大学物理第17章热力学第一定律(1)
大学物理化学 热力学第一定律
2.焓(H)
H≡U+PV dH=dU+PdV+VdP 推论: 恒压: dH=dU+PdV 恒压仅作体积功:
δQ=dH=dU+PdV Qp=ΔH
说明:焓的引入用了恒压过程,但并不意味只有 恒压过程才有体系的焓变; Qp是热量,非状态函数。
Cp与Cv的关系
Cp-Cv= H
T
其数值与体系中物质的量无关,不具有 加合性,整体的强度性质的数值与体系 中各部分的强度性质的数值相同。
如:
温度、压力、浓度、密度等。
容量性质:
其数值与体系中物质的量成正比,具有 加合性,整体容量性质的数值等于体系 中各部分该性质数值的总和。
如:
体积、质量、能量等。
二、状态、状态函数
1.状态 体系一系列宏观性质的综合,包括如质 量、温度、压力、体积和组成等。
推论: 1.对于理C想P=气体HT 发P 生的过程而言,当温
度不变时,则焓变为零,即ΔH=0;2.如果温 度发生改变,其焓变量为
ΔH= TT12 nCP,mdT
CP与CCPV-的CV关=系 p:
U V
T
dV
有C -C =
p
V
p
U V
T
V T
p
1.3热力学第一定律的应用
一、热力学第一定律对理想气体的应用 1. 低压气体的自由膨胀实验(焦耳)
结果:温度恒定,气体的内能不变, 内能与压力和体积无关……焦耳定律
2.理想气体的内能
热力学体系:无宏观动能(体系静止),宏观 势能对体系影响小,可不予考虑。
ΔU= Q+W
仅作体积功恒压: ΔU=QP+p ΔV
大学物理热力学第一定律
绝热线的斜率大于 等温线的斜率
pdV Vdp 0
dp dV
T
pA VA
24
Note:
其他过程方程:
e.g. 等体过程: p C
T 等压过程: V C
T
等温过程: pV C
25
2. 绝热过程中,理想气体对外做功:
V2
A pdV
V1
p1V1
V2 V1
dV V
p2V2
V2 V1
dV V
p
1
2
p=const.
O 因 dQ
V 摩尔定压热容
M
Mmol C pdT
又 dE
M Mmol CV dT
且 dA M RdT
M mol
17
注:pV M RT p=const .
M mol pdV M RdT
M mol
由 dQ=dE+dA 代入、、
得 C p = CV + R ——迈耶(Mayer)公式
V1
V
RT ln V2 2.72103 J
V1
(2) 根据绝热过程方程,有
OV
T2 T1(V1 V2 ) 1 192 K
pV C2
pV C1
3V V
31
将热力学第一定律应用于绝热过程方程中,有
A E E CV (T2 T1) 2.2 103 J
所以 A 2.2 103 J
32
重力型
蓄水槽
发电机
电池
泵
蓄水槽
浮力型 毛细型 子母型 ……
即:E 0, Q 0, A 0
违反热力学第一定律,所以不可能成功。
14
§2.2 等体过程 isochoric process
《大学物理》课件-热力学第一定律
21
例1 理想气体准静态等温膨胀做的功。并思考如何实现这 一准静态过程。
22
假设缸中由v mol气体,等温膨胀的温度为T,体积
变化为:
V1 →V2
则
V2
A=
V1
pdV
= V2RT
绝热壁
C
向真空中自由膨胀。测量 膨胀前后水温的变化。
气体
真空 水
实验结果:水温不变,
验证了理想气体的内能与体积无关。为什么?
dQ = 0,dA = 0 dE = 0 (V1 →V2 )
但水的热容比气体的大得多,焦耳实验中气体温度变化不 易测出。实验进一步改进。1852年焦耳和汤姆逊用节流方法重 新做了实验。
11
4.热力学第一定律 机械能守恒: Aex + Ain,n-cons = EB - EA 对保守系统: Aex = EB - EA = ΔE 质心参考系下:Aex = Ein,B - Ein,A
对单一组分的热力学系统(保守系统),外界对系统做 功可分为:①与系统的边界具有宏观位移相联系的宏观功; ②没有宏观位移的热传递型微观功。
Aex = A + Q 则机械能守恒在热力学系统的新形式: A + Q = ΔE
12
对于任何宏观系统的任何过程,系统从外界吸收的热
量等于系统内能的增量和系统对外做的功之和。
Q = E2-E1 + A
A = -A表示系统对外界做功。对初、末态为平衡态的无
限小过程
dQ = dE + dA
——涉及热现象的能量守恒定律的表述。 ——不需要能量输入而能继续做功的“第一类永动机”不 存在。
大学物理化学1-热力学第一定律课后习题及答案
热力学第一定律课后习题一、是非题下列各题中的叙述是否正确?正确的在题后括号内画“√”,错误的画“⨯”。
1.在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。
( )2. d U = nC V,m d T这个公式对一定量的理想气体的任何pVT过程均适用。
( )3. 一个系统从始态到终态,只有进行可逆过程才有熵变。
( )4. 25℃时H2(g)的标准摩尔燃烧焓等于25℃时H2O(g)的标准摩尔生成焓。
( )5. 稳定态单质的∆f H(800 K) = 0。
( )二、选择题选择正确答案的编号,填在各题后的括号内:1. 理想气体定温自由膨胀过程为:()。
(A)Q > 0;(B)∆U < 0;(C)W <0;(D)∆H = 0。
2. 对封闭系统来说,当过程的始态和终态确定后,下列各项中没有确定的值的是:( )。
( A ) Q;( B ) Q+W;(C ) W( Q = 0 );( D ) Q( W = 0 )。
3. pVγ = 常数(γ = C p,m/C V,m)适用的条件是:( )(A)绝热过程;( B)理想气体绝热过程;( C )理想气体绝热可逆过程;(D)绝热可逆过程。
4. 在隔离系统内:( )。
( A ) 热力学能守恒,焓守恒;( B ) 热力学能不一定守恒,焓守恒;(C ) 热力学能守恒,焓不一定守恒;( D) 热力学能、焓均不一定守恒。
5. 从同一始态出发,理想气体经可逆与不可逆两种绝热过程:( )。
( A )可以到达同一终态;( B )不可能到达同一终态;( C )可以到达同一终态,但给环境留下不同影响。
6. 当理想气体反抗一定的压力作绝热膨胀时,则:( )。
( A )焓总是不变;(B )热力学能总是增加;( C )焓总是增加;(D )热力学能总是减少。
7. 已知反应H2(g) +12O2(g) ==== H2O(g)的标准摩尔反应焓为∆r H(T),下列说法中不正确的是:()。
热力学定律1
热力学定律一、热力学第一定律 在19世纪早期,不少人沉迷于一种神秘机械, 这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。
在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论,这种不需要外界提供能量的永动机称为第一类永动机。
热力学第一定律是能量守恒定律, 它是说能量可以由一种形式变为另一种形式, 但其总量既不能增加也不能减少, 是守恒的。
本世纪初爱因斯坦发现能量和质量可以互变, 所以能量守恒定律改为质能守恒定律。
这一定律指出物质既不能被消灭也不能被创造, 一度被无神论当作宇宙永恒的根据. 热力学第一定律的产生是这样的:在18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题。
于是,热力学应运而生。
1798年,汤普生通过实验否定了热质的存在。
德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。
焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。
二、热力学第二定律 在人们认识了能的转化和守恒定律后,制造永动机的梦想并没有停止下来。
不少人开始企图从单一热源(比如从空气、海洋)吸收能量,并用来做功。
将热转变成功,并没有违背能量守恒,如果能够实现,人类就将有了差不多取之不尽的能源,地球上海水非常丰富,热容很大,仅仅使海水的温度下降1℃,释放出来的热量就足够现代社会用几十万年,从海水中吸取热量做功,则航海不需要携带燃料!这种机械被人们称为第二类永动机。
但所有的实验都失败了,因为这违背了自然界的另一条基本规律:热力学第二定律。
1824年,法国陆军工程师卡诺设想了一个既不向外做工又没有摩擦的理想热机。
通过对热和功在这个热机内两个温度不同的热源之间的简单循环(即卡诺循环)的研究,得出结论:热机必须在两个热源之间工作,热机的效率只取决与热源的温差,热机效率即使在理想状态下也不可能的达到100%。
【理想】大学物理化学1热力学第一定律课后习题及答案
【关键字】理想热力学第一定律课后习题一、是非题下列各题中的叙述是否正确?正确的在题后括号内画“”,错误的画“”。
1. 在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。
( )2. dU = nCV,mdT这个公式对一定量的理想气体的任何pVT过程均适用。
( )3. 一个系统从始态到终态,只有进行可逆过程才有熵变。
( )4. 时H2(g)的标准摩尔燃烧焓等于时H2O(g)的标准摩尔生成焓。
( )5. 稳定态单质的fH(800 K) = 0。
( )2、选择题选择正确答案的编号,填在各题后的括号内:1. 理想气体定温自由膨胀过程为:()。
(A)Q > 0;(B)U < 0;(C)W < 0;(D)H = 0。
2. 对封闭系统来说,当过程的始态和终态确定后,下列各项中没有确定的值的是:( )。
( A ) Q;( B ) Q+W;(C ) W( Q = 0 );( D ) Q( W = 0 )。
3. pV = 常数( = Cp,m/CV,m)适用的条件是:( )(A)绝热过程;( B)理想气体绝热过程;( C )理想气体绝热可逆过程;(D)绝热可逆过程。
4. 在隔离系统内:( )。
( A ) 热力学能守恒,焓守恒;( B ) 热力学能不一定守恒,焓守恒;(C ) 热力学能守恒,焓不一定守恒;( D) 热力学能、焓均不一定守恒。
5. 从同一始态出发,理想气体经可逆与不可逆两种绝热过程:( )。
( A )可以到达同一终态;( B )不可能到达同一终态;( C )可以到达同一终态,但给环境留下不同影响。
6. 当理想气体反抗一定的压力作绝热膨胀时,则:( )。
( A )焓总是不变;(B )热力学能总是增加;( C )焓总是增加;(D )热力学能总是减少。
7. 已知反应H2(g) +O2(g) ==== H2O(g)的标准摩尔反应焓为rH(T),下列说法中不正确的是:()。
大学化学《物理化学-热力学第一定律及其应用》课件
(1)克服外压为 p ',体积从V1 膨胀到V ' ; (2)克服外压为 p",体积从V ' 膨胀到V " ;
(3)克服外压为 p2,体积从V "膨胀到V2 。
We,3 p '(V 'V1)
p"(V "V ')
p
p1
p1V1
p2 (V2 V ")
p'
所作的功等于3次作功的加和。p "
p 'V ' p"V "
可见,外压差距越小,膨 p2 胀次数越多,做的功也越多。
V1 V ' V "
p2V2
V2 V
上一内容 下一内容 回主目录
返回
2024/9/13
功与过程(多次等外压膨胀)
p"
p' p1
V"
V1
V'
p
p1
p1V1
p2
V2
p'
p 'V '
阴影面积代表We,3
p"
p"V "
p2
p2V2
上一内容
下一内容
V1 V ' V "
第三步:用 p1 的压力将体系从V ' 压缩到 V1 。
p
W' e,1
p"(V "
V2 )
p1
p1V1
p' (V ' V ")
p'
p 'V '
p1(V1 V ' )
回主目录
V2 V
热力学第一定律
1.热力学第一定律热力学第一定律的主要内容,就是能量守恒原理。
能量可以在一物体与其他物体之间传递,可以从一种形式转化成另一种形式,但是不能无中生有,也不能自行消失。
而不同形式的能量在相互转化时永远是数量相当的。
这一原理,在现在看来似乎是顺理成章的,但他的建立却经历了许多失败和教训。
一百多年前西方工业革命,发明了蒸汽机,人们对改进蒸汽机产生了浓厚的兴趣。
总想造成不供能量或者少供能量而多做功的机器,曾兴起过制造“第一类永动机”的热潮。
所谓第一类永动机就是不需供给热量,不需消耗燃料而能不断循环做工的机器。
设计方案之多,但是成千上万份的设计中,没有一个能实现的。
人们从这类经验中逐渐认识到,能量是不能无中生有的,自生自灭的。
第一类永动机是不可能制成的,这就是能量守恒原理。
到了1840年,由焦耳和迈尔作了大量试验,测量了热和功转换过程中,消耗多少功会得到多少热,证明了热和机械功的转换具有严格的不变的当量关系。
想得到1J的机械功,一定要消耗0.239卡热,得到1卡热,一定要消耗4.184J的功,这就是著名的热功当量。
1cal = 4.1840J热功当量的测定试验,给能量守恒原理提供了科学依据,使这一原理得到了更为普遍的承认,牢牢的确立起来。
至今,无论是微观世界中物质的运动,还是宏观世界中的物质变化都无一例外的符合能量守恒原理。
把这一原理运用到宏观的热力学体系,就形成了热力学第一定律。
2.热力学第二定律能量守恒和转化定律就是热力学第一定律,或者说热力学第一定律是能量守恒和转化定律在热力学上的表现。
它指明热是物质运动的一种形式,物质系统从外界吸收的热量等于这个能的增加量和它对外所作的功的总和。
也就是说想制造一种不消耗任何能量就能永远作功的机器,即“第一种永动机”,是不可能的。
人们继续研究热机效率问题,试图从单一热源吸取能量去制作会永远作功的机器,这种机器并不违背能量守恒定律,只需将热源降温而利用其能量推动机器不断运转。
热力学第一定律
热力学第一定律热力学第一定律是热力学的基本原理之一,也被称为能量守恒定律。
它描述了能量的转化和守恒,对于揭示物质的能量变化和热力学性质具有重要的意义。
本文将深入探讨热力学第一定律的概念、原理和应用。
热力学第一定律的概念热力学第一定律是由英国物理学家焦耳在19世纪提出的。
它可以简洁地表述为能量守恒定律,即能量既不能被创造也不能被摧毁,只能在不同形式之间转化。
这意味着一个封闭系统中的能量总量是恒定的,能量既不能消失也不能产生。
当一个系统经历能量的转化时,其总能量保持不变,只是能量的形式和分布发生改变。
热力学第一定律的原理热力学第一定律的原理可以通过以下公式表示:ΔU = Q - W其中,ΔU表示系统内部能量的变化,Q表示系统吸收的热量,W表示系统对外做的功。
这个公式表明,系统内部能量的变化等于系统吸收的热量与系统对外做的功之间的差值。
当系统吸热时,ΔU为正,系统内部能量增加;当系统放热时,ΔU为负,系统内部能量减少;当系统对外做功时,ΔU 为负,系统内部能量减少;当系统由外界做功时,ΔU为正,系统内部能量增加。
热力学第一定律的应用热力学第一定律在工程和科学领域有着广泛的应用。
下面将介绍热力学第一定律的几个重要应用。
1. 热机效率计算热力学第一定律在热机效率计算中起着重要的作用。
热机的效率是指能够转化为有效功的热量与燃料能量之间的比例。
通过热力学第一定律的应用,我们可以计算出热机的效率,从而评估其性能。
2. 平衡热量计算在热平衡过程中,热力学第一定律可以用于计算平衡热量。
平衡热量是指系统从一个状态到另一个状态的过程中吸收或释放的热量。
通过应用热力学第一定律,我们可以计算系统在不同温度下的平衡热量,并进一步了解能量转化过程。
3. 定常流动计算在工程领域中,很多设备和系统都涉及流体的流动。
热力学第一定律可以用于定常流动过程的计算。
这种定常流动的例子包括空调系统、燃料电池、蒸汽涡轮等。
通过应用热力学第一定律,我们可以计算能量损失和效率,从而优化系统性能。
大学物理课件热学-热力学第一定律
PF S
如果活塞没有加速度(或可忽略), 由力学的动量守恒,有外压力与气 体压力相等。这时:
A PdV
3.热量:物体间通过热接触传递的能量。热量的测量方法:量热技术。
Q=?
实验时,如果电阻的欧姆热全部流入系统,有
一
Q / t RI 2
般
是
电阻
电流
间
接 地
如果一定量的机械能通过摩擦产生的热都流入了系统,有
B
如果从B到A,放热.
注意:一个过程不一定从头到尾都吸收或放热.
V
它可能有时吸收热, 有时放热.
因此分析整个过程吸收或放热是, 应一小段,一小段地考虑
6.理想气体平衡过程分析: 等温过程、绝热过程、等容过程、循环过程,……
等容过程 dV=0 : (1) A 不变化: A=0!
P
A
(2) 热:
B
Q U dU T
p1
ab
试求: ( 1)状态d的体积Vd;
d
(2)整个过程对外所作的功; o
V
(3)整个过程吸收的热量。
V1 2V1
解:(1)根据题意 Ta Td
又根据物态方程 pV RT
Td
Ta
p1V1 R
p
Tc
pcVc R
4 p1V1 R
4Ta
2p1
c
再根据绝热方程TcVc 1 TdVd 1 p1 a b
3 热力学第一定律
(能量守恒: 能量与能流)
1.物体的能量: 内能或热力学能量。有时可分为:1机械能 + 2热能。
能量概念来自对力学运动规律的研究。 从质点动力学人们认识到,比如:
弹簧质点组成的“孤立”系统:
m1
中国药科大学物理化学热力学第一定律
(二) 理想气体的热容
理想气体的内能及焓均只是温度的函数。 因此在无化学变化、无相变化、只做体积功 的任意其它过程中都有: dU=CVdT dH=CpdT 根据焓的定义:H=U+pV,微分可得: dH=dU+d(pV)
将pV=nRT代入 dH=dU+d(pV) CpdT = CVdT + nRdT 所以: Cp – CV = nR 1mol I.d.gas: Cp,m - Cv,m= R 上二式即为理想气体定压热容与定容 热容之间的关系。
例 6、 7
(三)理想气体的绝热过程 (adiabatic process)
绝热过程: Q = 0 绝热过程可以可逆地进行,亦可不可逆地进行。 定温过程与绝热过程的区别: 定温过程: Q≠ 0; T is constant 绝热过程: Q = 0; T must change dU = δW= Cv dT (理想气体) If δW 0 (压缩) dU 0 T If δW 0 (膨胀) dU 0 T
pV K1
TV 1 K2
p1 T K3
式中, K1, K2 , K 3 均为常数, C p / CV 。
pV=nRT
等温过程: pV=constant 绝热过程: pV=constant 所有的过程方程都应首先符合理想气体状态 方程。
3)比较绝热可逆膨胀 和等温可逆膨胀:
p
4)绝热不可逆过程
如果理想气体发生的绝热过程是不可逆的话,那么 pV=K 不能成立, 但δ W = dU同样成立。 如果绝热不可逆过程是恒外压膨胀或压缩时, W=-p2(V2-V1), △U=-p2(V2-V1) Ideal gas的Cv不随温度而变,△U=Cv(T2-T1)
大学物理@热力学第一定律1
热力学能增量
U 2 U1
整个过程系统从外界吸 热
m0 i 2 QP U 2 U1 A ( ) R(T2 T1 ) M 2
温度升高相同数值时, 等压膨胀过程中吸收的 热量 比等容过程吸热的热量 要多。
一、摩尔热容 C
系统在一个过程中从外 界吸热(放热) dQ,温度上升(降低) dT,定义:
•过程方程:
•热力学能、功和热量的变化
m0 i R(T2 T1 ) M 2
p1 p2 T1 T2 •特征:
系统对外界不作功,系 统吸收的热量全部用来 增加系统的热力学能。
dV 0, A pdV 0
QV U 2 U1
三、等压过程 定压摩尔热容
1、等压过程
•特点: •过程曲线:
求:气体分别在这两个 不同过程中从外界吸热 。 解:由理想气体状态方 程有
P
P 1V 1 nRT 1 P2V2 nRT2 且P2 2P ,V2 2V1,n 1 1 P2V2 4P 1V 1 4RT 1 RT 2
P2
P1
1
4
2
3
V1 T2 4T1
V2
V
同理可得 T3 T4 2T1
•气体膨胀时,系统对外界作功 气体压缩时,外界对系统作功 系统对外界所作的 •作功是改变系统热力学能的一种方法 •本质:通过宏观位移来完成的:机械运动→ 功等于pV 图上过 分子热运动 程曲线下面的面积
O V dV 1
V2
V
功是过程量
P
1 2
P
(P1 ,V1 )
A
V
A2
(P2 ,V2)
V
P
(P1 ,V1 )
大学物理热力学第一定律
[例题25.2]以理想气体为工质的卡诺 例题 ]以理想气体为工质的卡诺 循环由两个等温过程和两个绝热过程 循环由两个等温过程和两个绝热过程 组成。试求该循环效率。 组成。试求该循环效率。
ch25
• 循环 • 卡诺循环 • 效率 温度恒定的高温热源T 温度恒定的高温热源 1 Q1 Q2 A
温度恒定的低温热源T 温度恒定的低温热源 2
ch25
=Q
外界对系统所作的功: 外界对系统所作的功:A
=0
V
Q 系统从外界吸收的热量: 系统从外界吸收的热量: = C v (T2 − T1 )
(3) 等压过程 特征: 特征: 系统压强不变 p = 常数 内能的增量: 内能的增量: ∆U
= A + Q = C v (T2 − T1 )
A 外界对系统所作的功: 外界对系统所作的功: = − p(V2 − V1 )
温度
处在同一平衡态的所有热力学系统都有一个共同 的宏观性质, 的宏观性质,这个决定系统热平衡的宏观量定义 为温度。 为温度。
ch25
温标
热力学温标
t / C = T / K − 273
理想气体的物态方程
pV = ν R T
热力学第一定律
热力学系统终态2和初态1的内能之差U 热力学系统终态2和初态1的内能之差U2-U1,等于 在过程中外界对系统所作的功A 在过程中外界对系统所作的功A与系统从外界吸收 的热量Q 的热量Q之和
系统从外界吸收的热量: = 系统从外界吸收的热量:Q= 0
p V γ = 常数 T V γ − 1 = 常数
绝热方程- 绝热方程-泊松方程
pγ − 1 T − γ = 常数
(5) 多方过程 p V m = 常量 m = 1 m = 0 —— 等温过程 —— 等压过程
大学物理热力学基础知识点及试题带答案
热力学基础一、基本要求1. 理解功、热量及准静态过程的概念。
2. 掌握热力学第一定律,能分析计算理想气体等容、等压、等温过程和绝热过程中的功、热量、内能改变量;理解循环过程概念及卡诺循环的特征,并能计算效率和致冷系数。
3. 了解可逆过程、不可逆过程及卡诺定理。
4. 了解热力学第二定律及其统计意义。
二、主要内容1. 准静态过程:过程进行的每一时刻,系统的状态都无限接近平衡态。
准静态过程可以用状态图上的曲线表示。
2. 热力学第一定律(1) 热力学第一定律的数学表达式Q=E 2 - E 1 +W对微分过程为dQ=dE +d W热力学第一定律的实质是能量守恒与转换定律在热现象中的应用,其内容表示系统吸收的热量一部分转换为系统的内能,一部分对外做功。
(2) 准静态过程系统对外做功:d W=pd V ,W=⎰12V V pd V(3) 热量:系统和外界之间或两个物体之间由于温度不同而交换的热运动量,热量也是过程量。
一定摩尔的某种物质,在某一过程中吸收的热量,)(C m12m c,T T M Q -=(4) 摩尔热容:1mo1物质温度变化1K 所吸收或放出的热量,定义式为 dTQd m,=m c C 其中m 为1mo1 物质吸热。
摩尔定容热容:CV , m =摩尔定压热容:Cp, m =理想气体的摩尔热容:CV, m =,Cp, m =Cp, m =CV, m + 摩尔热容比:=3. 热力学第一定律对理想气体等值过程和绝热过程的应用,详见表1 表1 d =0 =恒量=恒量p =恒量mmmM m T1nMm T1nCV, m =Cp, m =4. 循环过程(1)循环过程的特征是E =0热循环:系统从高温热源吸热,对外做功,向低温热源放热,致效率为== 1—致冷循环:系统从低温热源吸热,接受外界做功,向高温热源放热,致冷系数为==(2)卡诺循环:系统只和两个恒温热源进行热交换的准静态循环过程。
卡诺热机的效率为= 1—卡诺致冷机的致冷系数为三、习题与解答1、 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.解 S ABCD =1/2(BC +AD)×CD 故 W =150 J2、 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3倍,求空气膨胀时所作的功. 解 根据物态方程11RT pV v =, 则作功为()J 1097.92231112⨯===-=RT pv V V p W v3、64g 氧气(可看成刚性双原子分子理想气体)的温度由0℃升至50℃,〔1〕保持体积不变;(2)保持压强不变。
热力学第一定律
热力学第一定律热力学第一定律,也被称为能量守恒定律,是热力学基本定律之一。
它阐述了能量在物理系统中的守恒原理,即能量不会被创造或消灭,只会在不同形式之间转换或传递。
该定律在许多领域都有广泛的应用,包括工程、物理、化学等。
1. 定律的表述热力学第一定律可从不同的角度进行表述,以下是几种常见的表述方式:1.1 内能变化根据热力学第一定律,一个封闭系统内能的变化等于系统所吸收的热量与系统所做的功的代数和。
数学表达式如下:ΔU = Q + W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统所做的功。
1.2 能量守恒根据能量守恒定律,能量既不能被创造也不能被摧毁,只会在不同形式之间传递或转换。
能量的总量在一个封闭系统中保持不变。
2. 系统内能的变化系统内能的变化是热力学第一定律的核心内容之一。
系统内能的变化是由系统吸收或释放的热量以及系统所做的功决定的。
2.1 系统吸收的热量系统吸收的热量指的是系统从外界获得的热能。
当一个热源与系统接触时,能量会以热量的形式从热源传递到系统中。
系统吸收的热量可以引起系统内能的增加。
2.2 系统所做的功系统所做的功指的是系统对外界做的能量转移。
当系统对外界施加力并移动时,能量会以功的形式从系统传递到外界。
系统所做的功可以引起系统内能的减少。
3. 热力学第一定律的应用3.1 工程应用热力学第一定律在工程领域有着广泛的应用。
例如,在能源系统的设计与优化中,需要根据系统的能量转换过程,计算系统的内能变化和热功效率等参数,以提高能源利用效率。
3.2 物理学应用在物理学研究中,热力学第一定律通常用于分析热力学过程中的能量转化。
例如,在热力学循环中,通过计算各个环节的能量转换情况,可以确定工作物质的热效率,从而评估系统的性能。
3.3 化学反应在化学反应中,热力学第一定律对于研究反应的能量变化和平衡状态具有重要意义。
通过计算反应过程中释放或吸收的热量,可以确定反应的放热性或吸热性,并预测反应的发生与否。
热力学第一定律
太原理工大学物理化学热力学第一定律1.热力学第一定律与状态函数 (1)热力学第一定律 热力学第一定律即能量转化与守恒定律,其数学形式为: ΔU=Q+W 其中ΔU 为系统经历某一变化过程(process)热力学能(thermodynamic energy)的变化, Q 和 W 分别为伴随该过程系统与环境交换的热和功(包括体积功和非体积功) 。
热力学第一定 律揭示了ΔU,Q 和 W 之间的关系。
应用热力学第一定律可由 ΔU,Q 和 W 中的任意两个量求第三个量。
(2)状态函数 在热力学中,有一种非常重要的量——状态函数(state function) ,如热力学第一定律中的 热力学能 U,还有以后要介绍的焓 H(enthalpy) 、熵 S(entropy) 、亥姆霍兹函数 A(Helmholtz function)和吉布斯函数 G(Gibbs function)等,这些状态函数具有以下共性: ①系统的状态一定,所有状态函数都有定值; ②系统的状态函数变化值只与始终态有关,而与变化的途径(path)无关,即 ③对于循环过程,系统的状态函数变化值等于零,即 ∫ dM =0。
此外,对于状态函数还有如下关系: 对于组成不变的单相系统,任一状态函数 M 都是其他任意两个独立自变量(状态函数)x、 y 的单值函数,表示为 M=M(x、y),则∫M2M1dM = ∆M ;⎛ ∂M ⎞ ⎛ ∂M ⎞ dM = ⎜ ⎟ dx + ⎜ ⎜ ∂y ⎟ ⎟ dy ⎝ ∂x ⎠ y ⎝ ⎠x⎛ ∂M ⎞ ⎛ ∂x ⎞ ⎛ ∂y ⎞ ⎟ = −1 (循环关系式) ⎟ ⎜ ⎜ ⎟ ⎜ ⎜ ⎟ ⎝ ∂x ⎠ y ⎝ ∂y ⎠ M ⎝ ∂M ⎠ x∂2M ∂2M = (尤拉关系式) ∂x∂y ∂y∂x热力学在解决各种实际问题时,正是以状态函数的上述性质为基础的。
如利用上述性质②, 在计算一定始终态间的某状态函数增量时,为了简化问题,可以撇开实际的复杂过程,设计简 单的或利用已知数据较多的过程进行计算。