《一元一次方程》解方程题大全 新课标人教版七年级上册 (17)
人教版七年数学一元一次方程经典习题
人教版七年数学一元一次方程经典习题人教版七年数学解一元一次方程题精选及答案一.解答题1.解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);4.解方程:(1).5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);2)解方程:.(2)x﹣=2﹣.1(6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2)9.解方程:10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).2=x﹣...11.计算:(1)计算:12.解方程:13.解方程:(1)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6(2)+2(2)(2)解方程:(3)[3(x﹣)+]=5x﹣115.(A类)解方程:5x ﹣2=7x+8;3(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(3)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)4)(2)解方程:x﹣﹣34(18.(1)计算:﹣42×(3)解方程:4x﹣3(5﹣x)=2;(4)解方程:19.(1)计算:(1﹣2﹣4)×(3)解方程:3x+3=2x+7;(4)解方程:5+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2].;(2)计算:÷;.20.解方程(1)﹣0.2(x﹣5)=1;(2)21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x..5x+2(3x﹣7)=9﹣4(2+x)..23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);XXX.解方程:(1)﹣0.5+3x=10;.(2)=﹣2.2)3x+8=2x+6;6((3)2x+3(x+1)=5﹣4(x﹣1);(4)25.解方程:.26.解方程:(1)10x﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k为什么数时,式子比的值少3..729.解下列方程:(I)12y﹣2.5y=7.5y+5(II).30.解方程:.8人教版七年数学解一元一次方程题精选参考答案与试题解析一.解答题(共30小题)1.解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计较题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=..故原方程的解为x=点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,归并得:3x=9,系数化1得:x=3.点评:(1)此题易在去分母、去括号和移项中呈现毛病,还大概会在解题前发生畏惧生理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从9而到达分化难点的结果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.阐发:此题双方都含有分数,分母不不异,假如间接通分,有肯定的难度,但将方程摆布同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分隔举行,从而到达分化难点的结果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计较题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个团体加上括号.去括号时要留意标记的变革.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计较题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为庞大的去分母,此题方程双方都含有分数系数,假如间接通分,有肯定的难度,但对每个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+313x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,以是要学会分隔举行,从而到达分化难点的结果.去分母时,方程两头同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把份子(假如是一个多项式)作为一个团体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计较题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的普通步调是去分母、去括号、移项、归并同类项和系数化为1.此题去分母时,方程两头同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计较题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)此题易在去分母、去括号和移项中呈现毛病,还大概会在解题前发生畏惧生理.因为看到小数、分数比力多,学生每每不知若何寻觅公分母,若何归并同类项,若何化简,以是我们要教会学生分隔举行,从而到达分化难点的结果;11(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计较题.分析:这是一个带分母的方程,所以要先去分母,再去括号,末了移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把份子(假如是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,归并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3 (4﹣x)=2去括号,得4x12﹣12+3x=2移项,归并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题首要是去括号,移项,归并同类项,系数化1.(2)方程两边每项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应当将分子用括号括上.11.计较:(1)计较:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.13分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)双方同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式= ,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以削减去括号带来的符号变革次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得14到方程的解.(2)解一元一次方程的普通步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、归并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类XXX:x=﹣1,系数化为1得:x=﹣.点评:此题考察解一元一次方程,正确把握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(1)(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、15合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:此题考察解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6(2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即16可;(4)首如果去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、归并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、归并得:9x=38,方程双方都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:普通要经由进程去分母、去括号、移项、合并同类项、未知数的系数化为1等步调,把一个一元一次方程“转化”成x=a的方式.解题时,要灵动应用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;17(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:此题首要考察一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)18(2)(3)(4)考点:解一元一次方程.专题:计较题.阐发:(1)去括号当前,移项,归并同类项,系数化为1便可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;﹣5x=﹣1(4)原方程可以变形为:去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.点评:解方程的进程中要留意每步的按照,这几个问题都是根蒂根基的问题,需求闇练把握.17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣考点:专题:分析:﹣3解一元一次方程.计算题.(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.19解答:解:(1)去括号得:4x﹣15+3x=13,移项归并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项归并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.留意移项要变号.18.(1)计较:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2] (3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.2(3)首如果去括号,移项合并.(4)两边同乘最小公倍数去分母,再求值.解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5 ﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x ﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x ﹣3(x﹣2)=5 (2x﹣5)﹣21解答:3×15去括号,得15x ﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.前两道题考查了学生有理数的夹杂运算,后两道考察了学生解一元一次方程的能力.点评:19.(1)计算:(1﹣2﹣4)×;(2)计算:(3)解方程:3x+3=2x+7;(4)解方程:考点:.÷;专题:分析:解答:解一元一次方程;有理数的混合运算.计算题.(1)和(2)要闇练把握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解:(1)(1﹣2 ﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣22)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90归并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别留意去分母的时候不要发生数字漏乘的现象,闇练把握去括号法例和合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)经由进程去分23母以及去括号、移项、系数化为1等进程,求得x的值.解答:解:(1)﹣0.2 (x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题首要考察了一元一次方XXX,解一元一次方程常见的进程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.24点评:此题考察相识一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左侧,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程头脑.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再经由进程移项、归并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,。
人教版七年级数学上册《一元一次方程》练习题-带答案
人教版七年级数学上册《一元一次方程》练习题-带答案学校:___________班级:___________姓名:___________考号:___________1.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=∣∣,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及A ,B 之间的距离. (2)若点A 向右运动,速度为 10 单位长度/秒,点B 向左运动,速度为 20 单位长度/秒,点A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位长度/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 t (0t 10<<),在运动过程中①OA PB MN - 的值不变;② OA PBMN+ 的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值.2.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及 A ,B 之间的距离.(2)若点 A 向右运动,速度为 10 单位长度/秒,点 B 向左运动,速度为 20 单位长度/秒,点 A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点 A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点 P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 ()010t t <<,请证明在运动过程中OA PB MN + 的值不变,并求出OA PBMN+值. 3.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.4.我们可以将任意三位数表示为abc =(其中a 、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且0a ≠).显然,10010abc a b c =++;我们把形如xyz 和zyx 的两个三位数称为一对“姊妹数”(其中x 、y 、z 是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意三对“姊妹数”,并判断2331是否是一对“姊妹数”的和; (2)如果用x 表示百位数字,求证:任意一对“姊妹数”的和能被37整除. 5.已知关于x 的方程2233x x +=+的两个解是1223,3x x ==; 又已知关于x 的方程2244x x +=+的两个解是1224,4x x ==; 又已知关于x 的方程2255x x +=+的两个解是1225,5x x ==;⋯小王认真分析和研究上述方程的特征,提出了如下的猜想. 关于x 的方程22x c x c +=+的两个解是122,x c x c==;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题. (1)关于x 的方程221111x x+=+的两个解是1x = 和2x = ;(2)已知关于x 的方程2212111x x +=+-,则x 的两个解是多少? 6.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”. (1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为 .(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一新的四位自然数A ,且m 大于自然数A 百位上的数字,否存在一个一位自然数n ,使得自然数(9A+n )各数位上的数字全都相同?若存在请求出m 和n 的值;若不存在,请说明理由. 7.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,满足16120a b -++=.动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)若点P 从A 点出发向左运动,点Q 为AP 的中点,在点P 到达点B 之前,求证BA BPBQ+为定值;(3)现有动点M ,若点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,当点P 到达原点O 后M 立即以每秒2个单位长度的速度沿数轴向左运动,求:当3OP OM =时,则P 点运动时间t 的值为 .8.【阅读理解】点A 、B 在数轴上对应的数分别是a ,b ,且()2280a b ++-=.A 、B 两点的中点表示的数为2a b+;当b a >时,A 、B 两点间的距离为AB b a =-. (1)求AB 的长.(2)点C 在数轴上对应的数为x ,且x 是方程282x x +=-的解,在数轴上是否存在点P ,使图1 图2(1)a可以用含e的代数式表示为____________;(2)若42++=时,求出图2中c所表示的日期;a e i(3)在这个月的日历中,求证:e f h i+++的值能被4整除.参考答案:1.【答案】(1)点A,B 两点在数轴上对应的数分别为-100,200,A,B 之间的距离为300(2)点 P 移动的路程为270或330个单位长度 (3)②正确2OA PBMN+= 2.【答案】(1)解:()21002000x y ++-=1000x ∴+= 2000y -=解得100x =- 200y =即点A ,B 两点在数轴上对应的数分别为-100,200,A ,B 之间的距离为300; (2)解: 设点P 运动时间为x 秒时,A ,B 两点相距30个单位长度. 由题意得102030030x x +=- 102030030x x +=+ 解得:9x =,或11x = 则此时点P 移动的路程为309270⨯=,或 3011330⨯=即P 走的路程为 270 或 330;(3)解:运动t 秒后A ,P ,B 三点所表示的数为10010t -+ 30t 20020t +010t <<20010PB t ∴=- 10010OA t =- 301001020100PA t t t =+-=+ 20020OB t =+M ,N 分别是AP ,OB 的中点∴N 表示的数为10010t +,M 表示的数为2050t -15010MN t ∴=-30020OA PB t +=- 2OA PBMN+∴=. 3.【答案】(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值84.【答案】解:(1)根据题意得:234与432,345与543,567与765均是一对姊妹数; 设这对“姊妹数”的一个三位数的十位数为b ,则个位数为(b -1),百位数为(b +1),其中位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;(3)设三位“妙数”的个位为z ,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n ﹣z ,由﹣8≤n﹣z≤9、1000(9m+z+1)≤1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出1000(91)88000{9088m z n z ++=+-=,即9m+z=87、n ﹣z=﹣2,由m >z+2知z <m ﹣2,而z=87﹣9m <m ﹣2,解之可得m >8.9,即可得m 值,进一步即可得答案. 7.【答案】(1)解:∵16120a b -++= ∴160-=a 120b += ∴16a = 12b =-∴点A 表示的数是16,点B 表示的数是12-. 故答案为:16;-12.(2)证明:∵点A 表示的数是16,点B 表示的数是12- ∴161228AB () 12OB = 16OA =∵动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,运动时间为t 秒 ∴4AP t = 284BP AB AP t =-=- ∵点Q 为AP 的中点 ∴114222AQ AP t t ==⨯= ∴282BQ AB AQ t =-=-在点P 到达点B 之前,即0<t <7时282845642282282BA BP t tBQ t t++--===-- ∴BA BPBQ+为定值. (3)∵点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,运动时间为()1643125t t解得:2011t=当点M在原点O的右侧,点512OM t=-16OP=()1643512t t解得:5219t=当点P到达原点O时,运动时间为这时点M在原点O的右侧,22)3(82t 解得:2125t=1212 45t t+=+=②当点M在原点∴228OM t =- 24OP t = ∵3OP OM = ∴22)43(28t t解得:212t =∴1241216t t t =+=+= (秒)综上所述,当3OP OM =时,则P 点运动时间t 的值为2011秒或5219秒或325秒或16秒.故答案为:2011秒或5219秒或325秒或16秒.8.【答案】(1)解:22(8)0a b ++-=∴2,8a b =-= ∴10AB =(2)解:282x x +=-∴10x =-∴点C 表示的数为10-设点P 对应的数为y ,由题可知,点P 不可能位于点A 的左侧,所以 ①当点P 在点B 右侧∴(8)[(2)](10)y y y -+--=-- ∴16y =②当点P 在A B 、之间 ∴(8)[(2)](10)y y y -+--=-- ∴0y =综上所述,点P 对应的数为16或0(3)证明:设运动时间为t ,则点E 对应的数是t ,点M 对应的数是28t -- 点N 对应的数是85t +P 是ME 的中点又Q)解:2,=-a c=+6,e c ia42c++=614)解:1,=+f e+=++i e ee+能被4整除4(4)∴e f i+++能被410.【答案】(1)证明:设则其“添彩数”与“减压数”分别为:第 11 页 共 11 页 =110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y -6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9, 则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数 ∴N 的值为17.。
人教版七年级上册一元一次方程计算题专练(含答案)
⼈教版七年级上册⼀元⼀次⽅程计算题专练(含答案)⼈教版七年级上册⼀元⼀次⽅程计算题专练(含答案)1.解⽅程:212132x x -+=+2.解⽅程:(1)()104x 32x 1+-=-;(2)14y 2y 1y 25-+=-.3.解⽅程(1)2x 13x 2x 1124+--=-.(2)x 0.160.1x 80.50.03--=4.解⽅程.(1)()83520x x -+= (2)1:225%:0.753x =(3) 2940%316x ÷=5.解⽅程(1)5322x -=;(2)3254x x -=-(2)5(31)2(42)8-=+-x x ;(4)2114135-+=-x x6.解下列⽅程或⽅程组(1)2x ﹣1=x+9 (2)x+5=2(x ﹣1)(3)43135x x --=- (4)3717245x x -+-=-7.解⽅程:(1)()12142x x x ??--=-(2)132123x x +-+=8.解⽅程:(1) 2534x x -=+ (2)341125x x -+-=9.解⽅程(1)2x+5=5x-7;(2)3(x-2)=2-5(x+2);(4)12x + +43x -=2;(4)12311463x x x -++-=+.10.解⽅程:(1)4(x ﹣2)=2﹣x ;(2)3121243y y +-=-. 11.解⽅程:21122323x x x -++=-12.解⽅程:(1)2x+3=x+5;(2)2(3y–1)–3(2–4y)=9y+10;(3)3157146y y-+-=;(4)3(1)1126x x++=+.13.解⽅程25321 68x x+--=14.解⽅程:(1)51312423-+--=x x x;(2)30.4110.50.3---=x x15.解⽅程x﹣13x-=36x-﹣116.解⽅程:(1)3x 158+=;(2)()7x 22x 310--=;(3)x 22x 1146+--=17.解⽅程(1)5y ﹣2(y +4)=6 (2)2121136x x -+-=-18.111(9)(9)339x x x x ??---=-19.解⽅程并在每⼀步后⾯写出你的依据.212163+--x x =120.解⽅程:32384x -=.21.解下列⽅程:(1)11(32)152x x --=;(2)131122x x +-=--;(3)243148x x --=-;(4)113(1)(21)234x x x ??--=+ 参考答案1.14x =【解析】【分析】按照解⼀元⼀次⽅程的步骤,去分母,去括号,移项,合并同类项,系数化为1,即可求出解.【详解】解:去分母得:2(21)3(2)6x x -=++,去括号得:42366x x -=++,移项得:43662x x -=++,合并同类项得:14x =.【点睛】本题考查了解⼀元⼀次⽅程,熟练掌握解⼀元⼀次⽅程的⼀般步骤是解题关键.2.(1)1x2=;(2)y2=-.【解析】【分析】()1⽅程去括号,移项合并,把x系数化为1,即可求出解;()2⽅程去分母,去括号,移项合并,把y系数化为1,即可求出解.. 【详解】解:()1去括号得:104x122x1+-=-,移项得:4x2x11012-=--+,合并得:2x1=,解得:1x2 =;()2去分母得:()5y1024y210y+=--,去括号得:5y108y410y+=--,移项得:5y8y10y410-+=--,合并得:7y14=-,解得:y2=-.【点睛】此题考查了解⼀元⼀次⽅程,解题关键在于掌握其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.3.(1)x=1(2)x=52【解析】【分析】(1)先分母,再去括号,合并移项即可求解;(2)先把分母化成整数,再求解⽅程的解.【详解】(1)2x 13x 2x 1124+--=- ()12x 21123(32)x x -+=--12x-2x-1=12-9x+619x=19,x=1(2)x 0.160.1x 80.50.03--= 1610x 283x --= 6x-16+10x=2416x=40 x=52【点睛】此题主要考查⼀元⼀次⽅程的求解,解题的关键是熟知⼀元⼀次⽅程的解法.4.(1)20x =;(2)12x =;(3)1516x = 【解析】【分析】(1)原式去括号,移项然后系数化为1即可得出答案;(2)把原式中的百分数转化为分数的形式,然后⽐例转化为乘法计算,运⽤乘法法则计算即可得出答案;(3)把原式中的百分数转化为分数的形式,然后等式两边乘以23,再利⽤除法法则计算即可得出结果.【详解】(1)解:83520x x --= 20x =(2)解:1120.7543x ?=? 12x = (3)解:2925163x =? 1516x = 【点睛】本题主要考查解⼀元⼀次⽅程,根据等式的性质进⾏解答即可.5.(1)5x =;(2)1x =;(3)17x =;(4)72x =. 【解析】【分析】(1)(2)依次移项,合并同类项,系数化为1即可得解;(3)依次去括号、移项,合并同类项,系数化为1即可得解;(4)依次去分母、去括号、移项,合并同类项,系数化为1即可得解【详解】解:(1)移项得5223x =+,合并同类项得525x =系数化为1得5x =;(2)移项得3524x x -=-合并同类项得22x -=-系数化为1得1x =;(3)去括号得155848x x -=+-移项得158485x x -=+-+合并同类项得71x =系数化为1得17x =;(4)去分母得5(21)3(14)15x x -=+-去括号得10531215x x -=+-移项得10123515x x -=+-合并同类项得27x -=-系数化为1得72x =. 【点睛】本题考查解⼀元⼀次⽅程,需注意,移项要变号,去分母时,没有分母的项也要乘以分母的最⼩公倍数,去括号时,括号外⾯的数与括号⾥⾯的每⼀项都要相乘.6.(1)10x = (2)7x = (3) 5.5x = (4)13x =【解析】【分析】解:(1)对移项合并2x ﹣1=x+9即可得到答案;(2)先去括号得x+5=2x ﹣2,移项合并,再系数化为1即可得到答案;(3)去分母得20﹣5x =3x ﹣9﹣15,移项合并,再系数化为1即可得到答案;(4)去分母得40﹣15x+35=﹣4x ﹣68,移项合并,再系数化为1即可得到答案.【详解】解:(1)对2x ﹣1=x+9移项合并得:x =10;(2)去括号得:x+5=2x ﹣2,移项合并得:﹣x =﹣7,系数化为1得:x =7;(3)去分母得:20﹣5x =3x ﹣9﹣15,移项合并得:﹣8x =﹣44,系数化为1得:x =5.5;(4)去分母得:40﹣15x+35=﹣4x ﹣68,移项合并得:﹣11x =﹣143,系数化为1得:x =13.【点睛】本题考查解⼀元⼀次⽅程,解题的关键是掌握解⼀元⼀次⽅程的基本解题步骤.7.(1)1x =;(2)3x =【解析】【分析】利⽤等式的性质解⼀元⼀次⽅程即可解答.【详解】(1)()12142x x x ?--=-解:去括号得:2142x x x -+=-移项合并同类项得:33x -=-系数化为1得:1x =(2)132123x x +-+= 解:去分母得:3(1)2(32)6x x ++-=去括号得:33646x x ++-=移项合并同类项得:3x -=-系数化为1得:3x =【点睛】本题考查了解⼀元⼀次⽅程,难度较低,熟练掌握等式的性质以及解⼀元⼀次⽅程是解题关键. 8.(1)x=14 -(2)x=-9 【解析】【分析】(1)根据⼀元⼀次⽅程移项合并即可求解;(2)去分母后,再根据⼀元⼀次⽅程的解法即可求解.【详解】(1) 2534x x -=+-8x=2 x=14- (2)341125x x -+-= 5(x-3)-2(4x+1)=105x-15-8x-2=10-3x=27x=-9【点睛】此题主要考查⼀元⼀次⽅程的求解,解题的关键是熟知⼀元⼀次⽅程的解法. 9.(1)x=4;(2)14x =-;(3)751x =;(4)5x =-. 【解析】【分析】(1)通过移项、合并同类项、系数化为1即可得解;(2)通过去括号、移项、合并同类项、系数化为1即可得解;(3)(4)都是通过去分母去括号、移项、合并同类项、系数化为1即可得解.【详解】(1)2x+5=5x?7移项得:2x?5x=?7?5合并同类项得:?3x=?12系数化为1得:x=4.(2)3(x?2)=2?5(x+2)去括号得:3x?6=2?5x -10移项得:3x+5x=2-10+6合并同类项得:8x=-2系数化为1得:x=14- .(3)12x + +43x-=2;去分母得: 3(1)2(4)12x x ++-=去括号得: 332812x x ++-=移项得: 321283x x +=+-合并同类项得: 517x =.系数化为1得751x =.(4)12311463x x x -++-=+去分母得: 3(1)122(23)4(1)x x x --=+++ 去括号得: 33124644x x x --=+++移项得: 34464312x x x --=+++合并同类项得: 525x -=系数化为1得:5x=-.【点睛】本题考查解⼀元⼀次⽅程,解⼀元⼀次⽅程的⼀般步骤是:(1)去分母(即在⽅程两边都乘以各分母的最⼩公倍数,去各项中的分母);(2)去括号(即按先去⼩括号,再去中括号,最后去⼤括号的顺序,逐层把括号去掉);(3)移项(即把含有未知数的项都移到⽅程的⼀边,其它项都移到⽅程的另⼀边。
七上解一元一次方程100道练习题(有答案)
七上解一元一次方程100道练习题(有答案)1.将2x + 1 = 7改为正确的格式:2x = 6,x = 3.这个方程的解为x = 3.2.将5x - 2 = 8改为正确的格式:5x = 10,x = 2.这个方程的解为x = 2.3.将3x + 3 = 2x + 7改为正确的格式:x =4.这个方程的解为x = 4.4.将x + 5 = 3x - 7改为正确的格式:2x = 12,x = 6.这个方程的解为x = 6.5.将11x - 2 = 14x - 9改为正确的格式:3x = 7,x = 7/3.这个方程的解为x = 7/3.6.将x - 9 = 4x + 27改为正确的格式:-3x = -36,x = 12.这个方程的解为x = 12.7.删除这个段落,因为没有提供足够的信息来解决问题。
8.将x = 3/2(x + 16)改为正确的格式:x = 24/(4 - 3),x = 24.这个方程的解为x = 24.9.将2x + 6 = 1改为正确的格式:2x = -5,x = -5/2.这个方程的解为x = -5/2.10.将10x - 3 = 9改为正确的格式:10x = 12,x = 6/5.这个方程的解为x = 6/5.11.将5x - 2 = 7x + 8改为正确的格式:-2x = 10,x = -5.这个方程的解为x = -5.12.将1/3x - 3 = 3x + 5/22改为正确的格式:11/66x = 31/66,x = 31/11.这个方程的解为x = 31/11.13.将4x - 2 = 3 - x改为正确的格式:5x = 5,x = 1.这个方程的解为x = 1.14.将-7x + 2 = 2x - 4改为正确的格式:-9x = -6,x = 2/3.这个方程的解为x = 2/3.15.将-x = -2/5(x + 1)改为正确的格式:-3x = -2,x = 2/3.这个方程的解为x = 2/3.16.将2x - (1/3)x = -1/3 + 2改为正确的格式:5/3x = 5/3,x = 1.这个方程的解为x = 1.17.将4(x + 0.5) + x = 7改为正确的格式:5x = 4.这个方程没有解,因为左边的表达式是一个正数,而右边是一个正数。
完整版)人教版七年级上数学一元一次方程经典题型讲解及答案
完整版)人教版七年级上数学一元一次方程经典题型讲解及答案1.为了吸引顾客,某商店开张时所有商品都按八折优惠出售。
已知一种皮鞋的进价为60元一双,商家按八折出售后获得40%的利润率。
问这种皮鞋的标价和优惠价各是多少元?2.一家商店将某种服装的进价提高40%后标价,再按八折优惠卖出,每件仍获得15元的利润。
问这种服装的进价是多少元?3.一家商店将一种自行车的进价提高45%后标价,再按八折优惠卖出,每辆仍获得50元的利润。
问这种自行车的进价是多少元?4.某商品的进价为800元,出售时标价为1200元。
由于积压,商店准备打折出售,但要保持利润率不低于5%。
问最多可以打几折?5.一家商店将某种型号的彩电的原售价提高40%,然后打广告写上“大酬宾,八折优惠”。
经过顾客投诉,被罚款2700元,罚款是非法收入的10倍。
问每台彩电的原售价是多少元?6.甲独自完成一项工作需要10天,乙独自完成需要8天,两人合作几天可以完成?7.甲独自完成一项工程需要15天,乙独自完成需要12天。
现在甲、乙合作3天后,甲有其他任务,剩下的工程由乙单独完成。
问乙还需要几天才能完成全部工程?8.一个蓄水池有甲、乙两个进水管和一个丙排水管。
单独开甲管6小时可注满水池,单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空。
现在先将甲、乙管同时开放2小时,然后打开丙管。
问打开丙管后几小时可以注满水池?9.输入一批工业最新动态信息到管理储存网络中,甲独自完成需要6小时,乙独自完成需要4小时。
甲先做了30分钟,然后甲、乙一起完成。
问甲、乙一起完成还需要多少小时?10.某车间有16名工人,每人每天可以加工甲种零件5个或乙种零件4个。
已知每加工一个甲种零件可以获得16元的利润。
现在一部分工人加工甲种零件,其余的加工乙种零件。
请问加工甲种零件的工人有多少人?1.这个车间一天可以获利60个乙种零件,因为每个乙种零件可以获利24元,而总获利是1440元。
人教版七年级上册数学方程计算题
人教版七年级上册数学方程计算题一、一元一次方程。
1. 解方程:2x + 3 = 7- 解析:- 首先进行移项,把常数项3移到等号右边,得到2x=7 - 3。
- 计算等号右边7-3 = 4,方程变为2x = 4。
- 然后两边同时除以2,解得x = 2。
2. 解方程:3x-5 = 4x + 1- 解析:- 移项,将含有x的项移到等号一边,常数项移到另一边。
把4x移到左边,变为3x-4x = 1 + 5。
- 计算左边3x-4x=-x,右边1 + 5 = 6,方程变为-x = 6。
- 两边同时乘以 - 1,解得x=-6。
3. 解方程:(1)/(2)x+3=(3)/(2)x - 1- 解析:- 移项,把(1)/(2)x移到右边,-1移到左边,得到3 + 1=(3)/(2)x-(1)/(2)x。
- 左边3 + 1 = 4,右边(3)/(2)x-(1)/(2)x=x,所以x = 4。
4. 解方程:5(x - 3)+2(3 - x)=12- 解析:- 先去括号,5x-15 + 6 - 2x = 12。
- 合并同类项,得到5x-2x-15 + 6 = 12,即3x-9 = 12。
- 移项得3x = 12+9。
- 计算得3x = 21,解得x = 7。
5. 解方程:2 - (2x+1)/(3)=(1 + x)/(2)- 解析:- 去分母,方程两边同时乘以6,得到12-2(2x + 1)=3(1 + x)。
- 去括号得12-4x-2 = 3 + 3x。
- 移项得-4x-3x = 3+2 - 12。
- 合并同类项得-7x=-7,解得x = 1。
6. 解方程:(0.1x - 0.2)/(0.02)-(x + 1)/(0.5)=3- 解析:- 先将方程中的分数分子分母同时乘以适当的数化为整数,对于(0.1x - 0.2)/(0.02),分子分母同乘100得5x-10,对于(x + 1)/(0.5),分子分母同乘10得2x + 2。
人教版七年级数学《一元一次方程》计算题专项练习(含答案)
人教版七年级数学《一元一次方程》计算题专项练习学校:班级:姓名:得分:1.解方程:x﹣4=2x+3﹣x.2.解方程:2(x﹣1)﹣3(x+2)=12.3.解方程:=1﹣.4.解方程:.5.解方程:.7.解方程:2(x+8)=3(x﹣1)8.解方程:3(2x+3)=11x﹣6.9.解方程:8y﹣3(3y+2)=6.10.解方程:3﹣(5﹣2x)=x+2.11.解方程:=.12.解方程:+1=x﹣.13.解方程:3﹣(5﹣2x)=x+2.14. 解方程:.15.解方程:.16.解方程:﹣=1.17.解方程:=﹣1 18.解方程:4﹣3(2﹣x)=5x;19. 解方程:﹣2=x﹣.20.解方程:3(x+4)=5﹣2(x﹣1)21. 解方程:=1﹣.22.解方程:=﹣1.23.解方程:.24.解方程:=.25.解方程:.26.解方程:.人教版七年级数学《一元一次方程》计算题专项练习参考答案1.x﹣4=2x+3﹣x.【解答】解:去分母得,x﹣8=4x+6﹣5x,移项得,x﹣4x+5x=6+8,合并同类项得,2x=14,系数化为1得,x=7.2.解下列方程:2(x﹣1)﹣3(x+2)=12.【解答】解:去括号得,2x﹣2﹣3x﹣6=12,移项得,2x﹣3x=12+2+6,合并同类项得,﹣x=20,系数化为1得,x=﹣20.3.=1﹣.【解答】解:去分母得,2(x+3)=12﹣3(3﹣2x),去括号得,2x+6=12﹣9+6x,移项得,2x﹣6x=12﹣9﹣6,合并同类项得,﹣4x=﹣3,系数化为1得,x=.4..【解答】解:去分母得,6x﹣2(2x﹣1)=6+3(x﹣3),去括号得,6x﹣4x+2=6+3x﹣9,移项得,6x﹣4x﹣3x=6﹣9﹣2,合并同类项得,﹣x=﹣5,系数化为1得,x=5.5.解方程:.【解答】解:去分母得,(2x﹣5)﹣3(3x+1)=6,去括号得,2x﹣5﹣9x﹣3=6,移项得,2x﹣9x=6+5+3,合并同类项得,﹣7x=14,系数化为1得,x=﹣2.6.解方程:4x﹣3=2(x﹣1)【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=7.2(x+8)=3(x﹣1)【解答】解:去括号,得2x+16=3x﹣3,移项、合并同类项,得﹣x=﹣19,化未知数的系数为1,得x=19.8.解方程:3(2x+3)=11x﹣6.【解答】解:3(2x+3)=11x﹣6,6x+9=11x﹣6,9+6=11x﹣6x,15=5x,x=3.9.解方程8y﹣3(3y+2)=6.【解答】解:8y﹣9y﹣6=6﹣y=12y=﹣1210.3﹣(5﹣2x)=x+2.【解答】解:3﹣(5﹣2x)=x+2,去括号得:3﹣5+2x=x+2,移项得:2x﹣x=2﹣3+5,解得:x=4.11.解方程:=.【解答】解:去分母,得4(x﹣2)=3(3﹣2x),去括号,得4x﹣8=9﹣6x,移项,得4x+6x=9+8,合并同类项,得10x=17,系数化为1,得x=.12.解方程:+1=x﹣.【解答】解:去分母得:2(x+1)+6=6x﹣3(x﹣1),去括号得:2x+2+6=6x﹣3x+3,移项合并得:﹣x=﹣5,解得:x=5.13.解方程:3﹣(5﹣2x)=x+2.【解答】解:去括号,得:3﹣5+2x=x+2,移项,得:2x﹣x=2﹣3+5,合并同类项得:x=4;14.解方程:.【解答】解:去分母,得:3(4﹣x)﹣2(2x+1)=6,去括号,得:12﹣3x﹣4x﹣2=6,移项,得:﹣3x﹣4x=6﹣12+2合并同类项得:﹣7x=﹣4,系数化成1得:x=.15..【解答】解:等式的两边同时乘以12,得4(x+1)=12﹣3(2x+1)…(2分)去括号、移项,得4x+6x=12﹣4﹣3…(4分)合并同类项,得10x=5…(5分)化未知数的系数为1,得…(6分)16.解方程:﹣=1.【解答】解:3(x﹣1)﹣4(x+2)=123x﹣3﹣4 x﹣8=123x﹣4 x=12+3+8x=﹣2317.解方程=﹣1【解答】解:去分母得:5(3x﹣1)=2(4x+2)﹣10移项得:15x﹣8x=4﹣10+5合并同类项得:7x=﹣1系数化为得:x=﹣.18.解方程:4﹣3(2﹣x)=5x;【解答】解:去括号得:4﹣6+3x=5x,移项、合并同类项得:﹣2x=2,系数化为1得:x=﹣1.19.解方程:﹣2=x﹣.【解答】解:去分母、去括号得:2x+2﹣12=6x﹣3x+3,移项、合并同类项得:﹣x=13,系数化为1得:x=﹣13.20.解方程:3(x+4)=5﹣2(x﹣1)【解答】解:去括号,得:3x+12=5﹣2x+2,移项,得:3x+2x=5+2﹣12,合并同类项,得:5x=﹣5,系数化为1,得:x=﹣1;21.解方程:=1﹣.【解答】解:去分母,得:3(x+2)=6﹣2(x﹣5),去括号,得:3x+6=6﹣2x+10,移项及合并,得:5x=10,系数化为1,得:x=2.22.解方程:=﹣1.【解答】解:去分母得:4(2x﹣1)=3(x+2)﹣12移项得:8x﹣3x=6﹣12+4合并得:5x=﹣2系数化为1得:x=﹣.23.解方程:.【解答】解:去分母,得4(2x﹣1)=3(3x﹣5)+24,去括号,得8x﹣4=9x﹣15+24,移项、合并同类项,得﹣x=13,系数化为1,得x=﹣13.24.解方程:=.【解答】解:=方程两边同时乘以6,得3(x+1)=2(2﹣x)﹣63x+3=4﹣2x﹣65x=﹣5x=﹣1、25.解方程:.【解答】解:去分母得,5(3x+1)﹣20=3x﹣2,去括号得,15x+5﹣20=3x﹣2,移项合并得,12x=13,系数化为1得,x=.26.解方程:.【解答】解:去分母得,2(x+1)﹣4=8+2﹣x,去括号得,2x+2﹣4=8+2﹣x,移项得,2x+x=8+2﹣2+4,合并同类项得,3x=12,系数化为1得,x=4.。
七年级上册《数学》去括号解一元一次方程练习题(含答案)
第1课时去括号解一元一次方程练习题一、能力提升1.一元一次方程6(x-2)=8(x-2)的解为()A.x=1B.x=2C.x=3D.x=62.小明所在城市的“梯度水价”收费方法是:每户用水不超过5吨,每吨水费x 元;若超过5吨,则超过5吨的部分每吨加收2元.若小明家今年5月份用水9吨,缴纳水费44元,则x的值为()A.2B.3C.4D.53.若方程3(2x-1)=2-3x的解与关于x的方程6-2k=2(x+3)的解相同,则k的值为()A.59B.-59C.53D.-534.五一节期间,林老师驾车从A地出发,到B地旅游,整个行程4.5h,结束旅游沿同一路线返回,返回时平均速度提高了10km/h,并且比去时少用了半小时,则返回时的平均速度(单位:km/h)为()A.80B.90C.100D.1105.设P=2y-2,Q=2y+3,且3P-Q=1,则y的值等于.6.若x=2是方程|m|(x+2)=3x的解,则m=.7.已知y1=6-x,y2=2+7x,解答下列问题:(1)当y1=2y2时,求x的值;(2)当x取何值时,y1比y2小-3?8.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?9.为方便市民出行,减轻城市中心交通压力,某市正在修建贯穿星城南北、东西的地铁1,2号线.已知修建地铁1号线24千米和2号线22千米共需投资265亿元.若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.(1)求1号线、2号线每千米的平均造价分别是多少亿元?(2)除1,2号线外,该市政府规划到2022年还要再建91.8千米的地铁线网,据预算,这91.8千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,还需投资多少亿元?10.某学校在对口援助偏远山区学校活动中,原计划初中部和高中部共计赠书3000册,由于学生的积极响应,实际赠书3780册,其中初中部比原计划多赠了20%,高中部比原计划多赠了30%,问该校初中部、高中部原计划各赠书多少册?二、创新应用11.某人原计划在一定时间内步行由甲地到达乙地,他先以4km/h的速度步行了全程的一半后,又搭上了速度为20km/h的顺路汽车,所以比原计划的时间早到了2h.甲、乙两地之间的距离是多少千米?答案:一、能力提升1.B2.C 根据题意,得5x+4(x+2)=44,解得x=4.3.B 解方程3(2x-1)=2-3x 得x=59.把x=59代入方程6-2k=2(x+3),得6-2k=2(59+3),解得k=-59. 4.B 设返回时的平均速度为xkm/h,根据题意,得4.5(x-10)=(4.5-0.5)x,解得x=90.5.52;把P=2y-2,Q=2y+3代入3P-Q=1,得3(2y-2)-(2y+3)=1,解得y=52.6.±32.7.解:(1)由题意,得6-x=2(2+7x).解得x=215. (2)由题意,得2+7x-(6-x)=-3,解得x=18. 8.解:设七年级收到的征文有x 篇,则八年级收到的征文有(118-x)篇. 依题意,得(x+2)×2=118-x,解得x=38.答:七年级收到的征文有38篇.9.解:(1)设1号线每千米的平均造价是x 亿元,则2号线每千米的平均造价是(x-0.5)亿元.根据题意,得24x+22(x-0.5)=265,解得x=6,则x-0.5=5.5.答:1号线、2号线每千米的平均造价分别是6亿元、5.5亿元.(2)91.8×1.2×6=660.96(亿元).答:还需投资660.96亿元.10.解:设原计划初中部赠书x册,则高中部赠书(3000-x)册.由题意知20%·x+30%·(3000-x)=3780-3000,解得x=1200.则高中部原计划赠书3000-1200=1800(册).答:该校初中部原计划赠书1200册,高中部原计划赠书1800册.二、创新应用11.解:设全程一半的路程为skm,则甲、乙两地之间的距离为2skm.根据题意,得2s4−(s4+s20)=2.解得s=10,即2s=20.答:甲、乙两地之间的距离是20km.。
人教版七年级上册一元一次方程计算题专练(含答案)
人教版七年级上册一元一次方程计算题专练(含答案)人教版七年级上册一元一次方程计算题专练(含答案)1.解方程:212132x x -+=+2.解方程:(1)()104x 32x 1+-=-;(2)14y 2y 1y 25-+=-.3.解方程(1)2x 13x 2x 1124+--=-.(2)x 0.160.1x 80.50.03--=4.解方程.(1)()83520x x -+= (2)1:225%:0.753x =(3) 2940%316x ÷=5.解方程(1)5322x -=;(2)3254x x -=-(2)5(31)2(42)8-=+-x x ;(4)2114135-+=-x x6.解下列方程或方程组(1)2x ﹣1=x+9 (2)x+5=2(x ﹣1)(3)43135x x --=- (4)3717245x x -+-=-7.解方程:(1)()12142x x x ??--=-(2)132123x x +-+=8.解方程:(1) 2534x x -=+ (2)341125x x -+-=9.解方程(1)2x+5=5x-7;(2)3(x-2)=2-5(x+2);(4)12x + +43x -=2;(4)12311463x x x -++-=+.10.解方程:(1)4(x ﹣2)=2﹣x ;(2)3121243y y +-=-. 11.解方程:21122323x x x -++=-12.解方程:(1)2x+3=x+5;(2)2(3y–1)–3(2–4y)=9y+10;(3)3157146y y-+-=;(4)3(1)1126x x++=+.13.解方程25321 68x x+--=14.解方程:(1)51312423-+--=x x x;(2)30.4110.50.3---=x x15.解方程x﹣13x-=36x-﹣116.解方程:(1)3x 158+=;(2)()7x 22x 310--=;(3)x 22x 1146+--=17.解方程(1)5y ﹣2(y +4)=6 (2)2121136x x -+-=-18.111(9)(9)339x x x x ??---=-19.解方程并在每一步后面写出你的依据.212163+--x x =120.解方程:32384x -=.21.解下列方程:(1)11(32)152x x --=;(2)131122x x +-=--;(3)243148x x --=-;(4)113(1)(21)234x x x ??--=+ 参考答案1.14x =【解析】【分析】按照解一元一次方程的步骤,去分母,去括号,移项,合并同类项,系数化为1,即可求出解.【详解】解:去分母得:2(21)3(2)6x x -=++,去括号得:42366x x -=++,移项得:43662x x -=++,合并同类项得:14x =.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键.2.(1)1x2=;(2)y2=-.【解析】【分析】()1方程去括号,移项合并,把x系数化为1,即可求出解;()2方程去分母,去括号,移项合并,把y系数化为1,即可求出解..【详解】解:()1去括号得:104x122x1+-=-,移项得:4x2x11012-=--+,合并得:2x1=,解得:1x2 =;()2去分母得:()5y1024y210y+=--,去括号得:5y108y410y+=--,移项得:5y8y10y410-+=--,合并得:7y14=-,解得:y2=-.【点睛】此题考查了解一元一次方程,解题关键在于掌握其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.3.(1)x=1(2)x=52【解析】【分析】(1)先分母,再去括号,合并移项即可求解;(2)先把分母化成整数,再求解方程的解.【详解】(1)2x 13x 2x 1124+--=- ()12x 21123(32)x x -+=--12x-2x-1=12-9x+619x=19,x=1(2)x 0.160.1x 80.50.03--= 1610x 283x --= 6x-16+10x=2416x=40 x=52【点睛】此题主要考查一元一次方程的求解,解题的关键是熟知一元一次方程的解法.4.(1)20x =;(2)12x =;(3)1516x = 【解析】【分析】(1)原式去括号,移项然后系数化为1即可得出答案;(2)把原式中的百分数转化为分数的形式,然后比例转化为乘法计算,运用乘法法则计算即可得出答案;(3)把原式中的百分数转化为分数的形式,然后等式两边乘以23,再利用除法法则计算即可得出结果.【详解】(1)解:83520x x --= 20x =(2)解:1120.7543x ?=? 12x = (3)解:2925163x =? 1516x = 【点睛】本题主要考查解一元一次方程,根据等式的性质进行解答即可.5.(1)5x =;(2)1x =;(3)17x =;(4)72x =. 【解析】【分析】(1)(2)依次移项,合并同类项,系数化为1即可得解;(3)依次去括号、移项,合并同类项,系数化为1即可得解;(4)依次去分母、去括号、移项,合并同类项,系数化为1即可得解【详解】解:(1)移项得5223x =+,合并同类项得525x =系数化为1得5x =;(2)移项得3524x x -=-合并同类项得22x -=-系数化为1得1x =;(3)去括号得155848x x -=+-移项得158485x x -=+-+合并同类项得71x =系数化为1得17x =;(4)去分母得5(21)3(14)15x x -=+-去括号得10531215x x -=+-移项得10123515x x -=+-合并同类项得27x -=-系数化为1得72x =. 【点睛】本题考查解一元一次方程,需注意,移项要变号,去分母时,没有分母的项也要乘以分母的最小公倍数,去括号时,括号外面的数与括号里面的每一项都要相乘.6.(1)10x = (2)7x = (3) 5.5x = (4)13x =【解析】【分析】解:(1)对移项合并2x ﹣1=x+9即可得到答案;(2)先去括号得x+5=2x ﹣2,移项合并,再系数化为1即可得到答案;(3)去分母得20﹣5x =3x ﹣9﹣15,移项合并,再系数化为1即可得到答案;(4)去分母得40﹣15x+35=﹣4x ﹣68,移项合并,再系数化为1即可得到答案.【详解】解:(1)对2x ﹣1=x+9移项合并得:x =10;(2)去括号得:x+5=2x ﹣2,移项合并得:﹣x =﹣7,系数化为1得:x =7;(3)去分母得:20﹣5x =3x ﹣9﹣15,移项合并得:﹣8x =﹣44,系数化为1得:x =5.5;(4)去分母得:40﹣15x+35=﹣4x ﹣68,移项合并得:﹣11x =﹣143,系数化为1得:x =13.【点睛】本题考查解一元一次方程,解题的关键是掌握解一元一次方程的基本解题步骤.7.(1)1x =;(2)3x =【解析】【分析】利用等式的性质解一元一次方程即可解答.【详解】(1)()12142x x x ?--=-解:去括号得:2142x x x -+=-移项合并同类项得:33x -=-系数化为1得:1x =(2)132123x x +-+= 解:去分母得:3(1)2(32)6x x ++-=去括号得:33646x x ++-=移项合并同类项得:3x -=-系数化为1得:3x =【点睛】本题考查了解一元一次方程,难度较低,熟练掌握等式的性质以及解一元一次方程是解题关键. 8.(1)x=14-(2)x=-9 【解析】【分析】(1)根据一元一次方程移项合并即可求解;(2)去分母后,再根据一元一次方程的解法即可求解.【详解】(1) 2534x x -=+-8x=2 x=14- (2)341125x x -+-= 5(x-3)-2(4x+1)=105x-15-8x-2=10-3x=27x=-9【点睛】此题主要考查一元一次方程的求解,解题的关键是熟知一元一次方程的解法.9.(1)x=4;(2)14x =-;(3)751x =;(4)5x =-. 【解析】【分析】(1)通过移项、合并同类项、系数化为1即可得解;(2)通过去括号、移项、合并同类项、系数化为1即可得解;(3)(4)都是通过去分母去括号、移项、合并同类项、系数化为1即可得解.【详解】(1)2x+5=5x?7移项得:2x?5x=?7?5合并同类项得:?3x=?12系数化为1得:x=4.(2)3(x?2)=2?5(x+2)去括号得:3x?6=2?5x -10移项得:3x+5x=2-10+6合并同类项得:8x=-2系数化为1得:x=14- .(3)12x + +43x-=2;去分母得: 3(1)2(4)12x x ++-=去括号得: 332812x x ++-=移项得: 321283x x +=+-合并同类项得: 517x =.系数化为1得751x =.(4)12311463x x x -++-=+去分母得: 3(1)122(23)4(1)x x x --=+++ 去括号得: 33124644x x x --=+++移项得: 34464312x x x --=+++合并同类项得: 525x -=系数化为1得:5x=-.【点睛】本题考查解一元一次方程,解一元一次方程的一般步骤是:(1)去分母(即在方程两边都乘以各分母的最小公倍数,去各项中的分母);(2)去括号(即按先去小括号,再去中括号,最后去大括号的顺序,逐层把括号去掉);(3)移项(即把含有未知数的项都移到方程的一边,其它项都移到方程的另一边。
《一元一次方程》单元解答题精选 新课标人教版七年级上册 (17)
《一元一次方程》单元解答题精选新课标人教版七年级上册1. 当m 为什么值时,代数式753+m 的值比代数式38-m 的值大5? (2)当x =—3时,代数式32)2(++-m x m 的值是—7,当x 为何值时,这个代数式的值是1?2. 若1x =是关于x 的方程ax b c +=(0c ≠)的解,试求下列两式的值. (1)a b c +-;(2)[(a b +)·1c-]2005. 3. 已知3=x 是方程()241133=⎥⎦⎤⎢⎣⎡-+⎪⎭⎫⎝⎛+x m x的解,n 满足关系式12=+m n ,求n m +的值。4. 下列两个方程的解相同的是( )A.方程635=+x 与方程42=xB.方程13+=x x 与方程142-=x x 5. 数学医院) 解方程:25.012.02=+--x x .6. 已知x =-2是方程2x -∣k -1∣=-6的解,求k 的值。7. y=1是方程12()23m y y --=的解,求关于x 的方程(4)2(3)m x mx +=+的解。8. 已知21=x 是方程32142mx m x -=--的根,求代数式()⎪⎭⎫⎝⎛---+-121824412m m m 的值. 9. 新运算符号*的运算过程为b a b a 3121*-=,则解方程2*(2*x )=1*x10. 已知431)119991(441=++x ,那么代数式19991999481872+⋅+x x的值。 11. 若关于x 的方程()1431kx x +=-,(1)有整数解,求整数k 的值;(2)无解,求k 的值. 12. 已知方程21)20031(541=-+x ,求代数式x (203+-)20031的值.13. 当2x =时,代数式22(3)x c x c +-+的值是10,求当3x =-时,这个代数式的值。14. 已知当x=2时,代数式c x c x +-+)3(22的值是10,求当3-=x 时,这个代数式的值,15. 当n 为何值时,关于x 的方程的解为0?16. 指出下列各式中哪些是一元一次方程?并说明理由。 2x-y=3; (2)x=0; (3)x 2-2x+1=0; (4)x+3=2x-1. 17. 阅读题18. 简答题.若1x =是关于x 的方程ax b c +=(0c ≠)的解,试求下列两式的值.(1)a b c +-;(2)[(a b +)·1c-]2005. 19. 已知方程21)20031(541=-+x ,求代数式3+20(x-20031)的值。 20. 一个两位数个位上的数是1,十位上的数字是x 。把1和x 对调,新两位数比原两位数小18,x 应是哪个方程的根?你能想出x 是几吗?21. 已知2=x 是关于x 的方程m x m x 48)(2-=-的解,求m 的值。 22. y=1是方程12()23m y y --=的解,求关于x 的方程(4)2(3)m x mx +=+的解。 23.x 为何值时,代数式31xx +-的值等于3? 24. 用适当的数字或式子填空,使所得的结果仍是等式,并说明理由。(1)如果3x+8=6,那么3x=6[ ]; (2)如果-5x=25,那么x=[ ];(3)如果2x-3=5,那么2x=[ ]; (4)如果x/4=-7,那么x=[ ] 25. 当x 取何值时,代数式31--x x 比-53+x 的值大1?26. 依据下列解方程0.30.521=0.23x x +-的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据. 解:原方程可变形为3521=23x x +-( )去分母,得3(3x +5)=2(2x ﹣1).( ) 去括号,得9x +15=4x ﹣2.( ) ( ),得9x ﹣4x =﹣15﹣2.( ) 合并,得5x =﹣17.(___合并同类项法则___) ( ),得x =175-.( )27. 关于x 的方程x m x m 474653-=+与方程4(3x -7)=19-35x 有相同的解,求m 的值。28. m 为何值时,关于x 的方程4x-2m=3x-1的解是x=2x-3m 的解的2倍? 29. 设1511+=x y ,4122+=x y ,当x 为何值时,1y 、2y 互为相反数? 30. m 为何值时,关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍?31. 已知方程3(33)12x x +-=的解与关于x 的方程3274mx m +=-的解相同,求m 的值.32. 若关于x 的方程:(3-m)x 25m -+7=2是一元一次方程,则m 的值确定吗?为什么?. 33. 求:当x 为何值时,1014x +的值比217x -的值大10?34. 如果方程42832x x -+-=-的解与方程4(31)621x a x a -+=+-的解相同,求式子1a a-的值.35. 若x=2是方程k(2x-1)=kx+7的解,那么求k 的值。 36. 已知x =-2是方程2x -∣k -1∣=-6的解,求k 的值。37. k 取何值时,代数式31+k 的值比213+k 的值小1。 38. 当m 为何值时,关于x 的方程x x m +=+135的解比关于x 的方程的解大2?39. 若关于x 的方程()1431kx x +=-(1)有整数解,求整数k 的值;(2)无解求k 的值。40. 若()23340x y -++=,求xy 的值。 41. 方程23(1)0x -+=的解与关于x 的方程3222k xk x +--=的解互为倒数,求k 的值。 42. 设1511+=x y ,4122+=x y ,当x 为何值时,1y 、2y 互为相反数? 43. 如图a 是一个长为2m 、宽为2n 的长方形,沿图中虚用剪刀均匀分成四块小长方形,然后按图b 形状拼成一个正方形。(1)你认为图b 中的阴影部分的正方形的边长等于多少?(2)观察图b 你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn 。(3)已知m+n=7,mn=6,求2)(n m -的值。44. 解方程:323221+-=--x x x 解:去分母,得424136+-=+-x x x ……① 即8213+-=+-x x ……②移项,得1823-=+-x x ……③ 合并同类项,得7=-x ……④ ∴7-=x ……⑤上述解方程的过程中,是否有错误?答:( );如果有错误,则错在( )步。如果上述解方程有错误,请你给出正确的解题过程: 45. 已知关于x 的方程4)12(+-=+x k m kx ,当m k .为何值时:(1)方程有唯一解;(2)方程有无数个解;(3)方程无解.46. 如果方程中有同类项,可以先合并同类项变成ax=b(a≠0)的形式,再求解。 47. x 为何值时,代数式31xx +-的值等于3? 48.方程23(1)0x -+=的解与关于x 的方程3222k xk x +--=的解互为倒数,求k 的值。49. 已知x=1/2是关于x 的方程4+x=3-2ax 的解,求a 2+a+1的值。 50. 当x 为什么时,代数式2313xx +-与2的值相等。 51..解关于y 的方程-3(a +y )=a -2(y -a ).52. k 取何值时,代数式31+k 值比213+k 的值小1。 53.求:当x 为何值时,1014x +的值比217x -的值大10?54. 已知方程(m-2)x ︱m ︱-1+3=m-5是关于x 的一元一次方程,求m 的值。55. 根据下列条件列出方程: (1)某数的56比这个数的78小0.5.(2)某数的一半加上5,比这个数的相反数的3倍小1.56. 老师在黑板上出了一道解方程的题421312+-=-x x ,小明马上举手,要求到黑板上做,他是这样做的:)2(31)12(4+-=-x x …………………①63148--=-x x ………………………② 46138+-=+x x ………………………③ 111-=x …………………………………④ 111-=x …………………………………⑤ 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在( )(填编号); 然后,你自己细心地解下面的方程: (1)131612=-++x x (2)6751412-=--y y57. 已知384a ax +-=是关于x 的一元一次方程,试求a 的值,并解这个方程。 58. 已知关于x 的方程2212033b ax x ---=是一元一次方程,试求()a b x +的值.59. 先阅读下列解题过程,然后解答问题(1)、(2) 解方程:|x+3|=2解:当x+3≥0时,原方程可化为:x+3=2,解得x=-1 当x+3<0时,原方程可化为:x+3=-2,解得x=-5 所以原方程的解是x=-1,x=-5 (1)解方程:|3x-2|-4=0(2)探究:当b 为何值时,方程|x-2|=b+1①无解;②只有一个解;③有两个解.60. 若关于6523240x y x y Rx Ry R y +---+=、的方程合并同类项后不含项,求R 的值。61. 已知126,27y x y x =-=+,若①122y y =,求x 的值;②当x 取何值时,12y y 与小3-; 62.若a ,b 为定值,关于x 的一元一次方程2632=--+bxx x ka 无论k 为何值时,它的解总是1,求a ,b 的值.63. 已知方程4x+2m=3x+1和方程3x+2m=6X+1的解相同. (1)求m 的值;(2)求代数式(-2m)2011-(m-32)2012的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元一次方程》解方程题大全
新课标人教版七年级上册
1. 解方程231x x -+-=.
2. 解下列方程:
3(1)2(1)6x x -++=- 11143
x x -+=+ 3x-7+4x=6x-2
3. 解下列方程
(1)()()()x x x -=---1914322; (2)37615=-y ; (3)
5
12152x x x -=--+; (4)3.15.032.04-=--+x x
4. 解方程 (1))6(21)12(4--=-x x (2)
52221+=--y y (3)16
.015.03.012-=--+x (4)23)5(312=--+x x (5)22554-=+-+x x x 5. 解方程
(1)x x -=+212 (2)3)3
1(35=--y
(3)
421312+=+-y y
6. 解方程4325532x x x x ++--+=-
7. 解方程
(1)70%+x (30x -)×55%=30×65% (2)511241263
x
x x +--=+
(3)1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦; (4)432.50.20.05
x x ---=.
8. 解方程
325(2)x x -=-+ 2(2)3(41)9(1)y y y +--=-
|2x -1|=2 15%x +10-x =10×32%
9. 解下列方程
(1))20(75)20(34x x x x --=--
(2)
14
32312=---x x (3)38316.036.13.02+=--x x x
10. 解方程:321123x x -+-= 11. 解下列方程
(1)7x+6=8-3x (2)4x-3(20-x)=6x-7(9-x)
②216131=+x (5)2)31(35=--y ③794
1=+-x
12. 解下列方程
①x x 524-=- ②436521x x
-=-- ③)52(3)3(x x -=-- ④)20(75)20(34x x x x --=--
13. 解下列方程:
3x=6(5-2x) 2(x-2)-3(4x-1)=9(1-x)
8x+7+2x=1+11x-6 6.12.045.03=+--x x 13
3221=+--x x 11(3)2(3)22x x -=-- 14. 解下列方程:
x ﹣3(x+2)=﹣5
15. 解方程
1、10(1)5x -= 2、
7151322324
x x x -++-=- 3、2(2)3(41)9(1)y y y +--=- 4、0.89 1.33511.20.20.3x x x --+-=
16. 解下列方程
38123
x x ---= 3(1)2(2)23x x x +-+=+ 12136x x x -+-=- 13500.20.01
x x ++-= 17. 解方程:
(1)()1352-=+x x ;
(2)
6.12.045.03=+--x x .
18.
解方程16
3242=--+y y 19. 解方程
(1)2x+5=5x-7 (2)4x-3(20-x)+4=0
(3)
223146y y +--= (4)4 1.550.8 1.230.50.20.1x x x ----=+
20. (一)解方程
1、2x+5=5x-7 2、3(x-2)=2-5(x-2)
3、223146y y +--= 4、431261345x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦ 21. 解方程:-3x+2x=5-1
22.
解方程 (1))6(21)12(4--=-x x (2)
52221+=--y y (3)16.015.03.012-=--+x (4)2
3)5(312=--+x x (5)22554-=+-+x x x
23. 解下列方程:
()57434x x +=+; (2)54621135
x x -+-=. 24. 解方程
()()x x 2152831--=-- 2、312423(1)32x x x -+-+=-
17.03.027.1-=-x x
25. 解方程
5)72(6)8(5+-=+x x (2)16
3242=--+x x 26. 解下列方程
x x -=+212(写出检验过程)
14
2312-+=-y y 17
.03.027.1-=-x x ()()x x 2152831--=-- 142312-+=-y y 312423(1)32
x x x -+-+=-
27. 解方程: (1)211011412
x x x ++-=-;(2)2(21)2(1)3(3)x x x -=+++. 28. 解方程
5)72(6)8(5+-=+x x 163242=--+x x 29. 解下列方程 2x-3=x+1 -2(x-5)=82x
-
151423=+--x x 6.12.045.03=+--x x
30. 解方程3(x-2)=2-5(x-2);
31. 解答题
-2x+1=13
5
11312--=+x x )12(4
3)]1(31[21+=--x x x
32. 解方程
(1)325(2)x x -=-+;(2)2(2)3(41)9(1)y y y +--=-
(3)|2x -1|=2 (4)15%x +10-x =10×32%
33. 解方程:
(1)251x +=-; (2)163x -=; (1)3x-7+4x=6x-2
(2)5263x x -=-; ③ 23259+=-x x ④14225+=+x x
34. 解方程:
(1)7x=6x+12 (2)16=4x
(3)15-x=2x (4)3x-7=x+1.
35. 解下列方程:
(1)()57434x x +=+; (2)54621135x x -+-=.
36. 解下列方程:
1.5278x x +=-
2.3815
x -= 3.51763y -= 4.3423
x x --= 5.2(2)3(41)9(1)x x x ---=- 6.21101211364x x x -++-=- 37. 解方程
1、10(1)5x -= 2、7151322324x x x -++-=-3、2(2)3(41)9(1)y y y +--=- 4、0.89 1.33511.20.20.3
x x x --+-=
38. 解方程:
(1)251x +=-; (2)163
x -=; (1)3x-7+4x=6x-2
(2)5263x x -=-; ③23259+=-x x ④14225+=+x x
39. 解方程
x x -=+212 20.2)31(35=--y
142312-+=-y y 17.03.027.1-=-x x 40. 解下列方程:
1、6751413-=--y y 2、124362
x x x -+--= 3.5411312x x +=+- 4.1255241345--=-++y y y 41. 解方程:
(1)7-2x=3-4x (2)4(1-x)=x-1
(3)2(y+2)-3(4y-1)=9(1-y) (4)3(2x+1)2(2x-1)-1=43
42. 解方程2x+5=5x-7
43. 解下列方程
①x x 524-=- ②4
36521x x
-=-- ③)52(3)3(x x -=-- ④)20(75)20(34x x x x --=--
44. 解下列方程:
(1)10(1)5x -=;
(2)7151322324
x x x -++-=-; (3)2(2)3(41)9(1)y y y +--=-;
(4)
0.89 1.33511.20.20.3x x x --+-=. 45. 解方程0.1230.710.30.4
x x --+= 46. 解方程:
4)1(2=-x 11)121(21=--x ()()x x 2152831--=-- 23
421=-++x x 1)23(2151=--x x 15
2+-=-x x 1835+=-x x 026
2921=---x x。