新高考数学突破专题七解析几何过关检测
2024年新高考新结构数学7个大题逐一击破圆锥曲线含答案
圆锥曲线目录【题型一】轨迹【题型二】新结构卷中19题“定义”型轨迹【题型三】直线所过定点不在坐标轴上【题型四】面积比值范围型【题型五】非常规型四边形面积最值型【题型六】“三定”型:圆过定点【题型七】“三定”型:斜率和定【题型八】“三定”型:斜率积定【题型九】圆锥曲线切线型【题型十】“韦达定理”不能直接用【题型十一】“非韦达”型:点带入型【题型一】轨迹求轨迹方程的常见方法有:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标x 0、y 0,然后代入点P 的坐标x 0,y 0 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.2024年新高考新结构数学7个大题逐一击破圆锥曲线(学生版)1(2024·重庆·模拟预测)已知点F-1,0和直线m:x=2,点P到m的距离d=4-2PF.(1)求点P的轨迹方程;(2)不经过圆点O的直线l与点P的轨迹交于A,B两点. 设直线OA,OB的斜率分别为k1,k2,记k1k2 =t,是否存在t值使得△OAB的面积为定值,若存在,求出t的值;若不存在,说明理由.2(2024·辽宁·一模)已知平面上一动点P到定点F12,0的距离比到定直线x=-2023的距离小40452,记动点P的轨迹为曲线C.(1)求C的方程;(2)点A2,1,M,N为C上的两个动点,若M,N,B恰好为平行四边形MANB的其中三个顶点,且该平行四边形对角线的交点在第一、三象限的角平分线上,记平行四边形MANB的面积为S,求证:S≤86 9.3(2024·山东淄博·一模)在平面直角坐标系xOy 中,点.F 5,0 ,点P x ,y 是平面内的动点.若以PF 为直径的圆与圆D :x 2+y 2=1相切,记点P 的轨迹为曲线C .(1)求C 的方程;(2)设点A (1,0),M (0,t ),N (0,4-t )(t ≠2),直线AM ,AN 分别与曲线C 交于点S ,T (S ,T 异于A ),过点A 作AH ⊥ST ,垂足为H ,求|OH |的最大值.【题型二】新结构卷中19题“定义”型轨迹1(2024·新疆乌鲁木齐·二模)在平面直角坐标系xOy 中,重新定义两点A x 1,y 1 ,B x 2,y 2 之间的“距离”为AB =x 2-x 1 +y 2-y 1 ,我们把到两定点F 1-c ,0 ,F 2c ,0 c >0 的“距离”之和为常数2a a >c 的点的轨迹叫“椭圆”.(1)求“椭圆”的方程;(2)根据“椭圆”的方程,研究“椭圆”的范围、对称性,并说明理由;(3)设c =1,a =2,作出“椭圆”的图形,设此“椭圆”的外接椭圆为C ,C 的左顶点为A ,过F 2作直线交C 于M ,N 两点,△AMN 的外心为Q ,求证:直线OQ 与MN 的斜率之积为定值.2(2024·湖南·二模)直线族是指具有某种共同性质的直线的全体,例如x=ty+1表示过点(1,0)的直线,直线的包络曲线定义为:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上的每一点处的切线都是该直线族中的某条直线.(1)若圆C1:x2+y2=1是直线族mx+ny=1(m,n∈R)的包络曲线,求m,n满足的关系式;(2)若点P x0,y0不在直线族:Ω:(2a-4)x+4y+(a-2)2=0(a∈R)的任意一条直线上,求y0的取值范围和直线族Ω的包络曲线E;(3)在(2)的条件下,过曲线E上A,B两点作曲线E的切线l1,l2,其交点为P.已知点C0,1,若A,B,C三点不共线,探究∠PCA=∠PCB是否成立?请说明理由.3(2024·全国·模拟预测)已知复平面上的点Z对应的复数z满足z2-z2-9=7,设点Z的运动轨迹为W.点 O 对应的数是0.(1)证明W是一个双曲线并求其离心率e;(2)设W的右焦点为 F1 ,其长半轴长为L,点Z到直线x=Le的距离为d(点Z在W的右支上),证明:ZF1=ed;(3)设W的两条渐近线分别为 l1,l2 ,过Z分别作 l1,l2 的平行线l3,l4分别交l2,l1于点 P,Q ,则平行四边形OPZQ的面积是否是定值?若是,求该定值;若不是,说明理由.【题型三】直线所过定点不在坐标轴上存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.1已知点M 是抛物线C :x 2=2py p >0 的对称轴与准线的交点,过M 作抛物线的一条切线,切点为P ,且满足PM =22.(1)求抛物线C 的方程;(2)过A -1,1 作斜率为2的直线与抛物线C 相交于点B ,点T 0,t t >0 ,直线AT 与BT 分别交抛物线C 于点E ,F ,设直线EF 的斜率为k ,是否存在常数λ,使得t =λk ?若存在,求出λ值;若不存在,请说明理由.2已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为233,点P 2,3 到其左右焦点F 1,F 2的距离的差为2.(1)求双曲线C 的方程;(2)在直线x +2y +t =0上存在一点Q ,过Q 作两条相互垂直的直线均与双曲线C 相切,求t 的取值范围.3已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上任意一点Q (异于顶点)与双曲线两顶点连线的斜率之积为19,E 在双曲线C 上,F 为双曲线C 的右焦点,|EF |的最小值为10-3.(1)求双曲线C 的标准方程;(2)过椭圆x 2m 2+y 2n2=1(m >n >0)上任意一点P (P 不在C 的渐近线上)分别作平行于双曲线两条渐近线的直线,交两渐近线于M ,N 两点,且|PM |2+|PN |2=5,是否存在m ,n 使得椭圆的离心率为223?若存在,求出椭圆的方程,若不存在,说明理由.【题型四】面积比值范围型圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.1(2022·全国·高三专题练习)F c,0是椭圆C:x2a2+y2b2=1a>b>0的右焦点,其中c∈N*.点A、B分别为椭圆E的左、右顶点,圆F过点B与坐标原点O,P是椭圆上异于A、B的动点,且△PBF的周长小于8.(1)求C的标准方程;(2)连接BP与圆F交于点Q,若OQ与AP交于点M,求S△OPQS△MBQ的取值范围.2(2023下·福建福州·高三校考)如图,已知圆C:x2a2+y2b2=1(a>b>0)的左顶点A(-2,0),过右焦点F的直线l与椭圆C相交于M,N两点,当直线l⊥x轴时,|MN|=3.(1)求椭圆C的方程;(2)记△AMF,△ANF的面积分别为S1,S2,求S1S2的取值范围.3(2022·湖北黄冈·蕲春县第一高级中学校考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,左、右焦点分别为F 1,F 2,圆A 2:(x -2)2+y 2=r 2(r >0),椭圆C 与圆A 2交于点D ,且k DA2⋅k DA 1=-34.(1)求椭圆方程.(2)若过椭圆右焦点F 2的直线l 与椭圆C 交于P ,Q 两点,与圆A 2交于M ,N 两点,且S △A 1PQS △A 2MN=3,求r 的取值范围.【题型五】非常规型四边形面积最值型求非常规型四边形的面积最大值,首先要选择合适的面积公式,对于非常规四边形,如果使用的面积公式为S DMEN=12x N-x My1-y2,为此计算y1-y2,x N-x M代入转化为k的函数求最大值.1(2023·全国·高三专题练习)已知圆O:x2+y2=4,O为坐标原点,点K在圆O上运动,L为过点K的圆的切线,以L为准线的拋物线恒过点F1-3,0,F23,0,抛物线的焦点为S,记焦点S的轨迹为S.(1)求S的方程;(2)过动点P的两条直线l1,l2均与曲线S相切,切点分别为A,B,且l1,l2的斜率之积为-1,求四边形PAOB面积的取值范围.2(2023·全国·高三专题练习)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点,以F1F2为直径的圆和椭圆C在第一象限的交点为G,若三角形GF1F2的面积为1,其内切圆的半径为2-3.(1)求椭圆C的方程;(2)已知A是椭圆C的上顶点,过点P-2,1的直线与椭圆C交于不同的两点D,E,点D在第二象限,直线AD、AE分别与x轴交于M,N,求四边形DMEN面积的最大值.3(2023·全国·高三专题练习)如图.已知圆M :(x -2)2+y 2=81,圆N :(x +2)2+y 2=1.动圆S 与这两个圆均内切.(1)求圆心S 的轨迹C 的方程;(2)若P 2,3 、Q 2,-3 是曲线C 上的两点,A 、B 是曲线C 上位于直线PQ 两侧的动点.若直线AB 的斜率为12,求四边形APBQ 面积的最大值.【题型六】“三定”型:圆过定点圆过定点思维:1.可以根据特殊性,计算出定点,然后证明2.利用以“某线段为直径”,转化为向量垂直计算2.利用对称性,可以猜想出定点,并证明。
高考数学解析几何专题练习及答案解析版
高考数学解析几何专题练习及答案解析版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高考数学解析几何专题练习解析版82页1.一个顶点的坐标()2,0,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 141322=+y x2.已知双曲线的方程为22221(0,0)x y a b a b-=>>,过左焦点F 1的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3B .32+C . 31+D . 323.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( )A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( )A . 54B .45C .254D .4259. 圆06422=+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、1310.椭圆12222=+by x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B. 13222=+y x C.12222=+y x D.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB ∆是直角三角形,则此双曲线的离心率e 的值为 ( )A .32 B .2 C .2 D .312.已知)0(12222>>=+b a b y a x ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021≠k k ,则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21=PF PF ,则△PF 1F 2的面积为( ) A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =,且0PM AM ⋅=则||PM 的最小值是( )A .2B .3C .2D .316.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为 A 、 B 、、 C 、D 、17.已知椭圆2222:1(0)x y C a b a b +=>>F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B (C (D )218.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( ) (A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx 与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[6π,3π) B .(6π,2π) C .(3π,2π) D .[6π,2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23B .32 C .32- D . 23-22.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP ⋅的取值范围为( )A .)1,1 B .C .(D .)+∞23.若b a ,满足12=+b a ,则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61 B .⎪⎭⎫ ⎝⎛-61,21 C .⎪⎭⎫ ⎝⎛61,21 .D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4 B. 3 C. 2 D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1,1)、B(0,-1)两点的直线方程是( ) A.B.C. D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( ) A .1 B .2 C.3 D.428.已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径10r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径10r = 29.F 1、F 2是双曲线C :x 2-22y b=1的两个焦点,P 是C 上一点,且△F 1PF 2是等腰直角三角形,则双曲线C 的离心率为 A .12 B .22C .32D .3230.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( )A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x31.如图,轴截面为边长为34等边三角形的圆锥,过底面圆周上任一点作一平面α,且α与底面所成二面角为6π,已知α与圆锥侧面交线的曲线为椭圆,则此椭圆的离心率为( )(A )43 (B )23 (C )33 (D ) 22 32.已知直线(2)(0)y k x k =+>与抛物线C :28y x =相交于A.B 两点,F 为C的焦点,若2FA FB=,则k =( )A. 13B. 2C. 23D. 2233.已知椭圆23)0(1:2222的离心率为>>=+b a by a x C ,过右焦点F 且斜率为)0(>k k 的直线与B A C ,相交于两点,若3=,则=k ( ) A. 1 B .2 C . 3 D .234.已知抛物线2:2(0)C y px p =>的准线为l ,过(1,0)M 且斜率为3的直线与l 相交于点A ,与C 的一个交点为B .若AM MB =,则P 的值为( )(A )1 (B )2 (C )3 (D )435.若动圆与圆(x -2)2+y 2=1外切,又与直线x +1=0相切,则动圆圆心的轨迹方程是 ( )A.y 2=8xB.y 2=-8xC.y 2=4xD.y 2=-4x36.若R k ∈,则方程12322=+++k y k x 表示焦点在x 轴上的双曲线的充要条件是( )A .23-<<-kB .3-<kC .3-<k 或2->kD .2->k37.点(-1,2)关于直线y =x -1的对称点的坐标是 (A )(3,2) (B )(-3,-2) (C )(-3,2)(D )(3,-2)38.设圆422=+y x 的一条切线与x 轴、y 轴分别交于点B A 、, 则AB 的最小值为( )A 、4B 、24C 、6D 、839.圆220x y ax by +++=与直线220(0)ax by a b +=+≠的位置关系是 ( )A .直线与圆相交但不过圆心.B . 相切.C .直线与圆相交且过圆心.D . 相离40.椭圆的长轴为A1A2,B 为短轴的一个端点,若∠A1BA2=120°,则椭圆的离心率为A .36B .21C .33D .2341.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为( )A .(x +1)2+y 2=1B .x 2+y 2=1C .x 2+(y +1)2=1D .x 2+(y -1)2=142.已知直线l 经过坐标原点,且与圆22430x y x +-+=相切,切点在第四象限,则直线l 的方程为( )A.3y x = B .3y x = C .33y x =D .3y x =43.当曲线214y x =+-与直线240kx y k --+=有两个相异的交点时,实数k 的取值范围是 ( ) A .5(0,)12 B .13(,]34 C .53(,]124 D .5(,)12+∞44.已知F 1、F 2分别是双曲线22221x y a b-=的左、右焦点,P 为双曲线右支上的任意一点且212||8||PF a PF =,则双曲线离心率的取值范围是( )A. (1,2]B. [2 +∞)C. (1,3]D. [3,+∞)45.已知P 是圆22(3)(3)1x y -+-=上或圆内的任意一点,O 为坐标原点,1(,0)2OA =,则OA OP ⋅的最小值为( )A .12B .32C .1D .246.已知0AB >且0BC <,则直线0Ax By C ++=一定不经过( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 47.[2012·课标全国卷]等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( ) A.2 B.22 C.4 D.8 48.双曲线具有光学性质:“从双曲线的一个焦点发出的光线经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点。
专题七 解析几何专题复习
专题七、解析几何1、解析几何(椭圆、双曲线、抛物线)1、椭圆18y 16x 22=+的离心率为( )A.31 B. 21C. 33D. 222、设F 1,F 2是椭圆E :22221x y a b +=(a >b >0)的左、右焦点,P 为直线x =32a上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A. 21B. 32C. 43D. 543、中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点P (4,-2),则它的率心率为( )A.6B.5 C.26 D. 25 4、已知直线l 过抛物线C 的焦点,且与抛物线C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上的一点,则△ABP 的面积为( ) A.18 B.24 C.36 D.485、等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=34,则C 的实轴长为( ) A.2 B. 22 C.4 D.86、已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A.|FP 1|+|FP 2|=|FP 3|B.|FP 1|2+|FP 2|2=|FP 3|2C.2|FP 2|+|FP 1|=|FP 3|D.|FP 2|2+|FP 1|²|FP 3|7、双曲线221102x y -=的焦距为( ) A . 23 B. 24 C.33 D. 34 8、已知一正方形的两顶点为双曲线C 的两焦点,若另外两个顶点在双曲线上,则双曲线C 的离心率e =( ) A.13+ B.12+ C.215+ D. 2122+9、已知F 1、F 2是椭圆191622=+y x 的两焦点,过点后的直线交椭圆于A ,B 两点,若|AB|=5,则|AF 1|+|BF 1|=( )A.16B.11C.10D.910、设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,P A ⊥l ,点A 为垂足,如果直线AF 的斜率为-3,那么|PF |=A. 34B. 8C. 38D.1611、已知双曲线1366422=+y x 的焦点为F 1,F 2,点P 在双曲线上,且 ∠F 1PF 2=60°,则△F 1PF 2的面积为( )A.18B. 324C. 336D.3212、已知双曲线C :12222=+by a x (a >0,b >0)半焦距为c ,若直线y =2x 与双曲线的一个交点A 横坐标为c ,则双曲线的离心率为( ) A.222+ B. 2122+ C. 13+ D.12+13、双曲线112422=-y x 的焦点到其渐近线的距离是( ) A. 32 B.2 C. 3 D.114、已知椭圆12222=+by a x (a >b >0),左焦点F (-C.0),右顶点B (a.0)与短轴的一个端点C 的连线构成的三角形恰好为直角三角形,则该椭圆的离心率是( ) A.221+- B. 231+- C. 21D.215、已知抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点的距离为5,双曲线 1222=-y ax (a >0)的顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a =( )A. 251B. 91C. 51D. 3116、设F 1, F 2分别为双曲线12222=-by a x (a >0,b >0)的左,右焦点,若双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A.3x ±4y =0B.3x ±5y =0C.4x ±3y =0D.5x ±4y =0 17、过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若|AB|=8,则P=( )A.8B.6C.4D.2。
高中数学解析几何综合提高测试题(附答案)-精选文档
高中数学解析几何综合提高测试题(附答案)高二数学解析几何综合提高【本讲主要内容】解析几何综合提高直角坐标系(平面及空间),直线和圆的方程,简单的线性归划,直线与圆的位置关系【知识掌握】【知识点精析】1. 两点间距离公式:①数轴上:②平面上:③空间:平面上线段AB的中点坐标公式2. 直线的倾斜角、斜率直线的倾斜角;直线的斜率:直线的斜率是平面直角坐标系中表示直线位置的重要特征数值,在判断两条直线的位置关系和确定它们的夹角等问题中起着关键作用。
3. 直线的方程:①点斜式:②斜截式:③两点式:④截距式:⑤一般式:4. 两条直线的位置关系:若l1:y=k1x+b1,l2:y=k2x +b2则:l1与l2的夹角公式:(为l1与l2的夹角)点P(x0,y0)到直线l:的距离公式:5. 简单的线性归划:在平面直角坐标系中,二元一次不等式表示在直线的某一侧的平面区域。
简单的线性归划讨论在二元一次不等式等线性约束条件下,求线性目标函数ax+by的最值问题,一些实际问题可以借助这种方法解决。
6. 曲线和方程:把曲线看作适合某种条件P的点M的集合P={M|P(M)},建立直角坐标系后,点集P中任一元素M都有一个有序实数对(x,y)和它对应,(x,y)是某个二元方程f(x,y)=0的解,反之以二元方程f(x,y)=0的解为坐标,都有一点M与它对应,且M是点集P中的一个元素。
这种对应关系就是曲线与方程的关系。
7. 圆的方程:标准方程:,其中圆心是(a,b),半径为r一般方程:参数方程:,半径为r,为参数8. 直线与圆的位置关系:相切:d=r 相离:d 相交:dr其中:d为圆心到直线的距离,r为圆的半径【解题方法指导】例1. 如图,圆内有一点,AB为过点且倾斜角为的弦。
(1)当时,求AB的长。
(2)当弦AB被点平分时,写出AB的直线方程。
解:(1)当时,直线AB的斜率为直线AB的方程为:即:①把①代入,得即解此方程得所以,(2)当弦AB被点平分时,,直线O 的斜率为-2,所以直线AB的斜率为,根据点斜式,直线AB的方程为即点评:(1)中求|AB|时,由直线的方程和圆的方程联立消元得一元二次方程。
2024年高考数学分类汇编七解析几何
2024年高考数学分类汇编七解析几何一、单选题1.(2024·全国)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( )A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)2.(2024·全国)已知双曲线2222:1(0,0)y x C a b a b −=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( ) A.4B .3C .2D 3.(2024·全国)已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++−=交于,A B 两点,则AB 的最小值为( )A .2B .3C .4D .4.(2024·北京)求圆22260x y x y +−+=的圆心到20x y −+=的距离( )A .B .2C .D 5.(2024·天津)双曲线22221()00a x y a bb >−=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x −=B .22184x y −=C .22128x y −=D .22148x y −=二、多选题6.(2024·全国)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2−,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A .2a =− B.点在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+ 7.(2024·全国)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +−=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( ) A .l 与A 相切B .当P ,A ,B三点共线时,||PQ =C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个 三、填空题8.(2024·全国)设双曲线2222:1(0,0)x y C a b a b−=>>的左右焦点分别为12F F 、,过2F 作平行于y轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为 . 9.(2024·北京)已知双曲线2214x y −=,则过()3,0且和双曲线只有一个交点的直线的斜率为 .10.(2024·北京)已知抛物线216y x =,则焦点坐标为 .11.(2024·天津)22(1)25−+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为 .12.(2024·上海)已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 . 四、解答题13.(2024·全国)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.14.(2024·全国)已知双曲线()22:0C x y m m −=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P −作斜率为k 的直线与C 的左支交于点1n Q −,令n P 为1n Q −关于y 轴的对称点,记n P 的坐标为(),n n x y . (1)若12k =,求22,x y ; (2)证明:数列{}n n x y −是公比为11kk+−的等比数列; (3)设n S 为12n n n P P P ++的面积,证明:对任意的正整数n ,1n n S S +=.15.(2024·全国)设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.16.(2024·北京)已知椭圆方程C :()222210x y a b a b+=>>,焦点和短轴端点构成边长为2的正方形,过()0,t (t >的直线l 与椭圆交于A ,B ,()0,1C ,连接AC 交椭圆于D . (1)求椭圆方程和离心率; (2)若直线BD 的斜率为0,求t .17.(2024·天津)已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S =△ (1)求椭圆方程.(2)过点30,2⎛⎫− ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.18.(2024·上海)已知双曲线222Γ:1,(0),y x b b−=>左右顶点分别为12,A A ,过点()2,0M −的直线l 交双曲线Γ于,P Q 两点. (1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.答案详解1.A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解. 【解析】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y , 又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 2.C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【解析】由题意,()10,4F −、()20,4F 、()6,4P −,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =−=−=,则28224c e a ===. 故选:C. 3.C【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解. 【解析】因为,,a b c 成等差数列,所以2b a c =+,2c b a =−,代入直线方程0ax by c ++=得 20ax by b a ++−=,即()()120a x b y −++=,令1020x y −=⎧⎨+=⎩得12x y =⎧⎨=−⎩,故直线恒过()1,2−,设()1,2P −,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ==24AB AP ==.故选:C 4.C【分析】求出圆心坐标,再利用点到直线距离公式即可.【解析】由题意得22260x y x y +−+=,即()()221310x y −++=,则其圆心坐标为()1,3−,则圆心到直线20x y −+==,故选:C. 5.C【分析】可利用12PF F △三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【解析】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m =,211122,PF F PF F θθ∠=∠=,由21tan 2PF k θ==,求得1sin θ=,因为1290F PF ∠=︒,所以121PF PF k k ⋅=−,求得112PF k =−,即21tan 2θ=,2sin θ=121212::sin :sin :sin90PF PF F F θθ=︒=则由2PF m =得1122,2PF m F F c ==, 由1212112822PF F SPF PF m m =⋅=⋅=得m =,则21122PF PF F F c c =====由双曲线第一定义可得:122PF PF a −==a b === 所以双曲线的方程为22128x y −=.故选:C 6.ABD【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【解析】对于A :设曲线上的动点(),P x y ,则2x >−4x a −=,04a −=,解得2a =−,故A 正确.对于B24x +=,而2x >−,()24x +=.当0x y ==()2844=−=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =−−+,取32x =,则2641494y =−,而64164525624510494494494−−−=−=>⨯,故此时21y >, 故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =−−≤++,故0004422y x x −≤≤++,故D 正确. 故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理. 7.ABD【分析】A 选项,抛物线准线为=1x −,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =−是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF 的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【解析】A 选项,抛物线24y x =的准线为=1x −,A 的圆心(0,4)到直线=1x −的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长PQ ==B 选项正确;C 选项,当2PB =时,1P x =,此时244PP y x ==,故(1,2)P 或(1,2)P −, 当(1,2)P 时,(0,4),(1,2)A B −,42201PA k −==−−,4220(1)AB k −==−−, 不满足1PA AB k k =−;当(1,2)P −时,(0,4),(1,2)A B −,4(2)601PA k −−==−−,4(2)60(1)AB k −−==−−, 不满足1PA AB k k =−;于是PA AB ⊥不成立,C 选项错误; D 选项,方法一:利用抛物线定义转化 根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题, (0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k −=, 于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y −+=, 2164301360∆=−⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确. 方法二:(设点直接求解)设2,4t P t ⎛⎫⎪⎝⎭,由PB l ⊥可得()1,B t −,又(0,4)A ,又PA PB =,214t =+,整理得216300t t −+=,2164301360∆=−⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确. 故选:ABD8.32【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【解析】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x y a b−=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225bAF a ==,又122AF AF a −=,得1222513AF AF a a =+=+=,解得4a =,代入25ba=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:329.12±【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【解析】联立3x =与2214x y −=,解得y =设所求直线斜率为k ,则过点()3,0且斜率为k 的直线方程为()3y k x =−, 联立()22143x y y k x ⎧−=⎪⎨⎪=−⎩,化简并整理得:()222214243640k x k x k −+−−=,由题意得2140k −=或()()()2222Δ244364140k k k =++−=,解得12k =±或无解,即12k =±,经检验,符合题意. 故答案为:12±.10.()4,0【分析】形如()22,0y px p =≠的抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,由此即可得解.【解析】由题意抛物线的标准方程为216y x =,所以其焦点坐标为()4,0. 故答案为:()4,0. 11.45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【解析】圆22(1)25−+=x y 的圆心为()1,0F ,故12p=即2p =, 由()2221254x y y x⎧−+=⎪⎨=⎪⎩可得22240x x +−=,故4x =或6x =−(舍),故()4,4A ±,故直线()4:13AF y x =±−即4340x y −−=或4340x y +−=, 故原点到直线AF 的距离为4455d ==, 故答案为:4512.【分析】根据抛物线的定义知8P x =,将其再代入抛物线方程即可.【解析】由24y x =知抛物线的准线方程为1x =−,设点()00,P x y ,由题意得019x +=,解得08x =,代入抛物线方程24y x =,得2032y =,解得0y =±,则点P 到x轴的距离为故答案为: 13.(1)12(2)直线l 的方程为3260x y −−=或20x y −=.【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x −=−,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可. 【解析】(1)由题意得2239941b a b=⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.(2)法一:3312032APk −==−−,则直线AP 的方程为132y x =−+,即260x y +−=,AP =,由(1)知22:1129x y C +=, 设点B 到直线AP 的距离为d,则d ==则将直线AP沿着与AP 此时该平行线与椭圆的交点即为点B , 设该平行线的方程为:20x y C ++=,=6C =或18C =−, 当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=−⎩或332x y =−⎧⎪⎨=−⎪⎩,即()0,3B −或33,2⎛⎫−− ⎪⎝⎭,当()0,3B −时,此时32l k =,直线l 的方程为332y x =−,即3260x y −−=,当33,2B ⎛⎫−− ⎪⎝⎭时,此时12l k =,直线l 的方程为12y x =,即20x y −=,当18C =−时,联立2211292180x y x y ⎧+=⎪⎨⎪+−=⎩得22271170y y −+=,227421172070∆=−⨯⨯=−<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y −−=或20x y −=. 法二:同法一得到直线AP 的方程为260x y +−=, 点B到直线AP 的距离d =设()00,B x y,则22001129x y =⎪+=⎪⎩,解得00332x y =−⎧⎪⎨=−⎪⎩或0003x y =⎧⎨=−⎩, 即()0,3B −或33,2⎛⎫−− ⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +−=,点B 到直线AP的距离d =设(),3sin B θθ,其中[)0,2θ∈π=联立22cos sin 1θθ+=,解得cos 1sin 2θθ⎧=⎪⎪⎨⎪=−⎪⎩或cos 0sin 1θθ=⎧⎨=−⎩, 即()0,3B −或33,2⎛⎫−− ⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B −,16392PABS=⨯⨯=,符合题意,此时32l k =,直线l 的方程为332y x =−,即3260x y −−=, 当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠−,解得0x =或22443kx k −=+,0k ≠,12k ≠−,令22443k x k −=+,则2212943k y k −+=+,则22224129,4343k k B k k ⎛⎫−−+ ⎪++⎝⎭ 同法一得到直线AP 的方程为260x y +−=, 点B 到直线AP的距离d ==32k =,此时33,2B ⎛⎫−− ⎪⎝⎭,则得到此时12l k =,直线l 的方程为12y x =,即20x y −=,综上直线l 的方程为3260x y −−=或20x y −=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=−= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠不满足条件.当l 的斜率存在时,设3:(3)2PB y k x −=−,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=−+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +−−+−−=, ()()()2222Δ24124433636270k kk k k =−−+−−>,且AP k k ≠,即12k ≠−,21222122241243,36362743k k x x k PB k k x x k ⎧−+=⎪⎪+⎨−−⎪=⎪+⎩, A 到直线PB距离192PAB d S ===, 12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =−,即3260x y −−=或20x y −=. 法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=−= ⎪⎝⎭到PB 距离3d =,此时1933922ABPS=⨯⨯=≠不满足条件. 当直线l 斜率存在时,设3:(3)2l y k x =−+, 设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫−+ ⎪⎝⎭,联立223323436y kx k x y ⎧=−+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+−−+−−= ⎪⎝⎭, ()2223348336362702k x k k x k k ⎛⎫+−−+−−= ⎪⎝⎭, 其中()()22223Δ8343436362702k k k k k ⎛⎫=−−+−−> ⎪⎝⎭,且12k ≠−,则2222363627121293,3434B B k k k k x x k k −−−−==++, 则211312183922234P B k S AQ x x k k +=−=+=+,解的12k =或32k =,经代入判别式验证均满足题意. 则直线l 为12y x =或332y x =−,即3260x y −−=或20x y −=.14.(1)23x =,20y = (2)证明见解析 (3)证明见解析【分析】(1)直接根据题目中的构造方式计算出2P 的坐标即可; (2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明n S 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明n S 的取值为与n 无关的定值即可. 【解析】(1)由已知有22549m =−=,故C 的方程为229x y −=. 当12k =时,过()15,4P 且斜率为12的直线为32x y +=,与229x y −=联立得到22392x x +⎛⎫−= ⎪⎝⎭.解得3x =−或5x =,所以该直线与C 的不同于1P 的交点为()13,0Q −,该点显然在C 的左支上.故()23,0P ,从而23x =,20y =.(2)由于过(),n n n P x y 且斜率为k 的直线为()n n y k x x y =−+,与229x y −=联立,得到方程()()229n n x k x x y −−+=.展开即得()()()2221290n n n n k x k y kx x y kx −−−−−−=,由于(),n n n P x y 已经是直线()n n y k x x y =−+和229x y −=的公共点,故方程必有一根n x x =. 从而根据韦达定理,另一根()2222211n n n n nn k y kx ky x k x x x k k −−−=−=−−,相应的()2221n n nn n y k y kx y k x x y k +−=−+=−. 所以该直线与C 的不同于n P 的交点为222222,11n n n n n n n ky x k x y k y kx Q k k ⎛⎫−−+− ⎪−−⎝⎭,而注意到n Q 的横坐标亦可通过韦达定理表示为()()2291n n ny kx k x−−−−,故n Q 一定在C 的左支上.所以2212222,11n n n n n nn x k x ky y k y kx P k k +⎛⎫+−+− ⎪−−⎝⎭. 这就得到21221n n nn x k x ky x k ++−=−,21221n n n n y k y kx y k ++−=−. 所以2211222211n n n n n nn n x k x ky y k y kx x y k k +++−+−−=−−− ()()222222*********n n n n n n n nn n x k x kx y k y ky k k kx y x y k k k k+++++++=−=−=−−−−−. 再由22119x y −=,就知道110x y −≠,所以数列{}n n x y −是公比为11k k+−的等比数列.(3)方法一:先证明一个结论:对平面上三个点,,U V W ,若(),UV a b =,(),UW c d =,则12UVWSad bc =−.(若,,U V W 在同一条直线上,约定0UVWS =)证明:211sin ,1cos ,22UVWS UV UW UV UW UV UW UV UW =⋅=⋅−()222211122UV UW UV UW UV UW UV UW UV UW ⎛⎫⋅⎪=⋅−=⋅−⋅⎪⋅⎭==12ad bc ==−. 证毕,回到原题.由于上一小问已经得到21221n n nn x k x ky x k++−=−,21221n n n n y k y kx y k ++−=−,故()()22211222221211111n n n n n n n n n nn n x k x ky y k y kx k k kx y x y x y k k k k+++−+−+−−+=+=+=+−−−+. 再由22119x y −=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk−+的等比数列. 所以对任意的正整数m ,都有n n m n n m x y y x ++−()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=−+−−−−− ()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=−+−+− ()()()()11112121mmn n n n n n n n k k x y x y x y x y k k −+⎛⎫⎛⎫=−+−+− ⎪ ⎪+−⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫−+⎛⎫⎛⎫=−− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫−+⎛⎫⎛⎫=− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭. 而又有()()()111,n n n n n n P P x x y y +++=−−−−,()122121,n n n n n n P P x x y y ++++++=−−, 故利用前面已经证明的结论即得 ()()()()1212112112n n n n P P P n n n n n n n n S S x x y y y y x x ++++++++==−−−+−− ()()()()12112112n n n n n n n n x x y y y y x x ++++++=−−−−− ()()()1212112212n n n n n n n n n n n n x y y x x y y x x y y x ++++++++=−+−−− 2219119119112211211211k k k k k k k k k k k k ⎛⎫−+−+−+⎛⎫⎛⎫⎛⎫⎛⎫=−+−−− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+−+−+−⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 这就表明n S 的取值是与n 无关的定值,所以1n n S S +=.方法二:由于上一小问已经得到21221n n n n x k x ky x k++−=−,21221n n n n y k y kx y k ++−=−, 故()()22211222221211111n n n n n n n n n nn n x k x ky y k y kx k k kx y x y x y k k k k+++−+−+−−+=+=+=+−−−+. 再由22119x y −=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk−+的等比数列. 所以对任意的正整数m ,都有n n m n n m x y y x ++−()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=−+−−−−− ()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=−+−+− ()()()()11112121mmn n n n n n n n k k x y x y x y x y k k −+⎛⎫⎛⎫=−+−+− ⎪ ⎪+−⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫−+⎛⎫⎛⎫=−− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫−+⎛⎫⎛⎫=− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭. 这就得到232311911211n n n n n n n n k k x y y x x y y x k k ++++++−+⎛⎫−=−=− ⎪+−⎝⎭,以及22131322911211n n n n n n n n k k x y y x x y y x k k ++++++⎛⎫−+⎛⎫⎛⎫−=−=− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭. 两式相减,即得()()()()232313131122n n n n n n n n n n n n n n n n x y y x x y y x x y y x x y y x ++++++++++++−−−=−−−. 移项得到232131232131n n n n n n n n n n n n n n n n x y y x x y y x y x x y y x x y ++++++++++++−−+=−−+. 故()()()()321213n n n n n n n n y y x x y y x x ++++++−−=−−.而()333,n n n n n n P P x x y y +++=−−,()122121,n n n n n n P P x x y y ++++++=−−. 所以3n n P P +和12n n P P ++平行,这就得到12123n n n n n n P P P P P P SS+++++=,即1n n S S +=.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.15.(1)22143x y +=(2)证明见解析【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程. (2)设:(4)AB y k x =−,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y −,结合韦达定理化简前者可得10Q y y −=,故可证AQ y ⊥轴.【解析】(1)设(),0F c ,由题设有1c =且232b a =,故2132a a −=,故2a =,故b ,故椭圆方程为22143x y +=.(2)直线AB 的斜率必定存在,设:(4)AB y k x =−,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=−⎩可得()2222343264120k x k x k +−+−=, 故()()422Δ102443464120k k k =−+−>,故1122k −<<,又22121222326412,3434k k x x x x k k −+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=− ⎪⎝⎭−,故22223325252Q y y y x x −−==−−, 所以()1222112225332525Q y x y y y y y x x ⨯−+−=+=−−()()()12224253425k x x k x x −⨯−+−=−()222212122264123225825834342525k k x x x x k k k kx x −⨯−⨯+−++++==−− 2222212824160243234025k k k k k x −−+++==−,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.16.(1)221,42x y e +==(2)2t =【分析】(1)由题意得b c ==a ,由此即可得解;(2)说明直线AB 斜率存在,设(:,AB y kx t t =+>,()()1122,,,A x y B x y ,联立椭圆方程,由韦达定理有2121222424,1221kt t x x x x k k −−+==++,而()121112:y y AD y x x y x x −=−++,令0x =,即可得解.【解析】(1)由题意b c ===2a ==, 所以椭圆方程为22142x y +=,离心率为e =(2)显然直线AB 斜率存在,否则,B D 重合,直线BD 斜率不存在与题意不符, 同样直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设(:,AB y kx t t =+>,()()1122,,,A x y B x y ,联立22142x y y kx t ⎧+=⎪⎨⎪=+⎩,化简并整理得()222124240k x ktx t +++−=, 由题意()()()222222Δ1682128420k t k t k t =−+−=+−>,即,k t 应满足22420k t +−>,所以2121222424,1221kt t x x x x k k −−+==++, 若直线BD 斜率为0,由椭圆的对称性可设()22,D x y −, 所以()121112:y y AD y x x y x x −=−++,在直线AD 方程中令0x =, 得()()()()2122112121221121212422214C k t x kx t x kx t kx x t x x x y x y y t x x x x x x kt t−++++++====+==+++−,所以2t =,此时k 应满足222424200k t k k ⎧+−=−>⎨≠⎩,即k应满足k <或k >,综上所述,2t =满足题意,此时k <k >17.(1)221129x y +=(2)存在()30,32T t t ⎛⎫−≤≤⎪⎝⎭,使得0TP TQ ⋅≤恒成立. 【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx =−,()()()1122,,,,0,P x y Q x y T t , 联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ ⋅,再根据0TP TQ ⋅≤可求t 的范围.【解析】(1)因为椭圆的离心率为12e =,故2a c =,b ,其中c 为半焦距, 所以()()2,0,0,,0,A c B C ⎛− ⎝⎭,故122ABC S c =⨯=△故ca =,3b =,故椭圆方程为:221129x y +=.(2)若过点30,2⎛⎫− ⎪⎝⎭的动直线的斜率存在,则可设该直线方程为:32y kx =−,设()()()1122,,,,0,P x y Q x y T t ,由22343632x y y kx ⎧+=⎪⎨=−⎪⎩可得()223412270k x kx +−−=, 故()222Δ144108343245760k k k =++=+>且1212221227,,3434k x x x x k k +==−++ 而()()1122,,,TP x y t TQ x y t =−=−,故()()121212123322TP TQ x x y t y t x x kx t kx t ⎛⎫⎛⎫⋅=+−−=+−−−− ⎪⎪⎝⎭⎝⎭()()22121233122kx x k t x x t ⎛⎫⎛⎫=+−++++ ⎪ ⎪⎝⎭⎝⎭()22222731231342342k k k t t k k ⎛⎫⎛⎫⎛⎫=+⨯−−+⨯++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭()2222222327271812332234k k k t t t k k ⎛⎫−−−−++++ ⎪⎝⎭=+ ()22223321245327234t t k t k ⎛⎫⎡⎤+−−++− ⎪⎣⎦⎝⎭=+, 因为0TP TQ ⋅≤恒成立,故()223212450332702t t t ⎧+−−≤⎪⎨⎛⎫+−≤⎪ ⎪⎝⎭⎩,解得332t −≤≤.若过点30,2⎛⎫− ⎪⎝⎭的动直线的斜率不存在,则()()0,3,0,3P Q −或()()0,3,0,3P Q −,此时需33t −≤≤,两者结合可得332t −≤≤.综上,存在()30,32T t t ⎛⎫−≤≤⎪⎝⎭,使得0TP TQ ⋅≤恒成立. 【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设. 18.(1)b(2)(2,P(3)(303,3⎛ ⎝⎦【分析】(1)根据离心率公式计算即可; (2)分三角形三边分别为底讨论即可;(3)设直线:2l x my =−,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【解析】(1)由题意得21c cea ===,则2c =,b == (2)当b =时,双曲线22Γ:183y x −=,其中()2,0M −,()21,0A , 因为2MA P △为等腰三角形,则①当以2MA 为底时,显然点P 在直线12x =−上,这与点P 在第一象限矛盾,故舍去;②当以2A P 为底时,23MP MA ==,设(),P x y ,则 2222318(2)9y x x y ⎧−=⎪⎨⎪++=⎩,联立解得2311x y ⎧=−⎪⎪⎨⎪=⎪⎩或2311x y ⎧=−⎪⎪⎨⎪=⎪⎩10x y =⎧⎨=⎩, 因为点P 在第一象限,显然以上均不合题意,舍去; (或者由双曲线性质知2MP MA >,矛盾,舍去);③当以MP 为底时,223A P MA ==,设()00,P x y ,其中000,0x y >>,则有()2200220019183x y y x ⎧−+=⎪⎪⎨−=⎪⎪⎩,解得002x y =⎧⎪⎨=⎪⎩(2,P .综上所述:(2,P .(3)由题知()()121,0,1,0A A −,当直线l 的斜率为0时,此时120A R A P ⋅=,不合题意,则0l k ≠, 则设直线:2l x my =−,设点()()1122,,,P x y Q x y ,根据OQ 延长线交双曲线Γ于点R , 根据双曲线对称性知()22,R x y −−,联立有22221x my y x b =−⎧⎪⇒⎨−=⎪⎩()222221430b m y b my b −−+=, 显然二次项系数2210b m −≠, 其中()()22222422Δ44134120mb b m b b m b =−−−=+>,2122241b my y b m +=−①,2122231b y y b m =−②, ()()1222111,,1,A R x y A P x y =−+−=−,则()()122112111A R A P x x y y ⋅=−+−−=,因为()()1122,,,P x y Q x y 在直线l 上, 则112x my =−,222x my =−,即()()2112331my my y y −−−−=,即()()2121213100y y m y y m +−++=,将①②代入有()2222222341310011b b mm m b m b m +⋅−⋅+=−−,即()()2222231341010b m m b m b m +−⋅+−=化简得2223100b m b +−=,所以 22103m b=−, 代入到 2210b m −≠, 得 221031b b =−≠, 所以 23b ≠, 且221030m b =−≥,解得2103b ≤,又因为0b >,则21003b <≤,综上知,()2100,33,3b ⎛⎤∈ ⎥⎝⎦,(303,3b ⎛∴∈ ⎝⎦.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设:2l x my =−,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.。
2023高考数学解析几何应用练习题及答案
2023高考数学解析几何应用练习题及答案解析几何是高中数学中重要的一部分,也是高考数学中难度较大的题型之一。
2023年高考数学中解析几何应用的题目考察内容涵盖了直线、平面、坐标系等知识点。
下面是几道2023高考数学解析几何应用练习题及答案,希望对广大考生的备考有所帮助。
题目一:已知直线AB过点(2,3)和点(5,7),直线CD过点(-1,4)且垂直于直线AB。
求直线CD的方程。
解析:首先,我们计算直线AB的斜率。
根据斜率的定义,斜率k等于两个点的纵坐标之差与横坐标之差的比值:k = (7 - 3) / (5 - 2) = 4/3由于直线CD垂直于直线AB,所以两条直线的斜率乘积为-1。
即:k * k' = -1代入已知的斜率,得到:4/3 * k' = -1解方程可得斜率k' = -3/4。
由点斜式方程的定义可知,y - y1 = k' * ( x - x1 )将已知点(-1,4)代入,得到直线CD的方程为:y - 4 = -3/4 * ( x + 1 )简化方程,得到 CD 的方程为:3x + 4y - 16 = 0所以答案为:3x + 4y - 16 = 0。
题目二:已知平面P1过点A(1,2,3),并且与向量n1(2,1,4)垂直,平面P2过点B(-1,3,2),并且与向量n2(3,1,-1)垂直。
求平面P1和平面P2的交线方程。
解析:由于平面P1过点A且与向量n1垂直,所以平面P1的方程为:n1 · (X - A) = 0其中,·表示点乘运算。
代入已知的点A(1,2,3)和向量n1(2,1,4),得到:2(x - 1) + 1(y - 2) + 4(z - 3) = 0简化方程,得到平面P1的方程:2x + y + 4z - 18 = 0同理,平面P2的方程为:3x + y - z + 2 = 0要求平面P1和平面P2的交线方程,即联立平面P1和平面P2的方程,解得交点即为交线方程:联立方程可得:2x + y + 4z - 18 = 03x + y - z + 2 = 0解这个线性方程组,可得交点为(x, y, z) = (2, 6, 3)。
新数学二轮总复习专题突破练28专题七解析几何过关检测含解析
专题突破练28 专题七解析几何过关检测一、单项选择题1。
(2019重庆第一中学高三下学期第三次月考)已知直线l1:mx+(m—3)y+1=0,直线l2:(m+1)x+my—1=0,若l1⊥l2,则m=()A.m=0或m=1B.m=1C.m=—32D。
m=0或m=-322.(2020百师联盟高三5月月考,4)已知点F是双曲线C:x2a2−y2b2=1(a>0,b>0)的左焦点,点P是该双曲线渐近线上一点,若△POF是等边三角形(其中O为坐标原点),则双曲线C的离心率为()A.√3B。
2 C。
3 D。
2√333.(2020北京朝阳一模,5)已知抛物线C:y2=2px(p〉0)的焦点为F,准线为l,点A是抛物线C上一点,AD⊥l于D.若AF=4,∠DAF=60°,则抛物线C的方程为()A.y2=8xB.y2=4xC.y2=2xD.y2=x4.(2020北京东城一模,4)若双曲线C:x2—y2b2=1(b〉0)的一条渐近线与直线y=2x+1平行,则b的值为()A。
1 B.√2 C.√3 D.25.(2020北京东城一模,9)设O为坐标原点,点A(1,0),动点P在抛物线y2=2x上,且位于第一象限,M是线段PA的中点,则直线OM斜率的取值范围是()A。
(0,1] B。
(0,√22)C。
(0,√22]D。
[√22,+∞)6.(2019陕西宝鸡高三高考模拟检测三)双曲线x236−y29=1的一条弦被点P(4,2)平分,那么这条弦所在的直线方程是() A.x-y—2=0 B。
2x+y-10=0C。
x—2y=0 D。
x+2y—8=07。
已知椭圆x2a2+y2b2=1(a〉b>0)的半焦距为c(c〉0),左焦点为F,右顶点为A,抛物线y2=158(a+c)x与椭圆交于B,C两点,若四边形ABFC是菱形,则椭圆的离心率是()A.815B.415C。
23D。
128。
(2020黑龙江铁人中学二模)设F1,F2是双曲线C:x2a2−y2b2=1(a>0,b〉0)的左、右焦点,点A是双曲线C右支上一点,若△AF1F2的内切圆M的半径为a,且△AF1F2的重心G满足MG⃗⃗⃗⃗⃗⃗ =λF1F2⃗⃗⃗⃗⃗⃗⃗⃗ ,则双曲线C的离心率为()A.√3 B 。
新高考解析几何专项训练
新高考解析几何专项训练解析几何是高中数学中的一个重要分支,它以坐标系为基础,研究几何图形的代数性质和方程。
在新高考中,解析几何的题目通常涉及直线、圆、椭圆、双曲线、抛物线等基本几何图形,以及它们的位置关系和性质。
本专项训练旨在帮助学生深入理解解析几何的基本概念,掌握解题技巧,提高解题能力。
一、直线与圆1. 直线的方程:直线的点斜式、斜截式、一般式和参数式方程。
2. 圆的方程:圆的标准方程和一般方程。
3. 直线与圆的位置关系:直线与圆的相切、相交问题,包括切点弦、弦长和圆心距的计算。
二、椭圆1. 椭圆的定义:椭圆的几何定义和标准方程。
2. 椭圆的性质:焦点、长短轴、离心率、准线等。
3. 椭圆与直线的位置关系:直线与椭圆的交点、切点、弦长和最值问题。
三、双曲线1. 双曲线的定义:双曲线的几何定义和标准方程。
2. 双曲线的性质:焦点、实轴、虚轴、离心率等。
3. 双曲线与直线的位置关系:直线与双曲线的交点、渐近线、切点和最值问题。
四、抛物线1. 抛物线的定义:抛物线的几何定义和标准方程。
2. 抛物线的性质:焦点、准线、顶点等。
3. 抛物线与直线的位置关系:直线与抛物线的交点、切点、弦长和最值问题。
五、圆锥曲线的综合应用1. 圆锥曲线的统一性质:圆锥曲线的共性,如焦点、离心率等。
2. 圆锥曲线的变换:通过坐标变换将不同的圆锥曲线联系起来。
3. 圆锥曲线的综合问题:涉及多个圆锥曲线的交点、切点和最值问题。
六、解析几何的解题策略1. 图形与方程结合:利用图形的直观性和方程的精确性,相互验证解题思路。
2. 代数运算技巧:熟练掌握代数运算,包括因式分解、配方法、韦达定理等。
3. 几何直观:培养几何直观,通过图形的对称性、位置关系等进行快速判断。
七、专项训练题目1. 基础题:直线与圆的方程,直线与圆的位置关系。
2. 中等题:椭圆、双曲线、抛物线的性质和位置关系。
3. 提高题:圆锥曲线的综合问题,涉及多个圆锥曲线的交点、切点和最值问题。
高考数学专题7解析几何之直线与圆
壹高考数学专题七解析几何之直线与圆的方程一、直线 ●1.直线的方程(1)直线l 的倾斜角α的取值范围是0απ≤<;平面内的任意一条直线都有唯一确定的倾斜角。
(2)直线l 的斜率tan (0,k ααπ=≤<且2πα≠)。
变化情况如下:斜率的计算公式:若斜率为k 的直线过点111(,)P x y 与222(,)P x y ,则211221()k x x x x =≠-。
(3)直线方程的五种形式贰●2.两条直线位置关系(1)设两条直线111:l y k x b =+和222:l y k x b =+,则有下列结论:1212//l l k k ⇔=且12b b ≠; 12121l l k k ⊥⇔⋅=-。
(2)设两条直线111111:0(,l A x B y C A B ++=不全为0)和2222:0l A x B y C ++=22(,A B ,不全为0),则有下列结论:12//l l ⇔12210A B A B -=且12210BC B C -≠或12210A B A B -=且12210AC A C -≠; 12l l ⊥⇔12120A A B B +=。
(3)求两条直线交点的坐标:解两条直线方程所组成的二元一次方程组而得解。
(4)与直线0Ax By C ++=平行的直线一般可设为0Ax By m ++=;与直线0Ax By C ++=垂直的直线一般可设为0Bx Ay n -+=。
(5)过两条已知直线1112220,0A x B y C A x B y C ++=++=交点的直线系:111222222()0(0)A x B y C A x B y C A x B y C λ+++++=++=其中不包括直线●3.中点公式:平面内两点111(,)P x y 、222(,)P x y ,则12,P P 两点的中点(,)P x y 为1212,22y y x x x y ++==。
●4.两点间的距离公式:平面内两点111(,)P x y ,222(,)P x y ,则12,PP两点间的距离为:12PP 。
2024年高考数学一轮复习(新高考版) 第8章 必刷大题17 解析几何
必刷大题17解析几何1.(2022·南通模拟)已知P为抛物线C:y2=4x上位于第一象限的点,F为C的焦点,PF与C交于点Q(异于点P).直线l与C相切于点P,与x轴交于点M.过点P作l的垂线交C于另一点N.(1)证明:线段MP的中点在定直线上;(2)若点P的坐标为(2,22),试判断M,Q,N三点是否共线.解(1)设P(x0,y0),则y20=4x0,因为点P在第一象限,所以y0=2x0,对y=2x两边求导得y′=1 x,所以直线l的斜率为1x0,所以直线l的方程为y-2x0=1x0(x-x0),令y=0,则x=-x0,所以M(-x0,0),所以线段MP所以线段MP的中点在定直线x=0上.(2)若P(2,22),则M(-2,0).所以k MP=22,k PF=22,因为PN⊥l,所以k PN=-2,所以直线PF:y=22(x-1),直线PN:y=-2(x-4).2=4x,=22 x-1 ,得2x2-5x+2=0,所以x=12或2,所以2=4x,=-2 x-4 ,得x2-10x+16=0,所以x=2或8,所以N(8,-42).因为M(-2,0),N(8,-42),所以k MQ=-225,k MN=-225,所以M,Q,N三点共线.2.(2023·石家庄模拟)已知E(2,0),A满足|AE|=2|AF|,点A的轨迹为曲线C.(1)求曲线C的方程;(2)若直线l:y=kx+m与双曲线:x24-y29=1交于M,N两点,且∠MON=π2(O为坐标原点),求点A到直线l距离的取值范围.解(1)设A(x,y),因为|AE|=2|AF|,所以 x-2 2+ y-0 2=2将等式两边平方后化简得x2+y2=1.(2)将直线l:y=kx+m与双曲线x24-y29=1kx+m,-y29=1⇒(4k2-9)x2+8kmx+4m2+36=0,设M(x1,y1),N(x2,y2),k2-9≠0,= 8km 2-4· 4k2-9 4m2+36 >0,即m2+9>4k2且k≠±32,所以x1+x2=-8km4k2-9,x1x2=4m2+364k2-9,因为∠MON=π2,所以OM→⊥ON→,即OM→·ON→=0,所以x1x2+y1y2=0⇒x1x2+(kx1+m)·(kx2+m)=0,化简得(k2+1)x1x2+km(x1+x2)+m2=0,把x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9代入,得(k 2+1)·4m 2+364k 2-9+kmm 2=0,化简得m 2=36 k 2+15,因为m 2+9>4k 2且k ≠±32,所以有36 k 2+1 5+9>4k 2且k ≠±32,解得k ≠±32,圆x 2+y 2=1的圆心为(0,0),半径为1,圆心(0,0)到直线l :y =kx +m 的距离为d =|m |k 2+1=6k 2+15k 2+1=655>1,所以点A 到直线l 距离的最大值为655+1,最小值为655-1,所以点A 到直线l 距离的取值范围为655-1,655+1.3.(2023·广州模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),点F (1,0)为椭圆的右焦点,过点F 且斜率不为0的直线l 1交椭圆于M ,N 两点,当l 1与x 轴垂直时,|MN |=3.(1)求椭圆C 的标准方程;(2)A 1,A 2分别为椭圆的左、右顶点,直线A 1M ,A 2N 分别与直线l 2:x =1交于P ,Q两点,证明:四边形OPA 2Q 为菱形.(1)解由题可知c =1.当l 1与x 轴垂直时,不妨设M b 2+1,+94b 2=1,解得a =2,b = 3.所以椭圆C 的标准方程为x 24+y 23=1.(2)证明设l 1的方程为x =my +1,M (x 1,y 1),N (x 2,y 2),my +1,+y 23=1,消去x 得(3m 2+4)y 2+6my -9=0,易知Δ>0恒成立,由根与系数的关系得y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,由直线A 1M 的斜率为1A M k =y 1x 1+2,得直线A 1M 的方程为y =y 1x 1+2(x +2),当x =1时,y P =3y 1x 1+2,由直线A 2N 的斜率为2A N k =y 2x 2-2,得直线A 2N 的方程为y =y 2x 2-2(x -2),当x =1时,y Q =-y 2x 2-2,若四边形OPA 2Q 为菱形,则对角线相互垂直且平分,下面证y P +y Q =0,因为y P +y Q =3y 1x 1+2+-y 2x 2-2=3y 1 x 2-2 -y 2 x 1+2 x 1+2 x 2-2 =2my 1y 2-3 y 1+y 2 my 1+3 my 2-1,则2my 1y 2-3(y 1+y 2)=2m ·-93m 2+4-3·-6m3m 2+4=-18m +18m 3m 2+4=0,所以|PF |=|QF |,即PQ 与OA 2相互垂直且平分,所以四边形OPA 2Q 为菱形.4.(2022·衡阳模拟)设椭圆E :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,上顶点为B .已知椭圆的离心率为12,|AB |=7.(1)求椭圆E 的方程;(2)设P ,Q 为椭圆E 上异于点A 的两动点,若直线AP ,AQ 的斜率之积为-14.①证明直线PQ 恒过定点,并求出该点坐标;②求△APQ 面积的最大值.(1)解∵e =12,|AB |=7,∴a 2=4c 2,a 2+b 2=7,又a 2=b 2+c 2,∴a 2=4,b 2=3,∴椭圆E 的方程为x 24+y 23=1.(2)①证明当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +m ,+y 23=1,kx +m ,消去y 得(3+4k 2)x 2+8kmx +4m 2-12=0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2,又A (-2,0),由题知k AP ·k AQ =y 1x 1+2·y 2x 2+2=-14,则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠-2,则x 1·x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m )=(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m 2+4= 1+4k 2 4m 2-12 3+4k 2+(2+4km )·-8km 3+4k 2+4m 2+4=0,则m 2-km -2k 2=0,∴(m -2k )(m +k )=0,∴m =2k 或m =-k .当m =2k 时,直线PQ 的方程为y =kx +2k =k (x +2),此时直线PQ 过定点(-2,0),显然不符合题意;当m =-k 时,直线PQ 的方程为y =kx -k =k (x -1).此时直线PQ 过定点(1,0).当直线PQ 的斜率不存在时,若直线PQ 过定点(1,0),P ,Q 满足k AP ·k AQ =-14.综上,直线PQ 过定点(1,0).②解不妨设直线PQ 过定点(1,0)为F .则△APQ 的面积S =12×|AF |×|y 1-y 2|=32|y 1-y 2|,设直线PQ 的方程为x =my +1,联立椭圆的方程x 24+y 23=1,消去x 得(4+3m 2)y 2+6my -9=0,则y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m 2,∴S =32|y 1-y 2|=32y 1+y 2 2-4y 1y 2=18m 2+14+3m 2 2.令t =m 2+1(t ≥1),则S =18t 3t +1 2=1819t +1t +6,∵t ≥1,∴9t +1t+6≥16(当且仅当t =1即m =0时取等号),∴S ≤92,即△APQ 面积的最大值为92.。
2023届高考数学(解析几何)专项练习(附答案)
)
A.点 P 到直线 AB 的距离小于 10
B.点 P 到直线 AB 的距离大于 2
C.当∠PBA 最小时,|PB|=3√2
D.当∠PBA 最大时,|PB|=3√2
2作体联考)若双曲线 C:
2
=1,F1,F2 分别为左、右焦点,设点
5
P 在双
曲线上且是第一象限内的动点,点 I 为△PF1F2 的内心,点 G 为△PF1F2 的重心,则下列说法正确的是
2023 届高考数学(解析几何)专项练习
一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题
目要求的.
1.(历年ꞏ浙江杭州二中月考)已知双曲线的实轴长为 10,焦点到一条渐近线的距离为 4,则它的离心率
为
A.
3
5
5
3
√41
B.
C.
D.
5
(
)
(
)
5
4
2.(历年ꞏ浙江宁波三模)“点(a,b)在圆 x2+y2=1 外”是“直线 ax+by+2=0 与圆 x2+y2=1 相交”的
5
x+2y-8=0 的距离为
.
14.(历年ꞏ江苏连云港模拟)圆锥曲线有丰富的光学性质,从椭圆焦点发出的光线,经过椭圆反射后,反
射光线经过另一个焦点;从抛物线焦点发出的光线,经过抛物线上一点反射后,反射光线平行于抛物线
2
2
的对称轴.已知椭圆 C:
2
2 =1(a>b>0)过点(3,1).由点
P(2,1)发出的平行于 x 轴的光线经过抛物线
牛的形象.已知抛物线 Z:x2=4y 的焦点为 F,圆 F:x2+(y-1)2=4 与抛物线 Z 在第一象限的交点为
2020届高考数学(文)二轮复习过关检测:解析几何十七+Word版含答案
过关检测(十七)1.“ab =4”是“直线2x +ay -1=0与直线bx +2y -2=0平行”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 因为两直线平行,所以斜率相等,即-2a =-b2,可得ab =4,又当a =1,b =4时,满足ab =4,但是两直线重合,故选C.2.(2019·南充期末)若直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短,则直线l 的方程是( )A .x =0B .y =1C .x +y -1=0D .x -y +1=0解析:选D 依题意,直线l :y =kx +1过定点P (0,1).圆C :x 2+y 2-2x -3=0化为标准方程为(x -1)2+y 2=4.故圆心为C (1,0),半径为r =2.则易知定点P (0,1)在圆内.由圆的性质可知当PC ⊥l 时,此时直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短.因为k PC =1-00-1=-1,所以直线l 的斜率k =1,即直线l 的方程是x -y +1=0.3.(2019·广东六校模拟)与圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( )A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4D .(x -1)2+(y -3)2=4解析:选D 设所求圆的圆心为(a ,b ),则⎩⎪⎨⎪⎧b 2=33×a +22,b a -2=-3,∴⎩⎨⎧a =1,b =3,∴所求圆的方程为(x -1)2+(y -3)2=4.4.(2019·河南八市质检)过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0解析:选B 由题意,过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则点(3,1)在圆上,代入可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)(3-1)+y (1-0)=5,即2x +y -7=0.5.(2019·安徽六安模拟)已知过原点的直线l 与圆C :x 2+y 2-6x +5=0相交于不同的两点A ,B ,且线段AB 的中点坐标为D (2,2),则弦AB 的长为( )A .2B .3C .4D .5解析:选A 将圆C :x 2+y 2-6x +5=0整理,得其标准方程为(x -3)2+y 2=4,∴圆C 的圆心坐标为(3,0),半径为2.∵线段AB 的中点坐标为D (2,2),∴|CD |=1+2=3,∴|AB |=24-3=2.故选A.6.(2019·东北十校联考)已知P 是直线l :3x -4y +11=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,C 是圆心,那么四边形PACB 面积的最小值是( )A. 2 B .2 2 C. 3D .2 3解析:选C 圆的标准方程为(x -1)2+(y -1)2=1,圆心C (1,1),半径r =1,根据对称性可知,四边形PACB 的面积为2S △APC =2×12|PA |r =|PA |=|PC |2-r 2,要使四边形PACB的面积最小,则只需|PC |最小,最小时为圆心到直线l :3x -4y +11=0的距离d =|3-4+11|32+(-4)2=105=2.所以四边形PACB 面积的最小值为(|PC |min )2-r 2=4-1= 3. 7.(2019·长沙一调)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为___________________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得⎩⎪⎨⎪⎧a =1,b =0,又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=08.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A为圆心的圆与直线y =b ax 相交于P ,Q 两点,且AP →·AQ →=0,OP →=3OQ →,则椭圆C 的标准方程为________,圆A 的标准方程为__________.解析:如图,设T 为线段PQ 的中点,连接AT ,则AT ⊥PQ .∵AP →·AQ →=0,即AP ⊥AQ , ∴|AT |=12|PQ |.又OP →=3OQ →,∴|OT |=|PQ |. ∴|AT ||OT |=12,即b a =12. 由已知得焦半距c =3,∴a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1.又|AT |2+|OT |2=4,∴|AT |2+4|AT |2=4, ∴|AT |=255,r =|AP |=2105.∴圆A 的方程为(x -2)2+y 2=85.答案:x 24+y 2=1 (x -2)2+y 2=859.(2019·安阳一模)已知AB 为圆C :x 2+y 2-2y =0的直径,点P 为直线y =x -1上任意一点,则|PA |2+|PB |2的最小值为________.解析:圆心C (0,1),设∠PCA =α,|PC |=m , 则|PA |2=m 2+1-2m cos α,|PB |2=m 2+1-2m cos (π-α)=m 2+1+2m cos α, ∴|PA |2+|PB |2=2m 2+2.又C 到直线y =x -1的距离d =|0-1-1|2=2,即m 的最小值为2,∴|PA |2+|PB |2的最小值为2×(2)2+2=6. 答案:610.(2019·南通模拟)如图,在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A (-1,0),B (1,2).(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,|MN |=|AB |,求直线l 的方程; (2)在圆C 上是否存在点P ,使得|PA |2+|PB |2=12?若存在,求点P 的个数;若不存在,说明理由.解:(1)圆C 的标准方程为(x -2)2+y 2=4,所以圆心C (2,0),半径为2.因为l ∥AB ,A (-1,0),B (1,2),所以直线l 的斜率为2-01-(-1)=1.设直线l 的方程为x -y +m =0,则圆心C 到直线l 的距离为d =|2-0+m |2=|2+m |2.因为|MN |=|AB |=22+22=22,而|CM |2=d 2+⎝ ⎛⎭⎪⎫|MN |22,所以4=(2+m )22+2,解得m =0或m =-4,故直线l 的方程为x -y =0或x-y -4=0.(2)假设圆C 上存在点P ,设P (x ,y ),则(x -2)2+y 2=4,|PA |2+|PB |2=(x +1)2+(y -0)2+(x -1)2+(y -2)2=12,化简得x 2+y 2-2y -3=0,即x 2+(y -1)2=4.因为|2-2|< (2-0)2+(0-1)2<2+2,所以圆(x -2)2+y 2=4与圆x 2+(y -1)2=4相交,所以存在点P ,点P 的个数为2.11.(2019·武汉一模)在平面直角坐标系xOy 中,O 为坐标原点,以O 为圆心的圆与直线x -3y -4=0相切.(1)求圆O 的方程.(2)若直线l :y =kx +3与圆O 交于A ,B 两点,在圆O 上是否存在一点Q ,使得O Q →=OA→+OB →?若存在,求出此时直线l 的斜率;若不存在,说明理由.解:(1)设圆O 的半径为r ,因为直线x -3y -4=0与圆O 相切,所以r =|0-3×0-4|1+3=2,所以圆O 的方程为x 2+y 2=4.(2)因为直线l :y =kx +3与圆O 相交于A ,B 两点,所以圆心O 到直线l 的距离d =|3|1+k2<2,所以k >52或k <-52.假设存在点Q ,使得OQ →=OA →+OB →.因为A ,B 在圆上,且OQ →=OA →+OB →,同时|OA →|=|OB →|,由向量加法的平行四边形法则可知四边形OAQB 为菱形,所以OQ 与AB 互相垂直且平分.所以原点O 到直线l :y =kx +3的距离d =12|OQ |=1,即|3|1+k 2=1, 解得k 2=8,则k =±22,经验证满足条件.所以存在点Q ,使得OQ →=OA →+OB →,此时直线l 的斜率为±2 2.。
专题突破练28 专题七 解析几何过关检测
专题突破练28专题七解析几何过关检测一、单项选择题1.(2019重庆第一中学高三下学期第三次月考)已知直线l1:mx+(m-3)y+1=0,直线l2:(m+1)x+my-1=0,若l1⊥l2,则m=()A.m=0或m=1B.m=1C.m=-32D.m=0或m=-322.(2020百师联盟高三5月月考,4)已知点F是双曲线C:x 2a2−y2b2=1(a>0,b>0)的左焦点,点P是该双曲线渐近线上一点,若△POF是等边三角形(其中O为坐标原点),则双曲线C的离心率为()A.√3B.2C.3D.2√333.(2020北京朝阳一模,5)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,点A是抛物线C上一点,AD ⊥l于D.若AF=4,∠DAF=60°,则抛物线C的方程为()A.y2=8xB.y2=4xC.y2=2xD.y2=x4.(2020北京东城一模,4)若双曲线C:x2-y 2b2=1(b>0)的一条渐近线与直线y=2x+1平行,则b的值为()A.1B.√2C.√3D.25.(2020北京东城一模,9)设O为坐标原点,点A(1,0),动点P在抛物线y2=2x上,且位于第一象限,M是线段PA的中点,则直线OM斜率的取值范围是()A.(0,1]B.(0,√22)C.(0,√22] D.[√22,+∞)6.(2019陕西宝鸡高三高考模拟检测三)双曲线x 2−y2=1的一条弦被点P(4,2)平分,那么这条弦所在的直线方程是()A.x-y-2=0B.2x+y-10=0C.x-2y=0D.x+2y-8=0 7.已知椭圆x 2a 2+y 2b2=1(a>b>0)的半焦距为c (c>0),左焦点为F ,右顶点为A ,抛物线y 2=158(a+c )x 与椭圆交于B ,C 两点,若四边形ABFC 是菱形,则椭圆的离心率是 ( )A.815B.415C.23D.128.(2020黑龙江铁人中学二模)设F 1,F 2是双曲线C :x 2a 2−y 2b2=1(a>0,b>0)的左、右焦点,点A 是双曲线C 右支上一点,若△AF 1F 2的内切圆M 的半径为a ,且△AF 1F 2的重心G 满足MG ⃗⃗⃗⃗⃗⃗ =λF 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ ,则双曲线C 的离心率为( ) A.√3 B.√5C.2D.2√5二、多项选择题9.下列说法正确的是( )A.直线x-y-2=0与两坐标轴围成的三角形的面积是2B.点(0,2)关于直线y=x+1的对称点为(1,1)C.过(x 1,y 1),(x 2,y 2)两点的直线方程为y -y 1y 2-y 1=x -x1x 2-x 1D.经过点(1,1)且在x 轴和y 轴上的截距都相等的直线方程为x+y-2=010.已知点F 是抛物线y 2=2px (p>0)的焦点,AB ,CD 是经过点F 的弦且AB ⊥CD ,AB 的斜率为k ,且k>0,C ,A 两点在x 轴上方,则下列结论中一定成立的是( )A.1|AB |+1|CD |=12pB.若|AF|·|BF|=4p 2,则k=√3C.OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ·OD ⃗⃗⃗⃗⃗⃗ D.四边形ABCD 面积最小值为16p 211.已知椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,长轴的顶点分别为A1,A2,短轴的顶点分别为B1,B2,过F2的直线l交C于A,B两点.若椭圆C的离心率为√63,△AF1B的周长为4√3,则下列说法正确的是() A.|A1A2|=2√3B.方程为x 23+y2=1C.cos ∠F1F2B1=√63D.中心O到直线A2B2的距离为√212.(2020山东聊城二模,11)已知抛物线C:y2=2px过点P(1,1),则下列结论正确的是()A.点P到抛物线焦点的距离为32B.过点P作过抛物线焦点的直线交抛物线于点Q,则△OPQ的面积为532C.过点P与抛物线相切的直线方程为x-2y+1=0D.过点P作两条斜率互为相反数的直线交抛物线于M,N点,则直线MN的斜率为定值三、填空题13.(2019山东临沂模拟)椭圆x 2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为12,过F2的直线交椭圆于A,B两点,△ABF1的周长为8,则该椭圆的短轴长为.14.(2020安徽安庆二模,16)已知双曲线C:x 2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,一条渐近线方程记为y=x tan α(0<α<π2),直线l:y=x tan α2与双曲线C在第一象限内交于点P,若OP⊥PF2,则双曲线C的离心率为.15.已知焦点在x轴上的双曲线C的左焦点为F,右顶点为A,若线段FA的垂直平分线与双曲线C没有公共点,则双曲线C的离心率的取值范围是.16.(2020山东泰安一模,16)过点M(-m,0)(m≠0)的直线l与直线3x+y-3=0垂直,直线l与双曲线C:x 22−y2b2=1(a>0,b>0)的两条渐近线分别交于点A,B,若点P(m,0)满足|PA|=|PB|,则双曲线C的渐近线方程为,离心率为.四、解答题17.已知椭圆C:x 2a2+y2b2=1(a>b>0),点3,√32在椭圆上,过C的焦点且与长轴垂直的弦的长度为13.(1)求椭圆C的标准方程;(2)过点A (-2,0)作两条相交直线l 1,l 2,l 1与椭圆交于P ,Q 两点(点P 在点Q 的上方),l 2与椭圆交于M ,N 两点(点M 在点N 的上方),若直线l 1的斜率为-17,S △MAP =2534S △NAQ ,求直线l 2的斜率.18.(2020山东济宁三模,21)已知点F 为椭圆x 2+y 2=1的右焦点,点A 为椭圆的右顶点. (1)求过点F 、A 且和直线x=9相切的圆C 的方程;(2)过点F 任作一条不与x 轴重合的直线l ,直线l 与椭圆交于P ,Q 两点,直线PA ,QA 分别与直线x=9相交于点M ,N.试证明:以线段MN 为直径的圆恒过点F.19.(2020北京东城一模,19)已知椭圆E:x 2a2+y2b2=1(a>b>0),它的上、下顶点分别为A,B,左、右焦点分别为F1,F2,若四边形AF1BF2为正方形,且面积为2.(1)求椭圆E的标准方程;(2)设存在斜率不为零且平行的两条直线l1,l2,与椭圆E分别交于点C,D,M,N,且四边形CDMN是菱形,求出该菱形周长的最大值.专题突破练28专题七解析几何过关检测1.A解析因为直线l1:mx+(m-3)y+1=0与直线l2:(m+1)x+my-1=0垂直,所以m(m+1)+m(m-3)=0,即m(m-1)=0,解得m=0或m=1.故选A.2.B解析由P在渐近线上且△POF是等边三角形,其中一条渐近线的斜率ba=tan60°=√3,所以离心率e=√1+b 2a2=2.3.B解析如图所示,由抛物线的定义可知,AD=AF=4,∵∠DAF=60°,∴△ADF为等边三角形.∴DE=4,∠ADF=60°.∵AD⊥l,∴AD平行于x轴,∴∠DFO=∠ADF=60°,∴cos 60°=pDF ,即12=p4,∴p=2,∴抛物线的方程为y 2=4x , 故选B .4.D 解析 双曲线C :x 2-y 2b 2=1(b>0)的一条渐近线y=bx ,由直线y=bx 与直线y=2x+1平行, 可得b=2.故选D .5.C 解析 设P (y 22,y),y>0,所以PA 的中点M (y 2+24,y2),所以k OM =y2y 2+24=2y2+y 2=2y+2y, 因为y+2y ≥2√2,当且仅当y=2y ,即y=√2时,等号成立,所以0<2y+2y≤2√2=√22,所以k OM ∈(0,√22],故选C .6.C 解析 设弦的两端点A (x 1,y 1),B (x 2,y 2),斜率为k ,则x 12−y 12=1,x 22−y 22=1,两式相减得(x 1-x 2)(x 1+x 2)36=(y 1-y 2)(y 1+y 2)9,即k=y 1-y 2x 1-x 2=9(x 1+x 2)36(y 1+y 2)=9×836×4=12,所以弦所在的直线方程为y-2=12(x-4),即x-2y=0.故选C .7.D 解析 由题意得A (a ,0),F (-c ,0),∵抛物线y 2=158(a+c )x 与椭圆交于B ,C 两点,∴B ,C 两点关于x 轴对称,可设B (m ,n ),C (m ,-n ),∵四边形ABFC 是菱形,∴m=12(a-c ),将B (m ,n )代入抛物线方程,得n2=1516(a+c )(a-c )=1516b 2,∴B 12(a-c ),√154b,再代入椭圆方程,得[12(a -c )] 2a 2+(√154b) 2b2=1,化简整理,得4e 2-8e+3=0,解得e=12e=32>1不合题意,舍去,故答案为12.8.C 解析 如图所示,因为MG ⃗⃗⃗⃗⃗⃗ =λF 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ ,所以MG ⃗⃗⃗⃗⃗⃗ ∥F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ ,所以y M =y G =a ,y A =3y G =3a ,所以S △AF 1F 2=12×2c×3a=12·(|AF 1|+|AF 2|+2c )·a , 又|AF 1|-|AF 2|=2a ,解得|AF 1|=2c+a ,|AF 2|=2c-a , 设A (x A ,y A ),F 1(-c ,0),所以|AF 1|=√(x A +c )2+y A 2=√(x A +c )2+b 2(x A 2a 2-1)=√e 2x A 2+2cx A +a 2=√(ex A +a )2=ex A +a.所以|AF 1|=a+ex A , 解得x A =2a , 所以A (2a ,3a ),代入双曲线方程,得(2a )2a 2−(3a )2b2=1,整理得b2a 2=3, 所以e=√1+b2a 2=2.故选C .9.AB 解析 A 中直线在两坐标轴上的截距分别为2,-2,所以围成三角形的面积是2,正确;B 中0+12,2+12在直线y=x+1上,且(0,2),(1,1)连线的斜率为-1,所以B 正确;C 选项需要条件y 2≠y 1,x 2≠x 1,故错误;D 选项错误,还有一条截距都为0的直线y=x.故选AB .10.AC 解析 因为AB 的斜率为k ,AB ⊥CD ,所以k CD =-1k ,设A (x 1,y 1),B (x 2,y 2),AB 的方程为y=k (x -p2),由{y =k (x -p2),y 2=2px可得,k 2x 2-p (k 2+2)x+14k 2p 2=0,{x 1+x 2=p (k 2+2)k2,x 1x 2=14p 2,所以|AB|=x 1+x 2+p=p (k 2+2)λ2+p=2p (k 2+1)k2,同理可得|CD|=2p (1k 2+1)1k2=2p (1+k 2), 则有1|AB |+1|CD |=12p , 所以A 正确;OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=14p 2+k 2x 1-p 2x 2-p 2=14p 2+k 2x 1x 2-p 2(x 1+x 2)+14p 2=14p 2+12k 2p 2-p 2(k 2+2)2=-34p 2与k 无关,同理OC ⃗⃗⃗⃗⃗ ·OD ⃗⃗⃗⃗⃗⃗ =-34p 2,故OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ·OD⃗⃗⃗⃗⃗⃗ ,C 正确; 若|AF|·|BF|=43p 2,由x 1+p 2x 2+p 2=x 1x 2+p 2(x 1+x 2)+14p 2得12p 2+p 2(k 2+2)2k 2=p 2+p 2k2=43p 2,解得k=√3,故B 错误;因为AB ⊥CD ,所以四边形ABCD 面积S ABCD =12|AB||CD|=12·2p (k 2+1)k2·2p (1+k 2)=2p 2(k 2+1)2k2=2p 2k 2+1k2+2≥8p 2,当且仅当k 2=1k2,即k=1时,等号成立,故D 错误.故选AC .11.ABC 解析 由题意及椭圆的定义知4a=4√3,则a=√3,AA 1=2√3,选项A 正确.又ca =√63,所以c=√2,所以b2=1,所以椭圆C的方程x23+y2=1,选项B正确.cos ∠F1F2B1为离心率,即为√63,选项C正确.中心O到直线A2B2的距离为√32,不是√2,选项D错误.故选ABC.12.BCD解析因为抛物线C:y2=2px过点P(1,1),所以p=1 2 ,所以抛物线方程为y2=x,焦点坐标为F(14,0).对于A,|PF|=1+14=54,故选项A错误;对于B,k PF=43,所以l PF:y=43(x-14),与y2=x联立消去x,得4y2-3y-1=0,所以y1+y2=34,y1y2=-14,所以S△OPQ=12|OF|·|y1-y2|=12×14×√(y1+y2)2-4y1y2=532,故选项B正确;对于C,依题意斜率存在,设直线方程为y-1=k(x-1),与y2=x联立消去x,得ky2-y+1-k=0,Δ=1-4k(1-k)=0,4k2-4k+1=0,解得k=12,所以切线方程为x-2y+1=0,故选项C正确;对于D,依题意斜率存在,设l PM:y-1=k(x-1),与y2=x联立消去x,得ky2-y+1-k=0,所以y M+1=1k ,即y M=1k-1,则x M=(1k-1)2,所以点M ((1k -1)2,1k -1),同理N ((-1k -1)2,-1k -1),所以k MN =1k -1-(-1k -1)(1k -1)2-(-1k-1)2=2k -4k=-12,故选项D 正确.故选BCD .13.2√3 解析 因为△ABF 1的周长为8,所以F 1A+F 1B+F 2A+F 2B=4a=8,解得a=2.因为离心率为12,所以ca =12,c=12a=1.由a 2=b 2+c 2,解得b=√3,则该椭圆的短轴长为2√3. 14.√-1 解析 如图,延长F 2P 交直线y=x tan λ(0<α<π2)于点M ,则由角平分线的性质可得P 为MF 2的中点,|OM|=|OF 2|=c , 求得M (a ,b ),P (a+c 2,b2),因为点P (a+c 2,b2)在双曲线C 上,所以有(a+c 2)2a 2−(b 2)2b2=1,整理,得e 2+2e-4=0,解得e=√5-1. 15.(1,3) 解析 ∵F (-c ,0),A (a ,0),∴线段FA 的垂直平分线为x=a -c2.∵线段FA 的垂直平分线与双曲线C 没有公共点,∴-a<a -c2<0,即c<3a ,∴e=ca <3,又e>1,∴1<e<3.16.y=±12x √52 解析 过点M (-m ,0)(m ≠0)的直线l 与直线3x+y-3=0垂直,可得直线l :x-3y+m=0(m ≠0).双曲线的渐近线为y=±ba x , 分别与x-3y+m=0(m ≠0)联立,解得 A (-ama -3b ,-bma -3b ),B (-am a+3b ,bm a+3b ).∴AB 中点坐标为(ma 29b 2-a 2,3mb 29b 2-a 2).∵点P (m ,0)满足|PA|=|PB|,∴3mb 29b 2-a 2-ma 29b 2-a 2-m=-3,∴a=2b ,∴双曲线C 的渐近线方程为y=±12x ,∴e=√1+(b a )2=√52.17.解 (1)由已知得{9a 2+34b 2=1,2b 2a =13,解得{a =6,b =1.故椭圆C 的方程为x236+y 2=1.(2)由题设可知:l 1的直线方程为x=-7y-2.联立方程组{x 236+y 2=1,x =-7y -2,整理,得85y 2+28y-32=0.y P =817,y Q =-45.∴|AQ ||AP |=|y Q ||y P |=45817=1710.∵S △MAP =2534S △NAQ ,∴12|AM||AP|sin θ=2534×12|AN||AQ|sin θ,即|AM ||AN |=2534×|AQ ||AP |=2534×1710=54. 设l 2的直线方程为x=my-2(m ≠0).将x=my-2代入x 236+y 2=1得(m 2+36)y 2-4my-32=0.设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=4m m 2+36,y 1y 2=-32m 2+36.又∵y 1=-54y 2,∴-54y 2+y 2=4m m 2+36,-54y 22=-32m 2+36.∴y 2=-16mm 2+36,y 22=1285(m 2+36).∴-16m m 2+362=1285(λ2+36).解得m 2=4,∴m=±2.故直线l 2的斜率为±1.18.解 (1)由已知得a=3,b=2√2,c=1.∴A (3,0),F (1,0).∴圆C 的圆心一定在线段AF 中垂线x=1+3=2上.由圆C 与直线x=9相切,得圆C 的半径r=9-2=7.设圆C 的圆心坐标为C (2,m ),则有:r=|AC|=√(3-2)2+(0-m )2=7,m=±4√3,即圆心C (2,±4√3).∴圆C 的方程为(x-2)2+(y ±4√3)2=49.(2)证明:当直线l 斜率不存在时,其方程为x=1,可求得M ,N 两点坐标分别为M (9,8),N (9,-8)或M (9,-8),N (9,8),又F (1,0),∴FM ,FN 的斜率之积为k FM ·k FN =-8-09-1·8-09-1=-1,∴FM ⊥FN.当直线l 斜率存在时,设直线l 的方程为y=k (x-1),P (x 1,y 1),Q (x 2,y 2),联立方程组{y =k (x -1),x 29+y 28=1,消去y 整理,得(8+9k 2)x 2-18k 2x+9k 2-72=0,∴x 1+x 2=18k 28+9k 2,x 1x 2=9k 2-728+9k 2.y 1y 2=k (x 1-1)·k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1].又设M (9,y M ),N (9,y N ),由P ,A ,M 共线得y 1-0x 1-3=y M -09-3,y M =6y1x 1-3,由Q ,A ,N 共线得y 2-0x 2-3=y N -09-3,y N =6y2x 2-3,所以FM ,FN 的斜率之积为:k FM ·k FN =y M -09-1·y N -09-1=y M y N 64=9y 1y 216(x 1-3)(x 2-3)=9k 2[x 1x 2-(x 1+x 2)+1]16[x 1x 2-3(x 1+x 2)+9]=9k 2(9k 2-728+9k 2-18k 28+9k 2+1)16(9k 2-728+9k 2-3×18k 28+9k 2+9)=-64×9k 216×36k 2=-1.∴FM ⊥FN.综上可知,恒有FM ⊥FN.∴以线段MN 为直径的圆恒过点F.19.解 (1)因为E :x 2a 2+y2b 2=1(a>b>0),所以a 2=b 2+c 2.因为四边形AF 1BF 2为正方形,且面积为2,所以2b=2c ,1(2b )×2c=2.所以b=c=1,a 2=b 2+c 2=2.所以椭圆E :x 22+y 2=1.(2)设平行直线l 1:y=kx+m ,l 2:y=kx-m ,不妨设直线y=kx+m 与x 22+y 2=1交于C (x 1,y 1),D (x 2,y 2),由{x 22+y 2=1,y =kx +m ,得x 2+2(kx+m )2=2,整理得(2k 2+1)x 2+4kmx+2m 2-2=0,其中Δ=(4km )2-4×(2k 2+1)×(2m 2-2)=16k 2-8m 2+8>0,即m 2<2k 2+1. 所以x 1+x 2=-4km2k 2+1,x 1x 2=2m 2-22k 2+1,由椭圆的对称性和菱形的中心对称性,可知OC ⊥OD ,所以x 1x 2+y 1y 2=0,y 1=kx 1+m ,y 2=kx 2+m ,x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=(2m 2-2)(1+k 2)-4k 2m 2+m 2(2k 2+1)2k 2+1=2k 2m 2+2m 2-2k 2-2-4k 2m 2+2k 2m 2+m 22k 2+1=3m 2-2k 2-22k 2+1,所以3m 2=2k 2+2.|CD|=√(1+k 2)[(x 1+x 2)2-4x 1x 2]=√(1+k2)[16k 2m2(2k2+1)2-8(m2-1)2k2+1]=√(1+k 2)(32k2+8)3(2k2+1)2=√83+8k23(2k2+1)2=√3+3(4k2+4+1k2)≤√83+83(4+2√4k2·1k2)=√3,所以当且仅当k=±√22时,|CD|的最大值为√3.此时菱形CDMN周长的最大值为4√3.。
专题七:解析几何专题(点差法)及综合应用(学生版)
专题七:解析几何专题——点差法一、点差法定义应用问题在处理直线与圆锥曲线相交形成的弦中点的有关问题时,我们经常用到如下解法:设弦的两个端点坐标分别为()()1122,,x y x y 、,代入圆锥曲线得两方程后相减,得到弦中点坐标与弦所在直线斜率的关系,然后加以求解,这即为“点差法”,此法有着不可忽视的作用,其特点是巧代斜率..1 求弦中点的轨迹方程例1、已知椭圆2212x y +=,求斜率为2的平行弦中点的轨迹方程.例2 直线():50l ax y a --+=(a 是参数)与抛物线()2:1f y x =+的相交弦是AB ,则弦AB 的中点轨迹方程是 .2 求曲线方程例4 已知椭圆()222210x y a b a b +=>>的一条准线方程是1x =,有一条倾斜角为4π的直线交椭圆于A B 、两点,若AB 的中点为11,24C ⎛⎫-⎪⎝⎭,求椭圆方程.3 求直线的斜率例5 已知椭圆221259x y +=上不同的三点()()11229,,4,,,5A x y B C x y ⎛⎫ ⎪⎝⎭与焦点()4,0F 的距离成等差数列.(1)求证:128x x +=;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k .4 确定参数的范围例6 若抛物线2:C y x =上存在不同的两点关于直线():3l y m x =-对称,求实数m 的取值范围.5 证明定值问题例7 已知AB 是椭圆()222210x y a b a b+=>>不垂直于x 轴的任意一条弦,P 是AB 的中点,O 为椭圆的中心.求.6处理存在性问题 例8 已知双曲线22112x y -=,过()1,1B 能否作直线l ,使l 与双曲线交于P ,Q 两点,且B 是线段PQ 的中点,这样的直线如果存在,求出它的方程;如果不存在,说明理由..二、用点差法解圆锥曲线的中点弦问题与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。
专题七 解析几何 第一讲 直线与圆—2023届高考数学二轮复习重点练(含解析)
专题七 解析几何 第一讲 直线与圆1.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.5B.5C.5D.52.下列说法中不正确的是( )A.平面上任一条直线都可以用一个关于,x y 的二元一次方程0Ax By C ++=(,A B 不同时为0)表示B.当0C =时,方程0Ax By C ++=(,A B 不同时为0)表示的直线过原点C.当0,0,0A B C =≠≠时,方程0Ax By C ++=表示的直线与 x 轴平行D.任何一条直线的一般式方程都能与其他四种形式互化3.已知设点M 是圆224690C x y x y +--+=上的动点,则点M 到直线240x y ++=距离的最小值为( )2 2- 2+ 2 4.已知直线1l ,2l 分别过点(1,3)P -,(2,1)Q -,若它们分别绕点P ,Q 旋转,但始终保持平行,则1l ,2l 之间的距离d 的取值范围为( )A.(0,5]B.(0,5)C.(0,)+∞D.5.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( )A.[2,6]B.[4,8]C.D.6.已知直线:10l x ay +-=是圆22:6210C x y x y +--+=的对称轴,过点()1,A a -作圆C 的一条切线,切点为B ,则AB =( ) A.1B.2C.4D.87.已知点(2,0),(1,1)A B --,射线AP 与x 轴的正方向所成的角为π4,点Q 满足||1QB =,则||PQ 的最小值为( )1 B.1 C.1 18.(多选)已知直线12:210,:20l ax y a l x ay a --+=+--=,圆22:4240E x y x y +-+-=,则以下命题正确的是( )A.直线12,l l 均与圆E 不一定相交B.直线1l 被圆E 截得的弦长的最小值C.直线2l 被圆E 截得的弦长的最大值6D.若直线1l 与圆E 交于2,,A C l 与圆E 交于,B D ,则四边形ABCD 面积最大值为14 9. (多选)已知圆221:()1C x a y ++=,圆2222:()(2)2C x a y a a -+-=,下列说法正确的是( )A.若12C OC △(O 为坐标原点)的面积为2,则圆2C 的面积为2πB.若a ,则圆1C 与圆2C 外离C.若a ,则y x =1C 与圆2C 的一条公切线D.若a 1C 与圆2C 上两点间距离的最大值为610. (多选)已知直线11:0l ax y -+=,2:10l x ay ++=,a ∈R ,则下列结论中正确的是( )A.不论a 为何值,1l ,2l 都互相垂直B.当a 变化时,1l ,2l 分别经过定点(0,1)A 和(1,0)B -C.不论a 为何值,1l ,2l 都关于直线0x y +=对称D.若1l ,2l 相交于点M ,则MO11.过两直线10x +=0y +的交点,并且与原点的最短距离为12的直线的方程为________________.12.圆221:2120C x y x ++-=与圆222:440C x y x y ++-=的交点为A ,B ,则弦AB 的长为_____.13.已知圆22:2410C x y x y ++-+=,若存在圆C 的弦AB ,使得AB =,且其中点M 在直线20x y k ++=上,则实数k 的取值范围是___________.14.已知曲线2:2x C y =,D 为直线12y =-上的动点,过D 作C 的两条切线,切点分别为A ,B.(1)证明:直线AB 过定点;(2)若以20,5E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.15.已知半圆224(0)x y y +=≥,动圆与此半圆相切(内切或外切,如图),且与x 轴相切.(1)求动圆圆心的轨迹方程,并画出其轨迹.(2)是否存在斜率为13的直线l ,它与(1)中所得的轨迹由左至右顺次交于A ,B ,C ,D 四点,且满足||2||AD BC =?若存在,求出直线l 的方程;若不存在,请说明理由.答案以及解析1.答案:B解析:设圆心为()00,P x y ,半径为r ,圆与x 轴,y 轴都相切,00x y r ∴==,又圆经过点(2,1),00x y r ∴==且()()2220021x y r -+-=,222(2)(1)r r r ∴-+-=,解得1r =或5r =.①1r =时,圆心(1,1)P ,则圆心到直线230x y --=的距离d ==②5r =时,圆心(5,5)P ,则圆心到直线230x y --=的距离d ==故选B. 2.答案:D解析:对于选项A,在平面直角坐标系中,每一条直线都有倾斜角α,当90α≠︒时,直线的斜率k 存在,其方程可写成y kx b =+,它可变形为0kx y b -+=,与0Ax By C ++=比较,可得,1,A k B C b ==-=;当90α=︒时,直线的斜率不存在,其方程可写成1x x =,与0Ax B C ++=比较,可得11,0,A B C x ===-,显然,A B 不同时为0,所以此说法是正确的.对于选项B,当0C =时,方程0Ax By C ++=(,A B 不同时为0),即0Ax By +=,显然有000A B ⨯+⨯=,即直线过原点()0,0,故此说法正确.对于选项C,因为当0A =,0,0B C ≠≠时,方程0Ax By C ++=可化为Cy B=-,它表示的直线与x 轴平行,故此说法正确.D 说法显然错误. 3.答案:B解析:由题意可知圆心(2,3)C ,半径2r =,则点M 到直线240x y ++=距离的最小值min22d =-=-,故选B. 4.答案:A解析:易知两直线之间的最大距离为P ,Q 两点间的距离,由两点间的距离公式得||5PQ .故1l ,2l 之间的距离d 的取值范围为(0,5].5.答案:A解析:由圆22(2)2x y -+=可得圆心坐标为()2,0,半径r ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有1||2S AB d =⋅.易知||AB =max d ==,min d =26S ≤≤,故选A.6.答案:C解析:已知直线:10l x ay +-=是圆22:6210C x y x y +--+=的对称轴,圆心()3,1C ,半径3r =,所以直线l 过圆心()3,1C ,故310a +-=,故2a =-.所以点()1,2A --,||5AC =,||4AB ==.故选C.7.答案:A解析:因为||1QB =,所以点Q 在以点B 为圆心,1为半径的圆上, 显然当射线AP 在x 轴的下方时||PQ 取得最小值,此时直线:20AP x y ++=,点B 到AP 的距离d ==所以||PQ 1,故选A. 8.答案:BCD解析:由题意,直线1:210l ax y a --+=,即(2)10a x y --+=.令20x -=,得2,1x y ==,即直线1l 过定点()2,1;直线2:20l x ay a +--=,即2(1)0x a y -+-=,令10y -=,得2,1x y ==,即直线2l 过定点()2,1,所以直线12,l l 过同一个定点()2,1,记为点M .圆22:4240E x y x y +-+-=可化为22(2)(1)9x y -++=,而点()2,1M 在圆E 内部,所以直线12,l l 均与圆E 相交,所以A 选项错误;对于直线1l ,当0a =时,直线1l 被圆E 截得的弦长最小,且最小值为所以B 选项正确;对于直线2l ,当0a =时,直线2l 被圆E 截得的弦长最大,且最大值恰好为圆E 的直径6,所以C 选项正确;又当0a ≠时,直线1l 的斜率为a ,直线2l 的斜率为1a-,即直线12l l ⊥.设圆心E 到直线12,l l 的距离分别为12,d d ,则12d d ==又22212||4d d EM +==,即22||||99444AC BD -+-=,所以22||||56AC BD +=,所以2211||||||||14222ABCDAC BD S AC BD +=⋅≤⨯=四边形,当且仅当||||AC BD ==,等号成立,故四边形ABCD 面积最大值为14,所以D 选项正确,故选BCD. 9.答案:BC解析:本题考查圆与圆的位置关系.依题意1(,0)C a -,2(,2)C a a ,圆1C 半径11r =,圆2C 半径2|r a =.对于选项A ,1221|||2|22C OC S a a a =-⋅==△,则a =2|2r a ==,则圆2C 的面积为22π4πr =,选项A 错误;对于选项B,12|C C a,121|r r a +=+,若圆1C 与圆2C 外离,则1212C C r r >+,即|1|a a >,得2a >或2a <,选项B 正确;对于选项C ,当a =时,1C ⎛⎫ ⎪ ⎪⎝⎭,2C ⎝,121r r ==,1212|2C C a r r ===+,所以圆1C 与圆2C 外切,且121C C k =,所以两圆的公切线中有两条的斜率为1,设切线方程为0x y b -+=1=,解得2b =-或2b =,则一条切线方程为0x y -=,即y x =,选项C 正确;对于选项D,当a =1(C,2C ,11r =,22r =,12|4C C a ==,圆1C 与圆2C 上两点间距离的最大值为1247r r ++=,选项D 错误.故选BC.10.答案:ABD解析:因为110a a ⨯-⨯=,所以无论a 为何值,1l ,2l 都互相垂直,故A 正确;1l ,2l 分别经过定点(0,1)A 和(1,0)B -,故B 正确;1:10l ax y -+=关于直线0x y +=对称的直线方程为10ay x -++=,不是2:10l x ay ++=,故C 错误;由10,10,ax y x ay -+=⎧⎨++=⎩解得221,11,1a x a a y a --⎧=⎪⎪+⎨-+⎪=⎪+⎩即2211,11a a M a a ---+⎛⎫ ⎪++⎝⎭,所以MO =≤MO的最大值是D 正确.故选ABD.11.答案:12x =或10x +=解析:联立10,0,x y ⎧+=⎪+解得1,2x y ⎧=⎪⎪⎨⎪=⎪⎩即两直线的交点为12⎛ ⎝⎭.当直线的斜率不存在时,12x =,到原点的距离等于12,符合题意;当直线的斜率存在时,设直线的方程为12y k x ⎛⎫=- ⎪⎝⎭,即220kx y k -+=.因为直线与原点的最短距离为12,所以12=,解得k =,所以所求直线的方程为10x +=,所以所求直线的方程为12x =或10x +=. 12.答案:解析:圆221:2120C x y x ++-=与圆222:440C x y x y ++-=联立可得: 公共弦的方程为260x y -+=,222:440C x y x y ++-=变形为()()222:228C x y ++=-,故222:440C x y x y ++-=的圆心为()22,2C -,半径为, 而()22,2C -满足260x y -+=,故弦AB 的长为圆2C 的直径, 故弦AB的长为.故答案为:. 13.答案:k 解析:圆C 的方程可化为22(1)(2)4x y ++-=,圆心(1,2)C -,半径2r =,由于弦AB满足||AB =M,则||1CM , 因此M 点在以(1,2)C -为圆心,1为半径的圆上, 又点M 在直线20x y k ++=上,故直线20x y k ++=与圆22(1)(2)1x y ++-=1≤,解得k ≤14.答案:(1)见解析(2)当0t =时,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭ 解析:(1)证明:依题意,可设:AB y kx b =+,1,2D t ⎛⎫- ⎪⎝⎭,()11,A x y ,()()2212,B x y x x ≠.联立2,2,x y y kx b ⎧=⎪⎨⎪=+⎩消去y 得2220x kx b --=. 2480k b ∆=+>,122x x k +=,122x x b =-.又直线DA 与抛物线相切,则2111122x x x t+=-, 所以211210x tx --=,同理222210x tx --=. 所以1222k x x t =+=,1221b x x -=⋅=-, 所以k t =,12b =,则直线1:2AB y tx =+,必过定点10,2⎛⎫⎪⎝⎭. (2)解法一:由(1)得直线AB 的方程为12y tx =+.由21,22y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩可得2210x tx --=. 于是122x x t +=,()21212121y y t x x t +=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,||2EM =,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭; 当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭. 解法二:设M 为线段AB 的中点,由(1)可知212,M t t ⎛+⎫ ⎪⎝⎭.所以()2,2EM t t =-,()2,FM t t =,又EM FM ⊥,则()2220t t t t ⋅+-⋅=, 解得0t =或1t =或1t =-.当0t =时,||2EM =,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭; 当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭. 15.答案:(1)见解析(2)不存在满足题意的直线l .理由见解析解析:(1)设动圆圆心(,)M x y ,作MN x ⊥轴于点N . ①若动圆与半圆外切,则||2||MO MN =+,2y +, 两边平方得22244x y y y +=++,化简得211(0)4y x y =->. ②若动圆与半圆内切,则||2||MO MN =-,2y =-, 两边平方得22244x y y y +=-+,化简得211(0)4y x y =-+>.综上,当动圆与半圆外切时,动圆圆心的轨迹方程为211(0)4y x y =->; 当动圆与半圆内切时,动圆圆心的轨迹方程为211(0)4y x y =-+>. 动圆圆心的轨迹如图所示.(2)假设满足题意的直线l 存在,可设l 的方程为13y x b =+.依题意,可得直线l 与曲线211(0)4y x y =->交于A ,D 两点,与曲线211(0)4y x y =-+>交于B ,C 两点.由21,3114y x b y x ⎧=-+⎪⎪⎨⎪=-⎪⎩与21,311,4y x b y x ⎧=+⎪⎪⎨⎪=-+⎪⎩消去y 整理可得23412120x x b ---=①与23412120x x b ++-=②. 设(),A A A x y ,(),B B B x y ,(),C C C x y ,(),D D D x y ,则43A D x x +=,12123A D b x x --=,43B C x x +=-,12123B C b x x -=.又||A D AD x =-,||B C BC x -,且||2||AD BC =,2A D B C x x x x ∴-=-,即()()22444A D A D B C B C x x x x x x x x ⎡⎤+-=+-⎣⎦, 整理得2244(1212)44(1212)43333b b ⎡⎤+-⎛⎫⎛⎫+=--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解得23b =.将23b =代入方程①,得2A x =-,103D x =. 函数211(0)4y x y =->的定义域为(,2)(2,)-∞-+∞,∴假设不成立,即不存在满足题意的直线l .。
高考数学刷题单元质量测试七解析几何理含解析
单元质量测试(七)时间:120分钟 满分:150分 第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.直线3x +3y -1=0的倾斜角大小为( ) A .30° B.60° C.120° D.150° 答案 C 解析 ∵k =-33=-3,∴α=120°.故选C .2.“a =2”是“直线y =-ax +2与y =a4x -1垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由a =2得两直线斜率满足(-2)×24=-1,即两直线垂直;由两直线垂直得(-a )×a4=-1,解得a =±2.故选A .3.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的离心率为3,则双曲线的渐近线方程为( )A .y =±22x B .y =±2x C .y =±2x D .y =±12x答案 A解析 由题意得,双曲线的离心率e =c a =3,故b a=2,故双曲线的渐近线方程为y =±a b x =±22x . 4.(2018·邯郸摸底)已知F 1,F 2分别是双曲线C :x 29-y 27=1的左、右焦点,P 为双曲线C 右支上一点,且|PF 1|=8,则|F 1F 2||PF 2|=( )A .4B .3C .2 2D .2 答案 A解析 由x 29-y 27=1知c 2=a 2+b 2=16,所以|F 1F 2|=2c =8,由双曲线定义知||PF 1|-|PF 2||=2a =6,所以|PF 2|=2或|PF 2|=14(P 在右支上,舍去),所以|F 1F 2||PF 2|=4.5.(2018·福州模拟)已知双曲线C 的两个焦点F 1,F 2都在x 轴上,对称中心为原点,离心率为3.若点M 在C 上,且MF 1⊥MF 2,M 到原点的距离为3,则C 的方程为( )A .x 24-y 28=1 B .y 24-x 28=1C .x 2-y 22=1 D .y 2-x 22=1答案 C解析 显然OM 为Rt △MF 1F 2的中线,则|OM |=12|F 1F 2|=c =3.又e =c a =3a =3,得a =1.进而b 2=c 2-a 2=2.故C 的方程为x 2-y 22=1,故选C . 6.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A .12B .23C .34D .45 答案 C解析 令c =a 2-b 2.如图,据题意,|F 2P |=|F 1F 2|,∠F 1PF 2=30°,∴∠F 1F 2P =120°,∴∠PF 2x =60°,∴|F 2P |=2⎝ ⎛⎭⎪⎫3a 2-c =3a -2c .∵|F 1F 2|=2c ,∴3a -2c =2c ,∴3a =4c ,∴c a =34,即椭圆的离心率为34.故选C .7.(2018·大庆质检一)已知等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=-12x 的准线交于A ,B 两点,|AB |=25,则C 的实轴长为( )A . 2B .2C .2 2D .4 答案 D解析 因为抛物线y 2=-12x 的准线为x =3,而等轴双曲线C 的焦点在x 轴上,所以A ,B 两点关于x 轴对称,且|AB |=25,所以点(3,±5)在双曲线上,代入双曲线的方程x 2-y 2=a 2中得9-5=a 2=4,所以a =2,即2a =4,故双曲线C 的实轴长为4.故选D .8.(2018·乌鲁木齐一诊)已知抛物线y 2=4x 与圆F :x 2+y 2-2x =0,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D ,则下列关于|AB |·|CD |的值的说法中,正确的是( )A .等于1B .等于16C .最小值为4D .最大值为4 答案 A解析 圆F 的方程为(x -1)2+y 2=1.设直线l 的方程为x =my +1.代入y 2=4x 得y2-4my -4=0,y 1y 2=-4.设点A (x 1,y 1),D (x 2,y 2).则|AF |=x 1+1,|DF |=x 2+1,所以|AB |=|AF |-|BF |=x 1,|CD |=|DF |-|CF |=x 2,所以|AB |·|CD |=x 1x 2=116(y 1y 2)2=1.故选A .9.(2018·沈阳质检一)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),O 为坐标原点,F 为双曲线的右焦点,以OF 为直径的圆与双曲线的渐近线交于一点A ,若∠AFO =π6,则双曲线C的离心率为( )A .2B . 3C . 2D .233答案 A解析 如图所示,在△AOF 中,∠OAF =90°,又∠AFO =30°,所以∠AOF =60°,故b a=tan60°=3,所以e =1+b 2a2=2,故选A .10.(2019·唐山模拟)已知F 1,F 2为双曲线Γ:x 2a 2-y 220=1(a >0)的左、右焦点,P 为双曲线Γ左支上一点,直线PF 1与双曲线Γ的一条渐近线平行,PF 1⊥PF 2,则a =( )A . 5B . 2C .4 5D .5 答案 A解析 如图,记PF 2与双曲线的渐近线l 的交点为M .与PF 1平行的双曲线的渐近线为y=25a x ,由PF 1⊥PF 2,得PF 2⊥l ,则F 2(c ,0)到直线l :25ax -y =0的距离为d =25a c25a2+12=25ca 2+20=25.而△OMF 2为直角三角形,所以|OM |=|OF 2|2-|MF 2|2=c 2-20=a .又OM ∥F 1P ,O 是F 1F 2的中点,所以|F 1P |=2|OM |=2a ,|PF 2|=2|MF 2|=45.而由双曲线的定义,有|PF 2|-|PF 1|=2a ,即45-2a =2a ,所以a =5.故选A .11.(2018·衡阳三模)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1,y 轴上的点P在椭圆以外,且线段PF 1与椭圆E 交于点M .若|OM |=|MF 1|=33|OP |,则椭圆E 的离心率为( )A .12B .32C .3-1D .3+12 答案 C解析 过M 作MH ⊥x 轴于点H ,由|OM |=|MF 1|,知H 为OF 1的中点,进而MH 为△PF 1O 的中位线,则M 为F 1P 的中点.从而依题意,有12|F 1P |=33|OP |,即32=|OP ||F 1P |=sin ∠OF 1P ,则∠OF 1P =π3.则△MF 1O 是边长为c 的等边三角形.连接MF 2(F 2为椭圆E 的右焦点),则由OM =OF 1=OF 2可知∠F 1MF 2=π2.故e =2c 2a =|F 1F 2||MF 1|+|MF 2|=2c (1+3)c =21+3=3-1.故选C .12.(2018·合肥质检一)如图,已知椭圆x 2a 2+y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于M ,N 两点,交y 轴于点H .若F 1,H 是线段MN 的三等分点,则△F 2MN 的周长为( )A .20B .10C .2 5D .4 5 答案 D解析 解法一:设点H (0,t ),0<t <2,则由F 1,H 是线段MN 的三等分点,可知点N (c ,2t ),M (-2c ,-t ).则有⎩⎪⎨⎪⎧c 2a 2+4t 24=1,4c 2a 2+t24=1,消去t 2得15e 2=3,则e 2=15.又b =2,则1-e 2=b 2a 2,即1-15=4a2,解得a 2=5,从而由椭圆的定义可知△F 2MN 的周长为4a =45,故选D .解法二:由F 1,H 是线段MN 的三等分点,知H 是线段F 1N 的中点,又O 是F 1F 2的中点,则OH ∥F 2N ,从而F 2N ⊥F 1F 2,故Nc ,b 2a ,H 0,b 22a .又F 1是线段MH 的中点,则M -2c ,-b 22a.由点M 在椭圆上,可得4c 2a 2+b 44a 2×4=1.又b 2=4=a 2-c 2,从而有4(a 2-4)a 2+1a 2=1,解得a 2=5,从而由椭圆的定义可知△F 2MN 的周长为4a =45,故选D .第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若k ∈R ,直线y =kx +1与圆x 2+y 2-2ax +a 2-2a -4=0恒有交点,则实数a 的取值范围是________.答案 [-1,3]解析 因为直线y =kx +1恒过定点(0,1),题设条件等价于点(0,1)在圆内或圆上,则02+12-2a ·0+a 2-2a -4≤0且2a +4>0,解得-1≤a ≤3.14.(2018·浙江宁波质检)与圆(x -2)2+y 2=1外切,且与直线x +1=0相切的动圆圆心的轨迹方程是________.答案 y 2=8x解析 设动圆圆心为P (x ,y ),则(x -2)2+y 2=|x +1|+1,依据抛物线的定义结合题意可知动圆圆心P (x ,y )的轨迹是以(2,0)为焦点,x =-2为准线的抛物线,故方程为y 2=8x .15.(2018·贵阳模拟)已知过抛物线y 2=2px (p >0)的焦点F ,且倾斜角为60°的直线与抛物线交于A ,B 两点,若|AF |>|BF |,且|AF |=2,则p =________.答案 1解析 过点A 作AM ⊥x 轴交x 轴于点M ,由∠AFM =60°,|AF |=2得|FM |=1,且点A 到抛物线的准线l :x =-p2的距离为2,而|FM |=1,所以抛物线的焦点F 到准线的距离为1,即p =1.16.已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.答案 12解析 解法一:由椭圆方程知椭圆C 的左焦点为F 1(-5,0),右焦点为F 2(5,0).则M (m ,n )关于F 1的对称点为A (-25-m ,-n ),关于F 2的对称点为B (25-m ,-n ),设MN 中点为(x ,y ),所以N (2x -m ,2y -n ).所以|AN |+|BN |=(2x +25)2+(2y )2+ (2x -25)2+(2y )2=2[](x +5)2+y 2+(x -5)2+y2,故由椭圆定义可知|AN |+|BN |=2×6=12.解法二:根据已知条件画出图形,如图.设MN 的中点为P ,F 1,F 2为椭圆C 的焦点,连接PF 1,PF 2.显然PF 1是△MAN 的中位线,PF 2是△MBN 的中位线,∴|AN |+|BN |=2|PF 1|+2|PF 2|=2(|PF 1|+|PF 2|)=2×6=12.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(2018·河南郑州检测)(本小题满分10分)已知坐标平面上动点M (x ,y )与两个定点P (26,1),Q (2,1),且|MP |=5|MQ |.(1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为C ,过点N (-2,3)的直线l 被C 所截得的线段长度为8,求直线l 的方程.解 (1)由题意,得|MP ||MQ |=5,即(x -26)2+(y -1)2(x -2)2+(y -1)2=5,化简,得x 2+y 2-2x -2y -23=0,所以点M 的轨迹方程是(x -1)2+(y -1)2=25. 轨迹是以(1,1)为圆心,5为半径的圆. (2)当直线l 的斜率不存在时,l :x =-2, 此时所截得的线段长度为252-32=8, 所以l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0,圆心(1,1)到直线l 的距离d =|3k +2|k 2+1.由题意,得|3k +2|k 2+12+42=52,解得k =512.所以直线l 的方程为512x -y +236=0,即5x -12y +46=0.综上,直线l 的方程为x =-2或5x -12y +46=0.18.(2018·佛山质检一)(本小题满分12分)已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的右顶点与抛物线C 2:y 2=2px (p >0)的焦点重合,椭圆C 1的离心率为12,过椭圆C 1的右焦点F 且垂直于x 轴的直线被抛物线C 2截得的弦长为42.(1)求椭圆C 1和抛物线C 2的方程;(2)过点A (-2,0)的直线l 与C 2交于M ,N 两点,点M 关于x 轴的对称点为M ′,证明:直线M ′N 恒过一定点.解 (1)设椭圆C 1的半焦距为c ,依题意,可得a =p2,则C 2:y 2=4ax .代入x =c ,得y 2=4ac ,即y =±2ac , 则有⎩⎪⎨⎪⎧4ac =42,c a =12,a 2=b 2+c 2,解得a =2,b =3,c =1.所以椭圆C 1的方程为x 24+y 23=1,抛物线C 2的方程为y 2=8x .(2)证明:依题意,可知直线l 的斜率不为0, 可设l :x =my -2.联立⎩⎪⎨⎪⎧x =my -2,y 2=8x ,消去x ,整理得y 2-8my +16=0.设点M (x 1,y 1),N (x 2,y 2),则点M ′(x 1,-y 1), 由Δ=(-8m )2-4×16>0,解得m <-1或m >1. 且有y 1+y 2=8m ,y 1y 2=16,m =y 1+y 28,所以直线M ′N 的斜率k M ′N =y 2+y 1x 2-x 1=8mm (y 2-y 1)=8y 2-y 1. 可得直线M ′N 的方程为y -y 2=8y 2-y 1(x -x 2), 即y =8y 2-y 1x +y 2-8(my 2-2)y 2-y 1=8y 2-y 1x +y 2(y 2-y 1)-y 2(y 1+y 2)+16y 2-y 1=8y 2-y 1x -16y 2-y 1=8y 2-y 1·(x -2). 所以当m <-1或m >1时,直线M ′N 恒过定点(2,0).19.(2019·深圳调研)(本小题满分12分)已知直线l 经过抛物线C :x 2=4y 的焦点F ,且与抛物线C 交于A ,B 两点,抛物线C 在A ,B 两点处的切线分别与x 轴交于点M ,N .(1)求证:AM ⊥MF ;(2)记△AFM 和△BFN 的面积分别为S 1和S 2,求S 1·S 2的最小值. 解 (1)证明:不妨设A (x 1,y 1),B (x 2,y 2), 其中y 1=x 214,y 2=x 224.由导数知识可知,抛物线C 在点A 处的切线l 1的斜率k 1=x 12,则切线l 1的方程y -y 1=x 12(x -x 1),令y =0,可得M x 12,0.因为F (0,1),所以直线MF 的斜率k MF =1-00-x 12=-2x 1.所以k 1·k MF =-1,所以AM ⊥MF . (2)由(1)可知S 1=12|AM |·|MF |,其中|AM |=x 1-x 122+y 21=x 214+y 21=y 1+y 21=y 1·1+y 1,|MF |=x 122+1=y 1+1,所以S 1=12|AM |·|MF |=12(y 1+1)·y 1.同理可得S 2=12(y 2+1)y 2.所以S 1·S 2=14(y 1+1)(y 2+1)y 1y 2=14(y 1y 2+y 1+y 2+1)y 1y 2. 设直线l 的方程为y =kx +1,联立方程组⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,可得x 2-4kx -4=0,所以x 1x 2=-4,所以y 1y 2=(x 1x 2)216=1.所以S 1·S 2=14(y 1+y 2+2)≥14(2y 1y 2+2)=1,当且仅当y 1=y 2时,等号成立. 所以S 1·S 2的最小值为1.20.(2018·太原三模)(本小题满分12分)已知抛物线C 1:y 2=8x 的焦点F 也是椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点,点P (0,2)在椭圆短轴CD 上,且P C →·P D →=-1. (1)求椭圆C 2的方程;(2)设Q 为椭圆C 2上的一个不在x 轴上的动点,O 为坐标原点,过椭圆C 2的右焦点F 作OQ 的平行线,交椭圆C 2于M ,N 两点,求△QMN 面积的最大值.解 (1)由C 1:y 2=8x ,知焦点F 坐标为(2,0), 所以a 2-b 2=4.由已知得点C ,D 的坐标分别为(0,-b ),(0,b ), 又P C →·P D →=-1,于是4-b 2=-1,解得b 2=5,a 2=9, 所以椭圆C 2的方程为x 29+y 25=1.(2)设点M (x 1,y 1),N (x 2,y 2),Q (x 3,y 3), 直线MN 的方程为x =my +2.由⎩⎪⎨⎪⎧x =my +2,x 29+y25=1,可得(5m 2+9)y 2+20my -25=0.则y 1+y 2=-20m 5m 2+9,y 1y 2=-255m 2+9, 所以|MN |=(1+m 2)[(y 1+y 2)2-4y 1y 2] =(1+m 2)-20m 5m 2+92+1005m 2+9=30(1+m 2)5m 2+9.因为MN ∥OQ ,所以△QMN 的面积等于△OMN 的面积.又点O 到直线x =my +2的距离d =21+m 2,所以△QMN 的面积S =12|MN |·d =12×30(m 2+1)5m 2+9×2m 2+1=30m 2+15m 2+9. 令m 2+1=t ,则m 2=t 2-1(t ≥1), S =30t 5(t 2-1)+9=30t 5t 2+4=305t +4t . 因为f (t )=5t +4t在[1,+∞)上单调递增, 所以当t =1时,f (t )取得最小值9.所以△QMN 的面积的最大值为103. 21.(2018·重庆一模)(本小题满分12分)已知F 1,F 2分别为椭圆C :x 23+y 22=1的左、右焦点,点P (x 0,y 0)在椭圆C 上.(1)求PF 1→·PF 2→的最小值;(2)若y 0>0且PF 1→·F 1F 2→=0,已知直线l :y =k (x +1)与椭圆C 交于两点A ,B ,过点P且平行于直线l 的直线交椭圆C 于另一点Q ,问:四边形PABQ 能否成为平行四边形?若能,请求出直线l 的方程;若不能,请说明理由.解 (1)由题意可知,F 1(-1,0),F 2(1,0),∴PF 1→=(-1-x 0,-y 0),PF 2→=(1-x 0,-y 0),∴PF 1→·PF 2→=x 20+y 20-1=13x 20+1. ∵-3≤x 0≤3,∴PF 1→·PF 2→的最小值为1.(2)∵PF 1→·F 1F 2→=0,∴x 0=-1.∵y 0>0,∴P -1,233. 设A (x 1,y 1),B (x 2,y 2).联立直线与椭圆方程,得(2+3k 2)x 2+6k 2x +3k 2-6=0,由根与系数的关系可知x 1+x 2=-6k 22+3k 2,x 1·x 2=3k 2-62+3k2. ∴由弦长公式可知|AB |=1+k 2|x 1-x 2|=43(1+k 2)2+3k 2. ∵P -1,233,PQ ∥AB , ∴直线PQ 的方程为y -233=k (x +1). 设Q (x 3,y 3).将PQ 的方程代入椭圆方程可知(2+3k 2)x 2+6kk +233x +3k +2332-6=0,∵x 0=-1,∴x 3=2-3k 2-43k 2+3k2, ∴|PQ |=1+k 2·|x 0-x 3|=1+k 2·|4-43k |2+3k2. 若四边形PABQ 为平行四边形,则|AB |=|PQ |, ∴43·1+k 2=|4-43k |,解得k =-33. 故符合条件的直线l 的方程为y =-33(x +1), 即x +3y +1=0. 22.(2018·衡阳三模)(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a ≥3>b >0)的离心率为63,且椭圆C 上的动点P 到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程;(2)椭圆C 上是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A ,B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.解 (1)依题意e =ca =63,则c 2=23a 2, 所以b 2=a 2-c 2=13a 2. 因为a ≥3,所以b ≥1.设P (x ,y )是椭圆C 上任意一点,则x 2a 2+y 2b 2=1, 所以x 2=a 21-y 2b 2=a 2-3y 2, 所以|PQ |=x 2+(y -2)2=a 2-3y 2+(y -2)2=-2(y +1)2+a 2+6(y ∈[-b ,b ]). 因为b ≥1,当y =-1时,|PQ |有最大值a 2+6=3, 可得a =3,所以b =1,c =2.故椭圆C 的方程为x 23+y 2=1.(2)假设存在点M (m ,n )在椭圆C 上,满足题意, 所以m 23+n 2=1,m 2=3-3n 2,设点A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧ mx +ny =1,x 2+y 2=1,得(m 2+n 2)x 2-2mx +1-n 2=0. 所以Δ=4m 2-4(m 2+n 2)(1-n 2)=4n 2(m 2+n 2-1) =8n 2(1-n 2)>0,可得n 2<1.由根与系数的关系得x 1+x 2=2mm 2+n 2,x 1x 2=1-n2m 2+n 2,所以y 1y 2=1-mx 1n ·1-mx 2n=1-m (x 1+x 2)+m 2x 1x 2n 2=1-m2m 2+n 2,所以|AB |=(x 1-x 2)2+(y 1-y 2)2=x 21+y 21+x 22+y 22-2(x 1x 2+y 1y 2) =2-21-n 2m 2+n 2+1-m2m 2+n 2=21-1m 2+n 2.设原点O 到直线AB 的距离为h ,则h =1m 2+n 2,所以S △OAB =12|AB |·h =1m 2+n 21-1m 2+n 2.设t =1m 2+n 2,由0≤n 2<1,得m 2+n 2=3-2n 2∈(1,3],所以t ∈13,1, S △OAB =t (1-t )=-t -122+14,t ∈13,1, 所以,当t =12时,S △OAB 面积最大,为12. 此时,点M 的坐标为62,22或62,-22或-62,22或-62,-22.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题突破练27专题七解析几何过关检测一、选择题1.(2019重庆第一中学高三下学期第三次月考)已知直线l1:mx+(m-3)y+1=0,直线l2:(m+1)x+my-1=0,若l1⊥l2,则m=()A.m=0或m=1B.m=1C.m=-32D.m=0或m=-322.(2019甘肃高三第一次高考诊断考试)抛物线y2=8x的焦点到双曲线y 24-x2=1的渐近线的距离是()A.√55B.2√55C.4√55D.√53.(多选题)下列说法正确的是()A.直线x-y-2=0与两坐标轴围成的三角形的面积是2B.点(0,2)关于直线y=x+1的对称点为(1,1)C.过(x1,y1),(x2,y2)两点的直线方程为y-y1y2-y1=x-x1x2-x1D.经过点(1,1)且在x轴和y轴上的截距都相等的直线方程为x+y-2=04.(2019湖北黄冈中学高三适应性考试)已知双曲线x 2a2−y2b2=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线离心率为()A.3√5B.3C.√3D.√25.(2019陕西宝鸡中学高三年级第二次模拟)若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是()A.1B.-2C.1或-2D.-326.(多选题)已知点F是抛物线y2=2px(p>0)的焦点,AB,CD是经过点F的弦且AB⊥CD,AB的斜率为k,且k>0,C,A两点在x轴上方,则下列结论中一定成立的是()A.1|AB |+1|CD |=12p B.若|AF|·|BF|=43p 2,则k=√33 C.OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ·OD ⃗⃗⃗⃗⃗⃗ D.四边形ABCD 面积最小值为16p 27.(2019贵州凯里第一中学高三下学期模拟考试《黄金卷二》)已知P ,Q 分别为直线3x+4y+7=0和曲线x 2+y 2-2x=0上的动点,则|PQ|的最小值为( ) A.3B.2C.1D.258.(2019陕西宝鸡高三高考模拟检测三)双曲线x 236−y 29=1的一条弦被点P (4,2)平分,那么这条弦所在的直线方程是( ) A.x-y-2=0 B.2x+y-10=0 C.x-2y=0 D.x+2y-8=09.在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x-my-2=0的距离.当θ,m 变化时,d 的最大值为( ) A.1B.2C.3D.410.(2019河北保定高三第二次模拟考试)设点P 为直线l :x+y-4=0上的动点,点A (-2,0),B (2,0),则|PA|+|PB|的最小值为( ) A.2√10 B.√26C.2√5D.√1011.已知椭圆x 2a 2+y 2b2=1(a>b>0)的半焦距为c (c>0),左焦点为F ,右顶点为A ,抛物线y 2=158(a+c )x 与椭圆交于B ,C 两点,若四边形ABFC 是菱形,则椭圆的离心率是 ( )A.815B.415C.23D.12二、填空题12.如图,过抛物线y 2=4x 的焦点F 作直线,与抛物线及其准线分别交于A ,B ,C 三点,若FC⃗⃗⃗⃗⃗ =4FB ⃗⃗⃗⃗⃗ ,则直线AB 的方程为 ,线段|AB⃗⃗⃗⃗⃗ |= .13.已知焦点在x 轴上的双曲线C 的左焦点为F ,右顶点为A ,若线段FA 的垂直平分线与双曲线C 没有公共点,则双曲线C 的离心率的取值范围是 . 14.(2019山东临沂模拟)椭圆x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,离心率为12,过F 2的直线交椭圆于A ,B 两点,△ABF 1的周长为8,则该椭圆的短轴长为 .三、解答题15.已知椭圆C :x 2a 2+y 2b2=1(a>b>0),点3,√32在椭圆上,过C 的焦点且与长轴垂直的弦的长度为13.(1)求椭圆C 的标准方程;(2)过点A (-2,0)作两条相交直线l 1,l 2,l 1与椭圆交于P ,Q 两点(点P 在点Q 的上方),l 2与椭圆交于M ,N 两点(点M 在点N 的上方),若直线l 1的斜率为-17,S △MAP =2534S △NAQ ,求直线l 2的斜率.16.已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,且离心率为√22,M 为椭圆上任意一点,当∠F 1MF 2=90°时,△F 1MF 2的面积为1. (1)求椭圆C 的方程;(2)已知点A 是椭圆C 上异于椭圆顶点的一点,延长直线AF 1,AF 2分别与椭圆交于点B ,D ,设直线BD 的斜率为k 1,直线OA 的斜率为k 2,求证:k 1·k 2为定值.17.(2019山东威海高三二模)在直角坐标系xOy中,设椭圆C:x 2a2+y2b2=1(a>b>0)的左焦点为F1,短轴的两个端点分别为A,B,且∠AF1B=60°,点√3,12在C上.(1)求椭圆C的方程;(2)若直线l:y=kx+m(k>0)与椭圆C和圆O分别相切于P,Q两点,当△OPQ面积取得最大值时,求直线l的方程.参考答案专题突破练27专题七解析几何过关检测1.A解析因为直线l1:mx+(m-3)y+1=0与直线l2:(m+1)x+my-1=0垂直,所以m(m+1)+m(m-3)=0,即m(m-1)=0,解得m=0或m=1.故选A.2.C解析依题意,抛物线的焦点为(2,0),双曲线的渐近线为y=±2x,其中一条为2x-y=0,由点到直线的距离公式得d=√5=4√55.故选C.3.AB解析A中直线在两坐标轴上的截距分别为2,-2,所以围成三角形的面积是2,正确;B中0+12,2+12在直线y=x+1上,且(0,2),(1,1)连线的斜率为-1,所以B正确;C选项需要条件y2≠y1,x2≠x1,故错误;D选项错误,还有一条截距都为0的直线y=x.故选AB.4.A解析圆C:x2+y2-6x+5=0的标准方程为(x-3)2+y2=4,圆心为C(3,0),半径r=2,∴双曲线x2a2−y2b2=1(a>0,b>0)的右焦点坐标为(3,0),即c=3,∴a2+b2=9.①∵双曲线x2a2−y2b2=1(a>0,b>0)的一条渐近线方程为bx-ay=0,∴C到渐近线的距离等于半径,即√a2+b=2.②由①②解得a2=5,b2=4,所以c2=9.该双曲线的离心率为e=√5=35√5.故选A.5.A解析①当m=-1时,两直线分别为x-2=0和x-2y-4=0,此时两直线相交,不合题意;②当m≠-1时,两直线的斜率都存在,由直线平行可得{-11+m=-m2,21+m≠-2,解得m=1.综上可得m=1.故选A.6.AC解析因为AB的斜率为k,AB⊥CD,所以k CD=-1k,设A(x1,y1),B(x2,y2),AB的方程为y=k(x-p2),由{y=k(x-p2),y2=2px可得,k2x2-p(k2+2)x+14k2p2=0,{x1+x2=p(k2+2)k2,x1x2=14p2,所以|AB|=x1+x2+p=p(k 2+2)k2+p=2p(k2+1)k2,同理可得|CD|=2p(1k2+1)1k2=2p(1+k2),则有1|AB|+1|CD|=12p,所以A 正确;OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=14p 2+k 2x 1-p 2x 2-p 2=14p 2+k 2x 1x 2-p 2(x 1+x 2)+14p 2=14p 2+12k 2p 2-p 2(k 2+2)2=-34p 2与k 无关,同理OC ⃗⃗⃗⃗⃗ ·OD ⃗⃗⃗⃗⃗⃗ =-34p 2,故O A ⃗⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ·OD⃗⃗⃗⃗⃗⃗ ,C 正确; 若|AF|·|BF|=43p 2,由x 1+p 2x 2+p 2=x 1x 2+p 2(x 1+x 2)+14p 2得12p 2+p 2(k 2+2)2k 2=p 2+p 2k2=43p 2,解得k=√3,故B 错误;因为AB ⊥CD ,所以四边形ABCD 面积S ABCD =12|AB||CD|=12·2p (k 2+1)k2·2p (1+k 2)=2p 2(k 2+1)2k2=2p 2k 2+1k2+2≥8p 2,当且仅当k 2=1k2,即k=1时,等号成立,故D 错误.故选AC .7.C 解析 将x 2+y 2-2x=0整理得(x-1)2+y 2=1,即是圆心为(1,0),半径为1的圆,所以圆心(1,0)到直线的距离d=√3+4=2.所以|PQ|的最小值为圆心到直线的距离减去半径,即d-r=1.故选C .8.C 解析 设弦的两端点A (x 1,y 1),B (x 2,y 2),斜率为k ,则x 12−y 12=1,x 22−y 22=1,两式相减得(x 1-x 2)(x 1+x 2)36=(y 1-y 2)(y 1+y 2)9,即k=y 1-y 2x 1-x 2=9(x 1+x 2)36(y 1+y 2)=9×836×4=12,所以弦所在的直线方程为y-2=12(x-4),即x-2y=0.故选C . 9.C 解析 设P (x ,y ),则{x =cosθ,y =sinθ,x 2+y 2=1.即点P 在单位圆上,点P 到直线x-my-2=0的距离可转化为圆心(0,0)到直线x-my-2=0的距离加上(或减去)半径,所以距离最大为d=1+√2=1+√2.m=0时,d max =3.10.A 解析 依据题意作出图象,如图所示.设点B (2,0)关于直线l 的对称点为B 1(a ,b ),则BB 1的中点坐标为a+22,b2,k BB 1·k l =-1.得{b -0a -2×(-1)=-1,a+22+b 2-4=0,解得{a =4,b =2.所以B 1(4,2).因为|PA|+|PB|=|PA|+|PB 1|,所以当A ,P ,B 1三点共线时,|PA|+|PB|最小.此时最小值为|AB 1|=√(4+2)2+(2-0)2=2√10.故选A .11.D 解析 由题意得A (a ,0),F (-c ,0),∵抛物线y 2=158(a+c )x 与椭圆交于B ,C 两点,∴B ,C 两点关于x 轴对称,可设B (m ,n ),C (m ,-n ),∵四边形ABFC 是菱形,∴m=12(a-c ),将B (m ,n )代入抛物线方程,得n 2=1516(a+c )(a-c )=1516b 2,∴B 12(a-c ),√154b,再代入椭圆方程,得[12(a -c )] 2a 2+(√154b) 2b2=1,化简整理,得4e 2-8e+3=0,解得e=12e=32>1不合题意,舍去,故答案为12.12.y=2√2(x-1) 92 解析 过B 点作y 轴垂线,交抛物线准线于点N.由题可知,抛物线焦点为(1,0),由抛物线第一定义可得|BF|=|BN|,由FC ⃗⃗⃗⃗⃗ =4FB⃗⃗⃗⃗⃗ 得|BC|=3|BF|=3|BN|,设|BN|=x ,则|BC|=3x ,|CN|=2√2x ,k AB =|CN ||BN |=2√2,则直线AB 的方程为y=2√2(x-1).联立{y 2=4x ,y =2√2(x -1)可得2x 2-5x+2=0,x 1+x 2=52,则|AB|=p 2+x 1+p 2+x 2=p+x 1+x 2=2+52=92.13.(1,3) 解析 ∵F (-c ,0),A (a ,0),∴线段FA 的垂直平分线为x=a -c2.∵线段FA 的垂直平分线与双曲线C 没有公共点,∴-a<a -c2<0,即c<3a ,∴e=ca <3,又e>1,∴1<e<3.14.2√3 解析 因为△ABF 1的周长为8,所以F 1A+F 1B+F 2A+F 2B=4a=8,解得a=2.因为离心率为12,所以ca =12,c=12a=1.由a 2=b 2+c 2,解得b=√3,则该椭圆的短轴长为2√3.15.解 (1)由已知得{9a 2+34b 2=1,2b 2a=13,解得{a =6,b =1.故椭圆C 的方程为x 236+y 2=1.(2)由题设可知:l 1的直线方程为x=-7y-2.联立方程组{x 236+y2=1,x =-7y -2,整理,得85y 2+28y-32=0. y P =817,y Q =-45.∴|AQ ||AP |=|y Q ||y P |=45817=1710. ∵S △MAP =2534S △NAQ ,∴12|AM||AP|sin θ=2534×12|AN||AQ|sin θ,即|AM ||AN |=2534×|AQ ||AP |=2534×1710=54. 设l 2的直线方程为x=my-2(m ≠0). 将x=my-2代入x 236+y 2=1得(m 2+36)y 2-4my-32=0.设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=4m m 2+36,y 1y 2=-32m 2+36.又∵y 1=-54y 2,∴-54y 2+y 2=4m m 2+36,-54y 22=-32m 2+36. ∴y 2=-16m m 2+36,y 22=1285(m 2+36).∴-16m m 2+362=1285(m 2+36). 解得m 2=4,∴m=±2. 故直线l 2的斜率为±12.16.解 (1)设|MF 1|=r 1,|MF 2|=r 2,由题知{ e =c a =√22,r 1+r 2=2a ,r 12+r 22=4c 2,12r 1·r 2=1,解得{a =√2,c =1,则b 2=1, ∴椭圆C 的方程为x 22+y 2=1.(2)设A (x 0,y 0)(x 0·y 0≠0),B (x 1,y 1),C (x 2,y 2),当直线AF 1的斜率不存在时,设A -1,√22,则B -1,-√22,直线AF 2的方程为y=-√24(x-1),代入x 22+y 2=1,可得5x 2-2x-7=0.∴x 2=75,y 2=-√210,则D75,-√210.∴直线BD 的斜率为k 1=-√210-(-√22)75-(-1)=√26,直线OA 的斜率为k 2=-√22,∴k 1·k 2=√26×-√22=-16.当直线AF 2的斜率不存在时,同理可得k 1·k 2=-16. 当直线AF 1,AF 2的斜率存在时,x 0≠±1.设直线AF 1的方程为y=y 0x 0+1(x+1),则由{y =yx 0+1(x +1),x 22+y 2=1,消去x 可得[(x 0+1)2+2y 02]x 2+4y 02x+2y 02-2(x 0+1)2=0,又x 022+y 02=1,则2y 02=2-x 02,代入上述方程可得(3+2x 0)x 2+2(2-x 02)x-3x 02-4x 0=0,∴x 1·x 0=-3x 02-4x 03+2x 0,∴x 1=-3x 0-43+2x 0,则y 1=y0x 0+1-3x 0-43+2x 0+1=-y 03+2x 0,∴B -3x 0+42x 0+3,-y02x 0+3.设直线AF 2的方程为y=y 0x 0-1(x-1),同理可得D 3x 0-42x 0-3,y2x 0-3,∴直线BD 的斜率为k 1=y 02x 0-3+y 02x 0+33x 0-42x 0-3+3x 0+42x 0+3=4x 0y 012x 02-24=x 0y 03x 02-6, ∵直线OA 的斜率为k 2=y0x 0,∴k 1·k 2=x 0y 03x 02-6·yx 0=y 023x 02-6=1-x 0223x 02-6=-16.所以,直线BD 与OA 的斜率之积为定值-16,即k 1·k 2=-16.17.解 (1)由∠AF 1B=60°,可得a=2b ,① 由点√3,12在椭圆C 上,得34b 2+14b 2=1,②由①②得a 2=4,b 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)由{x 24+y 2=1,O =kx +m ,消去y 整理得(1+4k 2)x 2+8kmx+4m 2-4=0(*),由直线l 与椭圆相切,得Δ=64k 2m 2-16(m 2-1)(1+4k 2)=0, 整理得m 2=4k 2+1,故方程(*)化为m 2x 2+8kmx+16k 2=0,即(mx+4k )2=0,解得x=-4km . 设P (x 1,y 1),则x 1=-4km1+4k2=-4k m ,故y 1=kx 1+m=1m. 因此P -4k m ,1m .又直线l :y=kx+m (k>0)与圆O 相切,可得|OQ|=√1+k.所以|PQ|=√|OP |2-|OQ |2=√16k 2+1m 2-m 21+k2,所以S △OPQ =12|PQ|·|OQ|=12√16k 2+1m 2-m 21+k 2·√1+k将m 2=4k 2+1代入上式可得S △OPQ =12√16k 2+14k 2+1-4k 2+11+O 2·√4k 2+11+k2 =12√4(4k 2+1)-34k 2+1-4(k 2+1)-31+k 2·√4k 2+11+k2 =12√9k 2(4k 2+1)(k 2+1)·√4k 2+11+k2 =1·3k 1+k2=3·1k+1k, 由k>0,得k+1k ≥2,所以S△OPQ=32·1k+1k≤34,当且仅当k=1时等号成立,即k=1时S△OPQ取得最大值.由m2=4k2+1=5,得m=±√5.所以直线l的方程为y=x±√5.。