量子光学试题解答
量子光学实验习题
量子光学实验习题量子光学是研究光作为粒子(光子)的性质和行为的学科。
在量子光学领域,我们探索着光子的波粒二象性、光子之间的量子纠缠、光与物质之间的相互作用等重要问题。
为了深入理解量子光学的基本概念和实验技术,下面将提出几道习题,希望读者能够思考并解答。
习题一:波粒二象性1. 解释光的波粒二象性是什么意思?2. 请列举一些证明光的波粒二象性的实验证据。
习题二:光子统计1. 什么是玻色统计和费米统计?2. 请简要阐述为什么光子服从玻色统计。
习题三:量子纠缠1. 解释量子纠缠现象是什么。
2. 描述一个量子纠缠的实验过程。
习题四:相干与干涉1. 解释相干性在光学中的重要性。
2. 描述一个干涉实验并说明产生干涉条纹的原因。
习题五:光与物质相互作用1. 解释光与物质相互作用的基本原理。
2. 举例说明光与物质相互作用的应用。
解答一:波粒二象性1. 光的波粒二象性指的是光既可以表现出波动性,如干涉和衍射现象,又可以表现出粒子性,如光子的能量量子化。
2. 证明光的波粒二象性的实验证据包括双缝干涉实验、单缝衍射实验、康普顿散射实验等。
解答二:光子统计1. 玻色统计和费米统计描述了粒子的行为概率。
玻色统计适用于由整数自旋的粒子组成的系统,如光子;费米统计适用于由半整数自旋的粒子组成的系统,如电子。
2. 光子服从玻色统计是因为光子是无质量的粒子,不受泡利不相容原理的限制,可以占据同一个量子态。
解答三:量子纠缠1. 量子纠缠指的是在量子系统中,两个或多个粒子之间的状态相互依赖,无法用单个粒子的状态来描述。
2. 量子纠缠的实验过程可以包括将两个纠缠粒子分开,然后对其中一个进行测量,测量结果会瞬间传递到另一个粒子上,使其纠缠状态发生变化。
解答四:相干与干涉1. 相干性在光学中非常重要,它决定了干涉现象的出现。
相干性表示光波振动的一致性,包括相位和幅度的一致性。
2. 干涉实验可以通过将光分为两束,经过不同路径再次交叉,观察光的叠加效果来实现。
第二章习题答案量子光学(中科院研究生院)
(∆X1)n
=
n m=0
: (∆X1)m :
n!
1
m!(
n−m 2
)!
8
n−m 2
.
由于对于相干态,如果 m = 0,则 : ∆X1m : = 0,所以上式右边在相干态下不为零的 展开项仅为首项
(∆X1)n
=
n!
(
n 2
)!8n/2
=
1·2·3····n
1
·
2
·
3
·
·
·
·
n 2
·
8n/2
=
1·2·3····n
ν π
1/2
exp
−ν
q2 − 2qq0 cos νt + q02 cos2 νt
ν π
1/2
exp
− ν (q − q0 cos νt)2
.
习题 2.4.
习题 2.5.
Y1
=
1 2
Y2
=
1 2i
e−i
θ 2
a
+
ei
θ 2
a†
e−i
θ 2
a
−
ei
θ 2
a†
(∆Y1)2 = Y12 − Y1 2 由此可得
a cosh r − a†eiθ sinh r
a cosh r − a†eiθ sinh r
e−iθ a† cosh r − ae−iθ sinh r a† cosh r − ae−iθ sinh r
a† cosh r − ae−iθ sinh r a cosh r − a†eiθ sinh r
a cosh r − a†eiθ sinh r a† cosh r − ae−iθ sinh r |0
量子物理基础参考答案(改)
量子物理基础参考答案一、选择题参考答案:1. D ;2. D ;3. D ;4. C ;5. D ;6. C ;7. C ;8. A ;9. A ;10. D ;11. D ;12. C ;13. C ;14. A ;15. D ;16. E ;17. C ;18. C ;19. B ;20. A ;21. D ;22. C ;23. B ;24. B ;25. A ;26. C ;27. D ;28. A ;29. A ;30. D ;31. C ;32. B ;33. C ;34. C ;35. C ;36. D ;37. C ;38. D ;39. A ;40.D二、填空题参考答案:1、J 261063.6-⨯,1341021.2--⋅⋅⨯s m kg2、>,>3、14105⨯,24、V 45.1,151014.7-⋅⨯s m5、θφcos cos P c v h c hv+'=6、2sin 2sin 2212ϕϕ7、π,︒08、定态,(角动量)量子化,跃迁9、(1)4 , 1 (2)4 ,310、10 ,311、6.13 , 4.312、913、1:1, 1:414、122U em he15、m 101045.1-⨯, m 291063.6-⨯16、231033.1-⨯, 不能17、241063.6-⨯18、≥19、(1)粒子在t 时刻在()z y x ,,处出现的概率密度;(2)单值、有限、连续;(3)12*=ψ=ψψ⎰⎰⎰⎰dxdydz dV V20、不变 21、a x n a π2sin 2, dx a x n a a π230sin 2⎰三、计算题参考答案:1、分析 光子的能量、动量和质量与波长的关系为c h cE m h c E p hc E λλλ=====2 解: 利用上面的公式,当nm 001.0 nm,20 nm,1500=λ时,分别有 J 1099.1 J,1097.9 J,1033.1131919---⨯⨯⨯=Em/s kg 1063.6 m/s,kg 1031.3 m/s,kg 1043.4222628⋅⨯⋅⨯⋅⨯=---p kg 1021.2kg,1010.1kg,1048.1303436---⨯⨯⨯=m2、解: 由光电效应方程可得V 45.1=-=eW h U a ν m/s 1014.725max ⨯==meU a v3、解: 康普顿散射公式得散射光的波长为2sin 22sin 22C 0200ϕλλϕλλ+=+=c m h 其中m 1043.212C -⨯=λ,则当︒︒︒=90 ,60 ,30ϕ时,代入上式得波长分别为 nm 0074.0nm,0062.0nm,0053.0=λ4、解: 氢原子从基态1=f n 激发到3=i n 的能级需要的能量为eV 1.12Δ13=-=E E E对应于从3=i n 的激发态跃迁到基态1=f n 的三条谱线的光子能量和频率分别为 Hz 1092.2eV 1.12 :1315⨯===→=νE n n f iHz 1046.2eV 2.10 Hz1056.4eV 89.1 :12315221411⨯==⨯===→=→=ννE E n n n f i5、解: 经电场加速后,电子的动量为meU p 2=根据德布罗意关系,有m 1023.111-⨯==Ph λ6、解: 一维无限深阱中概率密度函数(定态)为)2cos 1(1sin 2)(*)()(2ax n a a x n a x x x ππψψρ-=== 当12cos -=a x n π时,即 ,212,,.23,2212a nk n a n a a n k x +=+=时,发现粒子的概率最大.当∞→n 时,趋近于经典结果.7、解:分析 在一维无限深井区间],[21x x 发现粒子的概率为 ⎰=21d )(*)(x x x x x P ψψ 在区间]43,0[a 发现粒子的概率为 909.0d sin 2d )(*)(4302430===⎰⎰a ax ax a x x x P πψψ。
第七章光的量子性习题及答案
1第七章 光的量子性1. 在深度远大于表面波波长的液体中,表面波的传播速度满足如下规律:v =224()2Fg l p p l r +式中g 为重力加速度,r 为液体密度,F为表面波的波长.试计算表面波的群速度.解:u = v - l vd dl = v-l dv d l =224()2g l p p l r + -l 224(()2d g d r lp p l l +=3422g F g F l p p lrl p p lr ++ 2. 测量二硫化碳的折射率实验数据为:当=589 nm .n ¢ = 1.629:当"l =656nm 时,n ¢¢=1.620 试求波长589nm 的光在二氧化硫的相速度、群速度和群折射率。
解:由v = c n 得 v 1 =2997924581.629= 1.840×108 m /s.v 2 =2997924581.620=1.8506×108 m /s所以△v = v 2 – v 1 = 1.057×106 m /s由一般瑞利公式由一般瑞利公式 u = v - l vl ¶¶=1.840×108 - 589 ×1.507×1.507×10106 /(656 – 589) = 1.747 ×108 m /sn = c /v = 299792458 /1.747×108 = 1.7163. 在测定光速的迈克尔逊旋转棱镜法中,设所用棱镜为正n 面棱柱体。
试导出:根据棱镜的转速、反射镜距离等数据计算光速公式。
解:设反射镜间距离为L 转速V 0 则n 面棱柱每转过面棱柱每转过 一个面,一个面,光往返一个来回。
所用时间光往返一个来回。
所用时间t = 1n /V 0 = 01nV 所以所以c = 2L /t = 021LnV = 2LnV 04.试用光的相速度v 和dvd l 来表示群速度u= d dk w,再用v 和dnd l 表示群速度u = d dk w解:(1) 由u = d dk w= v - l v l ¶¶ (2) 由 u = v - l vl¶¶<1 v = c /n <2>→ dvd l =()cd n d l = -223,(1)c dnn d c dn v dn v dv v v v dn n d n d n d ll l l l l l<>=+=+=+把〈把〈33〉代入〈〉代入〈11〉得dv u =v -d5.计算在下列各种色散介质中的传播的各种不同性质的波的群速度:(1)v = 常量 (2)v = al , ( a 为常量) (3)v = a /l (在水面上的表面张力波) (4)v = a /l (5)222v c b l =+(电离层的电磁波,其中c 是真空中的光速,l 是介质中的波长) (6)222c v c a ww em =-(在充满色散介质的直波导管中的电磁波,式中c 为真空中的光速,a 是与波导管有关的常量,()e e w =是介质的介电常数,()m m w =是介质的磁导率)解:(1)l ld dvv u -= ,0,==dv v 常量 所以常量==v u (2)l ld dv v u -=, l l l d a dv a v 2,==,所以222v a a a u ==-=l l l l (3)l l l2/32,ad dv av -==,所以v av u 2322/3=+=l l(4)dv uv d l l =-=()2ad a ad l l l l l -=v 2= (5)dv u v d ll =-=2222222222()d c b c c b d c b l l l l l ++-=+v c 2= (6)kv dk d u ==w w,,)1(11w ww d dvv v d dk u -== 而)(),(,222w m m w e e em w w==-=ac c v2/3222)(])(2[a c d d v v d dv -+-=em w w em w em w w w所以])(21[1w em em w em d d v cu +=6.利用维恩公式求:辐射的最概然频率v m ,辐射的最大光谱密度()m l e 辐射出射度M0(T)与温度的关系. 解: 由维恩位移定律T T b b T m m m 1×Þ=Þ=l l l 由斯沁藩公式()()44T T M T T M ×Þ=s7.太阳光谱非常接近于480m nm l =的绝对黑体的光谱.试求在1 s 内太阳由于辐射而损失的质量,并估算太阳的质量减少1% (由于热辐射)所经历的时间(太阳的质量m 0为2.0×1030千克,太阳的半径r 是7.0×108m) 解:由维恩位移公式解:由维恩位移公式m m bT b T l l =Þ=:由斯沁藩公式由斯沁藩公式34484()92.897810() 5.6705110()48010b b M T m s s l ---´===´´´=7.35×107瓦()()()瓦总262872106357.4100.714.341053.74´=´´´´´==×=r T M S T M P b b p由方程由方程P 总t =m 0×1%×c 221800.01 3.8810m c t sP ´´Þ==´总所以在1s 内kg 1015.5109106357.41916262´=´´=×=D c s P m 总损 8.地球表面每平方厘米每分钟由于辐射而损失的能量平均值为0.546J.如有有一黑体,它在辐射相同的能量时,温度应为多少? 解:解:4()0.546109160bM=´=()s m W ×/由斯沁藩公式由斯沁藩公式11()444()891()()()200.145.670510b bM M T T T Ks s-=Þ===´9.若有一黑体的辐出度等于5.70W /cm 2,试求该辐射最大光谱强度相对应的波长。
量子光学答案
量子光学答案一 1:单模光场相干态定义为光子湮灭算符的本征态,即a ααα=。
相干态的三个主要性质:(1) 相干态是非正交和超完备的; (2) 相干态是最小测不准量子态,因而也是量子理论所容许的最接近经典极限的量子态;(3) 相干态下能量的起伏最小,即零点能。
任何相干态的量子起伏都相等,相干态的量子起伏实质上是真空的起伏。
2: 通常引用密度算符来统一地描述量子系统中两类性质不同的系统状态(纯态和混合态)的统计平均。
n n n nP ρψψ≡∑密度算符的物理含义:密度算符ρ包含了有关此系统的所有物理上有意义的信息。
求解量子力学的问题实际上归结为求出系统的密度算符ρ。
3: 压缩态是一类最小测不准态,但在某一正交分量上具有更小的起伏噪音(小于真空起伏)。
两个正交相位算符的均方起伏乘积为最小,但不相等的态称为压缩相干态,俗称压缩态。
4: 利用相干态的对角化矩阵可以将密度算符表示为:*2(,)P d ρααααα=⎰上式中分布函数称*(,)P αα为 Glauber-Sudarshan 表示,即 密度算符的P 表示。
在分布函数的积分形式中,存在以下傅里叶变换形式:22***221(,)P eeed αββαβαααβρββπ--=-⎰其中积分2**221ee d ββαβαβρββπ--⎰存在奇异性,通过比较βρβ-与2eβ-的下降速度的快慢,即可以判断场所处的状态(经典态、纯量子态、相干态)。
由此可见,密度算符的P 表示可以作为非经典场的判据。
5: HBT 实验原理如下图所示:SMP1P2相关器t图 实验HBT来自光源S 的光束经一半透半反的分束器M 后,分成两束光,并分别用两个光电探测器P1和P2测量,探测器输出的光电信号被反馈到一个相关器(符合计数器),其中一路光电信号经过了τ时间的延迟器。
这个装置测量的是在两个不同时空点光场强度的起伏I ∆的关联,而不再是以往光学实验所测量的场本身的关联。
相关器测量到得物理量是在P1和P2处强度起伏的关联。
量子光学题目
第一章一、电磁场量子化的基本思想答:找出描述经典场的一组完备的正则“坐标”和 “动量”,然后把它们视为相应的算符,满足正则坐标和正则动量的对易式,从而使其量子化。
先将势量子化,在将场量子化。
二、福克态答:定义:频率为ν的单模电磁场的本征态为|n>,相应的本征能量为E n,本征方程为11ˆˆˆˆ|()|()||22ˆˆˆn H n a a n N n E n N a a νν++>=+>=+>=>= 真空态,0ˆ|0|0H E >=>ˆ|00a >= 1ˆ()|002H ν->= 最低能量012E ν=粒子束态:态|n>可视为具有n 个量子或准粒子的集合的态。
11ˆˆ|()||()|22n H n N n E n n n νν>=+>=>=+> 福克态的性质:1、光子数趋于无限大时,量子理论——》经典理论。
2、光子数的测不准关系为∆n=0。
3、量子化的电磁场的位相与光子数不可能同时确定三、光子态解释零点能为什么不等于电磁场的涨落可以用其方差来表示,从中可以看出,即使对于真空态(n=0),电场的方差也不等于零,也就是说真空涨落不为零,从而解释了零点能不为零。
第二章、相干态和压缩态相干态:是位移算符作用在真空态上得来的,是谐振子基态的位移形式。
相干态是湮灭算符的本征态,具有和真空态一样的最小测不准关系。
相干度是1。
压缩态:考虑两个厄米算符A,B,如果,,如果满足,则系统所处的态叫压缩态。
第三章一、Schrodinger 薛定谔表象、heisenberg 海森堡表象、liouville相互作用表象三个方程分别为ˆ1ˆˆˆ[,]Ht iρρρ∂=+Λ∂三个表象之间的变换Schrodinger表象————Heisenberg表象Schrodinger 表象————相互作用表象二、近似二能级近似、电偶极近似、慢变振幅近似和旋转波近似以及绝热近似等二能级近似:如果原子中的两个能级与所加激光场共振或近共振,而其他能级都与场高度失谐,则可以近似地将原子看作二能级原子。
福州培训-光学和量子物理题目
1、用作图法画出物经镀银透镜所成的像,并标明该像是虚、是实。
2、用计算法求出此像的位置和大小。
提示与答案:1.用作图法求得物 ,的像 及所用各条光线的光路如图预解16-5所示。说明:平凸薄透镜平面上镀银后构成一个由会聚透镜 和与它密接的平面镜 的组合 ,如图预解16-5所示.图中 为 的光心, 为主轴, 和 为 的两个焦点, 为物,作图时利用了下列三条特征光线:
题10图
提示与答案:本题发生的现象称为圆折射,在金星的大气中可发生.要求光线一直在高度为 的波道内传播,可看作是光线在高度为 到 的一薄层内传播,不断地在高度为 处发生全反射(例如P点).
.
11、电子衍射实验曾经获得1937年诺贝尔物理学奖,实验原理如图所示:电子束垂直入射到镍单晶的表面,晶体点阵(原子间距 )可视为衍射光栅。假设电子的加速电压为 ,请问加速后电子相应的德布罗意波长 是多少?根据光栅衍射方程 ,请问第一级衍射主极大对应的衍射角 为多少?(电子质量 ,元电荷 )
像高为物高的 。
9、两个焦距分别是 和 的薄透镜 和 ,相距为 ,被共轴地安置在光具座上。1.若要求入射光线和与之对应的出射光线相互平行,问该入射光线应满足什么条件?2.根据所得结果,分别画出各种可能条件下的光路示意图。
提示与答案:
10、某行星上大气的折射率随着行星表面的高度 按照 的规律变化,行星的半径为 ,行星的表面某一高度 处有光波道,它始终在恒定的高度,光线沿着该光波道绕行星传播,试求高度 。
提示与答案:根据德布罗意公式可知,对应的电子波长
。
再根据光栅衍射公式,衍射角 。
量子考试题及答案
量子考试题及答案一、选择题(每题2分,共20分)1. 量子力学的创始人是:A. 牛顿B. 爱因斯坦C. 普朗克D. 薛定谔答案:C2. 量子力学中,粒子的状态由什么描述?A. 位置B. 动量C. 波函数D. 能量答案:C3. 海森堡不确定性原理表明:A. 粒子的位置和动量可以同时准确测量B. 粒子的位置和动量不能同时准确测量C. 粒子的位置和能量可以同时准确测量D. 粒子的动量和能量可以同时准确测量答案:B4. 量子力学中的泡利不相容原理适用于:A. 电子B. 质子C. 中子D. 所有基本粒子答案:A5. 量子纠缠是指:A. 两个粒子之间的经典相互作用B. 两个粒子之间的量子相互作用C. 两个粒子之间的引力相互作用D. 两个粒子之间的电磁相互作用答案:B6. 量子力学中的薛定谔方程是一个:A. 线性方程B. 非线性方程C. 微分方程D. 代数方程答案:C7. 量子力学中的隧道效应是:A. 粒子通过势垒的概率不为零B. 粒子通过势垒的概率为零C. 粒子通过势垒的概率为一D. 粒子通过势垒的概率为负答案:A8. 量子力学中的叠加态是指:A. 粒子同时处于多个状态B. 粒子只处于一个状态C. 粒子处于确定的状态D. 粒子处于随机的状态答案:A9. 量子力学中的测量问题涉及:A. 粒子的测量结果B. 粒子的测量过程C. 粒子的测量设备D. 粒子的测量结果和过程答案:D10. 量子力学中的退相干是指:A. 量子态的相干性消失B. 量子态的相干性增强C. 量子态的相干性不变D. 量子态的相干性随机变化答案:A二、填空题(每题2分,共20分)1. 量子力学中的波粒二象性表明,粒子既表现出______的性质,也表现出______的性质。
答案:波动;粒子2. 量子力学中的德布罗意波长公式为:λ = ______ / p,其中λ表示波长,p表示动量。
答案:h / p3. 量子力学中的能级是______的,这是由量子力学的______决定的。
2024高考物理量子物理学专题练习题及答案
2024高考物理量子物理学专题练习题及答案一、选择题1. 下列说法正确的是:A. 电子云中的电子运动呈连续轨道。
B. 电子在原子核周围的轨道上运动速度是恒定的。
C. 电子在原子核周围的轨道上运动具有不确定性。
D. 电子在原子核周围的轨道上运动具有确定的轨迹。
答案:C2. 根据波粒二象性原理,下列说法正确的是:A. 波动性只存在于光学现象中。
B. 微观粒子既具有波动性又具有粒子性。
C. 微观粒子只具有波动性,不具有粒子性。
D. 微观粒子只具有粒子性,不具有波动性。
答案:B3. 某氢原子的能级为-13.6电子伏特,当电子从第3能级跃迁到第2能级时,所辐射的光子的能量为:A. 10.2电子伏特B. 12.1电子伏特C. 1.89电子伏特D. 2.04电子伏特答案:D二、填空题1. 根据不确定性原理,测量一个粒子的位置和动量越准确,就会越大地影响到它的 _______。
答案:状态2. 量子力学中,电子在原子内的运动状态由 _______ 表示。
答案:波函数3. 量子力学中,电子的能级用 _______ 表示。
答案:量子数三、简答题1. 什么是量子力学?请简述其基本原理。
答:量子力学是描述微观粒子行为的物理理论。
其基本原理包括波粒二象性原理和不确定性原理。
波粒二象性原理指出微观粒子既具有波动性又具有粒子性,可以用波函数来描述其运动状态。
不确定性原理指出无法同时准确地确定粒子的位置和动量,测量一个物理量会对另一个物理量产生不可忽略的影响。
2. 请简述量子力学中的量子力学态和测量问题。
答:量子力学态是用波函数表示的一种描述微观粒子运动状态的数学表示。
波函数包含了粒子的位置信息和概率分布。
在量子力学中,测量问题指的是测量粒子的某个物理量时,由于波粒二象性原理和不确定性原理的存在,测量结果只能是一系列可能的取值,并且每个取值的概率由波函数给出。
四、综合题某物理学家正在研究一个单电子系统,该系统可以用简化的一维势场模型来描述。
量子力学练习题答案
一、 简答题 1. 简述光电效应中经典物理学无法解释的实验现象。 答:光电效应中经典物理学无法解释的实验现象有: (1)对入射光存在截止频率ν0 ,小于该频率的入射光没有光电子逸出;(2) 逸出的光电子的能量只与入射光的频率ν 有关,入射光的强度无关;(3) 截止频率只与材料有关而与光强无关;(4)入射光的强度只影响逸出的光 电子的数量;(5)无论多弱的光,只要其频率大于截止频率,一照射到金 属表面,就有光电子逸出。 2. 简述 Planck 的光量子假设。 答:Planck 的光量子假设为,对于一定的频率为ν 的辐射,物体吸收或发 射的能量只能以 hν 为单位来进行。 3. 写出 Einstein 光电方程,并阐述 Einstein 对光电效应的量子解释。 答:Einstein 光电方程为 hν = 1 mv2 + W 。
⎤ ⎥ ⎦
16. 简述粒子动量与位置的不确定关系。
答:若要想精确地知道粒子的动量值,就无法得知粒子的具体位置;要想
精确地知道粒子的位置,就无法得知粒子的具体动量值,位置分布的均方
差和动量分布的均方差受到下面关系的制约
Δx ⋅ Δp ≥ = 2
17. 简述量子力学的态叠加原理。
答:量子力学的态叠加原理是指如果ψ1 、ψ 2 、ψ 3 ……均是体系的可能状态,
ψ ( x, t) = eip0x / = ⋅ e−iEt / = = e−i(Et− p0x)/ =
14. 写出动量算符、动能算符以及在直角坐标系中角动量各分量的算符的
表达式。 答:动量算符 lpK = −i=∇
动能算符 Tl = 1 (−i=∇)2
2m
角动量各分量的算符
L x
=
−i=
⎛ ⎜
高中量子力学试题及答案
高中量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是波粒二象性,以下哪个现象不是波粒二象性的体现?A. 光的干涉现象B. 光电效应C. 电子的衍射现象D. 牛顿运动定律2. 根据量子力学,一个粒子的位置和动量不能同时被准确测量,这是由以下哪个原理所描述的?A. 能量守恒原理B. 泡利不相容原理C. 测不准原理D. 相对性原理3. 量子力学中的波函数是用来描述什么?A. 粒子的电荷B. 粒子的动量C. 粒子在空间中的概率分布D. 粒子的质量4. 量子力学中,一个系统的状态可以用一个什么来描述?A. 波函数B. 动量C. 位置D. 能量5. 以下哪个是量子力学中的一个基本假设?A. 所有物体都遵循牛顿运动定律B. 粒子在没有观察时不具有确定的位置C. 所有物体都具有确定的动量和位置D. 能量守恒定律不适用于微观粒子6. 量子力学中的薛定谔方程是用来描述什么的?A. 粒子的动量B. 粒子的位置C. 粒子的波函数随时间的变化D. 粒子的总能量7. 量子力学中的量子态叠加原理指的是什么?A. 粒子的动量和位置可以同时被准确测量B. 粒子可以同时处于多个状态的叠加C. 粒子的状态只能由一个确定的波函数描述D. 粒子的状态不能被准确预测8. 量子纠缠是量子力学中的一个现象,它描述了什么?A. 两个粒子之间的相互作用B. 两个粒子之间的空间关系C. 两个或多个粒子的量子态不能独立于彼此存在D. 两个粒子之间的动量守恒9. 量子力学中的泡利不相容原理指的是什么?A. 两个相同的费米子不能处于同一个量子态B. 两个相同的玻色子不能处于同一个量子态C. 两个不同的费米子可以处于同一个量子态D. 两个不同的玻色子不能处于同一个量子态10. 以下哪个实验支持了量子力学的波粒二象性?A. 双缝实验B. 光电效应实验C. 迈克尔逊-莫雷实验D. 万有引力实验二、简答题(每题5分,共30分)1. 请简述量子力学与经典力学的主要区别。
【高一】量子世界测试题(带答案)
【高一】量子世界测试题(带答案)(40分钟50分)一、单项(本题共6个子题,每个子题5分,共30分)1.普朗克能量子假说认为()a、在宏观场中,物体能量的变化是不连续的b.在微观领域,物体的能量是连续变化的c、物体辐射或吸收的能量是一个接一个地进行的d.辐射的波长越长,物体辐射的每一个能量子的能量就越大2.(2022年泉州高级一级测试)太阳能发电利用光电效应将光辐射的能量转化为电能假设N个频率为ν当光子撞击硅光电池板并完全转化为电能时,产生的电能为()a.hνb.nhνc.nhνd.2nhν3.关于光的本质,下面的陈述是正确的()①光子说并没有否定光的电磁说② 光电效应现象反映了光的粒子性质③光的波粒二象性是综合了牛顿的微粒说和惠更斯的波动说得出的④ 大量光子产生的效应容易显示粒子特性,单个光子产生的效应容易显示波动a.①②b.③④c.①③d.②④4.以下对光的波粒二象性的理解是正确的()a.光有时是波,有时是粒子b、当光线波动时,它与水面波是同一种波c.光不可能同时具有波动性和粒子性d、光的线性传播只是一个宏观的近似定律5.氦―氖激光器发出波长为633n的激光,当激光器的输出功率为1w时,每秒发出的光子数为()a、 2.2×1015b。
三点二×一千零十五c.2.2×1014d.3.2×10146.关于德布罗意波,这个说法是不正确的()a.任何物体都有波动性b、宏观物体不能被视为物质波c.科学家根据电子的波动性制成了电子显微镜d、德布罗意的物质波理论揭示了物质(光和物质)的统一性二、非(本题包括2小题,共20分,要有必要的字叙述)7.(10点)电视显像管中电子的运动速率为4.0×107/s,质量为10G的子弹的速度为200/s,分别计算了它们的德布罗意波长,并比较了它们的挥发性(已知德布罗意波长公式为λ=,e=9.1×10-31kg)8.(10分)激光器是一个特殊的光,它发出的光是激光,红宝石激光器发射的激光是不连续的一道一道的闪光,每道闪光称为一个光脉冲,现有一红宝石激光器,发射功率为p=1.0×105w,所发出的每个光脉冲持续的时间δt=1.0×10-11s,波长为693.4n(1n=10-9).问:每列脉冲的长度l为多少?其中含有的光子数是多少?答案分析1.【解析】选c.在宏观领域,物体能量的变化是连续的,a错误;在微观领域,物体能量的变化是不连续的,b错误;按普朗克能量子假说,物体辐射或吸收的能量是一份一份的,c正确;每份称为一个能量子,其能量是ε=hν,也就是说,辐射的波长越长,频率越低,每一个能量子的能量就越小,d错误.2.【分析】选择C。
【强烈推荐】大学量子(考试)必出题及其答案
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =.如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么e p E μ22= .如果我们考察的是相对性的光子,那么E=pc , ph =λ nmmm E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ1.5 两个光子在一定条件下可以转化为正负电子对,如果两光子的能量相等,问要实现实种转化,光子的波长最大是多少?解 由于两个光子能量相等,因此当对心碰撞时,转化为正风电子对反需的能量最小,因而所对应的波长也就最长,而且,有2c hv E e μ== , λhcpc E ==2chce μλ=⇒2c hc e μλ=nmm m 31266104.2104.21051.01024.1---⨯=⨯=⨯⨯=2.2 由下列定态波函数计算几率流密度 ikr ikr e re r -==1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。
解:分量只有和r J J 21 在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0 r m r k r m r k r r ik r r r ik r r m i r e r r e r e r r e r m i mi J ikr ikr ikr ikr3202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。
表示向外传播的球面波。
rmr k r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m2i J )2(3020220ikr ikr ikr ikr *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。
量子光学习题解答
e e =e e e 令 λ =1,即 e = e e e = e ee A ↔ B ,则有 e = e ee 。
A+ B
=e
λA
λB
−1 λ 2C 2
−1 λ 2C 2
A B
λA
λB
−1 C 2
−1 [ A, B ] 2
A
B
A+ B
1 [ A, B ] 2
B
A
1.3
α 为参数,A,B 不对易,求证
∴e
−α a + a
f ( a , a + )e
α a +a
= f (ae , a + e ) 。
α
−α
(c)的另一种证法: 由 1.2 题的(1)式,易得 [a + , a n ] = −na n −1 , [a , a + n ] = na + n −1 ∴[a + a, a n ] = − na n , [aa + , a + n ] = na + n 由 1.3 题结果,易得 e
1 ∂2 A =0 2 c ∂t 2
(1 )
(i = x , y , z )
在直角坐标系中,分离变量
Ai ( r , t ) = Ai ( r ) Ai (t )
(2)
代入(1)式,有
∇2 Ai ( r ) Ai ( r )
2
=
1 ∂ 2 Ai ( t ) c2 ∂t 2 Ai ( t )
2
= −k 2
+ + + + + + + + + + +
21量子光学习题思考题
习题2121-1.测量星体表面温度的方法之一是将其看作黑体,测量它的峰值波长m λ,利用维恩定律便可求出T 。
已知太阳、北极星和天狼星的m λ分别为60.5010m -⨯,60.4310m -⨯和60.2910m -⨯,试计算它们的表面温度。
解:由维恩定律:m T b λ=,其中:310898.2-⨯=b ,那么:太阳:362.8981057960.510m bT K λ--⨯===⨯; 北极星:362.8981067400.4310m bT K λ--⨯===⨯;天狼星:362.8981099930.2910m bT K λ--⨯===⨯。
21-2.宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于温度为K 3的黑体辐射,试计算: (1)此辐射的单色辐出度的峰值波长; (2)地球表面接收到此辐射的功率。
解:(1)由m T b λ=,有342.898109.66103m b m T λ--⨯===⨯; (2)由4M T σ=,有:424P T R σπ=⨯地,那么: 328494(637010) 5.67103 2.3410P W π-=⨯⨯⨯⨯⨯=⨯。
21-3.已知000K 2时钨的辐出度与黑体的辐出度之比为259.0。
设灯泡的钨丝面积为2cm 10,其他能量损失不计,求维持灯丝温度所消耗的电功率。
解:∵4P T S σ=⋅黑体,消耗的功率等于钨丝的幅出度,所以,44840.2591010 5.67102000235P S T W ησ--==⨯⨯⨯⨯⨯=。
21-4.天文学中常用热辐射定律估算恒星的半径。
现观测到某恒星热辐射的峰值波长为m λ;辐射到地面上单位面积的功率为W 。
已测得该恒星与地球间的距离为l ,若将恒星看作黑体,试求该恒星的半径。
(维恩常量b 和斯特藩常量σ均为己知) 解:由m T b λ=恒星,4M T σ=,考虑到恒星辐射到地面上单位面积的功率⨯大球面=恒星表面辐出的功率,有:22444W l R T ππσ⋅=⋅恒星恒星,∴R =恒星21-5.分别求出红光(5710cm λ-=⨯),X 射线(A 25.0=λ),γ射线(A λ21024.1-⨯=)的光子的能量、动量和质量。
30道量子力学知识选择题和答案
30道量子力学知识选择题和答案1. 关于量子态,以下说法正确的是()A. 量子态是可连续变化的B. 量子态是离散的答案:B2. 量子叠加原理是指()A. 多个量子态可以同时存在B. 量子态只能有一个答案:A3. 量子纠缠现象说明了()A. 量子之间存在相互作用B. 量子之间存在非定域性关联答案:B4. 在量子力学中,测量会导致()A. 量子态的改变B. 量子态的保持不变答案:A5. 关于波函数,以下说法正确的是()A. 描述了量子系统的状态B. 是一个实数函数答案:A6. 海森堡不确定性原理涉及到哪两个物理量的不确定性()A. 位置和动量B. 能量和时间答案:A7. 量子力学中的算符表示()A. 物理量B. 对量子态的操作答案:B8. 泡利不相容原理适用于()A. 电子B. 所有费米子答案:B9. 以下哪种现象与量子力学有关()A. 黑体辐射B. 光电效应答案:B10. 在量子力学中,能量的量子化表现为()A. 能量只能取特定的值B. 能量可以连续变化答案:A11. 关于量子隧道效应,以下说法正确的是()A. 粒子可以穿过势垒B. 粒子不能穿过势垒答案:A12. 量子力学中的可观测量对应的是()A. 厄米算符B. 非厄米算符答案:A13. 狄拉克方程描述的是()A. 电子的运动B. 所有粒子的运动答案:B14. 关于量子力学的诠释,以下说法正确的是()A. 只有一种诠释是正确的B. 有多种诠释,且都有实验支持答案:B15. 量子力学中的全同粒子()A. 是完全相同的B. 可以区分答案:A16. 关于量子力学的基本假设,以下说法错误的是()A. 物理量都可以用实数来描述B. 量子态的演化是确定性的答案:AB17. 量子力学中的概率幅表示()A. 概率的大小B. 概率的相位答案:B18. 以下哪种实验验证了量子力学的基本原理()A. 双缝干涉实验B. 迈克尔逊-莫雷实验答案:A19. 量子力学中的守恒量对应的是()A. 不变的物理量B. 随时间变化的物理量答案:A20. 关于量子力学中的对称性,以下说法正确的是()A. 存在多种对称性B. 对称性与物理规律无关答案:A21. 量子力学中的密度算符描述的是()A. 量子系统的概率分布B. 量子系统的能量分布答案:A22. 以下哪种量子系统具有简并性()A. 氢原子B. 自由粒子答案:A23. 量子力学中的散射理论主要研究()A. 粒子的碰撞过程B. 粒子的传播过程答案:A24. 关于量子力学中的表象,以下说法正确的是()A. 有多种表象可以选择B. 表象是唯一确定的答案:A25. 量子力学中的时间演化算符描述的是()A. 量子态随时间的变化B. 物理量随时间的变化答案:A26. 以下哪种量子系统的能级是分立的()A. 谐振子B. 自由电子答案:A27. 量子力学中的角动量算符具有()A. 分立的本征值B. 连续的本征值答案:A28. 关于量子力学中的路径积分表述,以下说法正确的是()A. 是一种量子力学的表述方式B. 与薛定谔方程等价答案:AB29. 量子力学中的对称性破缺会导致()A. 新的物理现象B. 物理规律的改变答案:A30. 以下哪种量子系统的波函数可以用球谐函数来描述()A. 氢原子B. 原子核答案:A。
量子物理初步习题及解答
一 选择题 (共30分)1. (本题 3分)(4387) 光电效应中发射的光电子最大初动能随入射光频率ν 的变化关系如图所示.由图中的(A) OQ (B) OP (C) OP /OQ (D) QS /OS 可以直接求出普朗克常量. [ ]2. (本题 3分)(4503) 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 2倍. (B) 1.5倍. (C) 0.5倍. (D) 0.25倍. [ ]3. (本题 3分)(4739) 光子能量为 0.5 MeV 的X 射线,入射到某种物质上而发生康普顿散射.若反冲电子的能量为 0.1 MeV ,则散射光波长的改变量∆λ与入射光波长λ0之比值为 (A) 0.20. (B) 0.25. (C) 0.30. (D) 0.35. [ ]4. (本题 3分)(4185) 已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的红限波长是5400 Å ,那么入射光的波长是 (A) 5350 Å. (B) 5000 Å. (C) 4350 Å. (D) 3550 Å. [ ]5. (本题 3分)(4206) 静止质量不为零的微观粒子作高速运动,这时粒子物质波的波长λ与速度v 有如下关系:(A) v ∝λ . (B) v /1∝λ.(C) 2211c−∝v λ. (D) 22v −∝c λ. [ ]6. (本题 3分)(4242) 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是 0.4Å ,则U 约为 (A) 150 V . (B) 330 V .(C) 630 V . (D) 940 V . [ ](普朗克常量h =6.63×10-34J ·s)7. (本题 3分)(4770) 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同. (B) 能量相同.(C) 速度相同. (D) 动能相同. [ ]不确定关系式h ≥⋅∆∆x p x 表示在x 方向上(A) 粒子位置不能准确确定. (B) 粒子动量不能准确确定.(C) 粒子位置和动量都不能准确确定.(D) 粒子位置和动量不能同时准确确定. [ ]9. (本题 3分)(5234) 关于不确定关系h ≥∆∆x p x ()2/(π=h h ,有以下几种理解:(1) 粒子的动量不可能确定.(2) 粒子的坐标不可能确定.(3) 粒子的动量和坐标不可能同时准确地确定.(4)不确定关系不仅适用于电子和光子,也适用于其它粒子.其中正确的是:(A) (1),(2). (B) (2),(4).(C) (3),(4). (D) (4),(1). [ ]10. (本题 3分)(5619) 波长λ =5000 Å的光沿x 轴正向传播,若光的波长的不确定量∆λ =10-3Å,则利用不确定关系式h x p x ≥∆∆可得光子的x 坐标的不确定量至少为(A) 25 cm . (B) 50 cm .(C) 250 cm . (D) 500 cm . [ ]二 填空题 (共39分)11. (本题 3分)(0475) 某光电管阴极, 对于λ = 4910 Å的入射光,其发射光电子的遏止电压为0.71 V .当入射光的波长为__________________Å时,其遏止电压变为1.43 V . ( e =1.60×10-19 C ,h =6.63×10-34 J ·s )12. (本题 5分)(4179) 光子波长为λ,则其能量=____________;动量的大小 =_____________;质量=_________________ .13. (本题 4分)(4187) 康普顿散射中,当散射光子与入射光子方向成夹角φ = _____________时,散射光子的频率小得最多;当φ = ______________ 时,散射光子的频率与入射光子相同.波长为λ =1 Å的X 光光子的质量为_____________kg . (h =6.63×10-34 J ·s)15. (本题 3分)(4608) 钨的红限波长是230 nm (1 nm = 10-9m),用波长为180 nm 的紫外光照射时,从表面逸出的电子的最大动能为___________________eV .(普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19C)16. (本题 3分)(4742) 某金属产生光电效应的红限为ν0,当用频率为ν (ν >ν0 )的单色光照射该金属时,从金属中逸出的光电子(质量为m )的德布罗意波长为________________.17. (本题 3分)(4740) 在X 射线散射实验中,散射角为φ 1 = 45°和φ 2 =60°的散射光波长改变量之比∆λ1:∆λ2 =_________________.18. (本题 3分)(4611) 某一波长的X 光经物质散射后,其散射光中包含波长________和波长__________的两种成分,其中___________的散射成分称为康普顿散射.19. (本题 3分)(4207) 令)/(c m h e c =λ(称为电子的康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子的动能等于它的静止能量时,它的德布罗意波长是λ =________________λc .20. (本题 3分)(4524) 静止质量为m e 的电子,经电势差为U 12的静电场加速后,若不考虑相对论效应,电子的德布罗意波长λ=________________________________.21. (本题 3分)(4771) 为使电子的德布罗意波长为1 Å,需要的加速电压为_______________. (普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C ,电子质量m e =9.11×10-31 kg)在电子单缝衍射实验中,若缝宽为a = 0.1 nm (1 nm = 10-9 m),电子束垂直=______________N·s.射在单缝面上,则衍射的电子横向动量的最小不确定量∆py(普朗克常量h =6.63×10-34 J·s)三计算题 (共33分)23. (本题 8分)(4505)用波长λ0 =1 Å的光子做康普顿实验.(1) 散射角φ=90°的康普顿散射波长是多少?(2) 反冲电子获得的动能有多大?=9.11×10-31 kg) (普朗克常量h =6.63×10-34 J·s,电子静止质量me24. (本题 5分)(4522)为粒子考虑到相对论效应,试求实物粒子的德布罗意波长的表达式,设EK 的动能,m为粒子的静止质量.25. (本题 5分)(4535)若不考虑相对论效应,则波长为 5500 Å的电子的动能是多少eV?=9.11×10-31 kg) (普朗克常量h =6.63×10-34 J·s,电子静止质量me26. (本题 5分)(4631)假如电子运动速度与光速可以比拟,则当电子的动能等于它静止能量的2倍时,其德布罗意波长为多少?=9.11×10-31 kg) (普朗克常量h =6.63×10-34 J·s,电子静止质量me27. (本题10分)(1813)若光子的波长和电子的德布罗意波长λ相等,试求光子的质量与电子的质量之比.一 选择题 (共30分)1. (本题 3分)(4387) (C)2. (本题 3分)(4503) (D)3. (本题 3分)(4739) (B)4. (本题 3分)(4185) (D)5. (本题 3分)(4206) (C)6. (本题 3分)(4242) (D)7. (本题 3分)(4770) (A)8. (本题 3分)(4211) (D)9. (本题 3分)(5234) (C)10. (本题 3分)(5619) (C)参考解:根据 p = h / λ则 22/λλ∆∆=h p x λλ∆∆≥/2x min x ∆λλ∆=/2=5000×10-10×5000×103= 2.5 m= 250 cm二 填空题 (共39分)11. (本题 3分)(0475) 3.82×103 3分12. (本题 5分)(4179) λ/hc 1分λ/h 2分 )/(λc h 2分13. (本题 4分)(4187) π 2分 0 2分14. (本题 3分)(4250) 2.21×10-32 3分1.5 3分16. (本题 3分)(4742))(20νν−m h3分17. (本题 3分)(4740) 0.586 3分18. (本题 3分)(4611) 不变 1分 变长 1分 波长变长 1分3分20. (本题 3分)(4524) 2/112)2/(eU m h e 3分21. (本题 3分)(4771) 150 V 3分22. (本题 3分)(5372) 1.06×10-24 (或 6.63×10-24或0.53×10-24 或 3.32×10-24) 3分参考解:根据 h ≥∆∆y p y ,或 h p y y ≥∆∆,或h 21≥∆∆y p y ,或h p y y 21≥∆∆,可得以上答案.三 计算题 (共33分)23. (本题 8分)(4505) 解:(1) 康普顿散射光子波长改变: =−=∆)cos 1)((φλc hm e 0.024×10-10 m=+=∆λλλ0 1.024×10-10 m 4分 (2) 设反冲电子获得动能2)(c m m E e K −=,根据能量守恒: K e E h c m m h h +=−+=ννν20)(即 KE hc hc ++=∆)]/([/00λλλ故 )](/[00λλλλ∆∆+=hc E K =4.66×10-17 J =291 eV 4分24. (本题 5分)(4522) 解:据 202c m mc E K −=20220))/(1/(c m c c m −−=v 1分得 220/)(c c m E m K += 1分)/(220202c m E c m E E c K K K++=v 1分将m ,v 代入德布罗意公式得2022/c m E E hc h/m K K+==v λ 2分解:非相对论动能 221v e K m E =而 v e m p = 故有 eK m p E 22= 2分又根据德布罗意关系有 λ/h p = 代入上式 1分则 ==)/(2122λe K m h E 4.98×10-6 eV 2分26. (本题 5分)(4631) 解:若电子的动能是它的静止能量的两倍,则:2222c m c m mc e e =− 1分故: e m m 3= 1分由相对论公式 22/1/c m m e v −= 有 22/1/3c m m e e v −= 解得 3/8c =v 1分德布罗意波长为:)8/()v /(c m h m h e ==λ131058.8−×≈ m 2分27. (本题10分)(1813) 解:光子动量: p r = m r c = h /λ ① 2分 电子动量: p e = m e v = h /λ ② 2分两者波长相等,有 m r c = m e v得到 m r / m e = v / c ③电子质量 220/1c v m m e −=④ 2分式中m 0为电子的静止质量.由②、④两式解出)/(122220h c m cv λ+=2分代入③式得)/(1122220h c m m m e r λ+= 2分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、二能级原子与单模光场发生共振相互作用,系统的哈密顿量为
()a a H ++−+=σσλℏ。
如果原子t=0时刻处于激发态|e>,而光场处于相
干态|α>,计算任意时刻t 原子处于基态|g>的概率P g (t),并作出图形(横坐标表示时间,纵坐标为概率。
为方便取α=1)。
解:用光子数态可将|α>展开为
()∑∞
=〉
=〉0n ||n n F α其中:n!
2||-exp n F n
2αα)()
(=为光子数的统计分布在相干态|ɑ>中,观察到n 个光子的概率P(n)满足泊松分布:
()(
)
2
2exp !
α
α
−=
n n P n
在t=0时原子处于激发态|e>,所以系统在0时刻的态矢可以表示为:
()()∑∞
=〉
=〉〉=〉0n n e |n e ||0|,F αψ在t 时刻,由于光场与原子之间的相互作用,假设系统的态矢演化为:
()()()()[]
∑∞
=+++=0n 11,,a n t n g t b n e t F n n ψ由薛定谔方程()()t H t i ψψ=(取1=ℏ),根据初始条件
()()⎩⎨
⎧==+001
01
n n b a 易解得系数为:()(
)
()(
)
⎩⎨
⎧+−=+=+1
sin 1cos 1n t i t b n t t a n n λλ处于基态|g>的概率为:
()()
(()
2
2
n 20
2
10
2
1sin )n!2||-exp ()(+==∑∑∞
=+∞
=n t t b n F t P n n n g λαα)(
作图:
取λ=0.1,ɑ=1用mathematics作图如下
取λ=1,ɑ=1用mathematics作图如下
取λ=1,ɑ=5用mathematics作图如下
取λ=1,ɑ=10用mathematics作图如下
23、压缩态的另一种定义:|α>g =D(α)S(ξ)|0>。
.我们学过的压缩态为|β>g =S(ξ)D(β)|0>。
若|α>g =|β>g ,利用它们关于X 1=1/2(a+a +)和X 2=-i/2(a-a +
)的涨落图,求出α和β的关系。
解:平移算符为:
()()a a D *exp ααα−=+其中φααi e =()()
a a D *exp βββ−=+其中ϕ
ββi e =压缩算符为:
()⎟
⎠
⎞
⎜⎝⎛−=+22*2121exp a a S ξξξ其中θ
ξi e r =由压缩相干态的两种定义可知:
()()0ξααS D g
=()()0
βξβ
D S g
=其中
()()()
n
n n r e r
S n n n
i g
22!!2tanh cosh 100
02
1
∑
∞
=−==θξ()()()
)()k m n k m n m n n n r e r
e
D n
m k k
m
n n n
i g
g +−−−−==∑∑=∞=∞
=−2!!2!!22!!2tanh cosh 10
200
212
1
2
αααα
θα()∑∞
=−==0
2
1
!0n n
n n e
D αββ
α()()()∑∑∞
==⎟⎟⎠
⎞
⎜⎜⎝
⎛+
−−⎟⎟⎠
⎞⎜
⎜⎝
⎛−⎟⎟⎠
⎞
⎜⎜⎝⎛==020
cosh 2sinh 21
2
1g
!
2!sinh ·cosh 22!)1(cosh sinh )cosh !(2
*
2
n m i m r
r e n i n
m n m r e r n e
r r e r n S i πθ
ββθβ
β
ξβ
θ
定义两个厄米算符:
X 1=1/2(a+a +)X 2=-i/2(a-a +
)
X 1,X 2是描述光场的两个正交分量的振幅,且有:
[]2
,21i
X X =计算求得光场g α、β和g β的X 1,X 2分量的量子涨落和期望值分别为:
()⎟⎠
⎞
⎜
⎝
⎛+=∆−2sin 2
cos 412
22221θθr r e e X ()⎟
⎠
⎞⎜⎝
⎛+=∆−2cos 2
sin 41222222θθr r e e X φαααα
cos 11==g
g X X φ
αα
ααsin 22==g
g X X ϕββββ
cos 111==X
X ϕββββ
sin 212==X X ()[]r hr X X g
g sinh cos cos cos 11ϕθϕββββ
−−==()[]
r hr X X g
g sinh sin cos sin 22
ϕθϕββ
ββ−−==用图像描述压缩相干态的产生过程如下:
1
1
因为g α=g β,所以g α和g β的期望值相等,即:
⎪⎩⎪⎨⎧==β
α
βα2
2
1
1X X X X 即:
()[]()[]
⎩⎨
⎧−−=−−=r r r r sinh sin cosh sin sin sinh cos cosh cos cos ϕθϕβφαϕθϕβφα因为φαφααsin i cos +=,将上式代入,有:
()[]()[]
r r r r sinh sin cosh sin i sinh cos cosh cos ϕθϕβϕθϕβα−−+−−=可化为:
r
e i sinh coshr *θββα−=。