选修2-2-《导数及其应用》题型总结
人教版高中数学选修2-2第一章导数及其应用复习优质
3.利用导数研究函数的极值和最值
1.应用导数求函数极值的一般步骤: (1)确定函数f(x)的定义域; (2)解方程f′(x)=0的根; (3) 检 验 f′(x) = 0 的 根 的 两 侧 f′(x) 的 符 号. 若左正右负,则f(x)在此根处取得极大值; 若左负右正,则f(x)在此根处取得极小值; 否则,此根不是f(x)的极值点.
(2)法一:设切点为(x0,y0), 则直线 l 的斜率为 f′(x0)=3x2 0+1, ∴直线 l 的方程为 3 y=(3x2 + 1)( x - x ) + x 0 0 0+x0-16, 又∵直线 l 过点(0,0), 3 ∴0=(3x2 + 1)( - x ) + x 0 0 0+x0-16, 3 整理得,x0=-8, ∴x0=-2.
解之得,x0=-2, 3 ∴y0=(-2) +(-2)-16=-26, k=3×(-2)2+1=13. ∴直线 l 的方程为 y=13x, 切点坐标为(-2, -26). x (3)∵切线与直线 y=- +3 垂直, 4 ∴切线的斜率 k=4. 设切点坐标为(x0, y0),则 f′ (x0)= 3x2 0+ 1= 4, ∴ x0= ± 1, x0=1 x0=-1, ∴ 或 y0=- 14 y0=- 18. 即切点为 (1,- 14)或 (- 1,- 18). 切线方程为 y=4(x- 1)-14 或 y= 4(x+ 1)-18. 即 y=4x- 18 或 y=4x- 14.
例 3: 已知函数 f(x)=-x3+ax2+bx, 在区间(-2,1) 2 内,当 x=-1 时取极小值,当 x= 时取极大值. 3 (1)求函数 y=f(x)在 x=-2 时的对应点的切线方程; (2)求函数 y=f(x)在[-2,1]上的最大值与最小值.
高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案
′
解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−
即
8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得
即
(x0 − 2)2 (x0 + 1) = 0.
第一讲选修2—2导数及其应用(答案解析)
第一讲选修2—2导数及其应用基础典型题归类解析对基础典型题进行归类解析,并辅之以同类变式题目进行巩固练习,是老师教学笔记的核心内容与教学精华所在,也是提高学生好题本含金量的试题秘集.当学生会总结数学题,会对所做的题目分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,他才真正掌握了学数学的窍门,才能真正的做到然不动".一、题型1:导数及导函数的概念题1、利用极限求导1 2例1 •已知s=- gt,求t=3秒时的瞬时速度.2"任它千变万化,我自岿A s解析:由题意可知某段时间内的平均速度亠随i t变化而变化,A t越小,A tA s极限定义可知,这个值就是加T O时,」的极限.A t A s—越接近于一个定值,由A t1 2 1 2 A s —(3 + A t) g3,竽r s(3 + At)-s(3) 「2g 2 V= l)m A t = ljm = lim -- --------------- 為◎A t A t1=—g lim (6+A t)2 S=3g=29.4(米/ 秒).4变式练习:求函数y=—f的导数-x4 4 解析:0 = 2 - 2 =(X + A x) x 4ix(2x + A x)2 2X(X + A x)A y 2x+心XA F 2A x X(X + A x)2= 4X2(X +M2」二、题型2:导数的几何意义的深刻领会导数的几何意义要深刻把握:导数值对应函数在该点处的切线斜率1已知曲线上的点求此点切线斜率例2.已知曲线y= 2x2上一点A(2,8),则A处的切线斜率为( )A. 4B. 16C. 8D. 2解析:选C.1 2 3变式训练(1):已知曲线y= 2x2—2上一点P(1, - 2),则过点P的切线的倾斜角为解析:切线的倾斜角为45°变式训练(2):求过点P(— 1,2)且与曲线y = 3x 2-4x + 2在点M(1,1)处的切线平行的直线.(所求 直线方程为2x - y + 4= 0)2、已知切线斜率求相关点坐标 例3函数y = x 2 + 4x 在x = X 0处的切线斜率为 2,则 血= .解析:2 = 2x 0 + 4,•- X o =— 1.变式训练:下列点中,在曲线y = x 2上,且在该点处的切线倾斜角为 n的是( )=xlnV2 = xln2 ■f(x)= log a X , f ,(1) = - 1,贝y a =解析:••• f ,(x) = £,xl na1 •f,(1)=斎-1.1 •••Ina =— 1, a = 一 e'(2)、已知直线y = kx 是曲线y = Inx 的切线,贝U k 的值等于 ___________ .1 1 1解析:因为y ,= (Inx),= -,设切点为(X 0, y 0), 则切线方程为y — y 0= —(x — X 0),即y = —x +Inx 0X X 0 X 01—1.由 lnX 0— 1= 0,得 X 0= e..・. k =-e 2、指数函数求导—x例 5 f(x)= 2 .解••• 2-x = (2)x ,•- f ,(x)= [g x ],=(挤^一 (『In2.3、幕函数求导例6 .已知f(x)= x a ,贝U f ,(- 1) =- 4,贝U a 的值等于(A . 4B . - 4C . 5D . - 5 解析:选 A.f ,(x) = ax a -1, f ,(- 1) = a(- 1)a -1 = - 4,变式练习.求与曲线 y =暫X 2在点P(8,4)处的切线垂直于点 解:••• y =饭2,•- y ,=(晴), 即在点P(8,4)的切线的斜率为 从而适合题意的直线方程为四、题型4:复合函数的导数1、用和差积商求导法则求基本函数导数例7求下列函数的导数:A . (0,0)B . (2,4) 解析:选D三、题型3:常见函数导数的运算及基本应用 1、对数函数求导 例 4. f(x) = log J 2x ; 解:f ,(x) = (log 证X),C .(扌,点D- (2, 4)变式练习:(1)、设函数a = 4.故选A. P 的直线方程.2•-y ,l x = 8=2X 82 , 2 -1=(X 3)= 3x 3,-L1 3= 3.1-适合题意的切线的斜率为-3. y —4=- 3(x — 8),即 3x + y — 28= 0.2—x(1)y =3x +xcosx;(2)y =市;(3)y =lgx — e;解:(1)y'= 6x+ cosx — xsinx; (2)y'=:::子=(〔農丫; (3)y'= (lgx)'— (ej’L :xn^^ — e X2、例8 •求下列复合函数的导数:(2)f(x)= (g 1)(士 - 1);(3)y = 5log 2(2X + 1) • (4)y = si n2x — cos2x.解:(1)因为 f(x)= ln(8x)= In8 +lnx ,1 所以 f ' (x) = (ln8)'+ (Inx)'=-x1 1 1 1 ——(2)因为 f(x)=(心+ 1)(頁-1)= 1 —谄+灵-1 = ^^—+不=^—, -w —C —x必所以f ' (x)= ----------------x⑶设 y = 5log 2u , u = 2x + 1, 则 y '= 5(log 2u)' (2x + 1)'(4)法一:10 = uln2 =(2x + 1 Jn2'y '= (si n2x — cos2x) '= (sin2x)' — (cos2x)'= 2cos2- + 2si n2x = ^2si n( 2x +^). 10法二:y =*sin(2x —》,••• y '= ^cos(2x -^) 2= 2迈sin(2x +3、求导的应用例9、已知 f(x) = ax 3 + 3x 2+ 2,若 f ' (— 1) = 4,贝U a 的值是()19 A. 513 Cl 310 D.§ 解析: 选 D. •••f ' 变式练习( 1 )•若函数 16 B.!62 10 (x) = 3ax + 6x ,.・.f ' (— 1) = 3a — 6= 4.• a^ —.3xe 解析: x••• f(X)=ex ,f(x)=二在x = c 处的导数值与函数值互为相反数,则 c 的值为_—c=ef ' (c)=X ' ', c 1 c = 2 ) xc •- f(c) = e,又 c- -、 e x — e f (x)= x 2c c. 八 ••• e + 半M L 0, • 2c — 1 = 0 得 c c 依题意知 f(c) + f ' (c)= 0,2) 若函数 f(x)= ax 4 + bx 2+ c 满足 f ' (1) = 2,贝U f ' (— 1)=( A • — 1 B • — 2 C • 2 D • 0解析:选 B.由题意知 f ' (x) = 4ax 3 + 2bx ,若 f ' (1) = 2,即f ' (1) = 4a + 2b = 2,从题中可知f ' (x)为奇函数,故f ' (— 1) = — f ' 4、导数中利用待定系数法求解析式例10、已知f ' (x)是一次函数,x 2f ' (x) — (2x — 1)f(x)= 1.求f(x)的解析式. 解:由f ' (x)为一次函数可知f(x)为二次函数.设 f(x) = ax 2 + bx + c(a 丰 0), 则 f ' (x)= 2ax + b.把 f(x), f ' (x)代入方程 x 2f ' (x) — (2x — 1)f(x) = 1 得:x 2(2ax + b) — (2x — 1)(ax 2 + bx + c) = 1,即(a — b)x 2 + (b — 2c)x + c — 1= 0. 要使方程对任意 x 恒成立,则需有a = b , b = 2c , c — 1 = 0, 解得 a = 2, b = 2, c = 1,所以 f(x)= Zx 2 + 2x + 1.小结:(1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少 运算量,提高运算速度,减少差错;如:例 8中1、2 (2)有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导•有时可以避免使用商的求导法则,减少运算量.变式练习( (1)=- 4a — 2b =— 2五、题型5:借助导数处理单调区间、极值和最值问题1、已知函数解析式求其单调区间 例11•求下列函数的单调区间.1(1)y = x -1 nx ;(2)y =衣解:(1)函数的定义域为(0 ,+s ).其导数为y ,=令1 — x>0,解得x>1 ;再令1 — -<0,解得入入因此,函数的单调增区间为 (1 ,+s ),函数的单调减区间为(0,1). ⑵函数的定义域为(一s, 0) U(0 ,+s ).1 1y '=— 27,所以当 xM0时,y '=— 27<0,而当x = 0时,函数无意义,所以y= ■在(—s, 0), (0 ,+s )内都是减函数,厶入即y= 2-的单调减区间是(一s, 0), (0 ,+s ).2x变式练习:函数f(x) = (x — 3)e x 的单调递增区间是( A. (— s, 2) B. (0,3) C. (1,4) 解析:选 D.f ' (x) = (x — 3)' e x + (x — 3)(e x )' 令f ' (x)>0,解得x>2,故选D. 2、已知函数单调区间求解析式中的参数值例12、若函数f(x)= X 3+ bx 2 + cx + d 的单调减区间为[—1,2],贝U b = _ 解析:••• y '= 3/+ 2bx + C, 由题意知[—1,2]是不等式3x 2 + 2bx + c<0的解集, •.— 1,2是方程3x 2 + 2bx + c = 0的根,由根与系数的关系得b =—多,c =— 6.变式练习:若函数 y = — |x 3 + ax 有三个单调区间,则 a 的取值范围是 解析:••• y '=— 4x 2+ a ,且y 有三个单调区间,方程y '=— 4x 2+ a = 0有两个不等的实根,2 △= 0 — 4 X (— 4) X a>0,. a>0.3、用导数解复杂函数中的恒成立问题 例13.函数y = ax 3— x 在R 上是减函数,则( ) 1A . a >3B .解析:选D.因为y '=3ax ; 所以y '= 3ax 2— K 0恒成立, 即3ax 2w 1恒成立. 当x = 0时,3ax 2w 1恒成立,此时 a € R ;变式练习.已知函数 f(x)= ax — -— 21 nx(a 》0),若函数f(x)在其定义域内为单调函数,求a 的取x值范围.解:F (x)= a + 負—2,要使函数f(x)在定义域(0 ,+s )内为单调函数, 只需f ‘(X)在(0,+s )内恒大于0或恒小于0.当a= 0时,f' (x)=— 2<0在(0 ,+s )内恒成立;x当a>0时,要使f ' (x)= a(1—丄)2 + a — - >0恒成立,二a —0,解得a > 1.x a aa综上,a 的取值范围为a > 1或a = 0.4、通过导数解决函数极值问题例14、函数f(x)= x 3— 6x 2— 15x + 2的极大值是0<x<1.)D. (2 ,+s ) =(x- 2)e x , a= 1C. a= 2D. aw 0:2- 1,函数y = ax 3-x 在(— s,+s )上是减函数,,极小值是解析:f '(X)= 3x 2— 12x — 15= 3(x — 5)(x + 1),在( — 8, — 1), (5 ,+s )上 f' (x)>0,在(—1,5)上 f' (x)<0, ••• f(x)极大值=f(— 1) = 10,f(x) 极小值 =f(5) =— 98.变式练习:函数f(x) = — 3x 3 + 2x 2+ 2x 取极小值时,x 的值是()322,— 1 C . — 1 D . — 32选 C f (x) = — X +x + 2=— (x — 2) (• + 1),f ’(x)<0,右侧f ' (x)>0,.・.x =— 1时取极小值.已知f(x)在x =— 3时取得极值,则a =( ) C . 4 D . 5••• f(x)在 x =— 3 处取得极值,••• f ' (— 3) = 0,即 27 — 6a + 3= 0^a = 5.已知函数f(x) = X 3— ax 2— bx + a 2在x = 1处有极值10,则a 、b 的值为( )a =— 4,b = 11B . a =— 4, b = 1 或 a = — 4, b = 11 a =— 1, b = 5 D .以上都不正确 f ' (x)= 3X 2— 2ax — b ,'••在 x = 1 处 f ' (x)有极值, ••• f ' (1)= 0,即 3— 2a — b = 0.① 又 f(1) = 1 — a — b+ a 2= 10,1 卩 a 2— a — b — 9 = 0.② 由①②得 a 2 + a —12 = 0,• a = 3 或 a = — 4. f a =— 4,f a = 3 2 2或{ 当{ 时,f ' (X) = 3X 2— 6x + 3= 3(x —1)2>0,(b = 11. 也=—3X (0, n) n 3 n (n—)3 n T 3 n _ 、("2,2n)f ' (X)+ 0 一+f(x)n+ 2\T因此,由上表知f(x)(0n 2n)(n f(3n=3^,极大值为f( n = n+ 2.•••在x =— 1的附近左侧 例 15、函数 f(x)= X 3 + ax 2 + 3x — 9, A . 2 B . 3解析:选 D.f ' (x)= 3x 2 + 2ax + 3, 变式练习(1):A . C .解析:选A.a= 3, b=— 3,a = 3a =— 4,舍去.••• 1 b =— 3 L b =11.变式练习(2):若函数y =— X 3 + 6x 2 + m 的极大值等于13,则实数m 等于 _________________ . 解析:y '=— 3/+ 12x ,由 y '= 0,得 x = 0 或 x = 4,容易得出当x = 4时函数取得极大值,所以— 43+ 6X42+ m = 13,解得m =— 19. 例16、设a € R ,若函数y = e x + ax , x € R ,有大于零的极值点,则 解析:y '= e X + a ,由 y '= 0 得 x = ln( —a).由题意知 ln( — a)>0 ,• a<— 1. • (— s, — 1) 已知函数 y = X — ln(1 + X 2),则y 的极值情况是() 有极小值 B .有极大值 C .既有极大值又有极小值 D . f ' (X) = 1 -(X — y > 0,•函数 f(x)在定义域1 + X 1 + X(2010年高考安徽卷)设函数f(x)= sinx — cosx +x + 1 (0<x<2n),求函数f(x)的单调区间故f(x)在R 上单调递增,不可能在x = 1处取得极值,所以a 的取值范围为 变式练习: D .无极值解析:选R 上为增函数. 综合练习: 与极值.解:由 f(x)= sin x — cosx + x + 1,0<x<2n,知 f ' (x) = cos x +sin x + 1,于是 f ' (x) = 1 + 灵sin(x + 令 f' (x)= 0,从而 sin(x + 4)=—警, 得 x= n 或 x=竽 当x 变化时,f '(X)、f(x)的变化情况如下表:5、通过导数解决最值问题例17、(06浙江卷)f(x) =X 3 —3x 2 +2在区间[—1,1]上的最大值是( ) 即当x = 3时,f(x)的极小值f(3)= — 9.又 f(1) = — 1, f(5) = 15, (A) - 2(B)0(C)2(D)4解析:f (x) =3x 2 —6x =3x(x —2),令 f'(X)=0 可得 x = 0 或 2 (2 舍去),当一1空<0 时,f'(x)>0,当时,f'(X)<;0,变式练习( 解析:由 所以当x = 0时,f (X )取得最大值为 2选C ;1 ):函数y = 4x 2(x -2)在x € [ — 2,2]上的最小值为 y '= 12x 2- 16x = 0,得 x = 0 或 x =-.34128x = 0 时,y = 0 ;当 x =-时,y =— -278;x =- 2 时,y =— 64;当 x = 2 时,y = 0.比较可知 y max = 0, y min =— 64.,最大值为例18.A . - 10 C . - 15解析:选变式练习 范围是 ____当变式练习(2):函数y = xe X 的最小值为 _____________ . 解析:令 y '= (x + 1)e x = 0,得 x =- 1.1 当 x< — 1 时,y ' <0;当 x> —1 时,y ' >0..・. y min = f( — 1)=-丄 e函数f(x) = X 3- 3X 2- 9x + k 在区间[—4,4]上的最大值为10,则其最小值为( ) B .- 71D .- 22f (X) = 3x 2- 6x - 9= 3(x - 3)(x + 1).由 f ' (X) = 0 得 X = 3,- 1.又 f( - 4) = k - 76, f(3) = k -27, f(- 1)= k + 5, f(4) = k - 20.由 f(x)max = k + 5 = 10,得 k = 5, • f(x)min = k - 76=- 71.(1):已知f(x) = - x 2+mx + 1在区间[—2, - 1]上的最大值就是函数f(x)的极大值,贝U m 的取值解析:f ‘ (x)= m -2x ,令 F(X)= 0,得 x =岁由题设得 m€ [ - 2,- 1],故 m € [ - 4,- 2].变式练习 ⑵.函数f(x) = ax 4- 4ax 2 + b(a>0,1 <x < 2)的最大值为3,最小值为一5,贝U a = 解析:y '= 4ax 3— 8ax = 4ax(x 2- 2) = 0, X 1 = 0, X 2=J 2 , X 3=—返,又 f(1) = a - 4a + b = b - 3a , f(2) = 16a - 16a + b = b , f(V 2) = b -4a , f(0) = b , f(-V 2) = b -4a. j b -4a =- 5,• • 5…a = 2. b=3b = 3,例 19.已知函数 f(x)= X 3- ax 2 + 3x.(1)若f(x)在 x € [1 ,+s )上是增函数,求实数 a 的取值范围; ⑵若x = 3是f(x)的极值点,求f(x)在 x € [1 , a]上的最大值和最小值. 解:(1)令 f ' (X) = 3x 2- 2ax + 3 > 0,;(x + X h = 3(当x = 1时取最小值). ••• a <•/ x > 1, • a < 3, a = 3 时亦符合题意,二 a < 3. (2)f ' (3) = 0,即 27-6a + 3= 0,•• a = 5, f(x)= X 3— 5x 2 + 3x , f ' (x)= 3X 2— 10x + 3.令 f ' (x) = 0,得 X 1 =3, x2=;(舍去).3当 1<x <3 时,f ' (x)< 0,当 3< x < 5 时,f ' (X) >0,••• f(x)在[1,5]上的最小值是f(3) = — 9,最大值是f(5) = 15.变式练习(06 山东卷):设函数f(x)= 2x 3-3(a-1)x 2 +1,其中a>1. (I)求f(x)的单调区间;(n) 讨论f(x)的极值.解:由已知得 f '(x) =6x[x-(a-1)],令 f '(x)=O ,解得x,=0,X2=a-1.(I)当a=1时,f '(x)=6x 2 , f (x)在(亠,畑)上单调递增;当 a :>1 时,f '(X)=6x [x -(a -1 , f '(x), f (x)随 x 的变化情况如下表:从上表可知,函数 f(x)在(虫,0)上单调递增;在(0,a-1)上单调递减;在(a -1,xc )上单调递增.f(x)没有极值;当a>1时,函数f(x)在x=0处取得极大值,在x=a-1处取得极小值i_(a-1)3.六、题型6:定积分问题1、计算定积分的值2、求定积分中的参数值1 32 例21 M = J (x 3-ax+b) dx ,若使M 最小,贝U a,b 需为何值?(n)由(I)知,当a =1时,函数 例 20.( 1)『(X —1)5dx ;(2) 『(X + sin x)dx ;1 6 解析:(1)因为[一(X -1)6]6 = (x-1)5,- 1 1 所以 I (X -1)5dx = -(X -1)6|2 =-; 勺 6 6(2)]sinx)dH = I —— COSS71 cos ——-(0-1)=¥+12 故込3、应用定积分处理平面区域内的面积__2 -变式练习(2).:由抛物线y= _x +4X-3及其在点A(0-3), B(3,0)处两切线所围成的图形的面积解;I 切A : y=4x —3,l 切B : y=—2x+6s =育[(4x-3) —(-X 2 +4x-3)]dx+ ^[(-Zx + G) -(-X 2 +4x-3)]dx = m4解:M = J/x 3 —ax + b) dx7 5 3 3 517583 当 a = —'b =0 时,M min51变式练习: 已知0 (3ax+1)(x+b)dx = 0 , a, b 忘R ,试求a b 的取值范围.1解: L(3ax+1)(x+b)dx =0= 2(a +b)+3ab +1 = 0175 3t +1 令 a ,b=t ,贝y a + b=- ----- 22 3t +1,故a,b 为方程X +x +t =0的两根例22.求抛物线y 2=x 与直线x-2y-3=0所围成的图形的面积.解:2y=x =X -2y -3 = 0[y = -1Xi 或. X =9变式练习 解:由 1 L9L X — 3S =2 0 J xdx + 1 (J x - 2)dx2X Z X 210+(2X 3 3+ |x)32(1).y 2求由抛物线2y =x-1所围成图形的面积.15l y 2 =x-141P(1,0)S=2[『{5dx —CGidx]=彳3 二 P(2,3)。
人教a版数学【选修2-2】第1章《导数及其应用》归纳总结课件
3 1 ∴x1=2是极小值点,x2=2是极大值点.
(2)若f(x)为R上的单调函数,则f′(x)在R上不变号, 结合①与条件a>0,知ax2-2ax+1≥0在R上恒成立,∴Δ= 4a2-4a=4a(a-1)≤0, ∵a>0,知0<a≤1. ∴a的取值范围为(0,1].
1 2 5.(2014· 成都质量检测)已知函数f(x)=-2x +2x-aex. (1)若a=1,求f(x)在x=1处的切线方程; (2)若f(x)在R上是增函数,求实数a的取值范围.
故函数g(x)在x=3处取得极小值,亦即最小值, 1 1 即g(x)min=-e3,所以a≤-e3, 1 即实数a的取值范围是(-∞,-e3].
典例探究学案
1 2 [解析] (1)当a=1时,f(x)=-2x +2x-ex, 1 2 3 则f(1)=-2×1 +2×1-e=2-e, f′(x)=-x+2-ex,f′(1)=-1+2-e=1-e, 3 故曲线y=f(x)在x=1处的切线方程为y-( 2 -e)=(1-e)(x 1 -1),即y=(1-e)x+2.
ex· 1+ax2-2ax [解析] 对f(x)求导得f′(x)= .① 1+ax22 4 (1)当a=3时,令f′(x)=0,则4x2-8x+3=0, 3 1 解得x1=2,x2=2.
结合①,可知 x f ′( x ) f ( x) 1 (-∞,2) + 1 2 0 极大值 1 3 (2,2) - 3 2 0 极小值 3 (2,+∞) +
1.(2014· 黄山模拟)已知f(x)=xlnx,若f′(x0)=2,则x0= ( ) A.e2 ln2 C. 2 B.e D.ln2
[答案] B [解析] f(x)的定义域为(0,+∞),f′(x)=lnx+1, 由f′(x0)=2,得lnx0+1=2,解得x0=e.
人教版高中数学【选修2-2】[知识点整理及重点题型梳理]_《导数及其应用》全章复习与巩固(提高)(理)
人教版高中数学选修2-2知识点梳理重点题型(常考知识点)巩固练习《导数及其应用》全章复习与巩固【学习目标】1. 会利用导数解决曲线的切线的问题.2. 会利用导数解决函数的单调性等有关问题.3. 会利用导数解决函数的极值、最值等有关问题.4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题【知识网络】【要点梳理】要点一:有关切线问题直线与曲线相切,我们要抓住三点: ①切点在切线上; ②切点在曲线上;③切线斜率等于曲线在切点处的导数值. 要点诠释:通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程组.要点二:有关函数单调性的问题设函数()y f x =在区间(a ,b )内可导,(1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数. 要点诠释:(1)若函数()f x 在区间(a ,b )内单调递增,则'()0f x ≥,若函数()f x 在(a ,b )内单调递减,则'()0f x ≤.(2)'()0f x ≥或'()0f x ≤恒成立,求参数值的范围的方法: ① 分离参数法:()m g x ≥或()m g x ≤.② 若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使min (,)0f x m ≥. (或是求含参函数(,)f x m 的最大值max (,)f x m ,使max (,)0f x m ≤) 要点三:函数极值、最值的问题 函数极值的问题(1)确定函数的定义域; (2)求导数)(x f '; (3)求方程0)(='x f 的根;(4)检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点诠释: ①先求出定义域②一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点; 若由负变正,则该点为极小值点.注意:无定义的点不用在表中列出③根据表格给出结论:注意一定指出在哪取得极值. 函数最值的问题若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下:(1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根;(3)求在),(b a 内所有使0)(='x f 的的点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数()y f x =在闭区间],[b a 上的最小值.要点诠释:①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的函数值进行比较即可.②若)(x f 在开区间),(b a 内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值. 要点四:优化问题在实际生活中用料最省、利润最大、效率最高等问题,常常可以归结为函数的最大值问题,从而可用导数来解决.我们知道,导数是求函数最大(小)值的有力工具,导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题.利用导数解决实际问题中的最值的一般步骤:(1) 分析实际问题中各量之间的关系,找出实际问题的数学模型,写出实际问题中变量之间的函数关系式()y f x =;(2) 求函数的导数'()f x ,解方程'()0f x =;(3) 比较函数在区间端点和极值点的函数值大小,最大(小)者为最大(小)值. 要点诠释:①解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系.再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 利用导数解决优化问题的基本思路:②得出变量之间的关系()y f x =后,必须由实际意义确定自变量x 的取值范围;③在实际问题中,有时会遇到函数在区间内只有一个点使f ′(x )=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.④在求实际问题的最大(小)值时,一定要注意考虑实际问题的意义,不符合实际意义的值应舍去. 要点五:定积分的概念如果函数=()y f x 在区间[]a b ,上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[]a b ,等分成n 个小区间,在每个小区间[]1,i i x x -上取点()1,2,,i i n =ξ,作和式:11()()nnn i i i i b aS f x f n==-=∆=∑∑ξξ.当n →+∞时,上述和式n S 无限趋近于常数,那么称该常数为函数()f x 在区间[,]a b 上的定积分,记作:()baf x dx ⎰,即+1()lim()nbi an i b af x dx f n→∞=-=∑⎰ξ.要点诠释: (1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时),记为()baf x dx ⎰,而不是n S .(2) 定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即()()()bbbaaaf x dx f u du f t dt ===⎰⎰⎰(称为积分形式的不变性),另外定积分()()baf x d x ⎰与积分区间[a ,b ]息息相关,不同的积分区间,定积分的积分上下限不同,所得的值也就不同,例如120(1)x dx +⎰与320(1)x dx +⎰的值就不同.要点六:定积分的几何意义要点诠释:(1)当()0f x ≤时,由()y f x =、x =a 、x =b 与x 轴所围成的曲边梯形位于x 轴的下方,积分()d baf x x⎰在几何上表示上述曲边梯形面积的相反数(负数).所以[()]d ()bbaaS f x x f x S =-=-=-⎰⎰,即()d baf x x S =-⎰,如图(b ).(2)当()f x 在区间[a ,b ]上有正有负时,积分()d b af x x ⎰在几何上表示几个小曲边梯形面积的代数和(x 轴上方面积取正号,x 轴下方面积取负号).在如图(c )所示的图象中,定积分132()d baf x x S S S =+-⎰.要点七:定积分的运算性质 性质1:()d ()bba ak f x x k f x kS ==⎰⎰;性质2:[()g()]d ()g()d bb baaaf x x x f x x x ±=±⎰⎰⎰;性质3:定积分关于积分区间具有可加性。
人教A版选修2-2导数及其应用常考题型:函数的极值与导
函数的极值与导数【知识梳理】1.函数极值的概念(1)函数的极大值一般地,设函数y=f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数y=f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点.(2)函数的极小值一般地,设函数y=f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数y=f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.极大值与极小值统称为极值.2.求函数y=f(x)极值的方法一般地,求函数y=f(x)的极值的方法是:解方程f′(x)=0. 当f′(x0)=0时:(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.【常考题型】题型一、运用导数解决函数的极值问题题点一:知图判断函数的极值1.已知函数y=f(x),其导函数y=f′(x)的图象如图所示,则y=f(x)()A.在(-∞,0)上为减函数B.在x=0处取极小值C.在(4,+∞)上为减函数D.在x=2处取极大值解析:选C由导函数的图象可知:x∈(-∞,0)∪(2,4)时,f′(x)>0,x∈(0,2)∪(4,+∞)时,f′(x)<0,因此f(x)在(-∞,0),(2,4)上为增函数,在(0,2),(4,+∞)上为减函数,所以x=0取得极大值,x=2取得极小值,x=4取得极大值,因此选C.题点二:已知函数求极值2.求函数f(x)=x2e-x的极值.解:函数的定义域为R,f′(x)=2x e-x+x2·e-x·(-x)′=2x e-x-x2·e-x=x(2-x)e-x.令f′(x)=0,得x(2-x)·e-x=0,解得x=0或x=2.当x变化时,f′(x),f(x)的变化情况如下表:并且极小值为f(0)=0;当x=2时,f(x)有极大值,并且极大值为f(2)=4e-2=4 e2.题点三已知函数的极值求参数3.已知函数f(x)的导数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是()A.(-∞,-1)B.(0,+∞)C.(0,1) D.(-1,0)解析:选D若a<-1,∵f′(x)=a(x+1)(x-a),∴f(x)在(-∞,a)上单调递减,在(a,-1)上单调递增,∴f(x)在x=a处取得极小值,与题意不符;若-1<a<0,则f(x)在(-1,a)上单调递增,在(a,+∞)上单调递减,从而在x =a处取得极大值.若a>0,则f(x)在(-1,a)上单调递减,在(a,+∞)上单调递增,与题意矛盾,∴选D.4.已知f(x)=ax5-bx3+c在x=±1处的极大值为4,极小值为0,试确定a,b,c的值.解:f′(x)=5ax4-3bx2=x2(5ax2-3b).由题意,f′(x)=0应有根x=±1,故5a=3b,于是f′(x)=5ax2(x2-1)(1)当a>0,x变化时,f′(x),f(x)的变化情况如下表:由表可知:⎩⎨⎧4=f (-1)=-a +b +c ,0=f (1)=a -b +c .又5a =3b ,解之得:a =3,b =5,c =2. (2)当a <0时,同理可得a =-3,b =-5,c =2. 【类题通法】 1.求函数极值的步骤 (1)确定函数的定义域. (2)求导数f ′(x ).(3)解方程f ′(x )=0得方程的根.(4)利用方程f ′(x )=0的根将定义域分成若干个小开区间,列表,判定导函数在各个小开区间的符号.(5)确定函数的极值,如果f ′(x )的符号在x 0处由正(负)变负(正),则f (x )在x 0处取得极大(小)值.2.已知函数极值,确定函数解析式中的参数时,注意两点(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解. (2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证充分性.题型二、函数极值的综合应用典例] 已知函数f (x )=x 3-3ax -1(a ≠0).若函数f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.解] 因为f (x )在x =-1处取得极值且f ′(x )=3x 2-3a , 所以f ′(-1)=3×(-1)2-3a =0,所以a =1. 所以f (x )=x 3-3x -1,f ′(x )=3x 2-3, 由f ′(x )=0,解得x 1=-1,x 2=1. 当x <-1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0; 当x >1时,f ′(x )>0. 所以由f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3. 作出f (x )的大致图象如图所示:因为直线y =m 与函数y =f (x )的图象有三个不同的交点,结合f (x )的图象可知,m 的取值范围是(-3,1).一题多变]1.变条件]若本例中条件改为“已知函数f (x )=-x 3+ax 2-4”在x =43处取得极值,其他条件不变,求m 的取值范围.解:由题意可得f ′(x )=-3x 2+2ax ,由f ′⎝ ⎛⎭⎪⎫43=0,可得a =2,所以f (x )=-x 3+2x 2-4, 则f ′(x )=-3x 2+4x .令f ′(x )=0,得x =0或x =43,当x 变化时,f ′(x ),f (x )的变化情况如下表:因为直线y =m 与函数y =f (x )的图象有三个不同的交点,所以m 的取值范围是⎝ ⎛⎭⎪⎫-4,-7627. 2.变条件]若本例“三个不同的交点”改为“两个不同的交点”结果如何?改为“一个交点”呢?解:由例题解析可知:当m=-3或m=1时,直线y=m与y=f(x)的图象有两个不同的交点;当m<-3或m>1时,直线y=m与y=f(x)的图象只有一个交点.【类题通法】(1)研究方程根的问题可以转化为研究相应函数的图象问题,一般地,方程f(x)=0的根就是函数f(x)的图象与x轴交点的横坐标,方程f(x)=g(x)的根就是函数f(x)与g(x)的图象的交点的横坐标.(2)事实上利用导数可以判断函数的单调性,研究函数的极值情况,并能在此基础上画出函数的大致图象,从直观上判断函数图象与x轴的交点或两个函数图象的交点的个数,从而为研究方程根的个数问题提供了方便.。
北师大版高中数学选修2-2第三章《导数应用》导数应用小结与复习课件
2019/8/16
例4: 如图,在二次函数f(x)=
4x-x2的图象与x轴所
y
围成的图形中有一个
内接矩形ABCD,求这
个矩形的最大面积.
解:设B(x,0)(0<x<2), 则
x
A(x, 4x-x2).
从而|AB|= 4x-x2,|BC|=2(2-x).故矩形ABCD的面积
为:S(x)=|AB||BC|=2x3-12x2+16x(0<x<2).
(1)求a、b的值;
(2)若f(x)在区间[m,m+1]上单调递增,求m的取值
解:(1)
f
范围.
(x) 3ax
2
2bx,
由题意得:
f (1) 2
f (1) 3
ab2 3a 2b 3
a b
1 .
3
(2) f ( x) 3x2 6x 3x( x 2) 0,解得x>0或x<-2.
2019/8/16
题型一: 利用导数求切线斜率、瞬时速度
例1 求垂直于直线 2x 6 y 1 0 ,且与曲线 y x3 3x2 1 相切的直线方程.
解法提示:在某一点切线的斜率或在某一 时刻的瞬时速度就是该点或该时刻对应的导数.
2019/8/16
题型二 :求函数的单调区间.
例2试确定函数 y 1 ln x 1 的单调区间.
练习3:若函数f(x)=x3+bx2+cx在(-∞,0]及[2,+∞)上都是 增函数,而在(0,2)上是减函数,求此函数在[-1,4]上 的值域.
答:由已知得 f (0) f (2) 0可, 求得c=0,b=-3,从而f(x)= x3-3x2.又f(-1)=f(2)=-4,f(0)=0,f(4)=16,所以函数f(x) 在[-1,4]上的值域是[-4,16].
(完整版)高中数学人教版选修2-2导数及其应用知识点总结,推荐文档
19 反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否 定是错误的,从而肯定原结论是正确的证明方法。
反证法的一般步骤(1)假设命题结论不成立,即假设结论的反面成立; (2)从假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确, 即所求证命题正确。反证法的思维方法:正难则反。矛盾(1)与已知条件矛盾: (2)与已有公理、定理、定义矛盾; (3)自相矛盾. 20 常见的“结论词”与“反义词”
常见的导数和定积分运算公式:若 f x, g x均可导(可积),则有:
和差的导数运算 积的导数运算 商的导数运算 复合函数的导数 微积分基本定理
和差的积分运算
积分的区间可加性
-1-
六安一中东校区高二数学选修 2-x)的导数 f '(x) ②令 f '(x) >0,解不等
证明当 n=k+1 时命题也成立.由(1),(2)可知,命题对于从 n0 开始的所有正整数
n
都正确
新疆 王新敞
[注]:常用于证明不完全归纳法推测所得命题的正确性的证明。
b
f (x)dx
a
a
c1
ck
11 定积分的取值情况:定积分的值可能取正值,
也可能取负值,还可能是 0.
( l )当对应的曲边梯形位于 x 轴上方时,
定积分的值取正值,且等于 x 轴上方的图形面积;
(2)当对应的曲边梯形位于 x 轴下方时, 定积分的值取负值,且等于 x 轴上方图形面积的 相反数;
(3)当位于 x 轴上方的曲边梯形面积等于 位于 x 轴下方的曲边梯形面积时,定积分的值 为 0,且等于 x 轴上方图形的面积减去下方的图 形的面积.
原结论词
反义词
高中数学选修2-2(人教B版)第一章导数及其应用1.3知识点总结含同步练习题及答案
描述:例题:高中数学选修2-2(人教B版)知识点总结含同步练习题及答案
第一章 导数及其应用 1.3 导数的应用
一、学习任务
1. 理解函数的单调性与导数的关系;会利用导数研究函数的单调性;会求不超过三次的多项式
函数的单调区间.2. 了解函数的极大(小)值,最大(小)值的概念;了解函数的极值与最值的区别和联系;掌
握求函数的极值与最值的方法.
3. 体会导数在解决实际问题中的作用;会利用导数解决实际生活中的有关利润最大、用料最
省、效率最高等优化问题;掌握最优化问题的建模及求解.二、知识清单
导数与函数的图象
利用导数研究函数的单调性
利用导数求函数的极值
利用导数求函数的最值
利用导数处理生活中的优化问题
三、知识讲解
1.导数与函数的图象
(1)导数 表示函数 在点 处的切线斜率.当切线斜率为正值时,
切线的倾斜角小于 ,函数曲线呈上升状态;当切线的斜率为负值时,切线的倾斜角大于 且小于 ,函数曲线呈下降状态.
(2)如果在区间 内恒有 ,那么函数 在区间 内是常函数.
()f ′x 0y =f (x )(,f ()x 0x 090∘90∘180∘(a ,
b )
(x )=0f ′y =f (x )(a ,b ) 是函数 的导函数, 的图象如图所示,则 的图象最有可能是下列选
项中的( )
(x )f ′f (x )y =(x )f ′f (x )
y=f
(x)
已知函数 的图象如图所示,则导函数
f(x)(a,b)则函数 在开区间
0.001 m
)?
S
(2)求面积 的最大值.解:(1)依题意,以
y=f(x)(−3,1)
2。
最新高中数学人教版选修2-2导数及其应用知识点总结54044
导数及其应用知识点必记1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有:6.用导数求函数单调区间的步骤:①求函数f (x )的导数'()f x ②令'()f x >0,解不等式,得x 的范围就是递增区间.③令'()f x <0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f (x )的极值的步骤:(1)确定函数的定义域。
(2) 求函数f (x )的导数'()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。
人教版高中数学【选修2-2】[知识点整理及重点题型梳理]_《导数及其应用》全章复习与巩固(基础)(理)
人教版高中数学选修2-2知识点梳理重点题型(常考知识点)巩固练习《导数及其应用》全章复习与巩固【学习目标】1. 会利用导数解决曲线的切线的问题.2. 会利用导数解决函数的单调性等有关问题.3. 会利用导数解决函数的极值、最值等有关问题.4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题【知识网络】【要点梳理】要点一:有关切线问题直线与曲线相切,我们要抓住三点: ①切点在切线上; ②切点在曲线上;③切线斜率等于曲线在切点处的导数值. 要点诠释:通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程组.要点二:有关函数单调性的问题设函数()y f x =在区间(a ,b )内可导,(1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数. 要点诠释:(1)若函数()f x 在区间(a ,b )内单调递增,则'()0f x ≥,若函数()f x 在(a ,b )内单调递减,则'()0f x ≤.(2)'()0f x ≥或'()0f x ≤恒成立,求参数值的范围的方法: ① 分离参数法:()m g x ≥或()m g x ≤.② 若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使min (,)0f x m ≥. (或是求含参函数(,)f x m 的最大值max (,)f x m ,使max (,)0f x m ≤) 要点三:函数极值、最值的问题 函数极值的问题(1)确定函数的定义域; (2)求导数)(x f '; (3)求方程0)(='x f 的根;(4)检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点诠释: ①先求出定义域②一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点; 若由负变正,则该点为极小值点.注意:无定义的点不用在表中列出③根据表格给出结论:注意一定指出在哪取得极值. 函数最值的问题若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下:(1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根;(3)求在),(b a 内所有使0)(='x f 的的点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数()y f x =在闭区间],[b a 上的最小值.要点诠释:①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的函数值进行比较即可.②若)(x f 在开区间),(b a 内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值. 要点四:优化问题在实际生活中用料最省、利润最大、效率最高等问题,常常可以归结为函数的最大值问题,从而可用导数来解决.我们知道,导数是求函数最大(小)值的有力工具,导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题.利用导数解决实际问题中的最值的一般步骤:(1) 分析实际问题中各量之间的关系,找出实际问题的数学模型,写出实际问题中变量之间的函数关系式()y f x =;(2) 求函数的导数'()f x ,解方程'()0f x =;(3) 比较函数在区间端点和极值点的函数值大小,最大(小)者为最大(小)值. 要点诠释:①解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系.再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 利用导数解决优化问题的基本思路:②得出变量之间的关系()y f x =后,必须由实际意义确定自变量x 的取值范围;③在实际问题中,有时会遇到函数在区间内只有一个点使'()0f x =的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.④在求实际问题的最大(小)值时,一定要注意考虑实际问题的意义,不符合实际意义的值应舍去. 要点五:定积分的概念如果函数=()y f x 在区间[]a b ,上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[]a b ,等分成n 个小区间,在每个小区间[]1,i i x x -上取点()1,2,,i i n =ξ,作和式:11()()nnn i i i i b aS f x f n==-=∆=∑∑ξξ.当n →+∞时,上述和式n S 无限趋近于常数,那么称该常数为函数()f x 在区间[,]a b 上的定积分,记作:()baf x dx ⎰,即+1()lim()nbi an i b af x dx f n→∞=-=∑⎰ξ.要点诠释: (1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时),记为()baf x dx ⎰,而不是n S .(2) 定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即()()()bbbaaaf x dx f u du f t dt ===⎰⎰⎰(称为积分形式的不变性),另外定积分()()baf x d x ⎰与积分区间[a ,b ]息息相关,不同的积分区间,定积分的积分上下限不同,所得的值也就不同,例如120(1)x dx +⎰与320(1)x dx +⎰的值就不同.要点六:定积分的几何意义要点诠释:(1)当()0f x ≤时,由()y f x =、x =a 、x =b 与x 轴所围成的曲边梯形位于x 轴的下方,积分()d baf x x⎰在几何上表示上述曲边梯形面积的相反数(负数).所以[()]d ()bbaaS f x x f x S =-=-=-⎰⎰,即()d baf x x S =-⎰,如图(b ).(2)当()f x 在区间[a ,b ]上有正有负时,积分()d b af x x ⎰在几何上表示几个小曲边梯形面积的代数和(x 轴上方面积取正号,x 轴下方面积取负号).在如图(c )所示的图象中,定积分132()d baf x x S S S =+-⎰.要点七:定积分的运算性质 性质1:()d ()bba ak f x x k f x kS ==⎰⎰;性质2:[()g()]d ()g()d bb baaaf x x x f x x x ±=±⎰⎰⎰;性质3:定积分关于积分区间具有可加性。
高中数学人教版选修2-2导数及其应用知识点总结
数学选修2-2导数及其应用知识点必记1.函数的平均变化率是什么? 答:平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念是什么?答:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 3.平均变化率和导数的几何意义是什么?答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。
4导数的背景是什么?答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。
5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分y c ='y =0————————n y x =()*n N ∈1'n y nx -=11n nx x dx n +=+⎰xy a=()0,1a a >≠'ln xy a a = ln xxa a dx a =⎰x y e ='x y e =x xe dx e=⎰log a y x =()0,1,0a a x >≠> 1'ln y x a =————————ln y x =1'y x=1ln dx x x =⎰sin y x = 'cos y x =cos sin xdx x =⎰ cos y x ='sin y x =-sin cos xdx x =-⎰6、常见的导数和定积分运算公式有哪些? 答:若()f x ,()g x 均可导(可积),则有:和差的导数运算[]'''()()()()f x g x f x g x ±=± 积的导数运算[]'''()()()()()()f x g x f x g x f x g x ⋅=±特别地:()()''Cf x Cf x =⎡⎤⎣⎦商的导数运算[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦ 特别地:()()21'()'g x g x g x ⎡⎤-=⎢⎥⎣⎦复合函数的导数x u x y y u '''=⋅微积分基本定理()baf x dx =⎰ (其中()()'F x f x =)和差的积分运算1212[()()]()()b bbaaaf x f x dx f x dx f x dx±=±⎰⎰⎰ 特别地:()()()bb aakf x dx k f x dx k =⎰⎰为常数积分的区间可加性()()()()bcbaacf x dx f x dx f x dx a c b =+<<⎰⎰⎰其中6.用导数求函数单调区间的步骤是什么? 答:①求函数f (x )的导数'()f x②令'()f x >0,解不等式,得x 的范围就是递增区间. ③令'()f x <0,解不等式,得x 的范围,就是递减区间; 注:求单调区间之前一定要先看原函数的定义域。
选修2-2第一章导数及其应用归纳整合
边梯形面积的区别.
网络构建
专题归纳
解读高考
专题一 应用导数解决与切线相关的问题 根据导数的几何意义,导数就是相应切线的斜率,从而就可 以应用导数解决一些与切线相关的问题.
网络构建
专题归纳
解读高考
【例 1】 设函数 f(x)=4x2-ln x+2,求曲线 y=f(x)在点(1,f(1)) 处的切线方程. 1 解 f′(x)=8x- x. 所以在点(1,f(1))处切线的斜率 k=f′(1)=7, 又 f(1)=4+2=6, 所以切点的坐标为(1,6), 所以切线的方程为 y-6=7(x-1),即 y=7x-1.
(2)求函数最值的步骤
一般地,求函数y =f(x) 在[a ,b] 上最大值与最小值的步骤如下: ①求函数y=f(x)在(a,b)内的极值; ②将函数y=f(x)的各极值与端点处的函数值 f(a),f(b)比较,其 中最大的一个是最大值,最小的一个是最小值.
网络构建
专题归纳
解读高考
7.应用导数解决实际问题,关键在于建立恰当的数学模型(函数 关系),如果函数在区间内只有一个点x0,使f′(x0)=0,则f(x0)是 函数的最值.
为增(或减)函数的充分条件.
网络构建
专题归纳
解读高考
5.利用导数研究函数的极值要注意 (1) 极值是一个局部概念,是仅对某一点的左右两侧领域而言 的.
(2) 连续函数f(x) 在其定义域上的极值点可能不止一个,也可能
没有极值点,函数的极大值与极小值没有必然的大小联系,函 数的一个极小值也不一定比它的一个极大值小. (3)可导函数的极值点一定是导数为零的点,但函数的导数为零 的点,不一定是该函数的极值点.因此导数为零的点仅是该点
3.利用基本初等函数的求导公式和四则运算法则求导数,熟记基
高中数学选修2-2(人教B版)第一章导数及其应用1.4知识点总结含同步练习题及答案
1 1 1 25 . + +⋯+ < n+1 n+2 2n 36
即
2n 1 1 1 1 n + +⋯+ <∫ dx = ln x| 2 n = ln 2n − ln n = ln 2, n+1 n+2 2n x n
因为ln 2 ≈ 0.6931 , 25 ≈ 0.6944 ,所以ln 2 < 25 .所以
3 1
π 2 dx;(3)∫ 0 2 (sin x − cos x)dx. x
∫
(1 + x + x2 ) = ∫
3 1
1 2 3 1 x | 1 + x3 | 3 1 2 3 1 1 = (3 − 1) + (3 2 − 1 2 ) + (3 3 − 1 3 ) 2 3 44 = . 3 = x| 3 1 +
∑ f (ξi )Δx = ∑
i =1 i =1 n n
b−a f (ξi ), n
当 n → ∞ 时,上述和式无限接近某个常数,这个常数叫做函数 f (x) 在区间 [a, b] 上的定积分(definite integral),记作 ∫ ab f (x)dx,即
∫
b a
f (x)dx = lim ∑
∫
b a
f (x)dx = F (x)| b a = F (b) − F (a).
例题: 利用定积分定义计算: (1)∫ 1 (1 + x)dx;(2)∫ 0 xdx. 解:(1)因为 f (x) = 1 + x 在区间 [1, 2] 上连续,将区间 [1, 2] 分成 n 等份,则每个区间的
高中数学选修2-2(人教B版)第一章导数及其应用1.5知识点总结含同步练习题及答案
答案: ①③④ 解析: 对于①,曲线
C : y = x3 在点 P (0, 0) 处的切线是 y = 0 .又当 x > 0 时, y = x3 − 0 > 0 , 所以图象 C 在直线 l : y = 0 上方,当 x < 0 时, y = x3 − 0 < 0 ,图象 C 在直线 l : y = 0 下 方.故直线 l : y = 0 在点 P (0, 0) 处"切过"曲线 C : y = x3 ;其余的依此类推.
②直线 l : x = −1 在点 P (−1, 0) 处"切过"曲线 C : y = (x + 1)3 ; ③直线 l : y = x 在点 P (0, 0) 处"切过"曲线 C : y = sin x ; ④直线 l : y = x 在点 P (0, 0) 处"切过"曲线 C : y = tan x ; ⑤直线 l : y = x − 1 在点 P (1, 0) 处"切过"曲线 C : y = ln x .
当 0 < x < 1 时,x 2 − 1 < 0,ln x < 0,所以 g ′ (x) < 0,故 g(x) 时,x2 − 1 > 0,ln x > 0,所以
g ′ (x) > 0,
故 g(x) 单调递增.所以
g(x) > g(1) = 0(∀x > 0, x ≠ 1).
所以除切点之外,曲线 C 在直线 L 的下方. 设函数 f (x) = x 3 − 6x + 5 ,(x ∈ R). (1)求函数 f (x) 的单调区间和极值; (2)若关于 x 的方程 f (x) = a 有三个不同实根,求实数 a 的取值范围. 解:(1)f ′ (x) = 3x 2 − 6,令
高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案
导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).
.
.
.
高考不提分,赔付1万元,关注快乐学了解详情。
解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为
.
A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。
人教版数学高二人教A版选修2-2第一章《导数及其应用》章末小结
章末小结知识点一导数的概念与几何意义求曲线的切线的方法求曲线的切线分两种情况(1)求点P(x0,y0)处的切线,该点在曲线上,且点是切点,切线斜率k =y′|x=x0.(2)求过点P(x1,y1)的切线方程,此点在切线上不一定是切点,需设出切点(x0,y0),求出切线斜率k=y′|x=x0,利用点斜式方程写出切线方程,再根据点在切线上求出切点坐标即可求出切线方程.已知函数y=x3-x,求函数图象(1)在点(1,0)处的切线方程;(2)过点(1,0)的切线方程.解析:(1)函数y=x3-x的图象在点(1,0)处的切线斜率为k=y′|x=1=(3x2-1)|x=1=2,所以函数的图象在点(1,0)处的切线方程为y=2x-2.(2)设函数y=x3-x图象上切点的坐标为P(x0,x30-x0),则切线斜率为k=y′|x=x0=3x20-1,切线方程为y-(x30-x0)=(3x20-1)(x-x0),由于切线经过点(1,0),所以0-(x30-x0)=(3x20-1)(1-x0),整理,得2x 30-3x 20+1=0,即2(x 30-1)-3(x 20-1)=0,所以2(x 0-1)(x 20+x 0+1)-3(x 0+1)(x 0-1)=0, 所以(x 0-1)2(2x 0+1)=0, 解得x 0=1或x 0=-12.所以P (1,0)或P ⎝ ⎛⎭⎪⎫-12,38,所以切线方程为y =2x -2或y =-14x +14.知识点二 导数与函数的单调性 求函数f (x )的单调区间的方法步骤 (1)确定函数f (x )的定义域; (2)计算函数f (x )的导数f ′(x );(3)解不等式f ′(x )>0,得到函数f (x )的递增区间;解不等式f ′(x )<0,得到函数f (x )的递减区间.提醒:求函数单调区间一定要先确定函数定义域,往往因忽视函数定义域而导致错误.(2014·高考大纲卷)函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论函数f (x )的单调性;(2)若函数f (x )在区间(1,2)是增函数,求a 的取值范围. 解析:(1)因为函数f (x )=ax 3+3x 2+3x , 所以f ′(x )=3ax 2+6x +3.令f ′(x )=0,即3ax 2+6x +3=0,则Δ=36(1-a )。
选修2-2-《导数及其应用》题型总结
《导数及其应用》经典题型总结一、知识网络结构题型一 求函数的导数及导数的几何意义 考点一 导数的概念,物理意义的应用例1.(1)设函数()f x 在2x =处可导,且(2)1f '=,求0(2)(2)lim2h f h f h h→+--;(2) ()2sin(25)f x x x =+,求()f x '(3)已知()(1)(2)(2008)f x x x x x =+++L ,求(0)f '.考点二 导数的几何意义与物理意义的应用例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值 例3:已知曲线y=.34313+x (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程.例4:已知物体运动的位移s 与时间f 关系为s(t)= 221t t -+,则t=1时物体的速度与加速度分别为____________, ___________________题型二 函数单调性的应用考点一 利用导函数的信息判断f(x)的大致形状例1 如果函数y =f(x)的图象如图,那么导函数y =f(x)的图象可能是( )导 数导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值常见函数的导数 导数的运算法则例1 求函数5224+-=x x y 的单调区间.(不含参函数求单调区间)例2 已知函数f (x )=12x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.(含参函数求单调区间)练习:求函数xax x f +=)(的单调区间。
例3 若函数f(x)=x 3-ax 2+1在(0,2)内单调递减,求实数a 的取值范围.(单调性的逆向应用)练习1:已知函数0],1,0(,2)(3>∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a 的取值范围。
高二数学选修2-2导数12种题型归纳(中等难度)精品名师资料
高二数学选修2-2导数12种题型归纳(中等难度)精品名师资料导数题型分类解析(中等难度)一、变化率与导数函数)(0x f y在x 0到x 0+x 之间的平均变化率,即)('0x f =0lim x xy =0limxxx f x x f Δ)()Δ(00,表示函数)(0x f y在x 0点的斜率。
注意增量的意义。
例1:若函数()yf x 在区间(,)a b 内可导,且0(,)x a b 则0()()limhf x h f x h h的值为()A .'0()f x B .'02()f x C .'02()f x D .0例2:若'0()3f x ,则0()(3)limh f x h f x h h()A.3B .6C .9D .12例3:求0limhhx f h x f )()(020二、“隐函数”的求值将)('0x f 当作一个常数对)(0x f 进行求导,代入0x 进行求值。
例1:已知232f x xxf ,则2f 例2:已知函数x xfxf sin cos 4,则4f的值为 .例3:已知函数)(x f 在R 上满足88)2(2)(2x x x f x f ,则曲线)(x f y在点))1(,1(f 处的切线方程为()A. 12x yB. xy C. 23x y D. 32x y 三、导数的物理应用如果物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s ′(t )。
如果物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v ′(t )。
例1:一个物体的运动方程为21t ts 其中s 的单位是米,t 的单位是秒,求物体在3秒末的瞬时速度。
例2:汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是()四、基本导数的求导公式①0;C (C 为常数)②1;nn xnx ③(sin )cos x x ; ④(cos )sin x x ; ⑤();xxe e ⑥()ln xxa a a ; ⑦1ln xx;⑧1l g log a a o xe x .stOA .st Ost OstOB .C .D .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《导数及其应用》经典题型总结
一、知识网络结构
题型一 求函数的导数及导数的几何意义 考点一 导数的概念,物理意义的应用
例1.(1)设函数()f x 在2x =处可导,且(2)1f '=,求0
(2)
(2)
lim
2h f h f h h
→+--;
(2) ()2sin(25)f x x x =+,求()f x '
(3)已知()(1)(2)(2008)f x x x x x =+++L ,求(0)f '.
考点二 导数的几何意义与物理意义的应用
例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值 例3:已知曲线y=.3
4313+x (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程.
例4:已知物体运动的位移s 与时间f 关系为s(t)= 2
21t t -+,则t=1时物体的速度与加速度分别为____________, ___________________
题型二 函数单调性的应用
考点一 利用导函数的信息判断f(x)的大致形状
例1 如果函数y =f(x)的图象如图,那么导函数y =f(x)的图象可能是( )
导 数
导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值
常见函数的导数 导数的运算法则
例1 求函数522
4+-=x x y 的单调区间.(不含参函数求单调区间)
例2 已知函数f (x )=1
2x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.(含参函数求单调区间)
练习:求函数x
a
x x f +
=)(的单调区间。
例3 若函数f(x)=x 3-ax 2
+1在(0,2)内单调递减,求实数a 的取值范围.(单调性的逆向应用)
练习1:已知函数0],1,0(,2)(3
>∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a 的取值范围。
2. 设a>0,函数ax x x f -=3
)(在(1,+∞)上是单调递增函数,求实数a 的取值范围。
3. 已知函数f (x )=ax 3+3x 2-x+1在R 上为减函数,求实数a 的取值范围。
总结:已知函数)(x f y =在),(b a 上的单调性,求参数的取值范围方法: 1、利用集合间的包含关系
2、转化为恒成立问题(即0)(0)(/
/
≤≥x f x f 或)(分离参数) 3、利用二次方程根的分布(数形结合) 例4 求证x x <sin ,(π∈x )(证明不等式)
练习:已知x>1,证明x>ln(1+x).
题型三 函数的极值与最值
考点一 利用导数求函数的极值。
例1 求下列函数的极值:(1)f(x)=x +1
4x ;(2)f(x)=ln x +1x .(不含参函数求极值)
例2 设a>0,求函数f(x)=x 2+a
x (x>1)的单调区间,并且如果有极值时,求出极值.(含参函数求极值)
例3设函数f(x)=a
3x 3+bx 2+cx +d(a>0),且方程f ′(x)-9x =0的两个根分别为1,4.若f(x)在(-∞,
+∞)内无极值点,求a 的取值范围.(函数极值的逆向应用)
例4 已知函数f(x)=x 3
-3ax -1,a ≠0. (利用极值解决方程的根的个数问题) (1)求f(x)的单调区间;
(2)若f(x)在x =-1处取得极值,直线y =m 与y =f(x)的图象有三个不同的交点,求m 的取值范围.
题型四 函数的最值 例1 求函数[]2,2,1
4)(2
-∈+=
x x x
x f 的最大值与最小值。
(不含参求最值)
例2 已知函数f(x)=ax 3-6ax 2+b ,试问是否存在实数a 、b ,使f(x)在[-1,2]上取得最大值3,最小值-29,若存在,求出a ,b 的值;若不存在,请说明理由.(最值的逆向应用)
例3 已知f(x)=xlnx ,g(x)=x 3+ax 2-x +2. (1)求函数f(x)的单调区间.
(2)若对任意x ∈(0,+∞),2f(x)≤g ′(x)+2恒成立,求实数a 的取值范围.(利用极值处理恒成立
问题)
练习1 已知f (x )=x 3-1
2
x 2-2x +5,当x ∈[-1,2]时,f (x )<m 恒成立,求实数m 的取值范围。
(2)f (x )=ax 3
-3x +1对于x ∈[-1,1]恒有f (x )≥0成立,则a =________.
二、知识点
1、函数()f x 从1x 到2x 的平均变化率:
()()
2121
f x f x x x --.
2、导数定义:()f x 在点0x 处的导数记作x
x f x x f x f y x x x ∆-∆+='='
→∆=)()(lim
)(000
00
.
3、函数()y f x =在点0x 处的导数的几何意义是曲线()
y f x =在点
()()
00,x f x P 处的切线的斜率.
4、常见函数的导数公式:
①'
C 0=;②1')(-=αααx
x ; ③x x cos )(sin '
=;④x x sin )(cos '
-=;
⑤a a a x
x ln )('
=;⑥x
x e e ='
)(; ⑦a
x x a ln 1)(log '
=
;⑧x x 1)(ln '
=
5、导数运算法则:
()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '
''⋅=+⎡⎤⎣⎦;
()3()()()()()()
()()()2
0f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.
6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减.
7、求解函数()y f x =单调区间的步骤:
(1)确定函数()y f x =的定义域; (2)求导数'
'
()y f x =; (3)解不等式'
()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间.
8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:
()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.
9、求解函数极值的一般步骤:
(1)确定函数的定义域 (2)求函数的导数f ’(x) (3)求方程f ’(x)=0的根
(4)用方程f ’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格 (5)由f ’(x)在方程f ’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况 10、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:
()1求函数()y f x =在(),a b 内的极值;
()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最
小的一个是最小值.。