生;
b) 抽中一位喜欢英语的学生;
c) 抽中一位同时喜欢数学和英语的学生。

问题3:
某地区的天气预报表明,星期一下雨的概率是0.3,星期二下雨的概率是0.4。

而星期一和星期二都下雨的概率是0.15。

现在,我们从这两个星期中随机选择一个天气预报,请计算以下概率:
a) 抽中星期一下雨;
b) 抽中星期二下雨;
c) 抽中星期一和星期二都下雨。

问题4:
某班有90名学生,其中40人喜欢数学,60人喜欢英语,20人同时喜欢数学和英语。

现在我们从这些学生中选择两个学生,请计算以下概率:
a) 抽中两位喜欢数学的学生;
b) 抽中两位喜欢英语的学生;
c) 抽中一位喜欢数学的学生和一位喜欢英语的学生。

问题5:
某打印店收到100份订单,其中有20份订单有错误。

现在,我们从这些订单中随机抽取一份,请计算以下概率:
a) 抽中一份有错误的订单;
b) 抽中一份没有错误的订单。

2015高三数学单元测试题(文科)概率统计

2015高三数学单元测试题(文科)概率统计

高三文科数学单元测试题(概率与统计)1.将一骰子抛掷两次,所得向上的点数分别为和,则函数在上为增函数的概率是( )A . B. C. D.2..下面的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )A.25B.710C.45D.910 3.设-1≤a ≤1,-1≤b ≤1,则关于x 的方程x 2+ax +b 2=0有实根的概率是 ( )A.12B.14C.18D.1164.从2004名学生中选取50名组成参观图,若采用下面的方法选取,先用简单随机抽样法从2004人中剔除4人,剩下的2000人再按系统抽样的方法进行,则每人入选的概率 A .不全相等 B .均不相等C .都相等且为251002D .都相等且为1405.(2012山东省济南市第二次模拟)下列命题:① 函数,的最小值为2;② 线性回归方程对应的直线至少经过其样本数据点(,),(,),…,(,)中的一个点;③ 命题p:x R ,使得,则p:x R ,均有x2+x+1≥0;④ 若x 1,x 2,…,x 10的平均数为a ,方差为b ,则x 1+5,x 2+5,…,x 10+5的平均数为a+5,方差为b+25.其中,错误命题的个数为( ) A. 0 B. 1 C. 2 D. 36.如图,A 是圆上固定的一点,在圆上其他位置任取一点A ',连结AA ',它是一条弦,它的长度大于等于半径长度的概率为A .12B .23C D .147.对于一组数据 (1,2,3,,)i x i n = ,如果将它们改变为(1,2,3,,)i x c i n +=,其中0c ≠,则下面结论中正确的是A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化 8.在发生某公共卫生事件期间, 有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天, 每天新增疑似病例不超过7人”. 根据过去10天甲、乙、丙、丁四地新增疑似病例数据, 一定符合该标志的是( )A. 甲地:总体均值为3, 中位数为4B. 乙地:总体均值为1, 总体方差大于0C. 丙地:中位数为2, 众数为3D. 丁地:总体均值为2, 总体方差为3其中污染指数时,空气质量为优;时,空气质量为良;100150T <≤时空气质量为轻微污染。

高三数学概率练习题及答案2023

高三数学概率练习题及答案2023

高三数学概率练习题及答案2023概率是数学中一个重要的分支,它研究的是不确定事件的可能性。

在高三数学学习中,概率也是一个重要的内容。

为了帮助各位高三学生巩固概率知识,我整理了一些概率练习题及其答案。

练习题一:1.一个有12个红球和8个蓝球的袋子,从中随机抽取4个球,求抽到2个红球2个蓝球的概率。

2.在一批电脑中,有60%的电脑工作正常,40%的电脑存在故障。

如果从中随机抽取3台电脑,求至少有2台工作正常的概率。

3.一副扑克牌共有52张牌,其中黑桃、红桃、梅花和方片各有13张。

从中随机抽取5张牌,求其中至少有3张黑桃的概率。

练习题二:1.一个班级有40个学生,其中20个学生喜欢篮球,15个学生喜欢足球,10个学生既喜欢篮球又喜欢足球。

从中随机抽取一个学生,求该学生既喜欢篮球又喜欢足球的概率。

2.一家手机厂商共有1000部手机,其中100部属于次品。

从中抽取5部手机,求至少有1部次品的概率。

3.在一次模拟考试中,某班级参加考试的学生共有50人。

已知这些学生中80%能取得优异成绩,60%能取得及格成绩。

从中随机抽取3个学生,求至少有2个学生能取得优异成绩的概率。

练习题三:1.甲、乙、丙三个人相继投掷一颗骰子,求他们得到的点数之和为9的概率。

2.某商品的包装中有10个零件,其中4个是次品。

从中无放回地抽取3个零件,求其中至少2个是次品的概率。

3.在一场抽奖活动中,共有1000人参与,其中10人可以获奖。

从中随机抽取5人,求至少有1人获奖的概率。

答案解析:练习题一:1.计算红球的概率:P(红球) = 红球个数/总球数 = 12/20。

计算蓝球的概率:P(蓝球) = 蓝球个数/总球数 = 8/20。

计算抽到2个红球2个蓝球的概率:P(2个红球2个蓝球) = C(12,2) * C(8,2) / C(20,4)。

2.计算正常电脑的概率:P(正常) = 60% = 0.6。

计算故障电脑的概率:P(故障) = 40% = 0.4。

新版精选2019年高中数学单元测试试题-概率专题考核题库(含标准答案)

新版精选2019年高中数学单元测试试题-概率专题考核题库(含标准答案)

2019年高中数学单元测试试题 概率专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.投掷两颗骰子,得到其向上的点数分别为m 和n,则复数(m+ni )(n-mi)为实数的概率为( ) A 、13 B 、14C 、16 D 、112(2009湖北理)第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题2.把一根均匀木棒随机地按任意点折成两段,则“其中一段的长度大于另一段长度的2倍”的概率为 _____.3.把一根匀均匀木棒随机地按任意点拆成两段,则“其中一段的长度大于另一段长度的2倍”的概率为 ▲4.某校从参加高一年级期末考试的学生中抽出60名学生,并统计了他们的物理成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段[)60,50,[)70,60…[]100,90后画出如图部分..频率分布直方图.观察图形的信息,若从物理成绩不及格(60分以下为不及格)的学生中任选两人,则他们成绩至少有一个不低于50分的概率为 ▲ .5.在等腰三角形ABC 中,∠C=90°,过点C 任作一条射线与斜边AB 交于一点M ,则AM 小于AC 的概率为6.在正方形ABCD 内任取一点P ,该点到点A 的距离不小于其边长的概率是 14π-7.某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,以每人被抽取的概率为0.2向该中学抽取一个容量为n 的样本,则n= ___________ 〖解〗2008. 把一个体积为27cm 3的正方体木块表面涂上红漆,然后锯成体积为1 cm 3的27个小正方体,现从中任取一块,则这一块至少有一面涂有红漆的概率为 ▲ .26279.用两种不同的颜色给图中三个矩形随机涂色,每个矩形只涂一种颜色,则相邻两个矩形涂不同颜色的概率是____。

高三数学专题练习题汇总

高三数学专题练习题汇总

高三数学专题练习题汇总在高三数学的备考阶段,进行专题练习是非常重要的,它能够帮助学生系统地复习和巩固各个知识点,提高解题的能力。

本文将为大家汇总一些高三数学专题练习题,供同学们参考和练习。

一、函数与方程专题练习题1. 已知函数 f(x) = x^2 + 2x - 3,求 f(x) 的零点和顶点坐标。

2. 解方程组:{ 2x + y = 5{ 3x - y = 13. 已知函数 y = a^x 的图象经过点 (1, 4),求 a 的值。

二、三角函数专题练习题1. 求解方程 sin(x) + cos(x) = 1 在区间[0, 2π] 内的所有解。

2. 已知 sin(x) = 3/5,求 cos(x) 和 tan(x) 的值。

3. 某直角三角形的斜边长为 10,一锐角的对边长为 6,求另一锐角的余弦值。

三、导数与微分专题练习题1. 求函数 f(x) = 2x^3 - 3x^2 + 2x - 1 的导函数。

2. 已知函数 f(x) = x^3 + ax^2 + bx + c,在 x = 1 处的切线与坐标轴围成的区域的面积为 4,求 a, b, c 的值。

3. 求函数 y = e^x 在 x = 0 处的导数和二阶导数。

四、概率与统计专题练习题1. 一批产品有 20% 的次品率,现从中取出 10 件产品,求恰好有 2 件次品品的概率。

2. 甲、乙两个人射击靶,甲的命中率为 60%,乙的命中率为 70%,每人射 5 箭,求乙的命中数多于甲的概率。

3. 某次数学测试中,学生的得分分布如下:60-69 分:20 人70-79 分:30 人80-89 分:40 人90-100 分:10 人求平均分。

五、空间几何与立体几何专题练习题1. 平行六面体 ABCDEF 与平面 ACF 相交,求平面 ACF 与平面BCD 的夹角。

2. 已知四棱锥底面为等边三角形,侧棱长为 5,底面边长为 3,求四棱锥的体积。

3. 已知圆柱体的高为 h,底面圆的半径为 r,求圆柱体的体积与侧面积之比。

高三数学复习专题三统计与案例

高三数学复习专题三统计与案例

专题三统计与案例学校:___________姓名:___________班级:___________考号:___________一、解答题1.某高校数学系为了控制大一学生上课使用手机,针对上课使用手机情况,进行量化比,若发现上课使用手机则扣除其对应的积分,根据调查发现每次被扣分数与本系一大学生每周上课使用手机人数的关系如下表所示:(1)试根据以上数据,建立y 关于x 的回归直线方程(结果保留一位小数);参考公式:线性回归方程y bx a =+中,1221,ni ii nii x ynxy b a y bx xnx==-==--∑∑.(2)根据上述回归直线方程分析:每次扣分为多少时(精确到整数分)该系大一新生被扣分的总数最大; (3)若学校规定,大一新生每学期(按20周上课计算)因为上课使用手机被扣分总数不超过1000分,则该系大一被定为控制手机合格,那么,每周上课使用手机至少扣多少分时(扣分不低于5分,精确到整数),31.6≈)2.我国为全面建设社会主义现代化国家,制定了从2021年到2025年的“十四五”规划.某企业为响应国家号召,汇聚科研力量,加强科技创新,准备增加研发资金,现该企业为了解年研发资金投入额x (单位:亿元)对年盈利额y (单位:亿元)的影响,研究了“十二五”和“十三五”规划发展期间近10年年研发资金投入额i x 和年盈利额i y 的数据.通过对比分析,建立了两个函数模型:①2y x αβ=+;②e x t y λ+=,其中,,,tαβλ均为常数,e 为自然对数的底数.令2i i u x =,ln (1,2,,10)i v y i ==,经计算得如下数据:(1)请从相关系数的角度,分析哪一个模型拟合程度更好;(2)根据(1)的选择及表中数据,建立y 关于x 的回归方程(回归系数精确到0.01).附:相关系数()()niix x y y r --=∑线性回归直线方程y bx a =+,其中附:()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-.3.2021年10月16日,搭载“神州十三号”的火箭发射升空,这是一件让全国人民普遍关注的大事,因此每天有很多民众通过手机、电视等方式观看有关新闻.某机构将每天关注这件大事的时间在2小时以上的人称为“天文爱好者”,否则称为“非天文爱好者”,该机构通过调查,并从参与调查的人群中随机抽取了100人进行分析,得到下表(单位:人)(1)将上表中的数据填写完整,并判断能否在犯错误的概率不超过0.005的前提下认为“天文爱好者”或“非天文爱好者”与性别有关?(2)现从抽取的女性人群中,按“天文爱好者”和“非天文爱好者”这两种类型进行分层抽样抽取5人,然后再从这5人中随机选出3人,求其中至少有1人是“天文爱好者”的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.4.COP15大会原定于2020年10月15-28日在昆明举办,受新冠肺炎疫情影响,延迟到今年10月11-24日在云南昆明举办,同期举行《生物安全议定书》、《遗传资源议定书》缔约方会议.为助力COP15的顺利举行,来自全省各单位各部门的青年志愿者们发扬无私奉献精神,用心用情服务,展示青春风采.会议结束后随机抽取了50名志愿者,统计了会议期间每个人14天的志愿服务总时长,得到如图的频率分布直方图:(1)求x的值,估计抽取的志愿者服务时长的中位数;20,40,80,100这两组样本中随机抽取6名志愿者,记录每个人的服务总时长得(2)用分层抽样的方法从[)[)到如图所示的茎叶图:①已知这6名志愿者服务时长的平均数为67,求m的值;80,100这组的概率.②若从这6名志愿者中随机抽取2人,求所抽取的2人恰好都是[)5.为了了解高二学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3;第二小组频数为12.(1)第二小组的频率是多少,样本容量是多少;(2)若次数在110以上(含110次)为达标,试估计该学校全体高二学生的达标率是多少;(3)在这次测试中,估计学生跳绳次数的众数和中位数、平均数各是多少.(结果均保留整数.)6.2021年10月16日,搭载“神州十三号”的火箭发射升空,这是一件让全国人民普遍关注的大事,因此每天有很多民众通过手机、电视等方式观看有关新闻.某机构将每天关注这件大事的时间在2小时以上的人称为“天文爱好者”,否则称为“非天文爱好者”,该机构通过调查,并从参与调查的人群中随机抽取了100人进行分析,得到下表(单位:人):(1)将上表中的数据填写完整,并判断能否在犯错误的概率不超过0.005的前提下认为“天文爱好者”或“非天文爱好者”与性别有关?(2)现从抽取的女性人群中,按“天文爱好者”和“非天文爱好者”这两种类型进行分层抽样抽取5人,然后再从这5人中随机选出3人,记其中“天文爱好者”的人数为X,求X的分布列和数学期望.附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.7.某投资公司2012年至2021年每年的投资金额x (单位:万元)与年利润增量y (单位:万元)的散点图如图:该投资公司为了预测2022年投资金额为20万元时的年利润增量,建立了y 关于x 的两个回归模型;模型①:由最小二乘公式可求得y 与x 的线性回归方程: 2.5020ˆ.5yx =-;模型②:由图中样本点的分布,可以认为样本点集中在由线:ln y b x a =+的附近,对投资金额x 做换元,令ln t x =,则y b t a =⋅+,且有101010102111122.00,230,569.00,50.92ii i i i i i i i ty t y t ========∑∑∑∑,(1)根据所给的统计量,求模型②中y 关于x 的回归方程;(2)分别利用这两个回归模型,预测投资金额为20万元时的年利润增量(结果保留两位小数);附:样本()()1,1,2,,i t y i n =⋯的最小乘估计公式为()()()121ˆˆˆ,niii ni i t t y y bay bt t t ==--==--∑∑;参考数据:ln20.6931,ln5 1.6094≈≈.8.下图是立德学校高二育才班摸底考试数学成绩不低于90分的人数的频率分布直方图,为激励学生的学习热情,班级决定对数学成绩高于110分的同学进行奖励.(1)若图中成绩在[100,110)分数段的人数为12人,求此次考试应奖励的人数;(2)用统计学知识估计数学成绩在90分及以上学生的数学成绩的中位数和平均数.(结果保留整数)9.某城市在进行新冠疫情防控中,为了解居民对新冠疫情防控的满意程度,组织居民给活动打分(分数为40,100内﹒现将这些分整数,满分为100分),从中随机抽取一个容量为180的样本,发现所有数据均在[]数分成以下6组并画出了样本的频率分布直方图,但不小心污损了部分图形,如图所示﹒观察图形,回答下列问题:60,70的频数;(1)算出第三组[)(2)请根据频率分布直方图,估计样本的众数、中位数和平均数﹒(每组数据以区间的中点值为代表) 10.某生物小组为了研究温度对某种酶的活性的影响进行了一组实验,实验数据经整理得到如下的折线图:由图可以看出,这种酶的活性指标值y 与温度x 具有较强的线性相关关系,请用相关系数加以说明.附:()()6185i ii x xy y =--=∑5.5= 2.65≈,样本相关系数()()niix x y y r --=∑11.新个体经济是中国经济社会数字化转型条件下出现的新生事物,指微商电商,网络直播、职业创作者等,下表是2021年1至4月份某市新增“微商电商”的统计数据:(1)请利用所给数据求新增微商电商个数y 与月份x 之间的线性回归方程ˆˆˆybx a =+,并预测该市2021年5月新增“微商电商”的个数(结果用四舍五入法保留整数);(2)一般认为当||0.9r ≥时,线性回归方程的拟合效果非常好;当0.75|0.9|r <≤时,线性回归方程的拟合效果良好.试问该线性回归方程的拟合效果是非常好还是良好?说明你的理由.1122211()()ˆ()()n ni iiii i nniii i x y nxy x x y x bxn x x x ====---==--∑∑∑∑,()()nni iiix y nxyx x yy r---=∑∑ˆˆ17.0294ay bx =-≈18.1659≈19.2354≈.。

2023年高三一模数学12区概率统计大题教师版_20230419105444

2023年高三一模数学12区概率统计大题教师版_20230419105444

(2023年北京西城区高三一模17)根据《国家学生体质健康标准》,高三男生和女生立定跳远单项等级如下(单位:cm ):从某校高三男生和女生中各随机抽取12名同学,将其立定跳远测试成绩整理如下(精确到1cm ):男生:180205213220235245250258261270275280女生:148160162169172184195196196197208220假设用频率估计概率,且每个同学的测试成绩相互独立.(Ⅰ)分别估计该校高三男生和女生立定跳远单项的优秀率;(Ⅱ)从该校全体高三男生中随机抽取2人,全体高三女生中随机抽取1人,设X 为这3人中立定跳远单项等级为优秀的人数,估计X 的数学期望EX ;(Ⅲ)从该校全体高三女生中随机抽取3人,设“这3人的立定跳远单项既有优秀,又有其它等级”为事件A ,“这3人的立定跳远单项至多有1个是优秀”为事件B .判断A 与B 是否相互独立.(结论不要求证明)解:(Ⅰ)样本中立定跳远单项等级获得优秀的男生人数为4,获得优秀的女生人数为6,所以估计该校高三男生立定跳远单项的优秀率为41123=;………2分估计高三女生立定跳远单项的优秀率为61122=.………4分(Ⅱ)由题设,X 的所有可能取值为0,1,2,3.(0)P X =估计为2212(329⨯=;………5分(1)P X =估计为122121214C (332329⨯⨯⨯+⨯=;………6分(2)P X =估计为122121115C (3323218⨯⨯⨯+⨯=;………7分(3)P X =估计为2111(3218⨯=.………8分估计X 的数学期望2451701239918186EX =⨯+⨯+⨯+⨯=.………10分立定跳远单项等级高三男生高三女生优秀260及以上194及以上良好245~259180~193及格205~244150~179不及格204及以下149及以下(Ⅲ)A 与B 相互独立.………13分(2023年北京石景山高三一模17)某高校“植物营养学专业”学生将鸡冠花的株高增量作为研究对象,观察速效肥和缓释肥对农作物影响情况.其中速效肥、缓释肥、未施肥三种处理下的鸡冠花分别对应1,2,3三组.观察一段时间后,分别从1,2,3三组随机抽取40株鸡冠花作为样本,得到相应的株高增量数据整理如下表.株高增量(单位:厘米)(4,7](7,10](10,13](13,16]第1组鸡冠花株数92092第2组鸡冠花株数416164第3组鸡冠花株数1312132假设用频率估计概率,且所有鸡冠花生长情况相互独立.(Ⅰ)从第1组所有鸡冠花中随机选取1株,估计株高增量为(7,10]厘米的概率;(Ⅱ)分别从第1组,第2组,第3组的所有鸡冠花中各随机选取1株,记这3株鸡冠花中恰有X 株的株高增量为(7,10]厘米,求X 的分布列和数学期望EX ;(Ⅲ)用“1k ξ=”表示第k 组鸡冠花的株高增量为(4,10]厘米,“0k ξ=”表示第k 组鸡冠花的株高增量为(10,16]厘米,(1,2,3)k =,直接写出方差123,,D D D ξξξ的大小关系.(结论不要求证明)解:(Ⅰ)设事件A 为“从第1组所有鸡冠花中各随机选取1株,株高增量为(7,10]厘米”,根据题中数据,第1组所有鸡冠花中,有20株鸡冠花增量为(7,10]厘米.所以()P A 估计为201402=(Ⅱ)设事件B 为“从第2组所有鸡冠花中各随机选取1株,株高增量为(7,10]厘米”,设事件C 为“从第3组所有鸡冠花中各随机选取1株,株高增量为(7,10]厘米”,根据题中数据,()P B 估计为162405=,()P C 估计为1234010=根据题意,随机变量X 的所有可能取值为0,1,2,3,且(0)()()()(P X P ABC P A P B P C ===,(1)()P X P ABC ABC ABC ==++()()()()()()()(()P A P B P C P A P B P C P A P B P C =++(3)()P X P ABC ==()()()P A P B P C =(2)1(0)(1)(3)P X P X P X P X ==-=-=-=.所以,(0)P X =估计为21100;(1)P X =估计为1125;(3)P X =估计为350;(2)P X =估计为29100.所以X 的分布列为X 0123P21100112529100350所以EX 估计为21112936012310025100505⨯+⨯+⨯+⨯=.(Ⅲ)132D D D ξξξ<<.(2023年北京平谷区高三一模18)“绿水青山就是金山银山”,某地区甲乙丙三个林场开展植树工程,2011-2020年的植树成活率(%)统计如下:(表中“/”表示该年末植树):2011年2012年2013年2014年2015年2016年2017年2018年2019年2020年甲95.59296.591.696.394.6////乙95.191.693.297.895.692.396.6///丙97.095.498.293.594.895.594.593.598.092.5规定:若当年植树成活率大于95%,则认定该年为优质工程.(1)从乙林场植树的年份中任抽取两年,求这两年都是优质工程的概率;(2)从甲、乙、丙三个林场植树的年份中各抽取一年,以X表示这3年中优质工程的个数,求X的分布列;(3)若乙丙两个林场每年植树的棵数不变,能否根据两个林场优质工程概率的大小,推断出这两个林场植树成活率平均数的大小?【小问1详解】乙林场植树共7年,其中优质工程有4年,从乙林场植树的年份中任抽取两年,这两年都是优质工程为事件A,所以()242743C12221===76C42721P A⨯⨯=⨯⨯.【小问2详解】甲林场植树共6年,其中优质工程有3年,乙林场植树共7年,其中优质工程有4年,丙林场植树共10年,其中优质工程有5年,则X 的可能取值为0,1,2,3,()1113351116710C C C 30=C C C 28P X ⋅⋅==⋅⋅,()1111111113353453351116710C C C C C C C C C 51C C C 14P X ⋅⋅+⋅⋅+⋅⋅==⋅⋅,()1111111113453453351116710C C C C C C C C C 112C C C 28P X ⋅⋅+⋅⋅+⋅⋅==⋅⋅,()1113451116710C C C 13=C C C 7P X ⋅⋅==⋅⋅.则X 的分布列为:X123P328514112817【小问3详解】不能根据两个林场优质工程概率的大小,推断出这两个林场植树成活率平均数的大小.因为乙、丙两个林场优质工程概率分别为4172,,且4172>.则设乙、丙林场植树成活率平均数分别为12,x x ,195.191.693.297.895.692.396.694.67x ++++++==,297.095.498.293.594.895.594.593.598.092.595.2910x +++++++++==所以乙、丙这两个林场植树成活率平均数分别为:94.6,95.29,且丙林场植树成活率大于乙林场植树成活率.所以不能根据两个林场优质工程概率的大小,推断出这两个林场植树成活率平均数的大小.(2023年北京丰台区高三一模18)交通拥堵指数(TPI )是表征交通拥堵程度的客观指标,用TPI 表示,TPI 越大代表拥堵程度越高.某平台计算TPI 的公式为:TPI=实际行程时间畅通行程时间,并按TPI 的大小将城市道路拥堵程度划分为如下表所示的4个等级:TPI [1,1.5)[1.5,2)[2,4)不低于4拥堵等级畅通缓行拥堵严重拥堵某市2023年元旦及前后共7天与2022年同期的交通高峰期城市道路TPI 的统计数据如下图:(Ⅰ)从2022年元旦及前后共7天中任取1天,求这一天交通高峰期城市道路拥堵程度为“拥堵”的概率;(Ⅱ)从2023年元旦及前后共7天中任取3天,将这3天中交通高峰期城市道路TPI 比2022年同日TPI 高的天数记为X ,求X 的分布列及数学期望E (X );(Ⅲ)把12月29日作为第1天,将2023年元旦前后共7天的交通高峰期城市道路TPI 依次记为127,,,a a a ,将2022年同期TPI 依次记为127,b b b ,,.记=i i i c a b -(1,2,,7)i = ,7117i i c c ==∑.请直接写出i c c -取得最大值时i 的值.【小问1详解】由图可知,2022年元旦及前后共7天中,交通高峰期城市道路拥堵程度为“拥堵”的共2天,所以这一天交通高峰期城市道路拥堵程度为“拥堵”的概率为27.【小问2详解】由图可知,2023年元旦及前后共7天中比2022年同日TPI 高的天数只有1月3日和1月4日这2天,所以()3537C 1020C 357P X ====,()215237C C 2041C 357P X ====,()125237C C 512C 357P X ====,所以X 的分布列为:X12P274717数学期望()24160127777E X =⨯+⨯+⨯=.【小问3详解】由题意,111 1.908 2.0550.147c a b =--==-,222 2.081 2.3930.312c a b =--==-,333 1.331 1.5290.198c a b =--==-,444 1.202 1.3020.1c a b =--=-=,555 1.271 1.6420.371c a b =--==-,666 2.256 1.8370.419c a b =-==-,777 2.012 1.7550.257c a b =-==-,所以()1110.1470.3120.1980.10.3710.4190.2570.06577n i i c c ===⨯-----++≈-∑,所以i c c -取得最大值时,6i =.(2023年北京房山区高三一模18)某社区组织了一次公益讲座,向社区居民普及垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后分别回答一份垃圾分类知识问卷,这10位社区居民的讲座前和讲座后答卷的正确率如下表:编号正确率1号2号3号4号5号6号7号8号9号10号讲座前65%60%70%100%65%75%90%85%80%60%讲座后90%85%80%95%85%85%95%100%85%90%(Ⅰ)从公益讲座前的10份垃圾分类知识答卷中随机抽取一份,求这份答卷正确率低于80%的概率;(Ⅱ)从公益讲座前、后所有正确率不低于90%的垃圾分类知识答卷中随机抽取3份,记随机变量X 为抽中讲座前答卷的个数,求随机变量X 的分布列和数学期望;(Ⅲ)判断此次公益讲座的宣传效果,并说明你的理由.解:(Ⅰ)记事件A 为“从公益讲座前的10份垃圾分类知识答卷中随机抽取一份,这份答卷正确率低于80%”.在公益讲座之前,10份垃圾分类知识答卷正确率低于80%的有6人,则63().105P A ==(Ⅱ)正确率不低于90%的垃圾分类知识答卷有7份,其中讲座前的答卷有2份,X 的可能取值为012,,;3052372(0)7C C P X C ===;2152374(1)7C C P X C ===;1252371(2)7C C P X C ===;X 的分布列为X 012P2747172416()0127777E X =⨯+⨯+⨯=.(Ⅲ)角度一:讲座前答卷正确率的平均值11(65%60%70%60%65%75%90%85%80%100%)75%10x =+++++++++=讲座后答卷正确率的平均值为21(90%85%80%90%85%85%95%100%85%95%)89%10x =+++++++++=因为12x x <,公益讲座后答卷正答率的平均值高于公益讲座前答卷正答率的平均值,公益讲座后社区居民答题水平提高,所以公益讲座有明显的效果;角度二:平均值变大,且讲座前答卷的方差2222221222221[(65%75%)(60%75%)(70%75%)(60%75%)(65%75%)10(75%75%)(90%75%)(85%75%)(80%75%)(100%75%)] 1.65s =-+-+-+-+-+-+-+-+-+-=同理计算讲座后答卷的方差220.34s =因为2212s s >,公益讲座之后社区居民答题正确率的方差小,整体水平高,并且比较集中,所以公益讲座有明显的效果;角度三:公益讲座前答题正确率最小值为60%,公益讲座之后答题的正确率最小值为80%,讲座前的极差为:100%-60%=40%,讲座后的极差为:100%-80%=20%,讲座后答卷正确率的变化范围比讲座前答卷正确率的变化范围小,公益讲座有效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学单元练习题:概率与统计(Ⅲ)一、 选择题(本题共12小题,每小题5分,共60分)1设M 和N 是两个随机事件,表示事件M 和事件N 都不发生的是 ( ) A .M N + B .M N ⋅ C . M N M N ⋅+⋅ D .M N ⋅2. 某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采取分层抽样法抽取容量为45的样本,那么高一,高二,高三各年级抽取的人数分别为 ( )A..15,10,20 ,15,15 C.10,5,30 D15,5,253.设一随机试验的结果只有A 和B ,且P(A)=m,令随机变量ξ=1⎧⎪⎨⎪⎩A发生 B 发生,则ξ的方差为( )B.2m(1-m) (m-1) (1-m)4. 设ξ是离散型随机变量,η=2ξ+3,则有 ( ) A .E η=2E ξ,D η=4D ξ B .E η=2E ξ+3,D η=4D ξ C .E η=2E ξ+3,D η=2D ξ+3 D .E η=2E ξ,D η=4D ξ+35.观察2000名新生婴儿的体重,得到频率分布直方图如图,则其中体重[2700,3000]的婴儿有( )名 名 名 名6. 将一组数据x 1,x 2,…,x n 改变为x 1-c ,x 2-c ,…,x n -c (c ≠0),下面结论正确的是A.平均数和方差都不变B.平均数不变,方差变了C.平均数变了,方差不变D.平均数和方差都变了7. 船队若出海后天气好,可获利5000元,若出海后天气坏,将损失2000元;若不出海也要损失1000元,根据预测天气好的概率为,则出海效益的期望是( )A 、2600B 、2400C 、 2200D 、20008.设随机变量ξ服从正态分布N(0,1),记()()x P x ξΦ=<.给出下列结论:①1(0)2Φ=;②()1()x x Φ=-Φ-;③(||)2()1P a a ξ=Φ-<;④(||)1()P a a ξ=-Φ>.其中正确命题的个数为( ).2 C 9. 为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在到之间的学生数为b ,则a , b 的值分别为 ( )A ., 78B ., 83C ., 78D ., 8310. 抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,则在10次试验中,成功次数ξ的期望是 ( )A.310B.955 C. 950D. 98011.如果随机变量ξ~N (1,0),标准正态分布表中相应0x 的值为)(0x Φ则 ( ) A.)()(00x x P Φ==ξ B.)()(00x x P Φ=>ξ C.)()|(|00x x P Φ=<ξ D. )()(00x x P Φ=<ξ12.为了考察两个变量x 和y 之间的线性相关性,甲、乙两个同学各自独立地做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为1l 和2l .已知两个人在试验中发现对变量x 的观测数据的平均数都为s ,对变量y 的观测数据的平均数都为t ,那么下列说法正确的是( )A. 1l 与2l 有交点(s ,t )B.1l 与2l 相交,但交点不是(s ,t )C. 1l 与2l 平行D. 1l 与2l 重合 题号1 2 3 4 5 6 7 8 9 10 1112 答案二、填空题:(共4小题;每小题4分,共16分)13. 若以连续掷两次骰子分别得点数m ,n 作为点P 的横、纵坐标,则点P 落在圆x 2+y 2=16内的概率是 14. 一个容量为n 的样本,分成若干组,已知某组频数和频率分别为36和,则n=__________. 15.五组(,)x y 数据的散点图如图所示,现去掉其中一组数据后,对剩下的四组数据进行线性相关分析,为使线性相关分数最大,应去掉的一组数据是 .16.. 有一批产品,其中有12件正品和4件次品,从中任取3件,若ξ表示取到次品的个数,则D ξ=三、解答题(本大题共6小题,共76分)17. 一接待中心有A、B、C、D四部热线电话.已知某一时刻电话A、B占线的概率为,电话C、D占线的概率为,各部电话是否占线相互之间没有影响.假设该时刻有ε部电话占线,试求随机变量ε的概率分布和它的期望 18.蓝球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P .(1) 记投篮1次得分ξ,求方差D ξ的最大值;(2) 当(1)中D ξ取最大值 时,甲一投3次篮,求所得总分y 的概率分布.19. 甲、乙两个商店购进同一种商品的价格为每件30元,销售价均为每件50元。

根据前5年的有关资料统计,甲商店这种商品的需求量ξ服从以下分布:ξ 10 20 30 40 50 P乙商店这种商品的需求量服从二项分布~ B ( 40, )若这种商品在一年内没有售完,则甲商店在一年后以每件25元的价格处理。

乙商店一年后剩下的这种商品第1件按25元的价格处理,第2件按24元的价格处理,第3件按23元的价格处理,依此类推。

今年甲、乙两个商店同时购进这种商品40件,根据前5年的销售情况,请你预测哪间商店的期望利润较大20. 甲、乙两个篮球队进行比赛每场比赛均不出现平局,而且若有一队胜4场,则比赛宣告结束,假设甲、乙在每场比赛中获胜的概率都是.21(1)求需要比赛场数ξ的分布列及数学期望E ξ;(2)如果比赛场馆是租借的,场地租金200元,而且每赛一场追加服务费32元,那 么举行一次这样的比赛,预计平均花销费用多少元钱.21. 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为1,7现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时既终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数. (1)求袋中所有的白球的个数; (2)求随机变量ξ的概率分布; (3)求甲取到白球的概率. .(1,2)(2,3.5)(3,9)(5,9.5)(4,7.8)xy22. 某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是,,,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.(1)求ξ的分布及数学期望;(2)记“函数f (x )=x 2-3ξx +1在区间[2,+∞)上单调递增”为事件A ,求事件A 的概率.参考答案一、D 、A 、D 、B 、B 、C 、B 、C 、A 、C 、D 、A二、13.29; 14. 144; 15.(3,9); 16. 3980 三、17.解:P(ε=0)=×-.P(ε=1)=32C ××+12C ××× – .P(ε = 2 ) = 32C ×× +1212C C ××× +32C ××-.P(ε = 3 ) = 1232C C ×××+2212C C ×××.P(ε = 4 ) = × = .18.解:(1)依题意,ξ的分布列为2220(1)111(0)(1)(1)()24E P P PD P P P P P ξξ∴=⨯-+⨯==-⨯-+-⨯=--+12P ∴=时.D ξ取最大值,最大值是14. (2)1~(3,),B ηη∴的分布列是19.解:E ξ=10 × + 20× + 30× + 40 × + 50× =30 ∴甲商店的期望利润为30 ×(50 – 30)–(40 – 30 )×(30 – 25 )=550 (元) E η=40× = 32由题意知,乙商店剩下的产,商品亏本金额是以30 – 25 =5为首项,公差为1,项数为40 – 32 = 8的等差数列。

∴乙商店剩下的亏本金额为 8×5 +8(81)2⨯-×1 = 68(元) ∴乙商店的期望利润为32×(50 – 30)– 68 = 576(元)> 550(元) 答:乙商店的期望利润较大。

20.解:设:测量一次绝对误差不超过10m 的概率1P .则1107.5107.5(||10)()()(0.25)( 1.75)1010P P η---=≤=Φ-Φ=Φ-Φ- (0.25)(1.75)10.5586=Φ+Φ-=.∴n 次测量至少有一次测量的绝对误差不超过10m 的概率21(10.5586)1(0.4414)n nP =--=-由1(0.4414)0.9n-> 得12.815.lg(0.4414)n -=>∴至少要进行三次测量.21.解:解:(1)设袋中原有n 个白球,由题意知227(1)1(1)2767762n n n C n n C --===⨯⨯ 可得3n =或2n =-(舍去)即袋中原有3个白球.(2)由题意,ξ的可能取值为1,2,3,4,53(1);7P ξ==()4322;767P ξ⨯===⨯4326(3);76535P ξ⨯⨯===⨯⨯43233(4);765435P ξ⨯⨯⨯===⨯⨯⨯432131(5);7654335P ξ⨯⨯⨯⨯===⨯⨯⨯⨯所以ξ的分布列为:(3)因为甲先取,所以甲只有可能在第一次,第三次和第5次取球,记”甲取到白球”为事件A ,则()()()22()13535P A P P P ξξξ==+=+==. 22.解:(1)分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点” 为事件A 1,A 2,A 3. 由已知A 1,A 2,A 3相互独立,P (A 1)=,P (A 2)=,P (A 3)=. 客人游览的景点数的可能取值为0,1,2,3. 相应地,客人没有游览的景点数的可能取 值为3,2,1,0,所以ξ的可能取值为1,3.P (ξ=3)=P (A 1·A 2·A 3)+ P (321A A A ⋅⋅)= P (A 1)P(A 2)P (A 3)+P ()()()321A P A P A ) =2×××=,P (ξ=1)=1-=.所以ξ的分布列为E ξ=1×+3×=.(2)解法一 因为,491)23()(22ξξ-+-=x x f 所以函数),23[13)(2+∞+-=ξξ在区间x x x f 上单调递增,要使),2[)(+∞在x f 上单调递增,当且仅当.34,223≤≤ξξ即从而.76.0)1()34()(===≤=ξξP P A P解法二:ξ的可能取值为1,3.当ξ=1时,函数),2[13)(2+∞+-=在区间x x x f 上单调递增, 当ξ=3时,函数),2[19)(2+∞+-=在区间x x x f 上不单调递增.0 所以.76.0)1()(===ξP A P。

相关文档
最新文档