矩形,菱形的性质及判定专项练习

合集下载

矩形菱形的性质与判定(附加答案)

矩形菱形的性质与判定(附加答案)

矩形菱形的性质与判定(附加答案) 一.解答题(共30小题) 1.(2012•娄底)如图,在矩形ABCD 中,M 、N 分别是AD 、BC 的中点,P 、Q 分别是BM 、DN 的中点. (1)求证:△MBA ≌△NDC ;(2)四边形MPNQ 是什么样的特殊四边形?请说明理由.2.(2010•泰州)如图,四边形ABCD 是矩形,∠EDC=∠CAB ,∠DEC=90°. (1)求证:AC ∥DE ; (2)过点B 作BF ⊥AC 于点F ,连接EF ,试判别四边形BCEF 的形状,并说明理由.3.(2010•肇庆)如图所示,四边形ABCD 是平行四边形,AC 、BD 交于点O ,∠1=∠2. (1)求证:四边形ABCD 是矩形; (2)若∠BOC=120°,AB=4cm ,求四边形ABCD 的面积.4.(2010•常州)如图,在△ABC 中,AB=AC ,D 为BC 中点,四边形ABDE 是平行四边形.求证:四边形ADCE 是矩形.5.(2008•南京)如图,在平行四边形ABCD 中,E ,F 为BC 上两点,且BE=CF ,AF=DE . 求证:(1)△ABF ≌△DCE ; (2)四边形ABCD 是矩形.6.(2010•崇左)如图,O 是矩形ABCD 的对角线的交点,E 、F 、G 、H 分别是OA 、OB 、OC 、OD 上的点,且AE=BF=CG=DH . (1)求证:四边形EFGH 是矩形;(2)若E 、F 、G 、H 分别是OA 、OB 、OC 、OD 的中点,且DG ⊥AC ,OF=2cm ,求矩形ABCD 的面积.7.如图所示,BD ,BE 分别是∠ABC 与它的邻补角∠ABP 的平分线.AE ⊥BE ,AD ⊥BD ,E ,D 为垂足,求证:四边形AEBD 是矩形.8.如图,O 为△ABC 内一点,把AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连接形成四边形DEFG .(1)四边形DEFG 是什么四边形,请说明理由;(2)若四边形DEFG 是矩形,点0所在位置应满足什么条件?说明理由.9.如图,平行四边形ABCD 中,点E 、F 、G 、H 分别在AB 、BC 、CD 、AD 边上且AE=CG ,AH=CF .(1)求证:四边形EFGH 是平行四边形;(2)如果AB=AD ,且AH=AE ,求证:四边形EFGH 是矩形.10.如图,已知△ABC 中,AB=AC ,∠BAD=∠CAD ,F 为BA 延长线上的一点,AE 平分∠FAC ,DE ∥AB 交AE 于E .(1)求证:AE ∥BC(2)求证:四边形AECD 是矩形; (3)BC=6cm ,,求AB 的长.11.(2012•西藏)如图,四边形ABCD 是菱形,AE ⊥BC 交CB 的延长线于点E ,AF ⊥CD 交CD 的延长线于点F .求证:AE=AF .12.(2012•重庆)已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E ,∠1=∠2. (1)若CE=1,求BC 的长; (2)求证:AM=DF+ME .13.(2012•嘉兴)如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE . (1)求证:BD=EC ; (2)若∠E=50°,求∠BAO 的大小.14.(2012•温州)如图,△ABC 中,∠B=90°,AB=6cm ,BC=8cm .将△ABC 沿射线BC 方向平移10cm ,得到△DEF ,A ,B ,C 的对应点分别是D ,E ,F ,连接AD .求证:四边形ACFD 是菱形.15.(2012•聊城)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.16.(2012•恩施州)如图,在△ABC中,AD⊥BC于D,点D,E,F分别是BC,AB,AC的中点.求证:四边形AEDF是菱形.17.(2011•宁波)如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.18.(2011•临沂)如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线.(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.19.(2011•济宁)如图,在平行四边形ABCD中,对角线AC、BD相交于O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.20.(2011•恩施州)如图,四边形ABCD中,AB=AC=AD,BC=CD,锐角∠BAC的角平分线AE交BC于点E,AF是CD边上的中线,且PC⊥CD与AE交于点P,QC⊥BC与AF交于点Q.求证:四边形APCQ是菱形.21.(2011•常州)已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.22.(2011•安顺)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.23.(2010•岳阳)如图,在Rt△ABC中,∠ABC=90°,∠BAC=60°,D为AC的中点,以BD为折痕,将△BCD折叠,使得C点到达C1点的位置,连接AC1.求证:四边形ABDC1是菱形.24.(2010•徐州)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.25.(2010•温州)如图,在▱ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E、F.已知BE=BP.求证:(1)∠E=∠F;(2)▱ABCD是菱形.26.(2011•西宁)如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.(1)求证:四边形AODE是菱形;(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE是_________.27.(2002•广西)如图所示,DE是▱ABCD的∠ADC的平分线,EF∥AD,交DC于F.(1)求证:四边形AEFD是菱形;(2)如果∠A=60°,AD=5,求菱形AEFD的面积.28.如图所示,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,求证:OE⊥DC.29.如图,平行四边形ABCD的对角线AC、BD相交于O,若AB=5,AC=8,BD=6.(1)求证:AC⊥BD.(2)求证:平行四边形ABCD是菱形.(3)四边形ABCD的面积.30.已知:如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC分别与AB、AC交于点G、F,连接CG.(1)求证:四边形BCGD是菱形;(2)若BC=1,求DF的长.参考答案与试题解析一.解答题(共30小题)1.证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N分别是AD、BC的中点,∴AM=AD,CN=BC,∴AM=CN,在△MAB和△NDC中,∵,∴△MBA≌△NDC;(2)四边形MPNQ是菱形.理由如下:连接AN,易证:△ABN≌△BAM,∴AN=BM,∵△MAB≌△NDC,∴BM=DN,∵P、Q分别是BM、DN 的中点,∴PM=NQ,∵DM=BN,DQ=BP,∠MDQ=∠NBP,∴△MQD≌△NPB.∴四边形MPNQ是平行四边形,∵M是AD中点,Q是DN中点,∴MQ=AN,∴MQ=BM,∴MP=BM,∴MP=MQ,∴平行四边形MQNP是菱形.2.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠CAB,∵∠EDC=∠CAB ,∴∠EDC=∠ACD,∴AC∥DE;(2)解:四边形BCEF是平行四边形.理由如下:∵BF⊥AC,四边形ABCD是矩形,∴∠DEC=∠AFB=90°,DC=AB在△CDE和△BAF中,,∴△CDE≌△BAF(AAS),∴CE=BF,DE=AF(全等三角形的对应边相等),∵AC∥DE,即DE=AF,DE∥AF,∴四边形ADEF是平行四边形,∴AD=EF,∵AD=BC,∴EF=BC,∵CE=BF,∴四边形BCEF是平行四边形(两组对边分别相等的四边形是平行四边形).3.(1)证明:∵∠1=∠2,∴BO=CO,即2BO=2CO.∵四边形ABCD是平行四边形,∴AO=CO,BO=OD,∴AC=2CO,BD=2BO,∴AC=BD . ∵四边形ABCD 是平行四边形, ∴四边形ABCD 是矩形;(2)解:在△BOC 中,∵∠BOC=120°, ∴∠1=∠2=(180°﹣120°)÷2=30°, ∴在Rt △ABC 中,AC=2AB=2×4=8(cm ), ∴BC=(cm ). ∴四边形ABCD 的面积=4.证明:∵四边形ABDE 是平行四边形, ∴AE ∥BC ,AB=DE ,AE=BD . ∵D 为BC 中点, ∴CD=BD . ∴CD ∥AE ,CD=AE . ∴四边形ADCE 是平行四边形. ∵AB=AC ,D 为BC 中点, ∴AD ⊥BC ,即∠ADC=90°, ∴平行四边形ADCE 是矩形.5.证明:(1)∵BE=CF ,BF=BE+EF ,CE=CF+EF , ∴BF=CE . ∵四边形ABCD 是平行四边形, ∴AB=DC . 在△ABF 和△DCE 中,∵AB=DC ,BF=CE ,AF=DE , ∴△ABF ≌△DCE .(2)∵△ABF ≌△DCE , ∴∠B=∠C . ∵四边形ABCD 是平行四边形, ∴AB ∥CD . ∴∠B+∠C=180°. ∴∠B=∠C=90°. ∴四边形ABCD 是矩形.6.(1)证明:∵四边形ABCD 是矩形, ∴OA=0B=OC=OD , ∵AE=BF=CG=DH , ∴AO ﹣AE=OB ﹣BF=CO ﹣CG=DO ﹣DH , 即:OE=OF=OG=OH , ∴四边形EFGH 是矩形;(2)解:∵G 是OC 的中点, ∴GO=GC , ∵DG ⊥AC , ∴∠DGO=∠DGC=90°, 又∵DG=DG , ∴△DGC ≌△DGO , ∴CD=OD , ∵F 是BO 中点,OF=2cm , ∴BO=4cm , ∵四边形ABCD 是矩形, ∴DO=BO=4cm , ∴DC=4cm ,DB=8cm , ∴CB==4, ∴矩形ABCD 的面积=4×4=16cm 2.7.证明:∵BD ,BE 分别是∠ABC ,∠ABP 的平分线, ∴∠ABD+∠ABE=(∠ABC+∠ABP )=90°.即∠EBD=90°. 又∵AE ⊥BE ,AD ⊥BD , ∴∠AEB=∠ADB=90°, ∴四边形AEBD 是矩形.8.解:(1)四边形DEFG 是平行四边形.理由如下: ∵D 、G 分别是AB 、AC 的中点,∴DG是△ABC的中位线;∴DG∥BC,且DG=BC;同理可证:EF∥BC,且EF=BC;∴DG∥EF,且DG=EF;故四边形DEFG是平行四边形;(2)O在BC边的高上且A和垂足除外.理由如下:连接OA;∵把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.∴DE∥OA∥GF,EF∥BC,∵四边形DEFG是矩形,∴DE⊥EF,∴OA⊥EF,∴OA⊥BC,即O点在BC边的高上且A和垂足除外.9.证明:(1)在平行四边形ABCD中,∠A=∠C,(1分)又∵AE=CG,AH=CF,∴△AEH≌△CGF.(2分)∴EH=GF.(1分)在平行四边形ABCD中,AB=CD,AD=BC,∴AB﹣AE=CD﹣CG,AD﹣AH=BC﹣CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.(1分)∴GH=EF.(1分)∴四边形EFGH是平行四边形.(1分)(2)解法一:在平行四边形ABCD中,AB∥CD,AB=CD.设∠A=α,则∠D=180°﹣α.∵AE=AH,∴∠AHE=∠AEH=.(1分)∵AD=AB=CD,AH=AE=CG,∴AD﹣AH=CD﹣CG,即DH=DG.(1分)∴∠DHG=∠DGH=.(1分)∴∠EHG=180°﹣∠DHG﹣∠AHE=90°.(1分)又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.(1分)解法二:连接BD,AC.∵AH=AE,AD=AB,∴,∴HE∥BD,(1分)同理可证,GH∥AC,(1分)∵四边形ABCD是平行四边形且AB=AD,∴平行四边形ABCD是菱形,(1分)∴AC⊥BD,∴∠EHG=90°.(1分)又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.(1分)10.解:(1)∵AB=AC,∠BAD=∠CAD,∴AD⊥BC,∴∠ADB=90°,∵AE平分∠FAC,∴∠EAD=90°,∴AE∥BC;(2)∵DE∥AB,AE∥BC,∴四边形ABDE是平行四边形,∴AE=BD,∵BD=CD,∴AE=CD,∴四边形AECD是平行四边形,∵∠ADC=90°,∴四边形AECD是矩形;(3)∵BC=6cm,∴CD=3cm , ∵,∴AD=4, ∴AB=AC==5,∴AB 的长是5cm .11.证明:方法一:∵四边形ABCD 是菱形, ∴AB=AD ,∠ABC=∠ADC , ∴180°﹣∠ABC=180°﹣∠ADC , 即∠ABE=∠ADF , ∵AE ⊥BC ,AF ⊥CD , ∴∠AEB=∠AFD=90°, 在△ABE 和△ADF 中,,∴△ABE ≌△ADF (AAS ), ∴AE=AF .方法二:∵四边形ABCD 是菱形, ∴BC=CD , ∵AE ⊥BC ,AF ⊥CD , ∴菱形ABCD 的面积=BC •AE=CD •AF , ∴AE=AF . 12.(1)解:∵四边形ABCD 是菱形, ∴AB ∥CD , ∴∠1=∠ACD , ∵∠1=∠2, ∴∠ACD=∠2, ∴MC=MD , ∵ME ⊥CD , ∴CD=2CE , ∵CE=1, ∴CD=2, ∴BC=CD=2;(2)证明:如图,∵F 为边BC 的中点,∴BF=CF=BC ,∴CF=CE ,在菱形ABCD 中,AC 平分∠BCD , ∴∠ACB=∠ACD , 在△CEM 和△CFM 中, ∵,∴△CEM ≌△CFM (SAS ),∴ME=MF ,延长AB 交DF 的延长线于点G , ∵AB ∥CD , ∴∠G=∠2, ∵∠1=∠2, ∴∠1=∠G , ∴AM=MG , 在△CDF 和△BGF 中, ∵,∴△CDF ≌△BGF (AAS ), ∴GF=DF ,由图形可知,GM=GF+MF , ∴AM=DF+ME .13.(1)证明:∵菱形ABCD , ∴AB=CD ,AB ∥CD , 又∵BE=AB ,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC;(2)解:∵平行四边形BECD,∴BD∥CE,∴∠ABO=∠E=50°,又∵菱形ABCD,∴AC丄BD,∴∠BAO=90°﹣∠ABO=40°.14.证明:由平移变换的性质得:CF=AD=10cm,DF=AC,∵∠B=90°,AB=6cm,BC=8cm,∴AC===10,∴AC=DF=AD=CF=10cm,∴四边形ACFD是菱形.15.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形.16.证明:∵点D,E,F分别是BC,AB,AC的中点,∴DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,又∵AD⊥BC,BD=CD,∴AB=AC,∴AE=AF,∴平行四边形AEDF是菱形.17.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE=AB,DF=CD.∴BE=DF,BE∥DF,∴四边形DFBE是平行四边形,∴DE∥BF;(2)∵∠G=90°,AG∥BD,AD∥BG,∴四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中∵E为AB的中点,∴DE=BE,∵四边形DFBE是平行四边形,∴四边形DEBF是菱形.18.证明:(1)∵AB=AC,∴∠B=∠BCA,∵AD平分∠FAC,∴∠FAD=∠DAC=∠FAC,∵∠B+∠BCA=∠FAC,∴∠B=∠FAC,∴∠B=∠FAD,∴AD∥BC,∴∠D=∠DCE,∵CD平分∠ACE,∴∠ACD=∠DCE,∴∠D=∠ACD,∴AC=AD;(2)∵∠B=60°,AB=AC,∴△ABC为等边三角形,∴AB=BC,∴∠ACB=60°,∠FAC=∠ACE=120°,∴∠BAD=∠BCD=120°,∴∠B=∠D=60°,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形.19.证明:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∵∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB(AAS),∴DE=BF,又∵ED∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴▱BEDF是菱形20证明:∵AC=AD,AF是CD边上的中线,∴∠AFC=90°,∴∠ACF+∠CAF=90°,∵∠ACF+∠PCA=90°,∴∠PCA=∠CAF,∴PC∥AQ,同理:AP∥QC,∴四边形APCQ是平行四边形.∵AF∥CP,AE∥CQ,∴∠EPC=∠PAF=∠FQC,∵AB=AC,AE平分∠BAC,∴CE=BE=CB(等腰三角三线合一),∵AF是CD边上的中线,∴CF=CD,∵CB=DC,∴CE=CF,∵PC⊥CD,QC⊥BC,∴∠ECP+∠PCQ=∠QCF+∠PCQ=90°,∴∠PCE=∠QCF,∴△PEC≌△QFC(AAS),∴PC=QC,∴四边形APCQ是菱形..21.证明:∵AD⊥BD,∴△ABD是Rt△∵E是AB的中点,∴BE=AB,DE=AB (直角三角形斜边上的中线等于斜边的一半),∴BE=DE,∴∠EDB=∠EBD,∵CB=CD,∴∠CDB=∠CBD,∵AB∥CD,∴∠EBD=∠CDB,∴∠EDB=∠EBD=∠CDB=∠CBD,∵BD=BD,∴△EBD≌△CBD (ASA ),∴BE=BC,∴CB=CD=BE=DE,∴菱形BCDE.(四边相等的四边形是菱形)22.(1)证明:由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE ,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△AEC≌△EAF(AAS),∴EF=CA,∴四边形ACEF是平行四边形.(2)解:当∠B=30°时,四边形ACEF是菱形.证明:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位线,∴E是AB的中点,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四边形ACEF是菱形.23.证明:∵∠ABC=90°,∠BAC=60°,∴∠C=30°∴BA=AC.又∵BD是斜边AC的中线,∴BD=AD=AC=CD.∴BD=AB=CD,∴∠C=∠DBC=30°,∵将△BCD沿BD折叠得△BC1D,∴△CBD≌△C1BD,∴CD=DC1,∴AB=BD=DC1,∴∠C1BA=∠BC1D=30°,∴BA∥DC1,DC1=AB,∴四边形ABDC1为平行四边形,又∵AB=BD,∴平行四边形ABDC1为菱形.24.证明:(1)∵CE∥BF,∴∠ECD=∠FBD,∠DEC=∠DFB;又∵D是BC的中点,即BD=DC,∴△BDF≌△EDC;(AAS)(2)∵AB=AC,∴△ABC是等腰三角形;又∵BD=DC,∴AD⊥BC(三线合一),由(1)知:△BDF≌△EDC,则DE=DF,DB=DC;∴四边形BFCE是菱形(对角线互相平分且互相垂直的四边形为菱形).25.证明:(1)在▱ABCD 中,BC∥AF ,∴∠1=∠F,∵BE=BP,∴∠E=∠1,∴∠E=∠F;(2)∵BD∥EF,∴∠2=∠E,∠3=∠F,∵∠E=∠F,∴∠2=∠3,∴AB=AD,∴▱ABCD是菱形.26.(1)证明:∵矩形ABCD,∴OA=OC=AC,OD=OB=BD,AC=BD,∴OA=OD,∵DE∥CA,AE∥BD,∴四边形AODE是平行四边形,∴四边形AODE是菱形.(2)解:∵DE∥CA,AE∥BD,∴四边形AODE是平行四边形,∵菱形ABCD,∴AC⊥BD,∴∠AOD=90°,∴平行四边形AODE是矩形.故答案为:矩形.27.(1)证明:∵DF∥AE,EF∥AD,∴四边形DAEF是平行四边形.∵∠2=∠AED,∠1=∠2,∴∠AED=∠1.∴AD=AE.∴四边形AEFD是菱形.(2)解:∵∠A=60°,∴△AED为等边三角形.∴DE=5,连接AF 与DE相交于O,则EO=.∴OA==.∴AF=5.∴S菱形AEFD=AF•DE=.28.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵ABCD是矩形,∴OC=OD.∴四边形OCED是菱形,∴OE⊥CD.29.证明:(1)∵四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AC=8,BD=6,∴AO=4,BO=3,∵32+42=52,∴AO2+BO2=AB2,∴∠AOB=90°,(2)∵CA⊥BD,四边形ABCD是平行四边形,∴平行四边形ABCD是菱形;(3)四边形ABCD的面积为:AC•BD=×8×6=24.30.(1)证明:∵DF∥BC,∠ACB=90°,∴∠CFD=90°.∵CD⊥AB,∴∠AEC=90°.在Rt△AEC和Rt△DFC中,∠AEC=∠CFD=90°,∠ACE=∠DCF,DC=AC,∴Rt△AEC≌Rt△DFC.∴CE=CF.∴DE=AF.而∠AGF=∠DGE,∠AFG=∠DEG=90°,∴Rt△AFG≌Rt△DEG.∴GF=GE;(2)解:∵CD⊥AB,∠A=30°,∴CE=AC=CD,∴CE=ED .∴BC=BD=1.又∵∠ECB+∠ACE=90°,∠A+∠ACE=90°,∴∠ECB=∠A=30°,∠CEB=90°,∴BE=BC=BD=,在直角三角形ABC中,∠A=30°,则AB=2BC=2.则AE=AB﹣BE=,∵Rt△AEC≌Rt△DFC,∴DF=AE=.。

菱形、矩形、正方形的性质及判定

菱形、矩形、正方形的性质及判定
【知识精讲】
特殊
四边




菱形、矩形、正方形的性质判定



对角线
面积
对称性
判定


对角线
矩 形
正 方 形
【例题精讲】
【例 1】如图,在矩形 ABCD 中,AE⊥BD,垂足为 E,∠DAE :∠BAE = 3 :1, 求∠EAC的度数。
【拓展练习】
如图,在矩形 ABCD 中,对角线 AC、BD 相较于点 O,∠AOB=60°,AE 平分∠BAD ,交 BC 于 E,求 ∠BOE的度数
C.AD//BC,∠A =∠C
D.OA=OC,OB=OD,AB=BC
13,.在矩形 ABCD 的边 AB 上有一点 E,且 CE=DE,若 AB=2AD,则∠ADE 等于(
A.45°
B.30°
C.60°
D.75°
14.矩形的一内角平分线把矩形的一条边分成 3 和 5 两部分,则该矩形的周长是(
A.16
8.菱形的周长为 16,两邻角度数的比为 1:2,此菱形的面积为(

A.4 3
B.8 3
C.10 3
D.12 3
9.已知 E 是矩形 ABCD 的边 BC 的中点,那么 SΔ AED =
S矩形ABCD (

1
1
1
1
A.
B.
C.
D.
2
4
5
6
10.如图,周长为 68 的矩形 ABCD 被分成 7 个全等的矩形,则矩形 ABCD 的面积为
A.75°
B.60°
C.45°
D.30°
6.已知菱形 ABCD,AE⊥BC 于 E,若 S菱形ABCD = 24 ,且 AE=6,则菱形的边长为(

矩形 菱形的性质及判定专项练习

矩形 菱形的性质及判定专项练习

矩形,菱形的性质及判定专项练习)在下列命题中,真命题是( 1. A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形面积为24cm, 那么这个菱形的周长为______________, 已知菱形的两条对角线长为2.10cm和A_______________. B那度角, 的长方形纸条叠放在一起3.将两张长10cm宽3cm, 使之成60M________________. 么重叠部分的面积的最大值为NO那么两条对角线长度之和为40, 80, 周长为4.一个菱形面积为__________. DC___________. 那么这个特殊四边形是得到一个菱形. 5.顺次连接一个特殊四边形的中点,:BE=1,BC,CE⊥BDOE:,6.如图,矩形ABCD的对角线相交于点OOF⊥AD BD 的长。

OF=4,求∠ADB的度数和3,EOBC F,若矩形的周长为36cm,求此矩形的面积。

是MBC的中点,且MA⊥MD如图所示,矩形7.ABCD中,,,如图,若AB=2重合,得折痕,再折叠使折叠矩形纸片8.ABCD,先折出折痕BDAD边与对角线BDDG 。

BC=1,求AG DCEBAG,,FEABCD如图,9.已知:平行四边形的四个内角的平分线分别相交于点G,EFGH,求证:四边形是矩形。

H页6 共页1 第,矩上一点,,且上一点,10.如图,在矩形中,是是cm2EF?CE,DE?CEABCD?EFEABADF与的长.形的周长为,求CF16cmABCDAE平移后的三角形,其平移的方(1),画出△AOB如图,在矩形ABCD中,对角线AC、BD相交于点O,11.外还有哪(2)观察平移后的图形,除了矩形ABCD向为射线AD的方向,平移的距离为线段AD的长。

一种特殊的平行四边形?并给出证明。

CEF°,求∠CD和上,且∠B=∠EAF=60°,∠BAE=15ABCD12.如图所示,已知菱形中,E、F分别在BC 的度数。

(完整版)矩形、菱形与正方形-专题训练(含答案)

(完整版)矩形、菱形与正方形-专题训练(含答案)

矩形、菱形与正方形专题训练(含答案)班级________姓名________成绩________一、选择题(每小题3分,共30分)1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )A.12 B.24 C.12 3 D.16 3第1题图第2题图第3题图第4题图2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( ) A.14 B.15 C.16 D.173.如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则C′D的长为( ) A.1 B.2 C.3 D.44.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是( )A.矩形B.菱形C.正方形D.梯形5.由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是( )A.平行四边形B.矩形C.菱形D.正方形6.如图,▱ABCD的周长为16 cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为( )A.4 cm B.6 cm C.8 cm D.10 cm第6题图第9题图第10题图7.菱形的周长为8 cm,高为1 cm,则菱形两邻角度数比为( )A.3∶1 B.4∶1 C.5∶1 D.6∶18.用两块完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形,一定能拼成的图形是( )A.①④⑤B.②⑤⑥C.①②③D.①②⑤9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( )A.16 B.17 C.18 D.1910.如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD 的面积为64,△CEF的面积为50,则△CBE的面积为( )A.20 B.24 C.25 D.26二、填空题(每小题3分,共24分)11.如图所示,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为点E,连结CP,则∠CPB=____度.第11题图第12题图第14题图第15题图12.如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1分别是四边形ABCD 各边中点,如果AC=8,BD=10,则四边形A1B1C1D1的面积为___.13.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20 cm,则其对角线长为____________-_,矩形的面积为_______________.14.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是____cm2.15.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连结DE和BF,分别取DE,BF的中点M,N,连结AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为____________.,第16题图第17题第18题图16.如图,▱ABCD的对角线相交于点O,请你添加一个条件______________,使▱ABCD是矩形.17.如图,正方形ABCD中,对角线AC,BD交于点O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G,F,AC=10,则EG+EF=____.18.如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为_______________________________.三、解答题(共66分)19.(6分)如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC且EF=EC,DE =4 cm,矩形ABCD的周长为32 cm,求AE的长.20.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连结BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.21.(8分)如图所示,矩形ABCD中,AE⊥BD于点E,∠DAE∶∠BAE=3∶1,求∠BAE和∠EAO 的度数.22.(10分)如图,已知菱形ABCD中,AB=AC,E,F分别是BC,AD的中点,连结AE,CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形ABCD的面积.23.(12分)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF,求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.24.(10分)在四边形ABCD中,AB=CD,M,N,P,Q分别是AD,BC,BD,AC的中点,求证:MN与PQ互相垂直平分.参考答案一、选择题(每小题3分,共30分)1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( D )A.12 B.24 C.12 D.16第1题图第2题图第3题图第4题图2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( C ) A.14 B.15 C.16 D.173.如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则C′D的长为( B ) A.1 B.2 C.3 D.44.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是( A )A.矩形B.菱形C.正方形D.梯形5.由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是( B )A.平行四边形B.矩形C.菱形D.正方形6.如图,▱ABCD的周长为16 cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为( C )A.4 cm B.6 cm C.8 cm D.10 cm第6题图第9题图第10题图7.菱形的周长为8 cm,高为1 cm,则菱形两邻角度数比为( C )A.3∶1 B.4∶1 C.5∶1 D.6∶18.用两块完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形,一定能拼成的图形是( D )A.①④⑤B.②⑤⑥C.①②③D.①②⑤9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( B )A.16 B.17 C.18 D.1910.如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD 的面积为64,△CEF的面积为50,则△CBE的面积为( B )A.20 B.24 C.25 D.26二、填空题(每小题3分,共24分)11.如图所示,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为点E,连结CP,则∠CPB=__72__度.第11题图第12题图第14题图第15题图12.如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1分别是四边形ABCD 各边中点,如果AC=8,BD=10,则四边形A1B1C1D1的面积为__20__.13.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20 cm,则其对角线长为__40_cm__,矩形的面积为__400_cm2__.14.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是__16__cm2.15.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连结DE和BF,分别取DE,BF的中点M,N,连结AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为__2__.,第16题图第17题第18题图16.如图,▱ABCD的对角线相交于点O,请你添加一个条件__AO=BO(答案不唯一)__,使▱ABCD 是矩形.17.如图,正方形ABCD中,对角线AC,BD交于点O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G,F,AC=10,则EG+EF=__5__.18.如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为__(8,4),(3,4)或(2,4)__.三、解答题(共66分)19.(6分)如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC且EF=EC,DE =4 cm,矩形ABCD的周长为32 cm,求AE的长.解:∵∠AFE +∠AEF =∠AEF +∠CED =90°,∴∠AFE =∠DEC .又∵∠A =∠D =90°,EF =EC ,∴△AEF ≌△DCE ,∴AE =CD .设AE =x ,则CD =x ,∴AD +CD =21×32,即x +4+x =16,∴x =6.即AE =6 cm20.(8分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相交于点O ,与BC 相交于点N ,连结BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB =4,AD =8,求MD 的长.解:(1)∵MN 是BD 的垂直平分线,∴BO =DO ,∠BON =∠DOM =90°.∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠BNO =∠DMO ,∴△BON ≌△DOM (AAS ),∴OM =ON .∵OB =OD ,∴四边形BMDN 是平行四边形.∵MN ⊥BD ,∴▱BMDN 是菱形(2)设MD =x ,则MB =x ,MA =8-x ,在Rt △ABM 中,∵BM 2=AM 2+AB 2,∴x 2=(8-x )2+42,解得x =5.∴MD 的长为521.(8分)如图所示,矩形ABCD 中,AE ⊥BD 于点E ,∠DAE ∶∠BAE =3∶1,求∠BAE 和∠EAO 的度数.解:提示:由∠DAE ∶∠BAE =3∶1,求出∠BAE =22.5°,而∠ABD =90°-∠BAE =90°-22.5°=67.5°,∵∠BAO =∠ABD =67.5°,∴∠EAO =∠BAO -∠BAE =67.5°-22.5°=45°22.(10分)如图,已知菱形ABCD 中,AB =AC ,E ,F 分别是BC ,AD 的中点,连结AE ,CF .(1)证明:四边形AECF 是矩形;(2)若AB =8,求菱形ABCD 的面积.解:(1)∵四边形ABCD 是菱形,∴AB =BC ,又∵AB =AC ,∴△ABC 是等边三角形.∵E 是BC 的中点,∴AE ⊥BC (等边三角形三线合一),∠AEC =90°.同理,CF ⊥AD .∵E ,F 分别是BC ,AD 的中点,∴AF =21AD ,EC =21BC .∵四边形ABCD 是菱形,∴AD 綊BC ,∴AF 綊EC ,∴四边形AECF 是平行四边形(一组对边平行且相等的四边形是平行四边形).又∵∠AEC =90°,∴四边形AECF 是矩形(有一个角是直角的平行四边形是矩形)(2)在Rt △ABE 中,∵AE ==4,∴S 菱形ABCD =8×4=3223.(12分)如图,已知四边形ABCD 是平行四边形,DE ⊥AB ,DF ⊥BC ,垂足分别是点E ,F ,并且DE =DF ,求证:(1)△ADE ≌△CDF ;(2)四边形ABCD 是菱形.解:证明:(1)∵四边形ABCD 是平行四边形,∴∠A =∠C ,又∵DE =DF ,DE ⊥AB ,DF ⊥BC ,∴∠DEA =∠DFC =90°,∴△ADE ≌△CDF (AAS ) (2)由(1)知AD =DC ,又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形24.(10分)在四边形ABCD 中,AB =CD ,M ,N ,P ,Q 分别是AD ,BC ,BD ,AC 的中点,求证:MN 与PQ 互相垂直平分.解:证明:连结MP ,NQ ,PN ,MQ ,∵PM 綊21AB ,同理NQ 綊21AB ,∴PM 綊NQ ,∴四边形MPNQ 为平行四边形,又∵PN 綊21CD ,而CD =AB ,∴PN =PM ,∴四边形MPNQ 为菱形,∴MN 与PQ 互相垂直平分。

4.3~4.4矩形,菱形的性质及判定练习

4.3~4.4矩形,菱形的性质及判定练习

4.3~4.4矩形,菱形的性质及判定练习1.菱形、矩形的有关概念矩形:有一个角是直角的平行四边形叫做矩形.菱形:有一组邻边相等的平行四边形叫做菱形.温馨提醒:(1)矩形、菱形具有平行四边形的一切性质;(2)依据矩形的性质,得出直角三角形具有的性质斜边上的中线等于斜边的一半;(3)矩形、菱形既是轴对称图形又是中心对称图形;3.菱形、矩形的判定矩形的判定方法:①有一个角是直角的平行四边形是矩形.②有三个角是直角的四边形是矩形.③对角线相等的平行四边形是矩形.菱形的判定方法:①有一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形;温馨提示:(1)矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为60度时,则构成一个等边三角形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再找一个角为直角或对角线相等。

很多同学容易忽视这个问题。

(2)在利用菱形的判定时,也要注意所要证明的四边形是不是平行四边形,而你用的判定定理需不需要证明它是平行四边形,有对角线时,通常考虑利用对角线互相垂直的平行四边形是菱形来证明,否则一般不利用此定理。

(3)两条对角线相等的四边形不一定是矩形,必须加上平行四边形这个条件;对角线相互垂直的四边形不一定是菱形,必须加上平行四边形这个条件。

5.面积、角度、线段等计算问题S 菱形=12l l ·l 2(l 1、l 2为菱形对角线长) 连对角线,矩形、菱形就可得到特殊三角形(如等腰三角形、直角三角形),因此,解矩形、菱形问题时,要注意特殊三角形性质的运用。

利用全等三角形解决问题。

跟踪训练:一、填空题:1.矩形的定义:____________________________的平行四边形叫做矩形。

2.矩形的性质:矩形是一个特殊的平行四边形,它具有四边形和平行四边形的所有性质;矩形的四个角______________; 矩形的对角线______________; 矩形是轴对称图形,它的对称轴是______________。

人教版八年级下册数学 18.2矩形、菱形的性质定理和判定定理及其证明 习题精选(含答案)

人教版八年级下册数学 18.2矩形、菱形的性质定理和判定定理及其证明  习题精选(含答案)

矩形、菱形的性质定理和判定定理及其证明习题精选矩形的性质和判定1.矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的和为15,则短边的长是________。

2.如图32-3-1,设矩形ABCD和矩形AEFC的面积分别为S1、S2,则二者的大小关系是:S1____S2。

3.如果矩形一个角的平分线分一边为4 cm和3 cm两部分,那么矩形的周长为_______。

4.现有一张长为40cm, 宽为20 cm的长方形纸片(如图32-3-2所示),要从中剪出长为18 cm,宽为12 cm的长方形纸片,则最多能剪出___张。

5.矩形的一条较短边的长为5 c m,两条对角线的夹角为60°,则它的对角线的长等于_____ cm。

6.如图32-3-3,在矩形ABCD中,CE⊥BD于E,∠DCE:∠ECB=3:1,则∠ACE=____度。

7.下列说法中正确的是( )A.一个角是直角,两条对角线相等的四边形是矩形。

B.一组对边平行且有一个角是直角的四边形是矩形。

C.对角线互相垂直的平行四边开是矩形。

D.一个角是直角且对角线互相平分的四边形是矩形。

8.四边形ABCD的对角线相交于O,在下列条件中,不能说明它为矩形的是()A.AB=CD,AD=BC, BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°, ∠BAD+∠ADC=180°D.∠BAD=∠BCD, ∠ABC+∠ADC=180°★菱形的性质和判定9.己知菱形的锐角是60°,边长是20 cm,则较长对角线是_____。

10.菱形两条对角线的长分别为6 cm和8 cm,它的高为______。

11.菱形的一个内角是120°,平分这个内角的一条对角钱长为13 cm,则菱形的周长是____。

12.菱形的一边与两条对角线所构成的两个角的差是32°,则菱形较小的内角是_____。

中考数学专题复习 矩形与菱形

中考数学专题复习 矩形与菱形

在 Rt△CFH 中,CF=2+2m,CH= 3 ,FH=3+m, CF2=CH2+FH2,即(2+2m)2=( 3 )2+(3+m)2. 整理,得 3m2+2m-8=0.解得 m1=43 ,m2=-2(舍去). ∴AE=43 .
(3)G 点轨迹为线段 AG. 证明:如图 3,延长线段 AG 交 CD 于点 H,作 HM⊥AB 于点 M,作 DN⊥AB 于点 N. ∵四边形 ABCD 是菱形,∴BF∥CD. ∴△EAG∽△DHG,△AGF∽△HGC. ∴DAHE =HAGG ,HAFC =HAGG .∴DAHE =HAFC . ∵AE=AF,∴DH=CH=1.
线于点F,连接AC,BF,AF=BC. (1)求证:四边形ABFC为矩形; (2)若△AFD是等边三角形,且边长为4,求四边形ABFC的面积.
(1)证明:∵四边形 ABCD 是平行四边形, ∴AB=CD,AB∥CD.∴∠BAE=∠CFE.
∵点 E 是□ABCD 中 BC 边的中点,∴BE=CE.
在△ABE 和△FCE 中, ∠BAE=∠CFE,
∠AEB=∠FEC, BE=CE, ∴△ABE≌△FCE(AAS). ∴AB=FC.
∵AB∥FC,∴四边形ABFC是平行四边形. ∵AF=BC, ∴平行四边形ABFC为矩形.
(2)解:∵四边形 ABFC 为矩形, ∴∠ACF=90°. ∵△AFD 是等边三角形, ∴AF=DF=4,CF=12 DF=2. ∴AC= AF2-CF2 = 42-22 =2 3 . ∴四边形 ABFC 的面积为 AC·CF=2 3 ×2=4 3 .
6.如图,折叠矩形纸片ABCD,使点B的对应点E落在CD边上,GH为折 痕 , 已 知 AB = 6 , BC = 10. 当 折 痕 GH 最 长 时 , 线 段 BH 的 长 为 _________6_.8______.

矩形和菱形的性质与判定经典例题试

矩形和菱形的性质与判定经典例题试

矩形和菱形的性质与判定经典例题试————————————————————————————————作者:————————————————————————————————日期:第一课时——矩形的性质 矩形的性质:边角对角线对称性练一练: 1、矩形的两条对角线把矩形分成 个等腰三角形.2、矩形具有而平行四边形不具有的性质是( )A .对角线互相平分B .两组对边分别相等C .相邻两角互补D .对角线相等3.已知E 是矩形ABCD 的边BC 的中点,那么S △AED =________S 矩形ABCD ( )A.21B.41C.51D.61 4.在矩形ABCD 的边AB 上有一点E ,且CE =DE ,若AB =2AD ,则∠ADE 等于( )A.45°B.30°C.60°D.75°【探究三】直角三角形斜边上的中线性质1、根据矩形对角线性质可得到直角三角形斜边上的中线性质:2、归纳我们已学过的直角三角形的性质:角:边:斜边上的中线:边与角:练一练:1、已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为( )A .5B .6C .7D .82、如果一个直角三角形斜边上的中线与斜边上的高所夹的锐角为34°,那么这个直角三角形的较小的内角是 度.精讲精练例1、如图,在矩形ABCD 中,AC 、BD 相较于点O ,AE 平分BAD ∠交BC 于E ,若15CAE ∠=︒,求BOE ∠的度数。

变式:已知矩形ABCD 中,如图2,对角线AC 、BD 相交于O ,AE ⊥BD 于E ,若∠DAE ∶∠BAE =3∶1,则∠EAC =________.例2、如图,在矩形ABCD 中,AB=3,AD=4,P 是AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,求PE+PF 的值。

例3、如图,延长矩形的边CB 至E ,使CE=CA,F 是AE 的中点,求证:BF FD ⊥三、用中学习:1.如图,周长为68的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A.98B.196C.280D.2842.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()A.16B.22C.26D.22或263.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.4.矩形ABCD的周长是56 cm,它的两条对角线相交于O,△AOB的周长比△BOC 的周长少4 cm,则AB=_______,BC=_______.V的两条高,M、N分别是BC、DE的中点,MN与DE有5、如图,已知BD、CE是ABC怎样的位置关系。

菱形、矩形判定性质练习题

菱形、矩形判定性质练习题

菱形性质与判定练习题1. 已知菱形ABCD中, 对角线AC与BD交于点O, ∠BAD=120°, AC=4, 则该菱形的面积是()A.16B.16C.8D.82.菱形的周长为4, 一个内角为60°, 则较短的对角线长为()A. 2B.C. 1D.3.菱形的周长为8cm, 高为1cm, 则该菱形两邻角度数比为()A. 3: 1B. 4: 1C. 5: 1D. 6: 14.如图, 菱形ABCD中, AB=15, ∠ADC=120°, 则B.D两点之间的距离为()A. 15B.C. 7.5D.5.如图, 菱形ABCD的周长是16, ∠A=60°, 则对角线BD的长度为()A. 2B.C. 4D.6. 已知菱形的两条对角线长分别为2cm, 3cm, 则它的面积是_________cm2.7. 如图, 菱形ABCD的对角线AC、BD相交于点O, 且AC=8, BD=6, 过点O作OH丄AB, 垂足为H, 则点0到边AB的距离OH=_________.8.如图, 菱形ABCD的边长是2cm, E是AB的中点, 且DE丄AB, 则菱形ABCD的面积为cm2.6题图7题图8题图9题图9. 如图, 在菱形ABCD中, 对角线AC与BD相交于点O, AB=13, AC=10, 过点D作DE∥AC交BC的延长线于点E, 则△BDE的周长为_________.10. 如图, 已知菱形ABCD的一个内角∠BAD=80°, 对角线AC.BD相交于点O, 点E在AB上且BE=BO, 则∠BEO= _________度.11.如图, 活动菱形衣架的边长均为16cm, 若墙上钉子间的距离AB=BC=16cm, 则∠1=度.10题图13题14题图15题图12. 已知菱形的一个内角为60°, 一条对角线的长为, 则另一条对角线的长为_________.13. 如图, 两个全等菱形的边长为1米, 一机器人由A点开始按A—B—C—D—E—F—C—G—A的顺序沿菱形的边循环运动, 行走2009米停下, 则这个微型机器人停在_____点.14. 如图, P为菱形ABCD的对角线上一点, PE⊥AB于点E, PF⊥AD于点F, PF=3cm, 则P点到AB的距离是____ cm.15. 已知: 菱形ABCD中, ∠B=60°, AB=4, 则以AC为边长的正方形ACEF的周长为______.16. 已知菱形的周长为40cm, 两条对角线之比为3: 4, 则菱形的面积为_________cm2.17. 已知菱形的周长是52cm, 一条对角线长是24cm, 则它的面积是_________cm2.18.如图, 菱形ABCD的对角线的长分别为2和5, P是对角线AC上任一点(点P不与点A、C重合), 且PE∥BC交AB 于E, PF∥CD交AD于F, 则阴影部分的面积是_________.17题图18题图19题图19. 如图: 菱形ABCD中, AB=2, ∠B=120°, E是AB的中点, P是对角线AC上的一个动点, 则PE+PB的最小值是_________.20. 如图: 点E、F分别是菱形ABCD的边BC.CD上的点, 且∠EAF=∠D=60°, ∠FAD=45°, 则∠CFE=度. 21.如图所示, 在菱形ABCD中, ∠ABC=60°, DE∥AC交BC的延长线于点E.求证:DE= BE.22. 如图, 在菱形ABCD中, ∠A=60°, AB=4, O为对角线BD的中点, 过O点作OE⊥AB, 垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23. 如图, 四边形ABCD是菱形, BE⊥AD.BF⊥CD, 垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8, BD=6时, 求BE的长.24. 如图, 在菱形ABCD中, P是AB上的一个动点(不与A.B重合), 连接DP交对角线AC于E连接BE.(1)证明: ∠APD=∠CBE;(2)若∠DAB=60°, 试问P点运动到什么位置时, △ADP的面积等于菱形ABCD面积的, 为什么?25. 如图所示, 在矩形ABCD中, AB=4cm, BC=8cm、点P从点D出发向点A运动, 同时点Q从点B出发向点C运动, 点P、Q的速度都是1cm/s.(1)在运动过程中, 四边形AQCP可能是菱形吗?如果可能, 那么经过多少秒后, 四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.矩形的性质与判定【知识要点:】1. 矩形的定义: 有一个角是直角的平行四边形是矩形(矩形是特殊的平行四边形)。

中考数学二轮专项训练——菱形的判定与性质

中考数学二轮专项训练——菱形的判定与性质

中考二轮专项训练——菱形的判定与性质一、单选题1.如图,在ABCD 中, AC 平分 DAB ∠ , 2AB = ,则ABCD 的周长为( )A .4B .6C .8D .122.已知四边形ABCD 中, AB BC CD DA === ,对角线AC ,BD 相交于点O.下列结论一定成立的是( )A .AC BD ⊥B .AC BD = C .90ABC ∠=︒ D .ABC BAC ∠=∠3.如图,四边形ABCD 的对角线相交于点O ,且点O 是BD 的中点,若AB =AD =5,BD =8,∠ABD =∠CDB ,则四边形ABCD 的面积为( )A .40B .24C .20D .154.在学习菱形时,几名同学对同一问题,给出了如下几种解题思路,其中正确的是( )已知:如图,四边形ABCD 是菱形,E 、F 是直线AC 上两点,AF =CE . 求证;四边形FBED 是菱形.甲:利用全等,证明四边形FBED 四条边相等,进而说明该四边形是菱形;乙:连接BD ,利用对角线互相垂直的平行四边形是菱形,判定四边形FBED 是菱形; 丙:该题目错误,根据已知条件不能够证明该四边形是菱形. A .甲、乙对,丙错 B .乙、丙对,甲错 C .三个人都对D .甲、丙对,乙错5.如图,CE 是□ABCD 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E 、连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论:①四边形ACBE 是菱形;②∠ACD =∠BAE ;③AF :BE =2:3;④S 四边形AFOE :S ∠COD =2:3.其中正确的结论有( )个.A .1B .2C .3D .46.如图,已知∠ABC ,∠ACB =90°,BC =3,AC =4,小红按如下步骤作图:①分别以A 、C 为圆心,以大于 12AC 的长为半径在AC 两边作弧,交于两点M 、N ;②连接MN ,分别交AB 、AC 于点D 、O ;③过C 作CE∠AB 交MN 于点E ,连接AE 、CD .则四边形ADCE 的周长为( )A .10B .20C .12D .247.如图,在平面直角坐标系中,已知点 (20)31)A B ,,, ,若平移点 A 到点 C ,使以点 O A C B ,,, 为顶点的四边形是菱形,则正确的平移方法是( )A .向左平移( 43 )个单位,再向上平移1个单位B .向左平移 3 个单位,再向下平移1个单位C .向右平移3 个单位,再向上平移1个单位D .向右平移2个单位,再向上平移1个单位8.如图,在矩形ABCD 中,对角线AC ,BD 相交于点E ,BF∠AC ,CF∠BD .若四边形BECF 的面积为2,则矩形ABCD 的面积为( )A .4B .6C .8D .169.如图,点A,B在方格纸的格点上,将线段AB先向右平移3格,再向下平移2个单位,得线段DC,点A的对应点为D,连接AD,BC,则关于四边形ABCD的对称性,下列说法正确的是().A.既是轴对称图形,又是中心对称图形B.是中心对称图形,但不是轴对称图形C.是轴对称图形,但不是中心对称图形D.既不是轴对称图形,也不是中心对称图形10.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB=3,AC=2,则四边形ABCD的面积为()A.42B.62C.2D.5二、填空题11.如图,要使平行四边形ABCD为菱形,还需添加的一个条件是.(写出一个即可).12.如图,两条宽都为4cm的纸条交叉成45°角重叠在一起,则重叠四边形的面积为cm2.13.如图,两个长宽分别为7cm、3cm的矩形如图叠放在一起,则图中阴影部分的面积是.14.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线的长分别为12和8时,则阴影部分的面积为 .15.如图,CD 与BE 互相垂直平分,AD∠DB ,∠DBE=70°,则∠ADE= .16.在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线. 已知:直线l 及其外一点A . 求作:l 的平行线,使它经过点A .小云的作法如下:(1)在直线l 上任取一点B ;(2)以B 为圆心,BA 长为半径作弧,交直线l 于点C ;(3)分别以A 、C 为圆心,BA 长为半径作弧,两弧相交于点D ;(4)作直线AD .直线AD 即为所求.小云作图的依据是 .17.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形 ABCD 中, 3AB = , 2AC = ,则 BD 的长为 .三、解答题18.如图,在菱形 ABCD 中,将对角线 AC 分别向两端延长到点 E 和 F ,使得 AE CF = .连接 ,,,DE DF BE BF .求证:四边形 BEDF 是菱形.19.如图,矩形 ABCD 的对角线 AC , BD 交于点 O ,且 //DE AC , //AE BD ,连接 OE .求证: OE AD ⊥ .20.如图,在菱形ABCD 中,E 、F 是AC 上两点,AE =CF.求证:四边形BFDE 是菱形.21.如图,四边形 ABCD 是菱形,E 、F 是直线 AC 上两点, AF CE = .求证:四边形 FBED 是菱形.22.如图,四边形ABCD中,AD∠BC,AB∠AC,点E是BC的中点,AE与BD交于点F,且F是AE的中点.(∠)求证:四边形AECD是菱形;(∠)若AC=4,AB=5,求四边形ABCD的面积.答案解析部分1.【答案】C【解析】【解答】解:∵在ABCD中,AC平分DAB∠,∴四边形ABCD为菱形,∴四边形ABCD的周长=4×2=8.故答案为:C.【分析】首先根据一条对角线平分一组对角的平行四边形是菱形证出四边形ABCD为菱形,根据菱形的性质求周长. 2.【答案】A【解析】【解答】解:在四边形ABCD中,AB BC CD DA===,∴四边形ABCD是菱形,∴AC BD⊥;故答案为:A.【分析】根据菱形的判定和性质,即可得到答案.3.【答案】B【解析】【解答】∵AB=AD,点O是BD的中点,∴AC∠BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∠CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO12=BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD的面积12=⨯6×8=24,故答案为:B.【分析】根据等腰三角形的性质,可得AC∠BD,∠BAO=∠DAO,根据平行线的判定与性质可得∠BAC=∠ACD,从而得出∠DAC=∠ACD,由等角对等边可得AD=CD,从而可得AB=CD,从而可证四边形ABCD是菱形,根据菱形的性质可求出AO的长,从而得出AC,利用菱形的面积等于对角线乘积的一半计算即可.【解析】【解答】解:菱形 ,ABCD,,,,AB BC CD AD AC BD OA OC OB OD ∴===⊥== 90,FOB FOD ∴∠==∠=︒,FO FO = ,FOB FOD ∴≌ ,FB FD ∴=同理可得: ,,FD ED ED EB ==,FB FD DE BE ∴===∴四边形FBED 是菱形.故甲符合题意; 连接BD 交AC 于O ,∵四边形ABCD 是菱形, ∴AC ∠BD ,AO =CO ,BO =DO , ∵AF =CE , ∴OF =OE ,∴四边形FBED 是菱形.故乙正确; 由甲,乙正确,可得丙的说法错误; 故答案为:A.【分析】先利用菱形的性质证明,FOB FOD ≌ 可得,FB FD = 同理可得FD=ED ,ED=EB ,即得,FB FD DE BE ===据此判断甲;连接BD 交AC 于O ,由菱形的性质可得AC∠BD ,AO=CO ,BO=DO ,再证明OF=OE ,可证四边形FBED 是菱形,据此判断乙正确,丙错误.5.【答案】C【解析】【解答】解:∵四边形ABCD 是平行四边形,∴AB∠CD ,AB =CD , ∵EC 垂直平分AB , ∴OA =OB =12 AB = 12DC ,CD∠CE ,∴EAED=EOEC=OACD=12,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四边形ACBE是平行四边形,∵AB∠EC,∴四边形ACBE是菱形,故①符合题意,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②符合题意,∵OA∠CD,∴AFCF=OACF=12,∴AFAC=AFBE=13,故③不符合题意,设∠AOF的面积为a,则∠OFC的面积为2a,∠CDF的面积为4a,∠AOC的面积=∠AOE的面积=3a,∴四边形AFOE的面积为4a,∠ODC的面积为6a∴S四边形AFOE:S∠COD=2:3.故④符合题意,故答案为:C.【分析】利用平行四边形的性质和线段垂直平分线的性质和定义先证得四边形ACBE是菱形;再由菱形的性质和平行线的性质可得∠ACD=∠BAE;根据三角形中位线定理和相似三角形的判定与性质可证得AF:AC=AF:BE=1:3;设∠AOF的面积为a,利用相似三角形的性质和两个同底三角形的面积比等于底的比可得S四边形AFOE=4a:S∠COD=6a.6.【答案】A【解析】【解答】∵分别以A、C为圆心,以大于12AC的长为半径在AC两边作弧,交于两点M、N,∴MN是AC的垂直平分线,∴AD=CD,AE=CE,∴∠CAD=∠ACD,∠CAE=∠ACE,∵CE∠AB,∴∠CAD=∠ACE,∴∠ACD=∠CAE,∴CD∠AE,∴四边形ADCE是平行四边形,∴四边形ADCE是菱形;∴OA=OC= 12AC=2,OD=OE,AC∠DE,∵∠ACB=90°,∴DE∠BC,∴OD是∠ABC的中位线,∴OD= 12BC=12×3=1.5,∴AD= 22OA OD+=2.5,∴菱形ADCE的周长=4AD=10.故答案为:A.【分析】根据题意得:MN是AC的垂直平分线,即可得AD=CD,AE=CE,然后由CE∠AB,可证得CD∠AE,继而证得四边形ADCE是菱形,再根据勾股定理求出AD,进而求出菱形ADCE的周长.7.【答案】C【解析】【解答】解:过B作射线BC∠OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作BH∠x轴于H,∵B(3,1),∴OB= ()22312+=,∵A(2,0),∴C(3,1)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平3个单位,再向上平移1个单位而得到,故答案为:C.【分析】过B作射线BC∠OA,在BC上截取BC=OA,过B作BH∠x轴于H,根据一组对边平行且相等的四边形是平行四边形可得四边形OACB是平行四边形,用勾股定理可求得OB的长,由计算可求得OA=OB,根据一组邻边相等的平行四边形是菱形可得四边形OACB是菱形,根据菱形的性质即可得平移的方向和距离。

矩形、菱形、正方形的性质及判定专题训练

矩形、菱形、正方形的性质及判定专题训练

矩形、菱形、正方形的性质及判定专题训练【第一部分 矩形】1、矩形具有而平行四边形不具有的性质是 ( )A 、对边相等B 、对角相等C 、对角互补D 、对角线平分2、直角三角形中,两直角边长分别为12和5,则斜边上的中线长是 ( )A 、26B 、13C 、8.5D 、6.53、矩形ABCD 对角线AC 、BD 交于点O ,AB=5cm BC cm 12,=,则△ABO 的周长为等于 。

4、已知矩形的周长为40cm ,被两条对角线分成的相邻两个三角形的周长的差为8cm ,则较大的边长为 。

5、如图所示,四边形ABCD 为矩形纸片.把纸片ABCD 折叠。

使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 。

6、如图所示,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F , 若23AB BC ==,,则图中阴影部分的面积为 .(第5题) (第6题) (第7题) (第8题)7、如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB =2∠BOC , 若对角线AC =6cm ,则矩形的周长= ,面积= 。

8、已知:如图,点O 是矩形ABCD 对角线的交点,AE 平分∠BAD ,∠AOD=120°,则∠AEO= 。

9、如图,矩形ABCD 中,AC 与BD 交于O 点,BE AC ⊥于点E ,CF BD ⊥于点F 。

求证:BE=CF 。

10、如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的角平分线 于点E ,交∠BCA 的外角平分线于点F . (1)求证:EO=FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.11、如图,E 为□ABCD 外一点,且AE ⊥CE 于点E ,BE ⊥DE 于点E , 求证:四边形ABCD 为矩形12、如图,已知矩形ABCD 和点P ,(1)当点P 在图1中的位置时,求证:S △PBC =S △PAC +S △PCD(2)当点P 分别在图2、图3中的位置时,S △PBC 、S △PAC 、S PCD 又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.图1 图2 图3【第二部分 菱形】1、如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点,则下列式子中一定成立的是 ( )A .AC=2OEB .BC=2OEC .AD=OED .OB=OE2、如图,在菱形ABCD 中,不一定成立的 ( )A 、四边形ABCD 是平行四边形B 、AC ⊥BD C 、△ABD 是等边三角形D 、∠CAB =∠CAD(第1题) (第2题) (第3题)3、如图,菱形ABCD 的边长为8cm ,∠BAD =120°,则AC= ;BD= ;面积= 。

完整版)菱形的性质和判定练习题

完整版)菱形的性质和判定练习题

完整版)菱形的性质和判定练习题1.这个菱形的高为9cm。

2.较短对角线长为10cm。

3.边长为5cm。

4.各角分别为72°和108°。

5.添加的条件可以是AB=AD或BC=CD。

6.错误的说法是A,即两组对边分别平行。

7.对角线互相垂直。

8.菱形。

9.不正确的说法是B,即菱形的对角线平分各内角。

10.周长为40cm。

11.互相垂直且不平分。

12.AB长为8cm。

13.CD的长为4.14.对角线BD的长为2.15.边长为5.16.OH的长为7.17.若菱形的周长为20cm,则它的边长为4cm。

18.在菱形ABCD中,由对角线AC和BD相交于点O可知,菱形的对角线相等,即AC=BD。

又已知BD=6,则AC=6.设菱形ABCD的边长为a,则2a=20,即a=10.由菱形对角线的长度公式可得。

$AC=\sqrt{a^2+a^2}=a\sqrt{2}$,代入AC=6可得a=6/$\sqrt{2}$,因此菱形ABCD的面积为36.19.在菱形ABCD中,由$\angle ADC=120^\circ$可知,$\angle ADB=60^\circ$。

设$\angle ABD=\theta$,则$\angle ADB=120^\circ-\theta$。

由余弦定理可得,$BD^2=15^2+15^2-2\times15\times15\times\cos\theta$,化简可得$\cos\theta=1/2$,因此$\sin\theta=\sqrt{3}/2$。

由正弦定理可得,$BD/\sin\theta=2a$,其中a为菱形的边长。

又已知BD=15,代入可得$a=15\sqrt{3}/4$。

设B、D两点之间的距离为h,则$h=\sqrt{(15\sqrt{3}/4)^2-(15/2)^2}=15\sqrt{3}/4$,因此选项D 正确。

20.设菱形的较长对角线为2x,较短对角线为x,则菱形的面积为$x^2$。

矩形菱形正方形性质与判断

矩形菱形正方形性质与判断

第7题O DBC A 第9题 NM B DAC一、矩形的定义与性质1. 矩形的两邻边分别为4㎝和3㎝,则其对角线为 ㎝,矩形面积为 cm 2。

2. 矩形具有一般平行四边形不具有的性质是( )A. 对边相互平行B. 对角线相等C. 对角线相互平分D. 对角相等 3. 如图,四边形ABCD 为矩形,∠ABD =60°,BD =10。

求AB 、AD 和面积。

4. 如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 、N 分别为AC 、BD 中点。

求证:(1)MB =MD ;(2)MN ⊥BD 。

5. 如图,在矩形纸片ABCD 中,AB =8㎝,AD =10㎝。

折叠AD 边,使D 点落在BC 边上的F 点处,AE 为折痕。

求CE 的长。

6.矩形的两条对角线的夹角为60°,•一条对角线与短边的和为15,•对角线长是________,两边长分别等于________.7.已知矩形ABCD 中,O 是AC 、BD 的交点,OC=BC ,则∠CAB=_______. 8.如图,矩形ABCD 中,E 是BC 中点,∠BAE=30°,AE=4,则AC=______.9.如图,矩形ABCD中,AB=2BC,在CD上取上一点M,使AM=AB,则∠MBC=_______.10.如果E是矩形ABCD中AB的中点,那么△AED的面积:矩形ABCD的面积值为().A.12B.13C.14D.1511.已知:如图,矩形ABCD中,EF⊥CE,EF=CE,DE=2,矩形的周长为16,求AE的长.12.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是()A.20°B.40°C.80°D.100°13.直角三角形中,两条直角边边长分别为12和5,则斜边中线的长是()A.26 B.13 C.30 D.6.514.如图1,矩形ABCD中,AB=8,BC=6,E、F是AC上的三等分点,则S△BEF为()A.8 B.12 C.16 D.24(1)(2)(3)15.把一张长方形的纸片按如图2所示的方式折叠,EM、FM为折痕,折叠后的C点落在B′M或B′M的延长线上,那么∠EMF的读度为()A.85°B.90°C.95°D.100°16.如图3,在矩形ABCD 中,EF ∥AB ,GH ∥BC ,EF 、GH 的交点P 在BD 上,图中面积相等的四边形有( ) A .3对 B .4对 C .5对 D .6对17.矩形ABCD 中,对角线AC=10cm ,AB :BC=3:4,则它的周长是_______.18.矩形ABCD 的两条对角线相交于点O ,如果矩形的周长是34cm ,又△AOB•的周长比△ABC 的周长少7cm ,则AB=________cm ,BC=________cm .19.在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=110°,则∠OAB=______. 20.已知:如图,在矩形ABCD 中,AE ⊥BD 于E ,对角线AC 、BD 相交于点O ,•且BE :ED=1:3,AB=6cm ,求AC 的长.21. 已知在四边形ABCD 中,AB C D ,请添加一个条件,使四边形ABCD 是矩形,加上的条件是.22. 如图19-2-3所示,在矩形ABCD 中,E 为AD 上一点,EF ⊥CE 交AB 于点F ,若DE =2,矩形的周长为16,且CE =EF. 求AE 的长.23. 如图19-2-4所示,在矩形ABCD 中,F 为BC 边上一点,AF 的延长线交DC 的延长线于点G ,DE ⊥AG 于点E ,且DE =DC. 根据上述条件,请你在图中找出一对全等三角形,并证明你的结论.24.如图所示,矩形ABCD的两条对角线的交点为O,若△ABO与△BCO的周长的差为2,而矩形ABCD的周长为20,则它的两边的长是________.25.(创新题)如图所示,矩形ABCD中,AB=6 cm,AD=8 cm,AB、CD分别被分成三等份,AD、BC被分成四等份,则图中四边形MNPQ的面积是多少?26.矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是().A.57.5°B.32.5°C.57.5°、33.5°D.57.5°、32.5°二、菱形的定义与性质1.菱形的两条对角线长分别为16cm,12cm,那么这个菱形的高是_______.2.已知菱形两邻角的比是1:2,周长是40cm,则较短对角线长是________.3.菱形的面积为50cm2,一个内角为30°,则其边长为______.4.菱形一边与两条对角线所构成两角之比为2:7,则它的各角为______.5.菱形ABCD,若∠A:∠B=2:1,∠CAD的平分线AE和边CD之间的关系是().A.相等B.互相垂直且不平分C.互相平分且不垂直D.垂直且平分6.在菱形ABCD中,AE⊥BC于E,菱形ABCD面积等于24cm2,AE=6cm,则AB长为().A.12cm B.8cm C.4cm D.2cm7.已知:如图,在菱形ABCD中,E、F分别是BC、CD上的点,且CE=CF.(1)求证:△ABE≌△ADF.(2)过点C作CG∥EA,交AF于H,交AD于G,若∠BAE=25°,∠BCD=130°,求∠AHC•的度数.8. 如图,在菱形ABCD中,(1)如果OA=3,OD=4,那么AC=_________,BD=_________,菱形周长=_________。

专题01菱形的性质与判定(四大类型)(题型专练)(原卷版)

专题01菱形的性质与判定(四大类型)(题型专练)(原卷版)

专题01 菱形的性质与判定(四大类型)【题型1 菱形的性质】【题型2 菱形的判定】【题型3 菱形的性质与判定综合运用】【题型4 菱形中最小值问题】【题型1 菱形的性质】1.(2023•新郑市模拟)关于菱形,下列说法错误的是()A.对角线垂直B.对角线互相垂直C.对角线相等D.对角线互相平分2.(2023春•鹤山市校级期中)如图,菱形ABCD中,E,F分别是AB,AC的中点,若EF=3,则菱形ABCD的周长是()A.12B.24C.20D.16 3.(2023•邗江区一模)图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中∠ABC的度数是()A.30°B.45°C.60°D.75°4.(2023•河西区一模)如图,四边形ABCD为菱形,A,B两点的坐标分别是,(0,1),点C,D在坐标轴上,则菱形ABCD的面积等于()A.B.C.D.5.(2023春•通州区期中)如图,在平面直角坐标系xOy中,菱形OABC,O 为坐标原点,点C在x轴上,A的坐标为(﹣3,4),则顶点B的坐标是()A.(﹣5,4)B.(﹣6,3)C.(﹣8,4)D.(2,4)6.(2023春•朝阳区校级期中)如图,在菱形ABCD中,E、F分别是AB、AC 的中点,若EF=2,则菱形ABCD的周长是()A.12B.16C.20D.247.(2023春•江阴市期中)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=4,S=24,则OH的长菱形ABCD为()A.6B.5C.3D.2.5 8.(2023春•金坛区期中)如图,菱形ABCD的边长为2,∠ABC=120°,则菱形ABCD的面积是()A.B.C.D.9.(2023春•鄞州区期中)如图,菱形ABCD的顶点A,B分别在y轴正半轴,x轴正半轴上,点C的横坐标为10,点D的纵坐标为8,若直线AC平行x 轴,则菱形ABCD的边长值为()A.9B.C.6D.3 10.(2023春•朝阳区校级期中)把一个平面图形分成面积相等的两部分的线段称作这个图形的等积线段,菱形ABCD中,∠A=60°,AB=2,则菱形ABCD 的等积线段长度a取值范围是()A.B.C.D.11.(2023•川汇区一模)如图,在菱形ABCD中,AC=6,BD=8,AH⊥BC,垂足为点H,则AH的长为()A.3B.4C.4.8D.5【题型2 菱形的判定】12.(2023•西安二模)在下列条件中,能判定平行四边形ABCD为菱形的是()A.AB⊥BC B.AC=BD C.AB=BC D.AB=AC 13.(2023•张家口二模)依据所标数据(度为所在角的度数,数字为所在边的长度),下列平行四边形不一定是菱形的是()A.B.C.D.14.(2023•新城区校级一模)在平行四边形ABCD中,添加下列条件,能判定平行四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.∠ABC=90°D.AB=CD 15.(2023春•长寿区校级月考)下列说法错误的是()A.角平分线上的点到角两边的距离相等B.同旁内角互补C.对角线互相垂直平分的四边形是菱形D.一个角等于60°的等腰三角形是等边三角形16.(2023春•秦皇岛月考)已知如图,在▱ABCD中,AD>AB,∠ABC为锐角,将△ABC沿对角线AC边平移,得到△A′B′C′,连接AB′和C′D,若使四边形AB′C′D是菱形,需添加一个条件,现有三种添加方案,甲方案:AB′=DC′;乙方案:B′D⊥AC′;丙方案:∠A′C′B′=∠A′C′D;其中正确的方案是()A.甲、乙、丙B.只有乙、丙C.只有甲、乙D.只有甲17.(2022秋•兴平市期末)下列条件中,能判定四边形是菱形的是()A.对角线垂直B.两对角线相等C.两对线互相平分D.两对角线互相垂直平分18.(2023春•海珠区期中)如图,在四边形ABCD中,E、F分别是AD、BC 的中点,G、H分别是BD、AC的中点,依次连接E、G、F、H得到四边形EGFH,要使四边形EGFH是菱形,可添如条件.19.(2023春•通州区期中)如图,AE∥BF,AC平分∠BAE交BF于点C,CD ∥AB交AE于点D.求证:四边形ABCD是菱形.20.(2023春•天河区校级期中)如图,四边形ABCD是平行四边形,延长BC 至E,使点C是BE的中点,连接AD,AC,CE,DE,AG与DE相交于点O.(1)求证:AC=DE;(2)当∠BAE=90°时,求证:四边形ACED是菱形.21.(2023•崂山区一模)如图,▱ABCD的对角线AC与BD相交于点O,过点B作BP∥AC,过点C作CP∥BD,BP与CP相交于点P.(1)证明四边形BPCO为平行四边形;(2)给▱ABCD添加一个条件,使得四边形BPCO为菱形,并说明理由.22.(2023春•栖霞区校级期中)如图,在▱ABCD中,E、F分别为AD、BC的中点,点M、N在对角线AC上,且AM=CN.(1)求证:四边形EMFN是平行四边形;(2)当△ABC满足条件时,▱EMFN是菱形.23.(2023春•青秀区校级月考)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)求证:四边形AFBE是菱形.【题型3 菱形的性质与判定综合运用】24.(2023•西山区一模)如图,将两条宽度都为1的纸条重叠在一起,使∠ABC =60°,则四边形ABCD的面积为()A.B.C.D.25.(2022春•高邑县期末)如图,在∠MON的两边上分别截取OA,OB,使OA=OB;再分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;再连接AC,BC,AB,OC.若AB=2,OC=4.则四边形AOBC的面积是()A.4B.8C.4D.26.(2022秋•青羊区期末)如图,在△ABC中,AB=AC,分别以C、B为圆心取AB的长为半径作弧,两弧交于点D.连接BD、AD.若∠ABD=130°,则∠CAD=.27.(2022春•互助县期中)如图,线段AB=10,分别以A、B两点为圆心,以6长为半径画弧,两弧交于点C、点D,连接CD,则CD=.28.(2023春•长沙期中)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若,BD=2,求OE的长.29.(2023春•璧山区校级期中)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若菱形BNDM的周长为68,MN=16,求菱形BNDM的面积.30.(2023•安岳县一模)如图,在▱ABCD中,O为BD的中点,过点O作EF ⊥BD,交AD于点E,交BC于点F.(2)若AB=2,AD=4,∠BAD=120°,求DE的长.31.(2023•市一模)如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=6,BD=4,求OE的长.32.(2023•九台区一模)如图,在四边形ABCD中,AB∥CD,过点D作∠ADC 的角平分线交AB于点E,连接AC交DE于点O,AD∥CE.(1)求证:四边形AECD是菱形;(2)若AD=10,△ACD的周长为36,求菱形AECD的面积.33.(2023春•天津期中)如图,在△ABC中,∠BAC的角平分线交BC于点D,DE∥AB,DF∥AC.(2)若∠BAC=90°,且,求四边形AFDE的面积.34.(2023•长沙模拟)如图,在Rt△ABF中,∠F=30°,E,D分别是AF,BF的中点,延长ED到点C,使得CD=2DE,连接CB.(1)求证:四边形ABCD是菱形;(2)若DE=,求菱形ABCD的面积.【题型4 菱形中最小值问题】35.(2022春•铜山区期中)如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一动点,且点P不与点B、C重合.作PE⊥AC于点E,PF⊥BD于点F,连结EF,取EF的中点M,则PM的最小值为()A.2B.2.4C.3D.2.5 36.(2022春•东营区期末)已知菱形ABCD,E、F是动点,边长为5,BE=AF,∠BAD=120°,则下列命题中正确的是()①△BEC≌△AFC;②△ECF为等边三角形;③△ECF的边长最小值为3;④若AF=2,则S△FGC =S△EGC.A.①②B.①③C.①②④D.①②③37.(2022春•孝感期末)如图,菱形ABCD的两条对角线长AC=6,BD=8,点E是BC边上的动点,则AE长的最小值为()A.4B.C.5D.38.(2022春•余姚市期末)如图,在菱形ABCD中,E,F分别是边CD,BC 上的动点,连结AE,EF,G,H分别为AE,EF的中点,连结GH.若∠B =45°,BC=2,则GH的最小值为()A.B.C.2D.339.(2023•泰山区一模)如图,菱形ABCD的对角线相交于点O,AC=6,BD =8,点P为边BC上一点,且P不与B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连接EF,则EF的最小值等于.40.(2023春•溧阳市期中)如图,菱形ABCD的对角线AC、BD相交于O,点H是线段BC的动点,连接OH.若OB=4,S菱形ABCD=24,则OH的最小值是.41.(2022春•东城区期末)如图,菱形ABCD的边长为2,∠BAD=60°,点E是AD边上一动点(不与A,D重合),点F是CD边上一动点,DE+DF =2,则∠EBF=°,△BEF面积的最小值为.42.(2022春•泗阳县期中)如图,在菱形ABCD中,∠A=2∠B,AB=2,点E 和点F分别在边AB和边BC上运动,且满足AE=CF,则DF+CE的最小值为4.【答案】4.43.(2022春•民勤县校级期中)如图所示,在边长为2的菱形ABCD中,∠DAB(提=60°,点E为AB中点,点F是AC上一动点,则EF+BF的最小值为.示:根据轴对称的性质)44.(2022春•桥西区校级期中)如图所示,在菱形ABCD中,AB=8,∠BAD =120°,△AEF为等边三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF.(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.。

人教版九年级数学中考矩形、菱形、正方形专项练习及参考答案

人教版九年级数学中考矩形、菱形、正方形专项练习及参考答案

人教版九年级数学中考矩形、菱形、正方形专项练习基础达标一、选择题1.(2018江苏淮安)如图,菱形ABCD 的对角线AC ,BD 的长分别为6和8,则这个菱形的周长是( )A.20B.24C.40D.48,AO=12AC=3,BO=12BD=4,且AO ⊥BO ,则AB=√AA 2+AA 2=5, 故这个菱形的周长L=4AB=20. 故选A.2.(2017四川广安)下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A.4 B.3C.2D.13.(2017四川眉山)如图,EF 过▱ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若▱ABCD 的周长为18,OE=1.5,则四边形EFCD 的周长为( ) A.14 B.13C.12D.104.(2018贵州遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB,PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18PM⊥AD于点M,交BC于点N.则四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,×2×8=8,∴S△DFP=S△PBE=12∴S阴影=8+8=16,故选C.5.(2017山东枣庄)如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=A(x<0)的图象经过顶点B,则k的值为()AA.-12B.-27C.-32D.-366.(2018江苏无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G,H都在边AD上,若AB=3,BC=4,则tan ∠AFE的值()A.等于37B.等于√33C.等于34D.随点E位置的变化而变化EF∥AD,∴∠AFE=∠FAG,△AEH∽△ACD,∴AAAA =AAAA=34.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG=AA AA =3A3A+4A=37.故选A.二、填空题7.(2018湖南株洲)如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P,Q分别为AO,AD的中点,则PQ的长度为..5四边形ABCD是矩形,∴AC=BD=10,BO=DO=12BD,∴OD=12BD=5,∵点P,Q分别是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=2.5.8.(2018广东广州)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是.-5,4)菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD=√AA2-AA2=√52-32=4,∴点C的坐标是(-5,4).9.(2018湖北武汉)以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.150°1,图1∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED-∠AEB-∠CED=30°.如图2,图2∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC-∠ADE=90°-60°=30°,∴∠CED=∠ECD=1(180°-30°)=75°,同理∠BEA=∠ABE=75°,2∴∠BEC=360°-75°×2-60°=150°.三、解答题10.如图,在菱形ABCD 中,对角线AC 与BD 交于点O.过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,则ABCD 的面积是多少?四边形ABCD 是菱形,∴AC ⊥BD , ∴∠COD=90°. ∵CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,又∠COD=90°,∴平行四边形OCED 是矩形.(1)知,平行四边形OCED 是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD 是菱形, ∴AC=2OC=4,BD=2OD=2, ∴菱形ABCD 的面积为12AC ·BD=12×4×2=4. 能力提升一、选择题1.下列说法中,正确的个数为( )①对顶角相等;②两直线平行,同旁内角相等; ③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1B.2C.3D.4对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误; ④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选B .2.(2018山东枣庄)如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A.√24B.14C.13D.√23四边形ABCD 是矩形,∴AD=BC ,AD ∥BC , ∵点E 是边BC 的中点, ∴BE=12BC=12AD , ∴△BEF ∽△DAF , ∴AA AA =AA AA =12, ∴EF=12AF , ∴EF=13AE ,∵点E 是边BC 的中点, ∴由矩形的对称性得:AE=DE , ∴EF=13DE ,设EF=x ,则DE=3x , ∴DF=√AA 2-AA 2=2√2x , ∴tan ∠BDE=AAAA =2√2A =√24.故选A.3.如图,在Rt △ABC 中,∠C=90°,AC=BC=6cm,点P 从点A 出发,沿AB 方向以每秒√2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P'.设Q 点运动的时间为t s,若四边形QPCP'为菱形,则t 的值为( )A.√2B.2C.2√2D.3PP',交BC于N点,过P作PM⊥AC,垂足为M.若运动t s时四边形QPCP'为菱形,则PQ=PC,PN⊥BC,四边形PMCN为矩形,BQ=t,AP=√2t,PM=NC=t,∴QC=2t,∴BC=BQ+QC=t+2t=3t=6cm,∴t=2,故选B.4.(2018河南)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1 cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()图1图2A.√5B.2D.2√5C.52D作DE⊥BC于点E由题图2可知,点F由点A到点D用时为a s,△FBC的面积为a cm2.∴AD=a.DE·AD=a.∴12∴DE=2.当点F从D到B时,用√5s,∴BD=√5.Rt△DBE中,BE=√AA2-AA2=√(√5)2-22=1,∵ABCD是菱形,∴EC=a-1,DC=a.Rt△DEC中,a2=22+(a-1)2,.解得a=52故选C.5.(2017广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题6.(2018山东潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x 轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C'D'的位置,B'C'与CD相交于点M,则点M的坐标为.)-1,√33,连接AM ,∵将边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB'C'D', ∴AD=AB'=1,∠BAB'=30°, ∴∠B'AD=60°,在Rt △ADM 和Rt △AB'M 中,∵{AA =AA ',AA =AA ,∴Rt △ADM ≌Rt △AB'M (HL), ∴∠DAM=∠B'AM=12∠B'AD=30°, ∴DM=AD tan ∠DAM=1×√33=√33, ∴点M 的坐标为(-1,√33).三、解答题 7.如图所示,在△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN ∥BC ,设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1)求证:OE=OF ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.MN ∥BC ,∴∠OEC=∠BCE.又∠OCE=∠BCE ,∴∠OEC=∠OCE ,∴OE=OC.同理可证OF=OC ,∴OE=OF.O 运动到AC 中点时,四边形AECF 是矩形.证明:∵CE ,CF 分别是∠ACB 的内,外角平分线.∴∠OCE+∠OCF=12(∠ACB+∠ACD )=12×180°=90°,即∠ECF=90°,又∵OE=OF ,∴当O 点运动到AC 中点时,OA=OC ,四边形AECF 是矩形.8.(2018贵州遵义)如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON.,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM=√22+42=2√5,由(1)知OM=ON,∴MN=√2OM=2√10.。

矩形和菱形的性质与判定综合作业

矩形和菱形的性质与判定综合作业

矩形和菱形的性质与判定综合姓名:________班级:__________学号:_________1、如图,在菱形ABCD 中,对角线AC 、BD 相交于点O,下列结论中不一定成立的是( )A. AB ∥DCB. AC=BDC. AC ⊥BDD. OA=OC2、如图,在四边形ABCD 中,对角线AC,BD 相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD 是菱形的是( )A. AB=ADB. AC=BDC. AC ⊥BDD. ∠ABO=∠CBO第1题 第2题 第4题 第5题3.顺次连接菱形四边的中点得到的四边形是( )A .平行四边形 B.菱形 C .矩形 D.正方形4.如图,在菱形ABCD 中,E,F 分别是AB,AD 的中点,DE,BF 相交于点G,连接BD,CG .有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF ≌△CGB;④S △ABD=43AB 2其中正确的结论有( )个 A.1 B.2 C.3 D.45.如图,在四边形ABCD 中,AC =BD =3,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则EG 2+FH 2=__________.6.如图,在□ABCD 中,以点A 为圆心,AB 的长为半径画弧,交AD 于点F ;再分别以点B 、F 为圆心,大于BF 的长为半径画弧,两弧交于点P ;连接AP 并延长交BC 于点E ,连接EF ,得的四边形ABEF 是菱形.(1) 求证:四边形ABEF 是菱形.(2)若∠BAD=60°,AE=,求菱形ABEF 的周长.7. 如图,△ABC 中,AB=BC,∠ABC=90°,点E,F 分别在AB,AC 上,点O,M 分别为AF,CE 的中点.求证:(1)OM=21AE;(2)OB=2OM8.如图,在矩形ABCD 中,AD=6,AB=4 , 点E 是BC 边上一动点,连接PA,PD.(1)求PA+PD 的最小值.(2)求PA+21PC 的最小值.9.如图,在Rt △ABC 中,∠B=90∘,AC=60cm,∠A=60∘,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2cm/s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M N
O
D C
B
A
矩形,菱形的性质及判定专项练习
1.在下列命题中,真命题是()
A.两条对角线相等的四边形是矩形
B.两条对角线互相垂直的四边形是菱形
C.两条对角线互相平分的四边形是平行四边形
D.两条对角线互相垂直且相等的四边形是正方形
2.已知菱形的两条对角线长为10cm和24cm, 那么这个菱形的周长为_______, 面积为___________.
3.将两张长10cm宽3cm的长方形纸条叠放在一起, 使之成60度角, 那么重叠部分
的面积的最大值为________________.
4.一个菱形面积为80, 周长为40, 那么两条对角线长度之和为__________.
5.顺次连接一个特殊四边形的中点, 得到一个菱形. 那么这个特殊四边形是___________.
6.如图,矩形ABCD的对角线相交于点O,OF⊥BC,CE⊥BD,OE:BE=1:
3,OF=4,求∠ADB的度数和BD的长。

7.如图所示,矩形ABCD中,M是BC的中点,且MA⊥MD,若矩形的周长为36cm,求此矩形的面积。

8.折叠矩形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG,如图,若AB=2,
BC=1,求AG。

O
F
E
D
C
B
A
G
E
D C
B
A
9. 已知:如图,平行四边形ABCD 的四个内角的平分线分别相交于点E ,F ,G ,H ,求证:四边形EFGH
是矩形。

10. 如图,在矩形ABCD 中,E 是AD 上一点,F 是AB 上一点,EF CE =,且,2EF CE DE cm ⊥=,矩
形ABCD 的周长为16cm ,求AE 与CF 的长.
11. 如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,(1),画出△AOB 平移后的三角形,其平移的方
向为射线AD 的方向,平移的距离为线段AD 的长。

(2)观察平移后的图形,除了矩形ABCD 外还有哪一种特殊的平行四边形?并给出证明。

12. 如图所示,已知菱形ABCD 中,E 、F 分别在BC 和CD 上,且∠B=∠EAF=60°,∠BAE=15°,求∠CEF
的度数。

13.已知:如图,在菱形ABCD中,E、F分别是BC、CD上的点,且CE=CF。

过点C作CG∥EA交AF于H,
交AD于G,若∠BAE=25°,∠BCD=130°,求∠AHC的度数。

14.如图所示,已知菱形ABCD中E在BC上,且AB=AE,∠
BAE=
2
1
∠EAD,AE交BD于M,试说明BE=AM。

15.已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.
求证:AE平分∠BAD.
H
G
F
E
D
C
B
A
16.AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:AD⊥EF。

17.如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB上的中点,(1)求证四边形BDEF是菱形。

(2)若AB=12cm,求菱形BDEF的周长?
18.已知:如图,△ABC中,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF∥BC交AD于点
F,求证:四边形CDEF是菱形。

19.如图,平行四边形ABCD的对角线AC的垂直平分线与AD、BC、AC分别交于点E、F、O,求证:四
边形AFCE是菱形。

20. 已知:如图,C 是线段BD 上一点,△ABC 和△ECD 都是等边三角形,R 、F 、G 、H 分别是四边形ABDE
各边的中点,求证:四边形RFGH 是菱形。

21. 如图,已知在△ABC 中,AB=AC ,∠B ,∠C 的平分线BD 、CE 相交于点M ,DF ∥CE ,EG ∥BD ,DF 与EG
交于N ,求证:四边形MDNE 是菱形。

R
H
G
F
E D
C
B
A
22.已知:如图所示,ABCD为菱形,通过它的对角线的交点O作AB、BC的垂线,与AB、BC,CD,DA分
别相交于点E、F、G、H,求证:四边形EFGH为矩形。

23.如图,□ABCD中,AB⊥AC,AB=1,BC=5.对角线AC,BD相交于点O,将直线AC绕点O顺时针
旋转,分别交BC,AD于点E,F.
(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,画出图形并写出此时
AC绕点O顺时针旋转的度数.
24.如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.
(1)求证:△BDE≌△BCF;
(2)判断△BEF的形状,并说明理由;
(3)设△BEF的面积为S,求S的取值范围.
(注:素材和资料部分来自网络,供参考。

请预览后才下载,期待你的好评与关注!)。

相关文档
最新文档