控制系统仿真和设计实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

控制系统仿真与设计实验报告

姓名:

班级:

学号:

指导老师:峰

7.2.2控制系统的阶跃响应

一、实验目的

1.观察学习控制系统的单位阶跃响应;

2.记录单位阶跃响应曲线;

3.掌握时间相应的一般方法;

二、实验容

1.二阶系统G(s)=10/(s2+2s+10)

键入程序,观察并记录阶跃响应曲线;录系统的闭环根、阻尼比、无阻尼振荡频率;记录实际测去的峰值大小、峰值时间、过渡时间,并与理论值比较。

(1)实验程序如下:

num=[10];

den=[1 2 10];

step(num,den);

响应曲线如下图所示:

(2)再键入:

damp(den);

step(num,den);

[y x t]=step(num,den);

[y,t’]

可得实验结果如下:

实际值理论值峰值 1.3473 1.2975 峰值时间 1.0928 1.0649 过渡时间+%5 2.4836 2.6352

+%2 3.4771 3.5136 2. 二阶系统G(s)=10/(s2+2s+10)

试验程序如下:

num0=[10];

den0=[1 2 10];

step(num0,den0);

hold on;

num1=[10];

den1=[1 6.32 10];

step(num1,den1);

hold on;

num2=[10];

den2=[1 12.64 10];

step(num2,den2);

响应曲线:

(2)修改参数,分别实现w n1= (1/2)w n0和w n1= 2w n0响应曲线

试验程序:

num0=[10];

den0=[1 2 10];

step(num0,den0);

hold on;

num1=[2.5];

den1=[1 1 2.5];

step(num1,den1);

hold on;

num2=[40];

den2=[1 4 40];

step(num2,den2);

响应曲线如下图所示:

3.时作出下列系统的阶跃响应,并比较与原系统响应曲线的差别与特点,作出相应的实验分析结果。

(1)试验程序:

num0=[2 10];

den0=[1 2 10];

subplot(2,2,1);

step(num0,den0);

title(‘G(1)’);

(2)响应曲线如下图所示:

4.试做出一个三阶系统和一个四阶系统的阶跃响应,并分析实验结果三阶系统G(s)=1/(s3+s2+s+1)

四阶系统G(s)=1/(s4+s3+s2+s+1)

(1)试验程序

(2)响应曲线

三、实验结果分析

(1)系统的阻尼比越大,其阶跃响应超调越小,上升时间越长;系统的阻尼比决定了其振荡特性:当阻尼比在0~1时,有振荡,当阻尼比>1时,无振荡、无超调,阶跃响应非周期趋于稳态输出。

(2)当分子、分母多项式阶数相等时,响应曲线初值为非零初值;当分子多项式阶数低于分母多项式阶数时,响应曲线初值为零。

(3)当系统分子多项式零次相系数为零时,响应曲线稳态值为0;当系统分子多项式零次相系数不为零时,响应曲线稳态值为1。

7.2.3控制系统的脉冲响应

一、实验目的

1.观察学习控制系统的单位脉冲响应;

2.记录单位脉冲响应曲线;

3.掌握时间相应的一般方法;

二、实验容

1.二阶系统G(s)=10/(s2+2s+10)

键入程序,观察并记录阶跃响应曲线;录系统的闭环根、阻尼比、无阻尼振荡频率;记录实际测去的峰值大小、峰值时间、过渡时间,并与理论值比较。

试验程序如下:

(1)脉冲响应曲线

(2)实验结果

实际值理论值峰值 2.0816 2.1000 峰值时间0.3974 0.4000 过渡时间+%5 3.8745 3.5000

+%2 4.8679 4.4000

2. 二阶系统G(s)=10/(s2+2s+10)

(1)修改参数,分别实现deite=1和deite=2响应曲线

试验程序

响应曲线

(2)修改参数,分别实现w n1= (1/2)w n0和w n1= 2w n0响应曲线试验程序

响应曲线

3.时作出下列系统的阶跃响应,并比较与原系统响应曲线的差别与特点,作出相应的实验分析结果。

(1)试验程序如下:

(2)响应曲线如下图所示:

三、实验结果分析:

(1)系统的阻尼比越大,其阶跃响应超调越小,上升时间越长;系统的阻尼比决定了其振荡特性:当阻尼比在0~1时,有振荡,当阻尼比>1时,无振荡、无超调,阶跃响应非周期趋于稳态输出。系统的无阻尼振荡频率越大,阶跃响应的反应速度越快。

(2)当分子、分母多项式阶数相等时,响应曲线初值为非零初值;当分子多项式阶数低于分母多项式阶数时,响应曲线初值为零。

(3)当分子、分母多项式阶数相等时,响应曲线稳态值为0;当分子多项式阶数低于分母多项式阶数时,响应曲线稳态值为1。

7.2.4控制系统的脉冲响应

一、实验目的:

1.利用计算机完成控制系统的根轨迹作图;

2.了解控制系统根轨迹图的一般规律;

3.利用根轨迹进行系统分析;

二、实验容:

给定如下系统的开环传递函数,作出它们的根轨迹图,并完成规定要求。

1.G01(S)=K g/[S(S+1)(S+2)]

(1)准确记录根轨迹的起点、终点与根轨迹条数;

(2)确定根轨迹的分离点与相应的根轨迹增益;

(3)确定临界稳定时的根轨迹增益。

实验程序如下:

相关文档
最新文档