边缘分布与独立性
合集下载
边缘分布与独立分布
离散型随机变量的边缘分布律
X,Y的边缘分布律
pX(xi ) pij P{X xi }, i 1,2, , j 1
pY(yi ) pij P{Y y j }, j 1,2, , i1
离散型随机变量关于X 和Y 的边缘分布函数分别为
FX ( x) F ( x,)
pij ,
§2.8边缘分布与独立分布
1、边缘分布
问题 :已知( X ,Y )的分布,如何确定X ,Y的分布?
F( x, y) P{X x,Y y} , F( x) P{X x}, P{X x} P{X x,Y } F( x,) FX ( x)
( X ,Y )关于X的边缘分布函数.
定义 设F ( x, y)为随机变量( X ,Y )的分布函数, 则 F( x, y) P{X x,Y y} 令 y , 称
xi x j1
FY ( y) F (, y)
pij .
y j y i1
例1 已知下列分布律求其边缘分布律.
YX
0
1
0 16
12
49
49
12
9
1 49
49
连续型随机变量的边缘分布
定义 对 于 连 续 型 随 机 变 量( X ,Y ), 设 它 的 概 率
密度为 f (x, y),由于
联合分布
边缘分布
例题
例1
设( X ,Y ) ~
p(
x,
y)
e
y
,
0,
0 x y, 其 它.
求 (1) pX ( x); (2) P{ X Y 1}.
2.随机变量的独立性
随机变量的独立性是概率论中的一 个重要概念.两随机变量独立的定义是:
《概率学》3.2_3.3二维随机变量的边缘分布及独立性
i, j=1, 2, ...,
连续型
f (x, y)
第三章 多维随机变量及其分布
(X,Y)边缘分布
FX(x) = F(x,+∞) F Y(y) = F(+∞, y)
pi .=P{X= xi}= pij i=1, 2, ..., j 1
p.j=P{Y= yj}= pij j=1, 2, ..., i 1
连续型 f (x, y)
第三章 多维随机变量及其分布
(X,Y)边缘分布
FX(x)=(
)
F Y(y) =(
)
pi .=P{X= xi}(=
)
p.j=P{Y= yj}=(
)
f X ( x) (
)
fY ( y) (
)
作答
1
8
山东农业大学公共数学系概率统计课程组 版权所有
第2节 二维随机变量的边缘分布
第三章 多维随机变量及其分布
f X (x)
f (x, y)dy
fY ( y)
f (x, y)dx
1
7
山东农业大学公共数学系概率统计课程组 版权所有
主第观2节题二维随2机分变量的填边缘空分布 填空
( X, Y )联合分布 一般 F(x,y)= P{X ≤ x,Y≤y}
离散型 P{X=xi ,Y=y j}= pi j
i, j=1, 2, ...,
1
2
fX (x)
f (x, y)dy
1
exp{ 1 (u2 2u v2)}dv
21 1 2
2(1 2)
1
u2
e2
1
exp{ (v u)2 }dv
2 1
2 1 2
2(1 2)
连续型
f (x, y)
第三章 多维随机变量及其分布
(X,Y)边缘分布
FX(x) = F(x,+∞) F Y(y) = F(+∞, y)
pi .=P{X= xi}= pij i=1, 2, ..., j 1
p.j=P{Y= yj}= pij j=1, 2, ..., i 1
连续型 f (x, y)
第三章 多维随机变量及其分布
(X,Y)边缘分布
FX(x)=(
)
F Y(y) =(
)
pi .=P{X= xi}(=
)
p.j=P{Y= yj}=(
)
f X ( x) (
)
fY ( y) (
)
作答
1
8
山东农业大学公共数学系概率统计课程组 版权所有
第2节 二维随机变量的边缘分布
第三章 多维随机变量及其分布
f X (x)
f (x, y)dy
fY ( y)
f (x, y)dx
1
7
山东农业大学公共数学系概率统计课程组 版权所有
主第观2节题二维随2机分变量的填边缘空分布 填空
( X, Y )联合分布 一般 F(x,y)= P{X ≤ x,Y≤y}
离散型 P{X=xi ,Y=y j}= pi j
i, j=1, 2, ...,
1
2
fX (x)
f (x, y)dy
1
exp{ 1 (u2 2u v2)}dv
21 1 2
2(1 2)
1
u2
e2
1
exp{ (v u)2 }dv
2 1
2 1 2
2(1 2)
第二节边缘分布
当-1<x<1时
1 x 2
f X ( x) f ( x, y)dy
1
1 x 2
dy
x 1 其他
2 1 x2
2 1 x2 f X ( x) 0
当 1 y 1时 同理 fY ( y )
1 y 2
2
1
1 y
即为 F(x,y)=Fx(x)FY(y) 反之,若X与Y满足F(x,y)=Fx(x)FY(y) ,则有 P{x1<X≤x2,y1<Y≤y2} =F(x2, y2)- F(x1, y2)-F(x2, y1)+ F(x1, y1)
= Fx(x2)FY(y2)- Fx(x1)FY(y2)- Fx(x2)FY(y1)+Fx(x1)FY(y1)
若x与y相互独立则在fxydfdx一负责人到达办公室的时间均匀分布在812时他的秘书到达办公室的时间均匀分布在79时设他们两人到达的时间相互独立求他们到达办公室的时间相差不超过5分钟112小时的概率
第二节 边缘分布
引言
边缘分布
随机变量独立性
一、边缘分布的定义
1.边缘分布 设(X,Y)为二维随机向量其分布函数为F(x,y),X和Y的分 布函数分别记为Fx(x)和FY(y), 依次称Fx(x),FY(y)为(X,Y) 关于X和关于Y的边缘分布函数. 2.公式. 由于Fx(x)=P({X≤x}∩{Y<+∞})=P{X≤x,Y<+∞} =F(x,+∞) 同理有 FY(y)=F(+∞, y).
p
i xi x , y j y
p
p j
xi x
《概率论》课程PPT:边缘分布及随机变量的相互独立性
F(x, y) FX (x) FY ( y)
例1 设(X,Y)的概率分布(律)为
y x
1/2 1 2
p .j
-1 2/20 2/20 4/20 2/5
0 1/20 1/20 2/20 1/5
2
pi.
2/20 1/4
2/20 1/4
4/20 2/4 2/5
证明:X、Y相互独立。
逐个验证等式 pij pi p j
即
Y
X
y1 y2 y3 …
x1 p11 p12 p13 … x2 p21 p22 p23 … x3 p31 p32 p33 … ……………
二维离散型R.v.的边缘分布
Y
X
y1
y2
y3
…
Pi.
x1
p11
p12
p13
…
P1.
x2
p21
p22
p23
…
P2.
x3
p31
p32
p33
…
P3.
…………… …
p.j p.1 p.2 p.3 …
依次称为二维随机变量 (X ,Y )关于 X 和关于 Y
的边缘分布函数.
FX (x) F(x, ) FY ( y) F(, y)
二维离散型R.v.的边缘分布
如果二维离散型随机变量(X,Y)的联合分布律为
P{X xi ,Y y j} pij i, j 1, 2,3,
关于Y的边缘分布
Y 0 1 1/3 概率 7/12 1/3 1/12
(X,Y)的联合分布列
Y
X
0
1 1/3
-1 0 1/3 1/12 0 1/6 0 0 2 5/12 0 0
例1 设(X,Y)的概率分布(律)为
y x
1/2 1 2
p .j
-1 2/20 2/20 4/20 2/5
0 1/20 1/20 2/20 1/5
2
pi.
2/20 1/4
2/20 1/4
4/20 2/4 2/5
证明:X、Y相互独立。
逐个验证等式 pij pi p j
即
Y
X
y1 y2 y3 …
x1 p11 p12 p13 … x2 p21 p22 p23 … x3 p31 p32 p33 … ……………
二维离散型R.v.的边缘分布
Y
X
y1
y2
y3
…
Pi.
x1
p11
p12
p13
…
P1.
x2
p21
p22
p23
…
P2.
x3
p31
p32
p33
…
P3.
…………… …
p.j p.1 p.2 p.3 …
依次称为二维随机变量 (X ,Y )关于 X 和关于 Y
的边缘分布函数.
FX (x) F(x, ) FY ( y) F(, y)
二维离散型R.v.的边缘分布
如果二维离散型随机变量(X,Y)的联合分布律为
P{X xi ,Y y j} pij i, j 1, 2,3,
关于Y的边缘分布
Y 0 1 1/3 概率 7/12 1/3 1/12
(X,Y)的联合分布列
Y
X
0
1 1/3
-1 0 1/3 1/12 0 1/6 0 0 2 5/12 0 0
2.4 概率论——二维随机变量的独立性
y
FY ( y) F(, y) [ f ( x, v)dx]dv,
故X,Y 的 边缘密度函数为:
fX ( x) FX ( x)
f ( x, y)dy,
fY ( y) FY ( y)
f ( x, y)dx,
例2:设(X,Y)服从下列区域上的二维均匀分布,
试求X,Y的边缘概率密度。
y
(1)D ( x, y) | 0 x 2,0 y 1 1
2.4 二维随机变量的独立性
一、二维随机变量的边缘分布
随机向量( X ,Y )中, X ,Y的分布分别称为关于X、Y的 边缘分布。X, Y的分布函数 FX ( x), FY ( y) 称为边缘分布函数。
巳知 (X, Y) 的联合分布函数为 F(x, y), 则易知:
FX x PX x PX x,Y F x, FY y PY y PX ,Y y F , y
次击中目标所进行的射击次数,以 Y 表示总共进行 的射击次数 . 试求 X 和 Y 的联合分布及条件分布.
解 依题意,{Y=n} 表示在第n次射击时击中目 标 , 且在前n-1次射击中有一次击中目标. {X=m} 表 首次击中目标时射击了m次 .
1 2 ……m…………. n-1 n
n次射击 击中
击中
j
P{[( X xi ) (Y y j )]}
j
P{X xi ,Y y j }
j
pij pi• (i 1,2, ) j
同理,Y的边缘分布
P{Y y j } pij p• j i
( j 1,2, )
XY
x1 x2 xi
p• j
y1 y2 y j pi•
p11 p12 p1 j p1•
暂时固定
高等数学3.4 随机变量的独立性与条件分布
2 3/15 3/15
0 1
(2) 由( X , Y ) 的联合分布律知 X 的边缘分布为 X P 0 1/15 1 10/15
由条件分布定义可知
P Y = 0 X = 0 = P Y = 1 X = 0 = P Y = 2 X = 0 =
P X = 0 , Y = 0 P X = 0 P X = 0 , Y = 1 P X = 0 P X = 0 , Y = 2 P X = 0
Y P
1 1/2
2 1/9 +α
3 1/18 +β
若X 与 Y 相互独立, 则有 1 = P X = 1, Y = 2 = P X= 1 9 1 1 = ( + ) 3 9 1 = P X = 1, Y= 3 = P X =1 18 1 1 = ( + ) 3 18
Y P = 2
dt
=
同理
x R
fY ( y ) =
( y 2 )2 exp , 2 2 2 2 2 1
y R
若 = 0 , 则对于任意实数 x 与 y 都有 f ( x, y ) = f X ( x )fY ( y ) 因此 X 与 Y 是相互独立的 . 反之, 若 X 与Y 相互独立, 则对于任意实数 x与 y 都有 f ( x, y ) = f X ( x )fY ( y ) 若取 x = 1 , y = 2 , 则有
1 2
2
2 2 ( x ) ( x ) 2 2 1 1 + 2 2 1 1
y 2 ( x 1 ) x 1 1 = 2 2 1 2 1 2(1 ) 2
2
所以( X , Y )关于X的边缘密度为
3.2边缘分布与独立性
j
如下表:
Xa1 Y
ai
p j
b1 b2
p p
11
12
p p
i1
i2
p p
1
2
bj
p 1j
p ij
p j
p i
p 1
p i
1
例1 袋中有2只白球和3只黑球,现进行有放回地取球, 定义下列随机变量:
X
1
第一次取出白球
Y
1
第二次取出白球
0 第一次取出黑球
0 第二次取出黑球
试给出(X,Y)的联合分布与边缘分布。
两事件A,B独立的定义是: 若P(AB)=P(A)P(B) 则称事件A,B独立 .
用分布函数表示,即 设 X,Y是两个r.v,若对任意的x,y,有
F(x, y) FX (x)FY ( y)
则称X,Y相互独立 .
它表明,两个r.v相互独立时,它们的联合 分布函数等于两个边缘分布函数的乘积 .
可推广到多维的情况.
f (x, y)
2
1
2
1
x
exp -
1
2(1 -
2
)
2 2
xy
y2
(-
x,
y
)
求(X,Y)关于X及Y的边缘分布密度.
解:
f
( x)
X
f
(x,
y)dy
1
2 1
2
exp -
1
2(1-
2
)
x2 2
xy
y2 dy
x2
2
xy
y2
(y
2
x)
2
x
22
概率论与数理统计
三
、二维连续型随机变量的边际分布
设X和Y的联合概率密度为 p(x, y) 和 的联合概率密度为 则X与Y 的边际分布函数为 与
FX (x) = ∫ (∫ p(u, v)dv)du
F ( y) = ∫ (∫ p(u, v)du)dv Y
−∞ −∞
x
+∞
−∞ y
−∞ +∞
求导得X与 求导得 与Y 的边际密度函数分别为
X P -1 0 1 Y P 0 0.5 1 0.5
0.25 0.5 0.25
如果P(XY=0) = 1 ,试求 如果 试求 (1). (X,Y)的联合分布列 的联合分布列 (2). X与Y是否独立 是否独立? (P151) 与 是否独立
注: 若两随机变量相互独立 且又有相同 若两随机变量相互独立, 的分布, 不能说这两个随机变量相等. 的分布 不能说这两个随机变量相等 如
F(x, y) = FX (x)F ( y) Y
若P(AB)=P(A)P(B) 则称事件A,B独立 则称事件 独立
离散型 X与Y 独立 与 对一切 i , j 有 P(X = xi ,Y = yj ) = P(X = xi )P(Y = yj ) 即 pij = pi p j 连续型
p(x, y) = pX (x) pY ( y)
设(X,Y)服从三项分布 M (n, p1 , p2 , p3 ) 服从三项分布 其联合分布列为
n! i P( X = i,Y = j) = p1 p2j (1− p1 − p2 )n−i− j , i! j!(n −i − j)! i, j = 0,1 ,2,..., n, i + j ≤ n
则
X ~ b(n, p1 ), Y ~ b(n, p2 )
3.3多维随机变量函数的分布
p( x, y)d y,
称其为随机变量 ( X , Y ) 关于 X 的边际概率密度.
同理, 随机变量(X,Y)关于Y 的边际分布函数
y
FY ( y) F (, y)
p( x, y)d x d y,
pY ( y)
p( x, y)d x.
关于Y 的边际概率密度.
例3.2.3 设随机变量 X 和 Y 具有联合概率密度
上式右边分别乘以和除以 (1 p1 )ni ,两边对j从0到n i求 (n i)!
和,并记
p2
p2 1 p1
,则可得:
n-i
P(X
j=0
i,Y
j)
n! i !(n i)!
p1i (1
p1 )ni
n-i (n i)!
p2j (1 p1 p2 )ni j
j=0 j !(n i j)! (1 p1 ) j (1 p1 )ni j
P{Y y j } pij , j 1, 2, . i 1
因此得离散型随机变量关于X 和Y 的边际分布函
数分别为
FX ( x) F ( x, )
pij ,
xi x j1
FY ( y) F (, y)
pij .
y j y i1
例3.2.2 已知下列分布律求其边缘分布律.
n! i !(n
i)!
p1i (1
p1 )ni [
p2
(1
p2 )]ni
n! i !(n i)!
p1i (1
p1 )ni
Cni
p1i (1
p1 )ni .
即P( X
i)
C
i n
p1i (1
p1 )ni ,
3-2 边缘分布及随机变量的独立性
1 则有 p X ( x) e 2 σ1
即
( x μ1 )2
2 2 σ1
2 2 σ1
e
t2 2
d t,
同理可得
1 p X ( x) e 2πσ1
( x μ1 )2
, x .
1 pY ( y ) e 2 σ 2
( y μ2 )2
为随机变量( X , Y )关于X 的边缘分布函数.
记为 FX ( x) F ( x, ).
同理令 x ,
FY ( y) F (, y) P{X , Y y} P{Y y}
为随机变量 ( X,Y )关于Y 的边缘分布函数.
二、离散型随机变量的边缘分布律
X PX
1 0.3
3 0.7
Y PY
2 0.6
4 0.4
求随机变量 (X,Y) 的分布律.
解
因为X与Y 相互独立, 所以
P{ X xi ,Y y j } P{ X xi } P{Y y j }
于是
P{ X 1,Y 2} P{ X 1} P{Y 2}
0.3 0.6 0.18,
i 1
j 1, 2, ,
分别称 pi (i 1, 2,) 和 p j ( j 1, 2,) 为 ( X , Y ) 关于 X 和关于 Y 的边缘分布律.
Y
X
x1
x2
xi
y1 y2 yj
p11 p12 p1 j
p21 p22 p2 j
pi 1 pi 2 pij
, x ;
1 , b y b, pY ( y ) 2b 其它. 0,
3.2,3.4边缘分布及独立性
相互独立的充分必要条件是:对 (X ,所Y)有可能
的取值 ( x有i , y j )
P{X xi ,Y y j} P{X xi} P{Y y j} ,
即对所有的 (i, j)
pij pi p j
例2 设 ( X 的,Y联) 合分布律为
X Y 1 0 1
1 1 12 1 6 1 12
2 1 24 1 12 1 24
3.2,3.4 边缘分布及独立性
一、边缘分布函数 设二维随机变量(X,Y)的联合分布函数
为F(x,y) FX ( x) P{X x} P{X x,Y }=F ( x,)
FY ( y) P{Y y} P{ X ,Y y}=F (, y)
将以上 FX和( x) 称F维Y (二y)维随机 变量
f (x, y) fX (x) fY ( y) .
即对任何 x,都y 成立
1
21 2
1
2
exp{
2(1
1
2
)
[(
x 1 1
)2
2( x 1 )( y 2 ) ( y 2 )2]}
1 2
2
1
( x1 )2
e 212
1
( y2 )2
e 2
2 2
2 1
2 2
特别取 x 1, y 2 上式化为:
4 1 8 14 18
证明X与 Y分布 3
1 4
p1•
p•1
1 11
p12
6
3
2
p1•
p•2
类似可以验证:
对所有的 (i, j) pij pi p j 成立,所以 X与 Y分布相互立。
例3 已知
X Y 1 0 1
0 1/ 4 0 1/ 4
的取值 ( x有i , y j )
P{X xi ,Y y j} P{X xi} P{Y y j} ,
即对所有的 (i, j)
pij pi p j
例2 设 ( X 的,Y联) 合分布律为
X Y 1 0 1
1 1 12 1 6 1 12
2 1 24 1 12 1 24
3.2,3.4 边缘分布及独立性
一、边缘分布函数 设二维随机变量(X,Y)的联合分布函数
为F(x,y) FX ( x) P{X x} P{X x,Y }=F ( x,)
FY ( y) P{Y y} P{ X ,Y y}=F (, y)
将以上 FX和( x) 称F维Y (二y)维随机 变量
f (x, y) fX (x) fY ( y) .
即对任何 x,都y 成立
1
21 2
1
2
exp{
2(1
1
2
)
[(
x 1 1
)2
2( x 1 )( y 2 ) ( y 2 )2]}
1 2
2
1
( x1 )2
e 212
1
( y2 )2
e 2
2 2
2 1
2 2
特别取 x 1, y 2 上式化为:
4 1 8 14 18
证明X与 Y分布 3
1 4
p1•
p•1
1 11
p12
6
3
2
p1•
p•2
类似可以验证:
对所有的 (i, j) pij pi p j 成立,所以 X与 Y分布相互立。
例3 已知
X Y 1 0 1
0 1/ 4 0 1/ 4
10-3 边缘分布与独立性
( X , Y )的分布律为:
P( X m, Y n) p 2 q n2 , q 1 p, n 2,3,, m 1, 2,n 1.
X 的边缘分布律为:P( X m)
n m 1
P( X m, Y n)
n m 1
p 2 q n2 pq m1 , m 1, 2,
x
同理:
f ( x, t )dx dt FY ( y) F (, y)
y
y
fY (t )dt
例1:对一群体的吸烟及健康状况进行调查,引入随机变量 0, 健康 0, 不吸烟 X 和Y 如下:X 1, 一般 , Y 10, 一天吸烟不多于15支 2, 不健康 20, 一天吸烟多于15支 根据调查结果,得 X , Y 的如下的联合概率分布:
第三节 边缘分布 与随机变量的独立性
一、 边缘分布 二、条件分布 三、独立性
一、 边缘分布 二维随机变量(X,Y)作为整体,有分布函数 F ( x, y), 其中X和Y都是随机变量,它们的分布函数 F 记为:FX ( x), Y ( y),称为边缘分布函数。
FX ( x) F ( x, ) FY ( y ) F (, y)
X Y y1 x1 p11 x2 p21 … xi pi1
P Y y j
…
y2 … yj p12 … p 1j p22 … p 2j … pi2 … p ij
… P X x
i
p· 1
p· 2
… … p.j
… … … … … …
p1· p2·
…
…
pi · 1 …
3.2.边缘分布_条件分布
2、连续型r.v.边缘分布
设(X, Y)~f (x, y),(x, y)R2,F(x, y)为分布 函数,则
FX ( x) F ( x, )
称
x
f ( x, y)dydx
f X ( x) f ( x, y)dy
为(X, Y )关于X 的边缘密度函数;
同理,称
例8 (X,Y)~ N(1, 12, 2, 22, ),求 fY | X ( y | x)
1 1 f X ( x) exp{ ( x 1 ) 2 } 解、由Ex3知, 2 12 2 1
f ( x, y ) fY | X ( y | x ) f X ( x)
1 2 2
二、条件分布
1. 离散型随机变量的条件分布律 例6.已知(X,Y)的分布律为 X \Y -1 0 pi.
-2 0 1/10 3/10 2/5 3/10 3/10 3/5 p.j 2/5 3/5 求X|Y = -1的条件分布律。
P{ X xi , Y 1} P{ X xi | Y 1} P{Y 1}
2 exp{ [ y2 2 ( x 1 )]2 } 2 2 2 2 1 1
1
2 Y | X N ( 2 ( x 1 ), 2 2 (1 2 )) 1
三、随机变量的相互独立性
定义 如果对任意实数x, y, F(x, y)=FX(x)FY(y)
其分量X及Y的分布函数为二维随机变量(X, Y) 关于X及关于Y的边缘分布函数, 分别记作 FX(x), FY(y), 边缘分布函数可以由(X ,Y)的分 布函数F(x, y)来确定.
定义
FX ( x) P{ X x} F ( x, ) lim F ( x, y )
边缘分布和独立性
fX (x)
dy
1x2
-1
2 1 x2
均匀分布 1
续解 ………..
当 x [1, 1] 时
fX (x) 0
所以,关于X的边缘
-1
1
分布密度函数为
2
fX (x)
1 x2
x [1,1]
0
其它
解
fY ( y)
f ( x, y)dx
同理
1
f
y
(
y)
c
d
0
c xy d otherwise
所以 f (x, y) fX (x) fY ( y) 即 X 与 Y 独立。
习题三 2, 3, 4, 6, 8, 9, 11, 12,15, 16
f (x, y)dy
当 x1 或 x0 时 2
fX (x) 0
当 1 x 0 时,
2
2 x1
fX (x) 0 4dy 4(2x 1)
所以,关于X的边缘分布密度为
f
X
(
x)
4(2x
1),
( 1 x 0) 2
0,
其它
关于Y的边缘分布密度为
F (x, y) FX (x) FY ( y)
例1 设(X,Y)的概率分布(律)为
y x
-1
0
2
pi.
1/2 2/20 1/20 2/20 1/4
1 2/20 1/20 2/20 1/4
2 4/20 2/20 4/20 2/4
p .j
2/5 1/5 2/5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
y x
综上Байду номын сангаас,
12 2 x (2 x ), 5
x x0 x1 x x
12 2 x 2 x , 0 x 1 , fX x 5 0, , 其它 .
注意取值范围
例 2 设(X,Y)的概率密度是
求 (1) c的值; (2) 两个边缘密度 .
解 (2)
cy (2 x ), 0 x 1, 0 y x f ( x, y ) 0 , 其它 暂时固定
3
2
P{X=0, Y=3} 1 2 1 8
X 3 1 1 P{X=1, Y=1} =3/8 0 1 2 2 1 2 3 1 1 P{X=2, Y=1} =3/8 2 2 2 2 3 3 P{X=3, Y=0} 1 2 1 8.
边缘分布
二维联合分布全面地反映了二维随机变量 (X,Y)的取值及其概率规律. 而单个随机变量X,Y 也具有自己的概率分布. 那么要问:二者之间有 什么关系呢?
一、边缘分布函数
二维随机变量 (X,Y)作为一个整体, 具有分布函
数 F x , y , 而 X 和 Y 都是随机变量 , 也有各自的分 布函数, 分别记为 FX x , FY y , 依次称为二维随机 变量 (X,Y) 关于 X 和 Y的边缘分布函数.
R2
dx cy(2 x )dy 0 0 c 1 2 3 2 x x dx 2 0
1
x
0
x 1
x
故
= 5c/24 , c =24/5.
例2 设 (X,Y) 的概率密度是
求 (1) c 的值; (2) 两个边缘密度 . 解
cy (2 x ), 0 x 1, 0 y x f ( x, y ) 0 , 其它 暂时固定
(2) f X x f x , y dy
当 x 1 或 x 0时 , 当 0 x 1时,
y , , y
y x
都有 f x , y 0, 故 f X x 0 .
fX x
0
x x
0
x
f x , y dy
fY y
f x , y dx
y y x
都有 f x , y 0 , 故 fY y 0 .
当0 y 1 时 , fY y f x , y dx
y 1
当 y 1 或 y 0 时 , 对 x , , y
f X ( x ) f ( x, y )dy x
事实上 , FX x F x , dx f x , y dy
x
x f x , y dy f X x FX
则称 X 和 Y 相互独立 .
它表明,两个r.v相互独立时,它们的联合分布函 数等于两个边缘分布函数的乘积 .
若 (X,Y)是连续型r.v ,则上述独立性的定义 等价于: 对任意的 x, y, 有
f ( x , y ) f X ( x ) fY ( y )
几乎处处成立,则称 X 和 Y 相互独立 . 其中
1 y
0 y y 1
x
f x , y dx
y
1
f x , y dx .
y
1
24 y ( 2 x )dx 5
2
24 3 y y ( 2 y ), 5 2 2
综上 ,
24 3 y y ( 2 y ), 0 y 1 fY ( y ) 5 2 2 0, 其它
Y
1
3
0 18 38 0 38 0 0 18
X
0 1 2 3
Y
1 3 0 18 38 0 38 0
0 18
P X xi
18 3 8 3 8 18
P Y yj
68 28
我们常将边缘分布律写在联合分布律表格的边 缘上,由此得出边缘分布这个名词.
联合分布与边缘分布的关系
X
Y
0 1 2 3
( X,Y )关于Y 的边缘概率密度为
fY ( y ) f ( x , y )dx y
例2 设(X,Y)的概率密度是
cy( 2 x ), 0 x 1,0 y x f ( x, y ) 0 , 其它 求 (1) c的值; (2)两个边缘密度。 y y x 解 (1) 1 f x , y dxdy
(X,Y) 关于 Y 的边缘分布律为
P Y y j P X xi ,Y y j pij p. j
i 1 i 1
j 1,2,
例1 把一枚均匀硬币抛掷三次,设X为三次 抛掷中正面出现的次数 ,而 Y 为正面出现次数与 反面出现次数之差的绝对值 , 求 (X ,Y) 的分布律 . 解 ( X, Y ) 可取值 (0,3) , (1,1) , (2,1) , (3,3)
e y , y 0 fY ( y ) 其它 0,
可见对一切 x, y, 均有:
f ( x , y ) f X ( x ) fY ( y )
故 X , Y 独立 .
若(X,Y)的概率密度为
2 , 0 x y ,0 y 1 f ( x, y ) 其它 0,
2
注意取值范围
在求连续型 r.v 的边缘密度时,往往要求联 合密度在某区域上的积分. 当联合密度函数是分 片表示的时候,在计算积分时应特别注意积分限 .
下面我们介绍两个常见的二维分布.
设G是平面上的有界区域,其面积为A.若二 维随机变量( X,Y)具有概率密度
1 , ( x , y) G f ( x , y) A 0, 其它
x y
( y μ2 )2
2 2 σ2
可见 二维正态分布的两个边缘分布都是一维正态分布 , 并且不依赖于参数 ρ . 也就是说,对于给定的 μ1 , μ2 , σ1 , σ 2 , 不同的 ρ 对应 不同的二维正态分布,但它们的边缘分布却都是一样的. 此例表明 由边缘分布一般不能确定联合分布.
0, 2 0,
2 2 的二维正态分布. 记作( X,Y)~ N( μ1 , μ2 , σ1 , σ2 , ρ ).
例 3 试求二维正态随机变量的边缘概率密度. 解
fX x
fY y
f x , y dy
( x μ1 )2
2 2 σ1
1 e 2πσ1 1 e 2πσ 2
f f ( x, y ) 是X和Y的联合密度,X ( x), fY ( y)
分别是X的边缘密度和Y 的边缘密度 . 这里“几乎处处成立”的含义是:在平面上除 去面积为 0 的集合外,处处成立.
若 (X,Y)是离散型 r.v ,则上述独立性的定义等 价于: 对(X,Y)的所有可能取值(xi, yj),有
问X和Y是否独立? 解
f X ( x ) 2dy 2(1 x ), fY ( y) 2dx 2 y,
0 x y
1
0<x<1 0<y<1
由于存在面积不为0的区域,
f ( x , y ) f X ( x ) fY ( y )
故 X 和 Y 不独立 .
例2 甲乙两人约定中午12时30分在某地会面.如 果甲来到的时间在12:15到12:45之间是均匀分布. 乙 独立地到达,而且到达时间在12:00到13:00之间是均匀 分布. 试求先到的人等待另一人到达的时间不超过5 分钟的概率. 又甲先到的概率是多少?
FX x P X x P X x ,Y F x , FY y P Y y P X ,Y y F , y
二、离散型随机变量的边缘分布律
一般地,对离散型 r.v ( X,Y ), X和Y 的联合分布律为
( x μ1 )( y μ2 ) ( y μ2 )2 2ρ 2 σ 1σ 2 σ2
x , y ,
其中 1 , 2 , 1 , 2 , 均为常数 , 且 1
ρ 1. 则称( X,Y)服从参数为
1, 2 , 1, 2 ,
则称(X,Y)在G上服从均匀分布. 例 向平面上有界区域G上任投一质点,若质点落 在G内任一小区域B的概率与小区域的面积成正比, 而与B的形状及位置无关. 则质点的坐标 (X,Y)在G 上服从均匀分布.
若二维随机变量(X,Y)具有概率密度 ( x μ1 )2 1 1 f x, y exp 2 2 2 2 1 ρ σ1 2πσ1σ 2 1 ρ
P( X xi , Y y j ) pij, i, j 1,2,
则 (X,Y) 关于X 的边缘分布律为
P X xi P X xi ,Y y j pij pi .
j 1
i 1, 2 ,
j 1
X xi X xi ,Y y j j 1
P ( X xi , Y y j ) P ( X xi ) P (Y y j )
则称 X 和Y 相互独立.
二、例题
例1 设(X,Y)的概率密度为
xe f ( x, y )
( x y )
,
x 0, y 0 其它
0,