数学物理方法第一章课件

合集下载

数学物理方法(第四版)高等教育出版社第一章1

数学物理方法(第四版)高等教育出版社第一章1
表示到点2i和到 两点距离相 表示到点 和到-2两点距离相 和到 等点的轨迹。 等点的轨迹。既过原点的直线
-2
(x,y)
x
(0,-1)
(3) Im(i+ z) = 4
Im[i + (x −iy)] = Im[x + i(1− y)] = 4
1− y = 4
表示y= 的直线 表示 -3的直线
y=-3
5、复平面与复数球之关系
例3 设 z =
z1 7 1 ( )=− + i z2 5 5
−1 3i 求 − , Re( z ), Im(z ) 与 zz i 1− i
−1 3i 3i(1+ i) 3 3 3 1 z= − =i − =i − i+ = − i i 1− i (1− i)(1+ i) 2 2 2 2
3 ∴Re(z) = 2
2 x 2
3、复数的三种表示: 、复数的三种表示
1). 代数式 2). 三角式
z = x + iy
z =ρ
x = ρ cosθ
y = ρ sinθ
z = ρ (cos θ + i sin θ )
3). 指数式
e = cosθ + i sin θ

欧拉公式
z = ρe

θ = Argz
4、复数的运算
A
S
•作业:P6 作业: 作业
•1(2)( )( ) ( )( )(5) )(3)( •2(1)( )( )( ) ( )( )(5)( )(4)( )(6) •3(1)( ) ( )( )(4)
§1.2
复变函数
复变函数的定义与定义域: 一、复变函数的定义与定义域: 复变函数定义: 1、复变函数定义: 复数平面上存在一个点集E, 复数平面上存在一个点集 , 对于E的每一点( 每一个 值 ) , 对于 的每一点(每一个z值 的每一点 按照一定的规律, 按照一定的规律 , 有一个或多 ω 与之相对应, 个复数值 与之相对应 , 则称 为z的函数 的函数——复变函数,z称为 复变函数, 称为 的函数 复变函数

数物第一章课件

数物第一章课件

y
y
P z = x + iy
o
x
x
6
共轭复数的几何性质
一对共轭复数 z 和 z*在复平 y
面内的位置是关于实轴对称的.
o
⋅ z = x + iy
x
. z* = x − iy
7
2、三种表示形式
① 复数的代数表示式
z = x + iy ——代数式
② 复数的三角表示式
利用直角坐标与极坐标的关系
y
⎧x = ρ cosϕ
即: 若 z = x + iy ,则 z* = x − iy .
(z* )* = x + iy
例1:求下列三个复数的共轭复数,
(1)、 z = 3 − 5i z* = 3 + 5i
(2)、 z = 8i
z * = −8i
(3)、 z = −2
z* = −2
¾ 实数的共轭复数是自身。
4
二、复数的表示方法
rn (cos nθ + i sin nθ ) = ρ(cosϕ + i sinϕ)
于是 rn = ρ, cos nθ = cosϕ, sin nθ = sinϕ,
显然 nθ = ϕ + 2kπ, (k = 0, ± 1, ± 2, )
故 r = n ρ , θ = ϕ + 2kπ ,
n
w
=
n
z
=
n
则复数 z = ρ(cosϕ + i sin ϕ )可以表示为:
z = ρeiϕ ——指数式
9
z = x + iy ——代数式
z = ρ (cosϕ + i sin ϕ ) ——三角式 z = ρeiϕ ——指数式

数学物理方法课件:1-复变函数

数学物理方法课件:1-复变函数

n
z
n
ei / n
n
i argz2k
e n ,
k 0,1,2n 1
例: 4 1 i
1 i
2 cos i sin
i
2e 4
4
4
2k
2k
4 1 i 8 2cos 4
i sin 4
,
4
4
(k 0,1,2,3)
9
w0
8
2 cos
16
i sin
16
w2
8
2 cos17
本章首先引入复数的概念及其运算、 平面点集的概念。然后讨论复变函数的连 续性,重点研究解析函数。
3
§1.1 复数与复数运算
(一)复数的概念 1.复数:形如 z= x+ i y 的数被称为复数,其中x ,
y∈R。x=Rez,y=Imz分别为 z 的实部和虚部,i为
虚数单位,其意义为i2=-1
复数相等:z1=z2当且仅当Rez1= Rez2且Imz1= Imz1
绪论
“数学物理方法”研究物理问题中遇到的数学方 程的求解方法。本课程在高等数学和普通物理 学的基础上论述数学物理中的常用方法,为后 续的理论物理课和专业课做准备。
课程的主要内容有:复变函数论和数学物理方程 两大部分。
1
绪论
教材与参考书: ➢ 梁昆淼,《数学物理方法》(第四版),高等教育出版社,
2010年 ➢ 斯颂乐,徐世良等《数学物理方法习题解答》,天津科学
z x iy
代数式
y
z(x, y) cos i sin (三角式)
ei
(指数式)
O
x
x2 y2 z
Argz,

数学物理方法1-137页PPT文档

数学物理方法1-137页PPT文档

u u(x,t) u
T'
采用微元法来建立位移u满足的方程:
M'
'
把弦上点的运动先看成小弧段的运动,然 后再考虑小弧段趋于零的极限情况。
ds
M
gds
在弦上任取一弧段 M M ,' 其长度为ds, T
弧段两端所受张力为 T 和 T '
N
N'
O
x
x dx
x
是弦的线密度
由于假定弦是柔软的,所以在任意点处张力的方向总是沿着弦在该点的 切线方向。
13
现在考虑弧段 M M ' 在t时刻的受力和运动情况。
根据牛顿第二定律,作用于弧段上任一方向上力的总和等于这段弧的
质量乘以该方向上的运动加速度。
u
T'
在x方向弧段 M M ' 受力总和为
M'
'
TcosT'cos'
ds
M
由于弦只做横向运动,所以
gds
T
T c o s T 'c o s' 0 O
1
教材与参考书
教材:《数学物理方法——理论、历史与计算机》,郭玉 翠,大连理工大学出版社
《数学物理方法》第二版,谷超豪、李大潜、陈恕行等, 高教出版社,2019年
《实用偏微分方程》英文版第四版,(美)理查德.哈伯 曼,机械工业出版社,2019年
学时
32学时
2
对大家的要求
按时上课 课上记笔记,做标记 独立完成作业
4
主要内容
第一章 数学物理方程及其定解条件 §1.1 基本方程的建立 §1.2 定解条件 §1.3 定解问题的提法 §1.4 二阶线性偏微分方程的分类与化简

数学物理方法 ppt课件

数学物理方法 ppt课件
解: 令
a c c o 2 o c s 3 o s c s n o
b s i s 2 n i s 3 n i n s n i
W a i b co c2 s o c s 3 o s cn o i (s s i2 n i n s3 i n sn i)
z1z2 z1z2
ar z 1g z2 ) (az r1 g az r2g
3、复数的除法
z1 x1 y1i (x1y1i)(x2y2i) z2 x2 y2i (x2y2i)(x2y2i)
x1xx2 2 2 yy12 2y2ix2xy2 2 1 xy12 2y2
或指数式: z1 x1 y1i z2 x2 y2i
有三角
关系: z1z2 z1z2
z1z2 z1z2
2、复数的乘法
z 1 z 2 (x 1 y 1 i)x 2 ( y 2 i)
( x 1 x 2 y 1 y 2 ) i( x 1 y 2 x 2 y 1 )
z1z21 e i1 2 e i2
ei(12) 12
12 [c 1 o 2 ) s is( i 1 n 2 )
使用教材:数学物理方法,梁昆淼编
数学物理方法是物理类及其它相关理工类极为重要的 基础课,数学物理方法是连接数学与物理学的桥梁.是通 往科学研究和工程计算的必经之路.因为它教导我们怎样 将一个自然现象转化为一个数学方程.它非常充分地体现 了科学的精髓,即:定量化.因而数学物理方法在科学中 的地位尤为突出.
( k 0 ,1 ,2 ,3 )
故k取不同值,n z 取不同值
nz e 1/n i(2k)/n
k0 nz1/nei/n
k 1 nz1 /n e i( 2 )/n
k 2 nz1 /n e i( 4 )/n

《数学物理方法》课件

《数学物理方法》课件

弹性力学方程的求解
总结词
弹性力学方程是描述弹性物体变形和应力分布的偏微分方程 ,通过求解该方程可以了解物体的弹性和稳定性。
详细描述
弹性力学方程的一般形式为 $nabla cdot sigma = f$,其中 $sigma$ 是应力张量,$f$ 是体力密度,$nabla cdot$ 是散 度算子。求解该方程可以得到应力分布、应变能和弹性常数 等。
在工程学中的应用
机械工程
数学物理方法在机械工程 中广泛应用于分析力学、 热传导、流体力学等问题 。
电子工程
在电子工程中,数学物理 方法用于描述电磁波的传 播、散射和吸收等。
土木工程
在土木工程中,数学物理 方法用于分析结构力学、 地震工程等问题。
在经济学中的应用
金融建模
数学物理方法在金融领域中用于 建立复杂的金融模型,如期权定
在此添加您的文本16字
数学物理方法将进一步发展,以适应未来科技发展的需求 ,特别是在能源、环境、生物医学等领域。
在此添加您的文本16字
随着人工智能和机器学习的发展,数学物理方法将与这些 技术相结合,以实现更高效、精确的问题解决方案。
06 数学物理方法的实际案例分析
一维波动方程的求解
总结词
一维波动方程是描述一维波动现象的基本方程,通过求解该方程可以了解波的传播规律 。
这些概念在描述物理现象的变化规律 和求解物理问题中发挥着关键作用, 例如在描述速度、加速度、功和能量 等物理量时。
微积分中的基本概念包括极限、连续 性、导数和积分等。
微分方程
微分方程是描述物理现象变化规律的数学工具,它表示一个或多个未知函数的导数 之间的关系。
微分方程的基本类型包括常微分方程、偏微分方程和积分微分方程等。

数学物理方法第三版.ppt

数学物理方法第三版.ppt
在极坐标下,先令z沿径向逼近零,
即z ei 0
则:lim lim lim ei z0 z 0 z 0
lim
0
u iv
ei
u
i
v
e
i
再令z沿横向逼近于零,
即z ei iei 0
则:lim lim lim ei z0 z 0 z 0
i ei lim u iv
u(x, x
y)
v( x, y
y)
v(x, y) u(x, y)
x
y
以上条件为复数z可导的必要条件,又称 为柯西—黎曼条件(简称C-R条件)。
极坐标系下的C-R条件
u
v
u
v
推导极坐标下的C-R方程
证明:由定义可知
u(x, y) iv(x, y) u(,) iv(,)
习题
例一
求解析函数u(x, y) x2 y2的虚部v(x, y)
解:因为:u 2x,u 2 y
x
y
所以:v 2 y,v 2x
x
y
即dv 2 ydx 2xdy
v 2 ydx 2xdy c
既然积分与路径无关,为方便计 算,取如图所示路径积分可得:
Y
(X,Y)
0
(X,0)
X
v
外点: Zo及其邻域均不属于点集E,则 该点叫作E的外点。
境界线:若Zo及其邻域内既有属于E的点, 也有不属于E的点,则该点为境界 点,境界点的全体称为境界线。
境界线 内点 境界点 外点
区域
区域:(1)点集中的每个点都是内点 (2)点集是连通的,即点集中
的任何两点都可以用一条曲线连接起来 ,且线上的点全属于该点集。
cos z 1 (e2y e2 y ) 2(cos2 x sin2 x) 2

《数学物理方法》第一章.ppt

《数学物理方法》第一章.ppt
一元三次方程 x3 px q 0 (其中 p,q 为实数)的求根公
式,通常也叫做卡丹诺(Cardano)公式:
x 3 q (q)2 ( p)3 3 q (q)2 ( p)3
22 3
22 3
需特别指出:可以证明当有三个不同的实根 时,若要用公式法来求解,则不可能不经过负数 开方(参考:范德瓦尔登著《代数学》,丁石孙译, 科学出版社,1963年)。至此,我们明白了这样 的事实,此方程根的求得必须引入虚数概念。
第一节 复数 第二节 复变函数的基本概念 第三节 复球面与无穷远点
第一节 复数
复数的概念
复数
形如 z=x+i y 的数被称为复数,
其中x , y∈R。x=Rez,y=Imz分别
为z的实部和虚部,i为虚数单位, 其意义为i2=-1
复数相等
复数四则运算?
z1=z2当且仅当 Rez1= Rez2 且 Imz1= Imz2
复平面
(几何表示) 虚轴
复数z=x+iy
z平面
复数与平面向量一一对应
实轴 0的幅角呢?
复数不能 比较大小
模 | z | r x2 y2
主幅角
幅角 2k arg z Argz
复数的表示
代数表示: z=x+iy
三角表示: z=r(cosθ+isinθ)
指数表示: z=reiθ
i
sin


2
n

wn ?
注意 根式函数是多值函数
例如 记
z
r

cos

2k
2
i sin

2k

数学物理方法课件《第一章 复变函数》

数学物理方法课件《第一章 复变函数》
Argz=Argz2-Argz1
z z2 z1 r:
1 )
一 般 地 a rg ( z 1 / z 2 ) a rg z 1 a rg z 2
§1.1.3 复数的乘幂与方根
1. 复数的乘幂 2.复数的方根
1.复数的乘幂
定义 n个相同的复数z 的乘积,称为z 的n次幂, 记作z n,即z n=zzz(共n个)。
4
2 k )
2e

2
2 k ) i sin (

2

2
2k ) e
2 k )
1 co s( 0 2 k ) i sin ( 0 2 k ) e
i ( 0 2 k ) i ( 2 k )
2 2[co s( 2 k ) i sin ( 2 k )] 2 e

1 i 1 i

(1 i )(1 i ) (1 i )(1 i )
i
§1.1.2 复数的表示方法


1. 点的表示
2. 向量表示法 3. 三角表示法
4. 指数表示法
1. 点的表示
易见, z x iy 一对有序实数
在平面上取定直角坐标 系,则 ( x, y)
( x , y ),
任意点 P ( x , y ) 一对有序实数 z x iy 平面上的点
P( x, y)
复数 z x iy 可用平面上坐标为 此时,轴 — 实轴 x
y 轴 — 虚轴
( x , y )的点 P 表示 .
平面 — 复平面或 z 平面
点的表示:z x iy 复平面上的点 ( x,y ) P

数学物理方法课件-1 复数与复变函数

数学物理方法课件-1 复数与复变函数

sin z sinx iy
sin x cosiy cosx sin iy
sin x ey e y cos x ey e y
2
2i
sin2 x ey e y 2 cos2 x ey e y 2
4
4
1 sin 2 x e2 y 2 e2 y cos2 x e2y 2 e2y 2
所有的无穷大复数(平面上无限远点)投影到唯一的北极 N。故我们为 方便,将无穷远点看作一个点。其模无穷大,幅角无意义。
§1.2 复变函数
1. 定义
zz0
邻域
以复数 z0 为圆心,以任意小实数 为半径
作一圆,则圆内所有点的集合称为z0的邻域.
内点
z0 和它的邻域都属于 E, 则 z0 为 E 的内点。
(2) 极坐标
x cos y sin
z x iy cos i sin 复数的极坐标表示
模 幅角, Argz x2 y2
arctg( y / x)
由于三角函数的周期性,复数的幅角不唯一,且 彼此相差2π的整数倍.
)
,
lim
zz0
g(z)
g ( z0 ),则
lim [ f (z) g(z)]
zz0
f (z0) g(z0)
lim
zz0
f (z)g(z)
f
(z0 )g(z0 )
lim f (z) f (z0 ) zz0 g(z) g(z0 )
(g(z0 ) 0)
§1.4 可导与可微
第一章 复数与复变函数
§1.1 复数与复数运算 1. 复数的基本概念

数学物理方法1课件——3.4 洛朗级数展开

数学物理方法1课件——3.4 洛朗级数展开

因此可以在 0 <| z |< ∞ 的区域内展开成洛朗级数

∑ f (z) = an zn n=−∞
v∫ v∫ an
=
1
2π i
c
f (ς )dς ς n+1
=
1
2π i
c
( ) et ς −ς −1 / ς n+1
2

取积分围道c为单位圆周,即 | ς |= 1 。设 ς = eiθ ,则
∫ ∫ an
1 ⎞n z ⎟⎠
⎛ ⎜⎝
1 z
<

⎞ ⎟⎠
∑ ( ) 0
=
zn
n=−∞ (−n)!
z >0
例题5
设t为实参数,将函数
f
(z)
=
( ) t z−z−1
e2
在z=0的邻域内展开成
洛朗级数。
解:这是一个非常重要的例题,它与贝塞尔函数的生成函数有关。
下面将采用两种方法展开:
(1)直接展开法:因为函数f(z)除z=0点外,在全平面上解析,
2π i
f (ς )dς
( ) c1 ς − z0 n+1
f (ς )
由于被积函数 (ς − z0 )n+1 在环状区域内解析
由复连通区域的柯西定理知,解析函数沿着内外边界积分相等
∑ v∫ ∑ ∞
( ) f (z) = ( ) n=−∞
z − z0
n1
2π i
f (ς )dς c ς − z0 n+1
1 zn
− 1 ∞ zn 2 n=0 2n
−∞
= − zn
n=−1

∞ n=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.2 复平面区域与边界的定义在解析函数论中,函数的定义域不是一般的点集,而是满足一定条件的点集,称为区域。

z0的邻域 : 点集 z z z0
称为z0的邻域 z0的去心邻域 : 点集 z 0 z z0 U z0 , ˆ z , U 0 称为z0的去心邻域内点 : G是一个平面点集, z0 G.如果有z0的一个邻域该邻域内的所有点都属于G, 则z0 称为G的内点. 显然,孤立点集没有内点
开集:如果G的每一点都是其内点,则G称为开集区域:平面点集D称为区域,则有 1. D是开集 (开集性 2. D是连通的 (连通性如 0 arg z 就是一个区域 D 的边界点:设 D 为一区域,点 P 不属于 D ,但在 P 的任何邻域内,有区域D 中的点,则称点P为D的边界点。

D的所有边界点组成D的边界。

如区域0 arg z ,其边界为实轴闭区域:区域D与它的边界一起构成闭区域,记为 D
单连通区域与多连通区域: D是平面一个区域,如果在其中任意作一条简单闭曲线,曲线的内部总属于D则称D是单连通的。

否则,称D是多连通的。


连通边界线的取向:多连通若观察者沿边界线走时,区域总保持在观察者的左边,那么观察者的走向为边界线的正向;反之,则称为边界线的负向。

相关文档
最新文档