高中数学学业水平测试题

合集下载

2024年天津市高中数学学业水平合格考试卷试题(含答案)

2024年天津市高中数学学业水平合格考试卷试题(含答案)

2024年高中学业水平合格性考试模拟练习数学学科本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共100分,考试时间90分钟.参考公式:柱体的体积公式V Sh =,其中S 表示柱体的底面积,h 表示柱体的高.球的体积公式24π3V R =,其中R 表示球的半径.第Ⅰ卷一、选择题:(本大题共15个小题,每小题3分,共计45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}0,1,2,3U =,集合{}0,1,2M =,{}0,2,3N =,则U M N = ð().A .∅B .{}1C .{}2,3D .{}0,1,22.命题“R x ∃∈,()12f x <≤”的否定形式是().A .R x ∀∈,()12f x <≤B .R x ∃∈,()12f x <≤C .R x ∃∈,()1f x ≤或()2f x >D .R x ∀∈,()1f x ≤或()2f x >3.复数1i1i+-等于().A .1B .1-C .i D .i-4.不等式()()120x x --≥的解集为().A .{|}12x x ≤≤B .}1{|2x x x ≤≥或C .{}2|1x x <<D .}1{|2x x x <>或5.坐标平面内点P 的坐标为()sin 5,cos5,则点P 位于第()象限.A .一B .二C .三D .四6.某射手在一次射击中,射中10环,9环,8环的概率分别是0.2,0.3,0.1,则此射手在一次射击中不够8环的概率为().A .0.9B .0.6C .0.4D .0.37.为了得到函数πsin 23y x ⎛⎫=-⎪⎝⎭的图象,可以将函数sin 2y x =的图象().A .向右平移π6个单位B .向右平移π3个单位C .向左平移π6个单位D .向左平移π3个单位8.在△ABC 中,π3A =,3BC =,AB =,则C =().A .π6B .π4或3π4C .3π4D .π49.若l ,m 是两条不同的直线,α是一个平面,l α⊥,则“l m ⊥”是“m α∥”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.下列函数中,周期为π且为偶函数的是().A .sin(22πy x =-B .cos(2)2πy x =--3)C .sin(2πy x =+D .cos()2πy x =+11.三个数3log 2a =,21log 4b =,0.512c -⎛⎫= ⎪⎝⎭之间的大小关系为().A .a c b <<B .a b c <<C .b a c<<D .b c a<<12.一个圆柱的底面直径和高都等于球O 的直径,则球O 与该圆柱的体积之比为().A .18B .16C .12D .2313.如图,在平行四边形ABCD 中,AB a = ,AD b = ,点E 满足13EC AC = ,则DE =().A .2133a b-B .2133a b- C .1233a b- D .1233a b- 14.已知正四面体ABCD ,M 为AB 中点,则直线CM 与直线BD 所成角的余弦值为().A .23B .36C .2121D .4212115.函数()22log 43xf x a x a =+⋅+在区间1,12⎛⎫⎪⎝⎭上有零点,则实数a 的取值范围是().A .12a <-B .32a <-C .3122a -<<-D .34a <-第Ⅱ卷二、填空题:本大题共5个小题,每小题3分,共15分.请将答案填在题中横线上。

2023年河北省普通高中学业水平合格性考试数学试题

2023年河北省普通高中学业水平合格性考试数学试题

一、单选题二、多选题1.已知函数,则( )A .14B .5C .1D.2. 函数在区间内的零点个数是( )A .2B .3C .4D .53.已知定义在上的奇函数恒有,当时,,已知,则函数在上的零点个数为( )A .4个B .5个C .3个或4个D .4个或5个4.在等比数列中,,若,,成等差数列,则的公比为( ).A .2B .3C .4D .55. 已知空间向量两两相互垂直,且,若则的取值范围是( )A.B.C.D.6.已知函数,现将的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,则的解析式为( )A.B.C.D.7. 甲、乙、丙、丁、戊共5名同学参加劳动技术比赛,决出第一名到第五名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军,”对乙说:“你不是最差的.”从这两个回答分析,5人的名次排列可能有( )不同的排列A .36B .54C .60D .728.已知,则( )A .1B .2C .3D .49. 已知函数,.若实数a ,b (a ,b 均大于1)满足,则下列说法正确的是( )A .函数在R 上单调递增B.函数的图象关于中心对称C.D.10. 已知空间中三条不同的直线a 、b 、c,三个不同的平面,则下列说法中正确的是( )A .若,,则B.若,,,则C .若,,,则D .若,,则11. 已知点P 在:上,点,则( )A .点P 到直线AB的距离最大值是B.满足的点P 有2个2023年河北省普通高中学业水平合格性考试数学试题2023年河北省普通高中学业水平合格性考试数学试题三、填空题四、解答题C .过直线AB 上任意一点作的两条切线,切点分别为M ,N ,则直线MN过定点D.的最小值为12. 已知函数,则下列说法正确的是( )A.若函数的最小值为,则B .若),则使得成立C .若,都有成立,则D .若函数在上存在最大值,则正实数的取值范围是13. 南宋晚期的龙泉窑粉青釉刻花斗笠盏如图1所示,忽略杯盏的厚度,这只杯盏的轴截面如图2所示,其中光滑的曲线是抛物线的一部分,已知杯盏盛满茶水时茶水的深度为3cm ,则该抛物线的焦点到准线的距离为______cm.14. 等差数列的公差,其前n项和为,若,则中不同的数值有________个.15. 某电子产品的成本价格由两部分组成,一是固定成本,二是可变成本,为确定该产品的成本.进行5次试验,收集到的数据如表:产品数个1020304050产品总成本(元)62a758189由最小二乘法得到回归方程,则______.16. 2021年奥运会我国射击项目收获丰盛,在我国射击也是一项历史悠久的运动.某射击运动爱好者甲来到靶场练习.(1)已知用于射击打靶的某型号枪支弹夹中一共有发子弹,甲每次打靶的命中率均为,一旦出现子弹脱靶或者子弹打光便立即停止射击.记标靶上的子弹数量为随机变量,求的分布列和数学期望;(2)若某种型号的枪支弹巢中一共可装填6发子弹,现有一枪支其中有发为实弹,其余均为空包弹,现规定:每次射击后,都需要在下一次射击之前填充一发空包弹,假设每次射击相互独立且均随机,在进行次射击后,记弹巢中空包弹的发数为,①当时,请直接写出数学期望与的关系;②求出关于的表达式.17. 中,角A ,B ,C 的对边分别为a ,b ,c,且满足.(1)求证:;(2)若为锐角三角形,求的取值范围.18.如图,是正方形,是正方形的中心,底面是的中点.(1)求证:平面;(2)若,求三棱锥的体积.19. 在①函数的图像关于直线对称;②函数的图像关于点对称;③函数的图像经过点;这三个条件中任选一个,补充在下面问题中并解答.问题:已知函数最小正周期为,(1)求函数的解析式;(2)函数在上的最大值和最小值.注:如果选择多个条件分别解答,按第一个解答计分.20. 如图,在中,,D为AC边上一点且,.(1)若,求的面积;(2)求的取值范围.21. 求函数的最小值.。

2023年江苏省普通高中学业水平合格性考试数学真题试卷含详解全文

2023年江苏省普通高中学业水平合格性考试数学真题试卷含详解全文

江苏省2023年普通高中学业水平合格性考试试卷数学参考公式:锥体的体积公式:13V Sh=,其中S 是底面积,h 是高.一、选择题:本大题共28小题,每小题3分,共84分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}{}2,0,2,0,2,4A B =-=,则A B = ()A.{}0,2 B.{}2,2,4- C.{}2,0,2- D.{}2,0,2,4-2.已知a b >,则()A.33a b +>+B.33a b ->-C.33a b> D.22a b >3.已知3i z =-,则z =()A.3B.4C. D.104.已知五个数2,,6,5,3a 的平均数为4,则=a ()A.3B.4C.5D.65.命题“x ∀∈R ,210x x ++>”的否定为()A.x ∀∈R ,210x x ++≤B.x ∃∈R ,210x x ++≤C.x ∃∈R ,210x x ++< D.x ∃∈R ,210x x ++>6.已知角α的终边经过点(2,1)P -,则sin α= A.55B.5-C.255D.5-7.函数()f x =)A.(],1-∞ B.(),1-∞ C.[)1,+∞ D.()1,+∞8.要得到函数2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象.只需将函数2sin y x =的图象()A.向左平移3π个单位B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位9.党的二十大报告指出:“全面提高人才自主培养质量,着力造就拔尖创新人才,聚天下英才而用之.”某区域教育部门为提高学生的创新能力,组织了200名学生参与研究性学习,每人仅参加1个课题组,参加各课题组的人数占比的扇形统计图如图所示,则参加数学类的人数比参加理化类的人数多()A.16B.30C.32D.6210.从甲、乙、丙、丁4名同学中任选3名同学参加环保宣传志愿服务,则甲被选中的概率为()A.14B.13C.23D.3411.已知3321log ,log 2,log 32a b c ===,则()A.a b c <<B.b a c <<C.b<c<aD.c b a<<12.已知直线l 平面α,直线m ⊂平面α,则l 与m 不可能()A.平行B.相交C.异面D.垂直13.已知函数()f x x α=是偶函数,且在区间()0,∞+上单调递增,则下列实数可作为α值的是()A.-2B.12C.2D.314.已知tan 3α=-,则sin 2cos sin cos αααα+=-()A.52B.14C.54-D.72-15.对于两个非空实数集合A 和B ,我们把集合{},,x x a b a A b B =+∈∈∣记作A B *.若集合{}{}0,1,0,1A B ==-,则A B *中元素的个数为()A.1B.2C.3D.416.已知函数()f x 为奇函数,且当0x >时,()()3log 21f x x =+,则()1f -=()A.-1B.0C.1D.217.甲、乙两人独立地破译某个密码,如果每人译出密码得概率均为0.3,则密码被破译的概率为()A.0.09B.0.42C.0.51D.0.618.甲、乙、丙、丁4名学生参加数学竞赛,在成绩公布前,4人作出如下预测:甲说:乙第一;乙说:丁第一;丙说:我不是第一;丁说:乙第二.公布的成绩表明,4名学生的成绩互不相同,并且有且只有1名学生预测错误,则预测错误的学生是()A.甲B.乙C.丙D.丁19.如图,正方体1111ABCD A B C D -中,直线1BD 与平面ABCD 所成角的正切值为()A .1B.32C.22D.3320.在一次实验中,某小组测得一组数据()(),1,2,,11i i x y i = ,并由实验数据得到下面的散点图.由此散点图,在区间[]2,3-上,下列四个函数模型(,a b 为待定系数)中,最能反映,x y 函数关系的是()A.y a bx =+B.x y a b =+C.log b y a x=+ D.b y a x=+21.在ABC 中,已知3cos25A =-,则sin A =()A. B.45C.55D.25522.已知ABC 是边长为2的等边三角形,,,D E F 分别是边,,AB BC CA 的中点,则()A.AB AC AE+=B.AB AC BC-=C.12EF AB= D.12DE DF ⋅=23.在空间,到一个三角形的三个顶点距离相等的点的集合表示的图形是()A.一个点B.一条直线C.一个平面D.一个球面24.已知向量()(()()2,0,,a b a kb ka b ==+⊥-,则实数k =()A.1-B.0C.1D.1-或125.两游艇自某地同时出发,一艇以10km/h 的速度向正北方向行驶,另一艇以8km/h 的速度向北偏东θ(090θ︒<<︒)角的方向行驶.若经过30min km ,则θ=()A.30︒B.45︒C.60︒D.75︒26.2023年2月6日,土耳其发生强烈地震,造成重大人员伤亡和财产损失,江苏救援队伍紧急赴当地开展救报行动.尽管日前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg 4.8 1.5E M =+.里氏8.0级地震所释放出来的能量是里氏6.0级地震所释放出来的能量的()A.6倍B.210倍C.310倍D.610倍27.若圆柱的上、下底面的圆周都在一个半径为2的球面上,则该圆柱侧面积的最大值为()A .4πB.8πC.12πD.16π28.若函数()221,3sin 1,3x x m x f x m x x ⎧--+<=⎨+≥⎩的值域为[)2,-+∞,则实数m 的可能值共有()A.1个B.2个C.3个D.4个二、解答题:本大题共2小题,共计16分.解答应写出文字说明、证明过程或演算步骤.29.如图,三棱锥-P ABC 的底面ABC 和侧面PBC 都是边长为2的等边三角形,,M N 分别是,AB BC 的中点,PN AN ⊥.(1)证明:MN //平面PAC ;(2)求三棱锥-P ABC 的体积.30.已知函数()sin f x x =.(1)求函数23πy f x ⎛⎫=+⎪⎝⎭的最小正周期;(2)若()()211[]28f x m f x +-≥,求实数m 的取值范围.江苏省2023年普通高中学业水平合格性考试试卷数学一、选择题:本大题共28小题,每小题3分,共84分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}{}2,0,2,0,2,4A B =-=,则A B = ()A.{}0,2 B.{}2,2,4- C.{}2,0,2- D.{}2,0,2,4-【答案】A【分析】根据交集定义直接计算即可.【详解】集合{}{}2,0,2,0,2,4A B =-=,则{}0,2A B =I .故选:A2.已知a b >,则()A.33a b +>+B.33a b ->-C.33a b> D.22a b >【答案】A【分析】由不等式的基本性质逐一判断即可.【详解】A 选项:a b >,则33a b +>+,故A 正确;B 选项:a b >,则a b -<-,所以33a b -<-,故B 错误;C 选项:当0a b >>或0a b >>时,11a b <,则33a b<,故C 错误;D 选项:当0a b >>时,22a b <,故D 错误.故选:A .3.已知3i z =-,则z =()A.3B.4C.D.10【答案】C【分析】根据复数的模的计算公式,即可求得答案.【详解】因为3i z =-,所以z ==故选:C.4.已知五个数2,,6,5,3a 的平均数为4,则=a ()A.3 B.4C.5D.6【答案】B【分析】根据平均数的计算公式列式计算,即可求得答案.【详解】由题意可得26534,201645a a ++++=∴=-=,故选:B5.命题“x ∀∈R ,210x x ++>”的否定为()A.x ∀∈R ,210x x ++≤B.x ∃∈R ,210x x ++≤C.x ∃∈R ,210x x ++<D.x ∃∈R ,210x x ++>【答案】B【分析】全称命题的否定是特称命题,任意改为存在,再把结论否定.【详解】由题意x ∀∈R ,210x x ++>,否定是x ∃∈R ,210x x ++≤故选:B .6.已知角α的终边经过点(2,1)P -,则sin α=A.5B.55-C.5D.【答案】B【分析】由题意利用任意角的三角函数的定义,求得sin α的值.【详解】解:角α的终边经过点()2,1P -,则sin α55==-,故选B .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.7.函数()f x =)A.(],1-∞ B.(),1-∞ C.[)1,+∞ D.()1,+∞【答案】D【分析】函数定义域满足101x ≥-,10x -≠,解得答案.【详解】函数()f x =101x ≥-,10x -≠,解得1x >.故选:D8.要得到函数2sin 3y x π⎛⎫=+⎪⎝⎭的图象.只需将函数2sin y x =的图象()A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位【答案】A【分析】根据三角函数的图像变换中的相位变换确定结果.【详解】根据相位变换的左加右减有:2sin y x =向左移动3π个单位得到2sin 3y x π⎛⎫=+⎪⎝⎭,故选A.【点睛】本题考查三角函数的图象变换中的相位变换,难度较易.相位变换时注意一个原则:左加右减.9.党的二十大报告指出:“全面提高人才自主培养质量,着力造就拔尖创新人才,聚天下英才而用之.”某区域教育部门为提高学生的创新能力,组织了200名学生参与研究性学习,每人仅参加1个课题组,参加各课题组的人数占比的扇形统计图如图所示,则参加数学类的人数比参加理化类的人数多()A.16B.30C.32D.62【答案】C【分析】由扇形图计算参加数学类和理化类的人数,即可求得答案.【详解】由扇形统计图可知参加数学类的人数为20031%62⨯=,参加理化类的人数为20015%30⨯=,故参加数学类的人数比参加理化类的人数多623032-=,故选:C10.从甲、乙、丙、丁4名同学中任选3名同学参加环保宣传志愿服务,则甲被选中的概率为()A.14B.13C.23D.34【答案】D【分析】列举出所有的基本事件,然后得到甲被选中的情况,利用古典概型求解即可【详解】从甲、乙、丙、丁4名同学中任选3名同学共有:(甲乙丙),(甲丙丁),(甲乙丁),(乙丙丁),4种情况,甲被选中共有3种情况,故对应的概率为34故选:D11.已知3321log ,log 2,log 32a b c ===,则()A.a b c <<B.b a c <<C.b<c<aD.c b a<<【答案】A【分析】利用对数函数的单调性得到a<0,0l b <<,1c >,得到答案.【详解】331log log 102a =<=;33310log log 2l g 13ob <=<<=;22log 321logc ==>,所以a b c <<.故选:A12.已知直线l 平面α,直线m ⊂平面α,则l 与m 不可能()A.平行B.相交C.异面D.垂直【答案】B【分析】若l 与m 相交,得到l 与α有交点,这与题设矛盾,得到答案.【详解】直线l 平面α,直线m ⊂平面α,则l 与m 可能平行,异面和垂直,若l 与m 相交,l m A = ,则∈A l ,A m ∈,直线m ⊂平面α,故A α∈,即l 与α有交点,这与题设矛盾.故选:B13.已知函数()f x x α=是偶函数,且在区间()0,∞+上单调递增,则下列实数可作为α值的是()A.-2B.12C.2D.3【答案】C【分析】()2f x x -=在()0,∞+上单调递减,A 错误,()12f x x =不是偶函数,B 错误,定义判断C 正确,()3f x x=函数为奇函数,D 错误,得到答案.【详解】对选项A :2α=-,()2f x x -=,函数在()0,∞+上单调递减,错误;对选项B :12α=,()12f x x =,函数定义域为[)0,∞+,不是偶函数,错误;对选项C :2α=,()2f x x =,函数定义域为R ,()()()2f x x f x -=-=,函数为偶函数,且在()0,∞+上单调递增,正确;对选项D :3α=,()3f x x =,函数定义域为R ,()()()3f x x f x -=-=-,函数为奇函数,错误;故选:C14.已知tan 3α=-,则sin 2cos sin cos αααα+=-()A.52B.14C.54-D.72-【答案】B【分析】根据三角函数同角的函数关系式,结合齐次式法求值,可得答案.【详解】由题意tan 3α=-,可知cos 0α≠,则sin 2cos tan 2321sin cos tan 1314αααααα++-+===----,故选:B15.对于两个非空实数集合A 和B ,我们把集合{},,x x a b a A b B =+∈∈∣记作A B *.若集合{}{}0,1,0,1A B ==-,则A B *中元素的个数为()A.1 B.2C.3D.4【答案】C【分析】计算{}0,1,1A B *=-,得到元素个数.【详解】{}{}0,1,0,1A B ==-,则{}0,1,1A B *=-,则A B *中元素的个数为3故选:C16.已知函数()f x 为奇函数,且当0x >时,()()3log 21f x x =+,则()1f -=()A.-1B.0C.1D.2【答案】A【分析】利用奇函数性质代入数据计算得到答案.【详解】因为函数()f x 为奇函数,且当0x >时,()()3log 21f x x =+,所以()()()311log 211f f -=-=-+=-.故选:A.17.甲、乙两人独立地破译某个密码,如果每人译出密码得概率均为0.3,则密码被破译的概率为()A.0.09B.0.42C.0.51D.0.6【答案】C【分析】甲乙都不能译出密码得概率为1049P =.,密码被破译的概率为11P -,得到答案.【详解】甲乙都不能译出密码得概率为()()110.310.30.49P =-⨯-=,故密码被破译的概率为110.51P -=.故选:C18.甲、乙、丙、丁4名学生参加数学竞赛,在成绩公布前,4人作出如下预测:甲说:乙第一;乙说:丁第一;丙说:我不是第一;丁说:乙第二.公布的成绩表明,4名学生的成绩互不相同,并且有且只有1名学生预测错误,则预测错误的学生是()A.甲B.乙C.丙D.丁【答案】A【分析】分别假设甲、乙、丙、丁的预测错误,看能否推出与题意相矛盾的情况,即可判断答案.【详解】若甲预测错误,则其余三人预测正确,即丁第一,乙第二,丙第三或第四,甲第四或第三,符合题意;若乙预测错误,则其余三人预测正确,则甲和丁的预测相矛盾,这样有两人预测错误,不符合题意;若丙预测错误,则其余三人预测正确,则甲和丁的预测相矛盾,这样有两人预测错误,不符合题意;若丁预测错误,则其余三人预测正确,则甲和乙的预测相矛盾,这样有两人预测错误,不符合题意;故选:A19.如图,正方体1111ABCD A B C D -中,直线1BD 与平面ABCD 所成角的正切值为()A.1B.2C.2D.33【答案】C【分析】连接BD ,1DD ⊥平面ABCD ,故1DBD ∠是1BD 与平面ABCD 所成角,计算得到答案.【详解】如图所示:连接BD ,因为1DD ⊥平面ABCD ,故1DBD ∠线1BD 与平面ABCD 所成角,设正方体棱长为1,则11,DD DB ==,112tan 2DD DBD DB ∴∠==.故选:C20.在一次实验中,某小组测得一组数据()(),1,2,,11i i x y i = ,并由实验数据得到下面的散点图.由此散点图,在区间[]2,3-上,下列四个函数模型(,a b 为待定系数)中,最能反映,x y 函数关系的是()A.y a bx=+ B.x y a b =+C.log b y a x=+ D.b y a x=+【答案】B 【分析】由函数模型的增长方式以及定义域可确定选项.【详解】由散点图的定义域可排除C 、D 选项,由散点图的增长方式可知函数模型为指数型.故选:B21.在ABC 中,已知3cos25A =-,则sin A =()A. B.45 C.55 D.255【答案】D【分析】确定sin 0A >,再利用二倍角公式计算得到答案.【详解】()0,πA ∈,sin 0A >,23cos212sin 5A A =-=-,解得25sin 5A =.故选:D22.已知ABC 是边长为2的等边三角形,,,D E F 分别是边,,AB BC CA 的中点,则()A.AB AC AE += B.AB AC BC -= C.12EF AB = D.12DE DF ⋅= 【答案】D 【分析】根据向量的运算法则得到ABC 错误,12cos 60DE DF DE DF =⋅⋅︒= ,D 正确,得到答案.【详解】对选项A :AB+AC =2AE ,错误;对选项B :AB AC CB -= ,错误;对选项C :12EF BA = ,错误;对选项D :1cos 6011212DE DF DE DF =︒=⋅⋅=⨯⨯ ,正确.故选:D23.在空间,到一个三角形的三个顶点距离相等的点的集合表示的图形是()A.一个点B.一条直线C.一个平面D.一个球面【答案】B 【分析】易得空间中到一个三角形的三个顶点距离相等的点组成的集合表示的图形为过该三角形的外心且与该三角形所在平面垂直的直线,如图,设点O 为ABC 的外心,且直线l ⊥平面ABC ,点P 为直线l 上任意一点,证明PA PB PC ==即可.【详解】空间中到一个三角形的三个顶点距离相等的点组成的集合表示的图形为过该三角形的外心且与该三角形所在平面垂直的直线,如图,设点O 为ABC 的外心,且直线l ⊥平面ABC ,点P 为直线l 上任意一点,则OA OB OC ==,且,,OA OB OC ⊂平面ABC ,所以直线l OA ⊥,直线l OB ⊥,直线l OC ⊥,当点P 与点O 重合时,PA PB PC ==,即直线l 的点到ABC 的三个顶点距离相等,当点P 与点O 不重合时,由勾股定理可得PA PB PC ==,即直线l 的点到ABC 的三个定点距离相等,综上直线l 的点到ABC 的三个顶点距离相等,反之到ABC 的三个顶点距离相等的点都在直线l 上,所以空间中到一个三角形的三个顶点距离相等的点组成的集合表示的图形为过该三角形的外心且与该三角形所在平面垂直的直线.故选:B24.已知向量()(()()2,0,,a b a kb ka b ==+⊥- ,则实数k =()A.1- B.0 C.1D.1-或1【答案】D 【分析】求出()(),a kb ka b +- 的坐标表示,根据向量垂直的坐标表示,可列方程,即可求得答案.【详解】由已知向量()(2,0,a b == ,可得()()(2),(21,a kb k ka b k +=+-=- ,由()()a kb ka b +⊥- 可得(2)(21,0k k +⋅-=,即(2)(21)30k k k +--=,解得1k =±,故选:D25.两游艇自某地同时出发,一艇以10km/h 的速度向正北方向行驶,另一艇以8km/h 的速度向北偏东θ(090θ︒<<︒)角的方向行驶.若经过30minkm ,则θ=()A.30︒B.45︒C.60︒D.75︒【答案】C【分析】如图,设点A 为出发点,点B 为10km/h 的船30min 后到达的点,点C 为8km/h 的船30min 后到达的点,再利用余弦定理即可得解.【详解】如图,设点A 为出发点,点B 为10km/h 的船30min 后到达的点,点C 为8km/h 的船30min 后到达的点,则5km,4km,AB AC BC BAC θ===∠=,则2222516211cos 22542AB AC BC AB AC θ+-+-===⋅⨯⨯,又因090θ︒<<︒,所以60θ=︒.故选:C.26.2023年2月6日,土耳其发生强烈地震,造成重大人员伤亡和财产损失,江苏救援队伍紧急赴当地开展救报行动.尽管日前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg 4.8 1.5E M =+.里氏8.0级地震所释放出来的能量是里氏6.0级地震所释放出来的能量的()A.6倍B.210倍C.310倍D.610倍【答案】C 【分析】代入数据计算16.8110E =,13.8210E =,计算得到答案.【详解】1lg 4.8 1.5816.8E =+⨯=,16.8110E =;2lg 4.8 1.5613.8E =+⨯=,13.8210E =,16.83113.82101010E E ==.故选:C27.若圆柱的上、下底面的圆周都在一个半径为2的球面上,则该圆柱侧面积的最大值为()A.4πB.8πC.12πD.16π【答案】B【分析】设底面圆半径为r ,则圆柱的高为,圆柱侧面积为4πS =案.【详解】设底面圆半径为r ,则圆柱的高为,圆柱侧面积为2242π4π4π×8π2r r S r +-=⋅==,当且仅当r =,即r =时等号成立.故选:B.28.若函数()221,3sin 1,3x x m x f x m x x ⎧--+<=⎨+≥⎩的值域为[)2,-+∞,则实数m 的可能值共有()A.1个B.2个C.3个D.4个【答案】B 【分析】根据分段函数的解析式,讨论m 的范围,确定每段的函数最小值,由题意列方程,求得m 的值,可得答案.【详解】当3x <时,()2221(1)f x x x m x m m =--+=--≥-,当3x ≥时,()sin 1f x m x =+,若0m =,()f x 的值域为[)0,∞+,不合题意;若0m >,则3x ≥时,[]()1,1f x m m ∈-++,min ()1f x m =-+,由于1m m -+>-,由题意可知需使2,2m m -=-∴=;若0m <,则3x ≥时,[]()1,1f x m m ∈+-+,min ()1f x m =+,0m ->,故需使12,3m m +=-∴=-,即实数m 的可能值共有2个,故选:B二、解答题:本大题共2小题,共计16分.解答应写出文字说明、证明过程或演算步骤.29.如图,三棱锥-P ABC 的底面ABC 和侧面PBC 都是边长为2的等边三角形,,M N 分别是,AB BC 的中点,PN AN ⊥.(1)证明:MN //平面PAC ;(2)求三棱锥-P ABC 的体积.【答案】(1)证明见解析(2)1【分析】(1)利用线面平行的判定定理即可求证;(2)先证明PN ^平面ABC ,即可求出三棱锥的体积【小问1详解】因为,M N 分别是,AB BC 的中点,所以//MN AC ,因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以MN //平面PAC ;【小问2详解】因为PBC 是等边三角形,N 是BC 的中点,所以PN BC ⊥,因为PN AN ⊥,,AN BC ⊂平面ABC ,,AN BC N ⋂=所以PN ^平面ABC ,因为底面ABC 和侧面PBC 都是边长为2的等边三角形,所以1132231334P ABC ABC V S PN -=⨯=⨯⨯⨯ 30.已知函数()sin f x x =.(1)求函数23πy f x ⎛⎫=+ ⎪⎝⎭的最小正周期;(2)若()()211[]28f x m f x +-≥,求实数m 的取值范围.【答案】(1)π(2)21,2⎡⎫-++∞⎪⎢⎪⎣⎭【分析】(1)确定πsin 23y x ⎛⎫=+ ⎪⎝⎭,再计算周期即可.(2)设1sin 2x t -=,31,22t ⎡⎤∈-⎢⎥⎣⎦,考虑0t >,0=t ,0t <三种情况,利用均值不等式计算最值得到答案.【小问1详解】3π23πsin 2y f x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,最小正周期2ππ2T ==.【小问2详解】()()211[]28f x m f x +-≥,即211sin sin 28x m x +-≥,设1sin 2x t -=,1sin 2x t =+,31,22t ⎡⎤∈-⎢⎥⎣⎦,当0t >时,即21128t mt ⎛⎫++≥ ⎪⎝⎭,整理得到118m t t ⎛⎫≥-+- ⎪⎝⎭,111182t t ⎛⎫-+-≤-=- ⎪⎝⎭,当且仅当18t t =,即24t =时等号成立,故212m ≥--;当0=t 时,不等式恒成立;当0t <时,即21128t mt ⎛⎫+-≥ ⎪⎝⎭,整理得到118m t t ⎛⎫≥--++ ⎪-⎝⎭,1211182t t ⎛⎫--++≤-=- ⎪-⎝⎭,当且仅当18t t -=-,即24t =-时等号成立,故212m ≥-+.综上所述:12m ≥-+,即1,2m ⎡⎫∈-++∞⎪⎢⎪⎣⎭。

2023年12月广西普通高中学业水平合格性考试数学含答案

2023年12月广西普通高中学业水平合格性考试数学含答案

2023年12月广西普通高中学业水平合格性考试数学(全卷满分100分,考试时间90分钟)一、单项选择题(本大题共26小题,每小题2分,共52分,在每小题所列的4个备选项中,只有1个符合题目要求,错选、多选或来选均不得分。

)1.图中阴影区域所表示的集合为A.{2}B.{1}C.{5,6}D.{1,2}2.若复数z满足z=(1+i)i(i是虚数单位),则在复平面内z对应的点在A.第二象限B.第一象限C.第四象限D.第三象限3.已知函数f(x)=1,则f(4)=xA.13B.14C.1D.124.某学校高一年级女生定制校服规格的数据如图所示,则这组数据的众数为A.160B.55C.170D.1654=5.√24A.13B.0C.2D.16.如图、以矩形ABCD的边AB所在直线为轴,其余三边旋转一周形成的面所围成的几何体是A.圆台B.圆锥C.球D.圆柱7.函数y=x(1≤x≤5)的最大值为A.3B.2C.5D.48.若实数a,b满足,则A.2a<2bB.2a>2bC.a-b<0D.a+1<b+1弧度化为角度是9.将π3A.60°B.45°C.90°D.75°10.若sinα=1,则sin(-α)=2A.-13B .-12C .1D .1511.一支羽毛球队有男运动员20人,女运动员15人,按性别进行分层.用分层随机抽样的方法从全体运动员中抽出一个容量为7的样本.如果样本按比例分配,那么女运动员应抽取的人数为A .3B .2C .6D .512.log 33=A .2B .3C .13D .113.如图,在正方形ABCD 中,AB ⃗⃗⃗⃗⃗ 与AD ⃗⃗⃗⃗⃗ 的夹角为A .90°B .30°C .180°D .120°14.已知圆柱的底面积为1,高为2,则该圆柱的体积为A .2B .1C .6D .4。

山东省2023年普通高中学业水平合格考试数学试题

山东省2023年普通高中学业水平合格考试数学试题

山东省2023年普通高中学业水平合格考试数学试题第一题:选择题1.下列数中,是整数的是(A) A. -1.5 B. 0.7 C. √2 D. π2.某校教室共有150个座位,已经有90个座位被学生占据,现在又来了80名新生,每名新生至少需要一个座位,那么至少需要增加多少个座位?(B) A. 20 B. 30 C.40 D. 50第二题:填空题3.已知两个锐角三角形的角度之和相等,那么两个三角形的角度(180°)答案:相等4.一组数相乘得1,其中只有两个数为整数,其他数均为负数,则这两个整数的乘积为(1)答案:1第三题:解答题5.某校学生家长会请了3个讲座嘉宾,要求在每个讲座厅内放置相同数量的座椅,并使得每个座椅尽可能多的坐满,已知每个讲座厅内可以放置的座椅数为30个。

请计算:–如果每个讲座厅内放置的座椅数为10个,那么最多可以坐多少位学生?–如果每个讲座厅内放置的座椅数为15个,那么最多可以坐多少位学生?解答:–如果每个讲座厅内放置的座椅数为10个,则最多可以坐的学生数为:3 * 10 = 30位学生。

–如果每个讲座厅内放置的座椅数为15个,则最多可以坐的学生数为:3 * 15 = 45位学生。

第四题:解答题6.某张纸张的长和宽的比是5:3,已知纸张的宽度为30cm,请计算纸张的长和面积。

解答:由题可知,纸张的宽度为30cm,长和宽的比为5:3,设纸张的长度为5x,则有: 5x / 30 = 5 / 3 3 * 5x = 5 * 30 15x = 150 x = 150 / 15 x = 10因此,纸张的长度为5 * 10 = 50cm,面积为30cm * 50cm = 1500cm²。

结束语以上是山东省2023年普通高中学业水平合格考试数学试题的内容,希望对您的学习有所帮助。

如果您还有其他问题,欢迎继续咨询。

2024年北京市第二次普通高中学业水平合格性考试数学试卷含答案

2024年北京市第二次普通高中学业水平合格性考试数学试卷含答案

2024年北京市第二次普通高中学业水平合格性考试(一)(答案在最后)第一部分(选择题共60分)一、选择题:共20小题,每小题3分,共60分,在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}2,1,0A =--,{}1,1,2=-B ,则A B =()A.{}1- B.{}2,2- C.{}2,1,0,2-- D.{}2,1,0,1,2--【答案】D 【解析】【分析】由集合并集的定义即可得到答案.【详解】{}1,2,0,1,2A B =-- 故选:D2.函数()()ln 6f x x =+的定义域为()A.()6,-+∞ B.()6,+∞ C.(),6-∞- D.(),6-∞【答案】A 【解析】【分析】由60x +>即可求解.【详解】由解析式可知,60x +>,及6x >-,所以定义域为()6,-+∞,故选:A3.在复平面内,复数23i z =-对应的点的坐标为()A.()2,3 B.()2,3- C.()2,3-- D.()2,3-【答案】D 【解析】【分析】复数i z a b =+对应的点为(),a b 即可求解.【详解】因为23i z =-,所以对应的点的坐标为()2,3-,故选:D4.如图,在三棱柱111ABC A B C -中,1AA ⊥底面,ABC D 是BC 的中点,则直线1DC ()A.与直线AC 相交B.与直线AC 平行C.与直线1AA 垂直D.与直线1AA 是异面直线【答案】D 【解析】【分析】由直三棱柱的特征逐项判断即可.【详解】易知三棱柱111ABC A B C -为直三棱柱,由图易判断1DC 与AC 异面,AB 错误;因为11AA CC ∥,1DC 与1CC 相交但不垂直,所以1DC 与直线1AA 不垂直,C 错误;由图可判断1DC 与直线1AA 是异面直线,D 正确.故选:D5.如图,四边形ABCD 是正方形,则AC AB -=()A.ABB.BCC.CDD.DA【答案】B 【解析】【分析】由三角形法则即可求解.【详解】AC AB -= BC.故选:B6.已知()f x 是定义在R 上的奇函数,则()()11f f +-=()A.1-B.0C.1D.2【答案】B 【解析】【分析】根据奇函数的性质求解即可.【详解】因为()f x 是定义在R 上的奇函数,所以()()11f f -=-,即()()011f f +-=.故选:B.7.在下列各数中,满足不等式()()120x x -+<的是()A.2-B.1-C.1D.2【答案】B 【解析】【分析】解二次不等式,判断数是否在解集内即可得到答案.【详解】解不等式()()120x x -+<得2<<1x -.故选:B.8.命题“2,10x x ∀∈+≥R ”的否定是()A.2,10x x ∃∈+≥RB.2,10x x ∀∈+>RC.2,10x x ∃∈+<RD.2,10x x ∀∈+<R 【答案】C 【解析】【分析】由全称命题的否定为特称命题即可求解.【详解】2,10x x ∀∈+≥R 的否定为:2,10x x ∃∈+<R .故选:C 9.22ππcos sin 66-=()A.12B.33C.22D.2【答案】A【分析】根据条件,利用二倍角公式及特殊角的三角函数值,即可求解.【详解】因为22πππ1cos sin cos 6632-==,故选:A.10.在下列各数中,与cos10︒相等的是()A.sin80︒B.cos80︒C.sin170︒D.cos170︒【答案】A 【解析】【分析】由半角和全角诱导公式逐项化简即可;【详解】对于A ,()sin80sin 9010cos10°=°-°=°,故A 正确;对于B ,()cos80cos 9010sin10°=°-°=°,故B 错误;对于C ,()sin170sin 18010sin10︒=︒-︒=︒,故C 错误;对于D ,()0c cos 1810co os170s10°=°-=-°,故D 错误;故选:A.11.在下列函数中,在区间()0,∞+上单调递减的是()A.()3xf x = B.()2log f x x = C.()2f x x= D.()13log f xx =【答案】D 【解析】【分析】由指数函数、对数函数以及幂函数的单调性逐项判断即可得.【详解】对A :()3xf x =在R 上单调递增,故A 错误;对B :()2log f x x =在()0,∞+上单调递增,故B 错误;对C :()2f x x =在(),0-∞上单调递减,在()0,∞+上单调递增,故C 错误;对D :()13log f x x =在()0,∞+上单调递减,故D 正确.故选:D.12.已知x ∈R ,则“4x >”是1>”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】【分析】判断两个命题的关系,当p q ⇒时,p 是q 充分条件;当p q ⇒/时,p 是q 不充分条件;当q p ⇒时,p 是q 必要条件;当q p ⇒/时,p 是q 不必要条件.【详解】当4x >21>=>,∴“4x >”是1>”充分条件;1>时,1x >,此时3x =满足要求,而34<,故4x >不一定成立,∴“4x >”是1>”不必要条件.故选:A.13.在平面直角坐标系xOy 中,以O 为顶点,Ox 为始边,终边在y 轴上的角的集合为()A.{}2π,k k αα=∈Z B.{}π,a k k α=∈Z C.ππ,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z D.π,2k k αα⎧⎫=∈⎨⎬⎩⎭Z 【答案】C 【解析】【分析】结合角的定义即可得解.【详解】当终边在y 轴非负半轴上时,有π2π,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z ,当终边在y 轴非正半轴上时,有3π2π,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z ,故终边在y 轴上的角的集合为ππ,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z .故选:C.14.在ABC V 中,1,2,60a b C ==∠=︒,则c =()A.B.C.D.3【答案】A 【解析】【分析】由余弦定理即可求解.【详解】由22212cos 1421232c a b ab C =+-=+-⨯⨯⨯=,所以c =.故选:A15.下图是甲、乙两地10月1日至7日每天最低气温走势图.记这7天甲地每天最低气温的平均数为1x ,标准差为1s ;记这7天乙地每天最低气温的平均数为2x ,标准差为2s .根据上述信息,下列结论中正确的是()A.1212,x x s s <<B.1212,x x s s <> C.1212,x x s s >< D.1212,x x s s >>【答案】B 【解析】【分析】分析统计图中对应信息得出对应量的结果即可.【详解】甲地1至7日最低气温均低于乙地,则甲地最低气温平均值也会小于乙地,即12x x <;标准差时反应一组数据的波动强弱的量,由图可知甲地最低气温明显波动性较大,则标准差值要大,即12s s >.故选:B16.函数()π2sin 2f x x ⎛⎫=+ ⎪⎝⎭的一个单调递增区间是()A.[]π,0- B.[]π,π- C.[]0,π D.[]0,2π【答案】A 【解析】【分析】利用诱导公式化简()f x ,再结合cos x 的图象性质可得结果.【详解】()π2sin 2cos 2f x x x ⎛⎫=+= ⎪⎝⎭,由cos x 的图象可知()f x 在[]π,0-,[]π,2π上单调递增,[]0,π上单调递减,故A 正确,BCD 均错误.故选:A.17.已知,a b c d >>,则下面不等式一定成立的是()A.a d b c +>+B.a d b c +<+C.a d b c ->-D.a d b c-<-【答案】C 【解析】【分析】由不等式的性质及特例逐项判断即可.【详解】对于ABD:取4,3,2,1a b c d ====,满足,a b c d >>,显然a d b c +>+和a d b c +<+,a dbc -<-都不成立;对于C :由c d >可得d c ->-,故a d b c ->-成立.故选:C18.2023年杭州亚运会的三个吉祥物分别是“琮琮”“莲莲”“宸宸”.“琮琮”代表世界遗产良渚古城遗址;“莲莲”代表世界遗产杭州西湖;“宸宸”代表世界遗产京杭大运河.某中学学生会宣传部有4名学生,其中高一、高二年级各2名.从这4名学生中随机抽取2名负责吉祥物的宣传工作,则这2名学生来自不同年级的概率为()A.19 B.29C.13D.23【答案】D 【解析】【分析】算出基本事件的总数、随机事件中的基本事件的个数后可求概率.【详解】设A 为“2名学生来自不同年级”,则总的基本事件的个数为24C 6=,A 中基本事件的个数为224⨯=,故()4263P A ==,故选:D.19.在区间[],5a 上,()2x f x =的最大值是其最小值的4倍,则实数a =()A.1 B.2 C.3D.4【答案】C 【解析】【分析】根据条件,利用()2xf x =的单调性,得到3242a =⨯,即可求解.【详解】()2xf x =区间[],5a 上单调递增,又()2af a =,()55232f ==,所以3242a =⨯,即3282a ==,解得3a =,故选:C.20.小明同学在通用技术课上,制作了一个半正多面体模型.他先将正方体交于同一顶点的三条棱的中点分别记为,,A B C ,如图1所示,然后截去以ABC V 为底面的正三棱锥,截后几何体如图2所示,按照这种方法共截去八个正三棱锥后得到如图3所示的半正多面体模型.若原正方体的棱长为6,则此半正多面体模型的体积为()A.108B.162C.180D.189【答案】C 【解析】【分析】正方体的体积减掉8个以ABC V 为底面的正三棱锥的体积即得此半正多面体模型的体积.【详解】设此半正多面体模型的体积为V ,则3311868318032V V V =-=-⨯⨯⨯=正方体正三棱锥.故选:C.第二部分(非选择题共40分)二、填空题:共4小题,每小题3分,共12分.21.66log 4log 9+=_________.【答案】2【解析】【分析】由同底数的对数计算公式化简,即可得出结果.【详解】66662log 4log log 949log 36⨯+===.故答案为:2.22.已知()22,0,2,0,x x f x x x +<⎧=⎨-+≥⎩则()1f -=_________;()f x 的最大值为_________.【答案】①.1②.2【解析】【分析】第一空直接代入即可,第二空分别计算两段的最大值,比较即可求解.【详解】由解析式可知:()11f -=,当0x <,易知()2f x <,当0x ≥,()222f x x =-+≤,当0x =时,取最大值2,所以()f x 的最大值为2,故答案为:1,223.已知向量,a b在正方形网格中的位置如图所示.若网格中每个小正方形的边长均为1,则a =_________;⋅=a b _________.【答案】①.2②.2-【解析】【分析】向量的模长即向量起点至终点的距离,由图可知结果;向量的数量积等于向量的模乘以另一个向量在这个向量上的投影,由图可知结果.【详解】由图可知2a =,cos ,a b a b a b ⋅=⋅ ,其中cos ,b a b 为b 在a上的投影,由图可知投影长度为1,且方向与a相反,故()cos ,212a b a b a b ⋅=⋅=⨯-=-.故答案为:2;2-.24.某公司,,A B C 三个部门共有100名员工,为调查他们的体育锻炼情况,通过随机抽样获得了20名员工一周的锻炼时间,数据如下表(单位:小时):A 部门 4.5567.59111213B 部门 3.54 5.579.510.511C 部门566.578.5从,,A B C 三个部门抽出的员工中,各随机抽取一人,分别记为甲、乙、丙、假设所有员工的锻炼时间相互独立,给出下列三个结论:①甲该周的锻炼时间超过8小时的概率为12;②甲、乙该周的锻炼时间一样长的概率为156;③乙该周的锻炼时间一定比丙该周的锻炼时间长.其中所有正确结论的序号是_________.【答案】①②【解析】【分析】本意通过古典概型即可判断出①②,B 部门员工运动时间存在比C 部门员工运动时间多的,也存在少的,所以无法的结论③,从而得出答案.【详解】①A 部门共有8名员工,运动时间超过8小时的有4名员工,∴由古典概型可得甲该周的锻炼时间超过8小时的概率为12,故①正确;②A 、B 两部门各有员工8和7名,随机各抽取一名员工共有8756⨯=种情况,其中运动时间相同的情况只有1种,∴甲、乙该周的锻炼时间一样长的概率为156,故②正确;③当抽取出来的乙运动时间为4小时,抽取出来的丙运动时间为7小时,此时不满足乙该周的锻炼时间一定比丙该周的锻炼时间长,故③不正确.故答案为:①②三、解答题:共4小题,共28分.解答应写出文字说明,演算步聚或证明过程.25.已知函数()22f x x x b =-+的部分图象如图所示.(1)求()1f 的值;(2)求函数()()3g x f x =-的零点.【答案】(1)()11f =-(2)1-,3【解析】【分析】(1)根据图象可知()00f =,即可求解函数解析式,再代入求值;(2)根据零点的定义,解方程,即可求解.【小问1详解】因为()()22,00f x x x b f =-+=,所以0b =.所以()22f x x x =-.所以()11f =-.【小问2详解】因为()22f x x x =-,所以()()()()232331g x f x x x x x =-=--=-+.令()0g x =,得121,3x x =-=.所以()g x 的零点为1-,3.26.已知电流i (单位:A )关于时间t (单位:s )的函数解析式为π5sin(100π),[0,)3i t t =+∈+∞.(1)当2t =时,求电流i ;(2)当t m =时,电流i 取得最大值,写出m 的一个值.【答案】(1)A 2;(2)1600(答案不唯一,1,N 60050k m k =+∈).【解析】【分析】(1)把2t =代入,结合诱导公式及特殊角的三角函数值计算即得.(2)利用正弦函数的性质求出m 的表达式即可得解.【小问1详解】函数π5sin(100π[0,)3i t t =+∈+∞,当2t =时,ππ5sin(200π)5sin A 332i =+==.【小问2详解】当t m =时,电流i 取得最大值,则ππ100π2π,N 32m k k +=+∈,解得1,N 60050k m k =+∈,所以m 的一个值为1600.27.如图,在三棱锥P ABC -中,,,,AC BC AB PA D E =⊥分别是,AB PB 的中点.(1)求证://PA 平面CDE ;(2)求证:AB CE ^.请先写出第(1)问的解答过程,然后阅读下面第(2)问的解答过程.证明:(2)因为,AC BC D =是AB 的中点,所以①_________.因为AB PA ⊥,由(1)知,//PA DE ,所以②_________所以③_________.所以AB CE ^.在第(2)问的解答过程中,设置了①~③三个空格,如下的表格中为每个空格给出了两个选项,其中只有一个符合逻辑推理.请选出符合逻辑推理的选项,并填写在横线上(只需填写“A”或“B”).空格序号选项①(A )AB CD ⊥(B )AB CD =②(A )AB DE ⊥(B )//PA 平面CDE ③(A )AB ⊥平面PBC (B )AB ⊥平面CDE【答案】(1)证明见解析(2)答案见解析【解析】【分析】(1)由中位线得到线线平行,然后得到线面平行,即得证;(2)等腰三角形三线合一得到线线垂直,由(1)的结论和条件得到另一组垂线,从的证明面面垂直.【小问1详解】在PAB 中,因为D ,E 分别是AB ,PB 的中点,所以//PA DE ,因为PA ⊄平面CDE ,DE ⊂平面CDE ,所以//PA 平面CDE .【小问2详解】①A ,②A ,③B.28.已知()f x 是定义在R 上的函数.如果对任意的12,x x ,当12x x ≠时,都有()()212101f x f x x x -<<-,则称()f x 缓慢递增.如果对任意的12,x x ,当12x x ≠时,都有()()212110f x f x x x --<<-,则称()f x 缓慢递减.(1)已知函数()f x kx b =+缓慢递增,写出一组,k b 的值;(2)若()f x 缓慢递增且()12f =,直接写出()2024f 的取值范围;(3)设()()g x f x x =-,再从条件①、条件②中选择一个作为条件,从结论①、结论②中选择一个作为结论,构成一个真命题,并说明理由.条件①:()f x 缓慢递增;条件②:()f x 单调递增.结论①:()g x 缓慢递减;结论②:()g x 单调递减.【答案】(1)1,02k b ==(2)()2,2025(3)条件①和结论①为真命题,条件①和结论②为真命题,答案见解析【解析】【分析】(1)根据缓慢递增函数定义,代入可求得01,k b <<为任意值,即可求解;(2)根据缓慢递增函数定义,代入可求得()2024f 的取值范围;(3)先确定条件条件①:()f x 缓慢递增;根据缓慢递增函数定义可确定结论①:()g x 缓慢递减,根据条件条件①:()f x 缓慢递增,根据缓慢递增函数定义可确定结论①:()g x 单调递减.若()f x 单调递增不妨设()3f x x =,代入()()212120f x f x x x -=>-,可得两结论都不满足.【小问1详解】已知()f x kx b =+是定义在R 上的缓慢递增,如果对任意的12,x x ,当12x x ≠时,都有()()2121212101f x f x kx b kx b x x x x ---+<=<--,则可得01,k b <<为任意值,所以可得1,02k b ==;【小问2详解】若()f x 缓慢递增且()12f =,根据定义可得()()120241020241f f -<-<,将已知代入化简可得()520242202f <<,所以()2024f 的取值范围为()2,2025【小问3详解】若选择条件①和结论①,构成的真命题为如果()f x 缓慢递增,那么()g x 缓慢递减.理由如下:因为()f x 在R 上缓慢递增,所以对任意的12,x x ,当12x x ≠时,都有()()212101f x f x x x -<<-.因为()()g x f x x =-,所以()()()()()()212211212121311g x g x f x x f x x f x f x x x x x x x ---+-==----.所以()()212110g x g x x x --<<-.所以()g x 在R 上缓慢递减.若选择条件①和结论②,构成的真命题为如果()f x 缓慢递增,那么()g x 单调递减.理由如下:因为()f x 在R 上缓慢递增,所以对任意的12,x x ,当12x x ≠时,都有()()212101f x f x x x -<<-.因为()()g x f x x =-,所以()()()()()()212211212121211g x g x f x x f x x f x f x x x x x x x ---+-==----.所以()()21210g x g x x x -<-.所以()g x 在R 上单调递减.而条件②:()f x 为单调递增函数,不妨设()3f x x =,则()()2g x f x x x =-=,根据题意代入()()212121212221g x g x x x x x x x --==>--,不满足新的定义,所以()f x 为单调递增函数不能推出()g x 缓慢递减;也不能推出()g x 单调递减.【点睛】思路点睛:关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言;(3)将已知条件代入新定义的要素中;(4)结合数学知识进行解答.。

2023年7月浙江高中学业水平考试数学试卷试题真题(含答案详解)

2023年7月浙江高中学业水平考试数学试卷试题真题(含答案详解)

2023年7月浙江省普通高中学业水平考试数学本试题卷分选择题和非选择题两部分,共4页,满分100分,考试时间80分钟.考生注意:1. 答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2. 答题时,请按照答题纸上“注意事项〃的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.3. 非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,作图时可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.选择题部分(共52分)一、单项选择题(本大题共12小题,每小题3分,共36分.每小题列出的四个备选项中,只有一个是符合题目要求的,不选、多选、错选均不得分)1.己知集合,= {-1,0,1,2}, 3 = {x|x 〉0},则下列结论不正确的是()B. 0^A(^B A.leAC\BC.D.2.函数*的定义域是()A.-00,——2B.C.D.1■00,—2#3—,+ oo{、 x > 0} - A\JB3.复数z = i (2 + i )在复平面内对应的点位于)A.第一象限B.第二象限C.第三象限D.第四象限4.已知平面向量U = (L —1), 5 = (2,4),若则实数4 =2A. B. -2 C. D.-115.已知sin[ 0 + -^= cos 。

,贝\\ tan20 =)AMC.2^3丁D.2^36.上、下底面圆的半径分别为尸、2r,高为3尸的圆台的体积为A.771丫3B.217ir3C.(5+27!)兀尹D.(5+7^)*7.从集合{123,4,5}中任取两个数,则这两个数的和不小于5的概率是()3749A.—B.—C.—D.—5105108.大西洋畦鱼每年都要逆游而上,游回产地产卵.研究畦鱼的科学家发现鲤鱼的游速v(单位:m/s)可以表示为v=klog3盐,其中。

表示畦鱼的耗氧量的单位数.若一条畦鱼游速为2m/s时耗氧量的单位数为8100,则游速为lm/s的畦鱼耗氧量是静止状态下畦鱼耗氧量的()A.3倍B.6倍C.9倍D.12倍9.不等式(x-e)(e^-l)<0(其中e为自然对数的底数)的解集是()A.{x|0<x<1}B.(x0<x<e}C.{x|xv0或x>l}D.{x|xvO或x>e}10.已知。

2024年6月福建省普通高中学业水平合格性考试数学含答案

2024年6月福建省普通高中学业水平合格性考试数学含答案

2024年6月福建省普通高中学业水平合格性考试数学试题(考试时间:90分钟;满分:100分)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

第I卷1至3页,第II卷4至6页。

注意事项:1.答题前,考生务必将自己的考生号、姓名填写在试题卷、答题卡上。

考生要认真核对答题卡上粘贴的条形码的考生号、姓名与考生本人考生号、姓名是否一致。

2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

第II卷用黑色字迹签字笔在答题卡上作答。

在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷和答题卡一并收回。

第Ⅰ卷(选择题57分)一、选择题:本题共19小题,每小题3分,共57分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合A={1,2,3,4},B={0,1,2},则A∩B=A.{1,2}B.{0,1}C.{3,4}D.{2,3}2.已知函数f(x)=lgx,则f(10)=A.1B.0C.10D.23.sin(2π+α)=A.cosαB.sinαC.-cosαD.-sinα4.已知函数y=f(x)在[-1,2]上的图像如图,则函数单调递增区间为A.[0,1]B.[-1,0]C.[1,2]D.[-1,2]5.圆柱的底面半径和高都是1,则该圆柱的体积为A.π3B.π4C.πD.π26.某高中开设7门课,3门是田径,某学生从7门中选一门,选到田径的概率为A.13B.17C.47D.377.函数f(x)=√x−1的定义域为A.{x|x≥-1}B.{x|x≥1}C.{x|x≤-1}D.{x|x≤1}8.已知平面α、β,α//β是α与β无公共点的A.必要不充分条件B.充分不必要条件C.既不充分也不必要条件D.充分必要条件,则cosα为9.已知α是第一象限角,sinα=45A.34B.35C.43D.4510.不等式(x-1)(x-2)<0的解集为A.{x|-2<x<-1}B.{x|1<x<2}C.{x|x≤-1}D.{x|x>2或x<1}11.在正方体ABCD-A1B1C1D1中,异面直线AB,B1D1所成角的大小为A.45∘B.30∘C.90∘D.60∘12.已知向量a=(1,2),b=(m,-1),若a⊥b,则m的值为A.-12B.-2C.2D.12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高2010级2011—2012学年度第一学期模块考试
数学试题
第Ⅰ卷(选择题 共45分)
一、选择题(本大题共15个小题,每小题3分,共45分。

在每小题给出的四个选项中,只有一项符合题目要求,把答案涂在答题卡上)
1、设集合A={}
032|2<--x x x ,则=A C R ( ) A 、}31|{<<-x x B 、}13|{<<-x x C 、}3,1|{≥-≤x x x 或 D 、}1,3|{≥-≤x x x 或
2、如图所示是一个立体图形的三视图,此立体图形的名称为( )
A、圆锥 B、圆柱 C、长方体 D、圆台
3、经过两点)3,2(),12,4(-+B m A 的直线的斜率为1-=k ,则m 的值为( )
A 、1-
B 、2-
C 、3-
D 、4-
4、下列函数在区间),0[+∞上为增函数的是( )
A 、12-=x y
B 、x
y 1= C 、1-=x y D 、x x y 22-= 5、在不等式062<-+y x 表示的平面区域内的点是( )
A 、(0,1)
B 、(5,0)
C 、(0,7)
D 、(2,3)
6、50件产品的编号为1到50,现在从中抽取5件检验,用系统抽样确定所抽取的号码可能是( )
A 、5,10,15,20,25
B 、5,15,20,35,40
C 、5,11,17,23,29
D 、10,20,30,40,50
7、某校1000名学生的高中学业水平考试成绩的频率分布直方图如图所示,则不低于60分的人数是( )
A 、800
B 、900
C 、950
D 、990
8、函数]2,0[,sin 1π∈+=x x y 的简图是( )
A 、
B 、
C 、
D 、
9、已知直线b a ,,平面α,且α⊥a ,下列条件下,能推出b a //的是( )
A 、α//b
B 、α⊂b
C 、α⊥b
D 、α与b 相交
10、把红、蓝、黑、白4张牌随即分给甲、乙、丙、丁四个人,每人分得一张,事件“甲分的红牌”与事件“乙分得红牌”是( )
A 、对立事件
B 、互斥但不对立事件
C 、不可能事件
D 、以上都不对
11、已知五个数据3,5,7,4,6,则该样本方差为:( )
A 、1
B 、2
C 、3
D 、4
12、在等比数列}{n a 中,若51,a a 是方程06232
=--x x 的两根,则42a a ⋅=________ A 、3
2 B 、2- C 、
3 D 、6- 13、下图是一个算法的程序框图,输出的结果是( )
A 、2
B 、6
C 、24
D 、120
14、点P 在直线012=+-y x 上,O 为坐标原点,则OP 的最小值是( )
A 、 33
B 、 5
1 C 、5 D 、55 15、已知函数b a bx ax x f +++=3)(2是定义域为]2,1[a a -的偶函数,则b a +的值为
( )
A 、1
B 、
21 C 、 3
1 D 、1-
第Ⅱ卷(非选择题 共55分)
二、填空题(本大题共5个小题,每小题4分,共20分。

把答案填在答题纸上)
16、已知)2,(),1,2(-==λb a ,若b a ⊥,则λ的值为_______
17、以点)1,2(-为圆心,以3为半径的圆的方程是______________
18、若03
12log 5=-x ,则=x ____________ 19、函数322--=x x y ,]3,1[-∈x 的最小值为___________
20、在ABC ∆中,若)())((c b b c a c a +=-+,则A ∠等于_________
三、解答题(本大题共5个小题,共35分。

解答应写出文字说明、证明过程或演算步骤)
21、(本小题6分)求经过直线0132:1=--y x l 和02:2=++y x l 的交点,且与直线013=-+y x 平行的直线方程
22、(本小题6分)已知53sin -=α,α为第四象限角,求)3
sin(πα-的值 23、(本小题7分)已知等差数列}a {n 的前5项和为25,第8项等于15,求数列}a {n 的通项公式
24、(本小题8分)在做投掷2颗质地均匀的骰子的试验中,x 表示第一颗骰子朝上的点数,y 表示第二颗骰子朝上的点数,(x ,y )表示P 点的坐标
(1)求点P 在直线x y =上的概率
(2)求点P 在直线1+=x y 上的概率
25、(本小题8分)已知函数x x f 1)(=
(1)用定义证明)(x f 是奇函数
(2)判断函数)(x f 在),1[+∞的单调性,并用定义证明。

(3)求函数)(x f 在),1[+∞的最大值。

相关文档
最新文档