链接高考:函数与导数
函数与导数例高考题汇编(含答案)
函数与导数高考题1.(安徽理3)设f(x)是定义在R 上的奇函数,当x≤0时,f(x)=2x'-x,则f()=(A)-3 (B)- 1 (C)1 (D)3【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法 .属容易题.【解析】f()= - f( - 1)= - 42( - 1)²- ( - 1)]= - 3 .故选A.2 . (安徽理10)函数f (x )=ax ”g 1- x )“在区 间〔0,1〕上的图像如图所示,则m ,n 的值可 能 是(A)m=1,n=1(B) m=1,n=2(C) m=2,n=1(D) m=3,n=1【答案】B 【命题意图】本题考查导数在研究 函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【 解 析 】 代 入 验 证 , 当m = 1 , n = 2 , f ( x ) = a x g ( 1 - x ) ² = n ( x ³ - 2 x ² + x ) ,则f ' ( x ) = a ( 3 x ² - 4 x + 1 ) , 由 ,结合图像可知函数应在递增,在 递减,即在, 知 a 存 在 . 故 选 B .3.(安徽文5)若点(a,b)在y=lgx 图像上,a≠1,则下列点也在此图像上的是(A)(,b) (B)(10a,1 b) (C)(,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系 .【 解 析 】 由 题 意b = 1 g a , 2 b = 2 1 l g a = 1 g a ² , 即( a ² , 2 b )也 在 函 数 y = l g x 图 像 上 .4 . (安徽文10) 函数f(x )=ax ”g (1 - . x )² 在区间(0,1)上的 图像如图所示,则n 可能是 (A)1 (B) 2取得最大值,由f'(x)=a(3x²-4x+1)=0可知,(C) 3 (D)4【答案】A【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当7=1时,f(x)=axg(1-x)²=a(x³-2x²+x),则f(x)=a(3r²-4x+1)由f ( x ) = a ( 3 x ² 4 x + 1 ) = 0 可知,,结合图像可知函数应在递增,在递减,即在取得最大值,由, 知a 存在. 故选A .7 . (福建理5) 等于A.1B.e- 1C. CD.e+1【答案】C8 . (福建理9 )对于函数f ( x ) = a s i n x + b x + c (其中,a , b ∈R , c ∈Z ) ,选取a , b , C 的一组值计算f ( )和f ( - 1 )所得出的正确结果一定不可能是A . 4和6B . 3和1C . 2和4D . 1和2【答案】D9 . ( 福建理1 0 ) 已知函数f ( x ) = e⁴+ x , 对于曲线y = f ( x ) 上横坐标成等差数列的三个点A , B , c , 给出以下判断:①△ABC 一定是钝角三角形②△ABC可能是直角三角形③△ABC可能是等腰三角形④△ABC不可能是等腰三角形其中,正确的判断是A.①③B.①④C.②③D.②④【答案】B10.(福建文6)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.(- 1,1)B.(-2,2)C.(-o,-2)U(2,+o)D.(-o,- 1)U(1,+c)【答案】C11. (福建文8)已知函数 ,若f(a)+f(1)=0,则实数a的值等于A. 3B. 1C. 1D. 3【答案】A12.(福建文10)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于A.2B.3C. 6D. 9【答案】D13.(广东理4)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是A . f(x)+1g(x)是偶函数B . f(x) - 1g(x)是奇函数c.if(x)\+g(x)是偶函数 D . i f ( x ) - g ( x )是奇函数【答案】A【解析】因为g(x)是R 上的奇函数,所以lg(x)是R 上的偶函数,从而f(x)+1g(x)是偶函数,故选A.14 . (广东文4)函 的定义域是 ( )A.(-~,- 1)B.(1,+~) c.(- 1,1)U(1,+oo) D.(-0,+oo)【答案】C16.(湖北理6)已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a¹-a ⁴+2(a>0,且a≠1),若g(2)=a,则f(2)=A.2B.C.D. a² 【答案】B【解析】由条件f(2)+g(2)=a²-a²+2,f(-2)+g(-2)=a²-a²+2, 即-f(2)+g(2)=a²-a²+2, 由此解得g(2)=2,f(2)=a²-a-所 以 a = 2 ,, 所 以 选 B18 . (湖南文7)曲线主点处的切线的斜率为( )A. B. 2 C. D. 【答案】B【解析】19.(湖南文8)已知函数f(x)=e¹-1,g(x)=-x²+4x -3.若有f(a)=g(b),则b 的取值范围为A.[2-√2,2+√2]B.(2-√2.2+√2)c.[1,3] p.(1,3)【答案】B【解析】由题可知f(x)=e ⁴- 1>- 1,g(x)=-x²+4x-3=-(x-2)²+1≤1,若有f(a)=g(b),则g(b) ∈(- 1,1), 即-b²+4b-3>- 1,解得2-√Z<b<2+√2., 所 以,y=020 . (湖南理6)由直线 与曲线y=COSX 所围成的封闭图形的面积为( )A.2B.1C.D.√3 【答案】D【解析】由定积分知识可得, 故 选 D 。
2020年高考数学(理)函数与导数 专题02 函数的基本性质(解析版)
函数与导数02函数函数的基本性质【考点讲解】一、具体目标:1.结合具体函数,了解函数奇偶性的含义.会用函数的图象理解和研究函数的奇偶性.2.理解函数的单调性及其几何意义.会用基本函数的图象分析函数的性质.3. 了解函数的周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、知识概述:1.偶函数、奇函数的概念一般地,如果对函数f(x)的定义域内任意一个x,都有__f(-x)=f(x)__,那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有__f(-x)=-f(x)__,那么函数f(x)就叫做奇函数.2.奇、偶函数的图象特征偶函数的图象关于__y轴__对称,奇函数的图象关于__原点__对称.3.函数奇偶性的常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.4.判断函数的奇偶性的常用方法:(1)定义法一般地,对于较简单的函数解析式,可通过定义直接作出判断;对于较复杂的解析式,可先对其进行化简,再利用定义进行判断.利用定义判断函数奇偶性的步骤:(2)图象法:奇函数的图象关于原点成中心对称,偶函数的图象关于y 轴成轴对称.因此要证函数的图象关于原点对称,只需证明此函数是奇函数即可;要证函数的图象关于y 轴对称,只需证明此函数是偶函数即可.反之,也可利用函数图象的对称性去判断函数的奇偶性. (3)组合函数奇偶性的判定方法①两个奇(偶)函数的和、差还是奇(偶)函数,一奇一偶之和为非奇非偶函数.②奇偶性相同的两函数之积(商)为偶函数,奇偶性不同的两函数之积(商)(分母不为0)为奇函数. ③复合函数的奇偶性可概括为“同奇则奇,一偶则偶”. (4)分段函数的奇偶性判定分段函数应分段讨论,注意奇偶函数的整体性质,要避免分段下结1.已知函数的奇偶性求函数的解析式. 抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于()f x 的方程,从而可得()f x 的解析式.5.已知带有字母参数的函数的表达式及奇偶性求参数.常常采用待定系数法:利用()()0f x f x ±-=产生关于字母的恒等式,由系数的对等性可得知字母的值.6.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. 7.增函数与减函数一般地,设函数f (x )的定义域为I ,(1)如果对于定义域I 内某个区间D 上的__任意两个__自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是__增函数__.(2)如果对于定义域I 内某个区间D 上的__任意两个__自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是__减函数__.8.单调性与单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)__单调性__,区间D 叫做y =f (x )的__单调区间__. 9.函数的最大值与最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有__f (x )≤M __;存在x 0∈I ,使得__f (x 0)=M __,那么,我们称M 是函数y =f (x )的最 大值.(2)对于任意的x ∈I ,都有__f (x )≥M __;存在x 0∈I ,使得__f (x 0)=M __,那么我们称M 是函数y =f (x )的最小值.10.函数单调性的常用结论11.对勾函数的单调性对勾函数y =x +ax (a >0)的递增区间为(-∞,-a ]和[a ,+∞);递减区间为[-a ,0)和(0,a ],且对勾函数为奇函数. 12.函数的周期性(1)对于函数f (x ),如果存在一个__非零常数__T ,使得当x 取定义域内的每一个值时,都有__f (x +T )=f (x )__,那么函数f (x )就叫做周期函数,T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的__最小__正周期. 13.函数周期性的常用结论: 对f (x )定义域内任一自变量x 的值: (1)若f (x +a )=-f (x ),则T =2a (a >0); (2)若f (x +a )=1f (x ),则T =2a (a >0); (3)若f (x +a )=-1f (x ),则T =2a (a >0).14.函数的对称性与周期性的关系(1)如果函数f (x )(x ∈D )在定义域内有两条对称轴x =a ,x =b (a <b ),则函数f (x )是周期函数,且周期T =2(b -a )(不一定是最小正周期,下同).(2)如果函数f (x )(x ∈D )在定义域内有两个对称中心A (a,0),B (b,0)(a <b ),那么函数f (x )是周期函数,且周期 T =2(b -a ).(3)如果函数f (x ),x ∈D 在定义域内有一条对称轴x =a 和一个对称中心B (b,0)(a ≠b ),那么函数f (x )是周期函数,且周期T =4|b -a |.注:对于(1)(2)(3)中的周期公式可仿照正、余弦函数的图象加强记忆.判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.15.根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.1.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【解析】本题主要考查函数的奇偶性,对数的计算.由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=,所以3a -=,即3a =-.【答案】3-2.【2019优选题】已知()f x 是R 上的偶函数,且在[0,)+∞单调递增,若(3)f a f -<(4),则a 的取值范围为 .【解析】:()f x Q 是R 上的偶函数,且在[0,)+∞单调递增,∴不等式(3)f a f -<(4)等价为 (|3|)f a f -<(4),即|3|4a -<,即434a -<-<,得17a -<<,即实数a 的取值范围是17a -<<, 【真题分析】故答案为:17a -<< 【答案】17a -<<.3.【2017课标II 】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+, 则(2)f = ________.【解析】本题考点奇函数的性质解决求函数值的问题. 法一:(2)(2)[2(8)4]12=--=-⨯-+=f f .法二:由题意可知函数()f x 是定义在R 上的奇函数,所以有()()()232x x x f x f +-=-=-,而因为()0,∞-∈x ,()∞+∈-,0x ,()232x x x f --=-所以有()⎪⎩⎪⎨⎧>-<+=0,20,22323x x x x x x x f ,()12222223=-⨯=f【答案】124. 【2017山东】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6xf x -=,则f (919)= 【解析】由f (x +4)=f (x -2)可知,()()6=+f x f x 是周期函数,且6T =,所以(919)(66531)(1)f f f =⨯+=(1)6f =-=.【答案】65. 【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 . 【解析】作出函数()f x ,()g x 的图象,如图:由图可知,函数2()1(1)f x x =--1()(12,34,56,78)2g x x x x x =-<≤<≤<≤<≤的图象仅有2个交点,即在区间(0,9]上,关于x 的方程()()f x g x =有2个不同的实数根,要使关于x 的方程()()f x g x =有8个不同的实数根,则2()1(1),(0,2]f x x x =--∈与()(2),(0,1]g x k x x =+∈的图象有2个不同的交点,由(1,0)到直线20kx y k -+=的距离为1211k =+,解得2(0)4k k =>, ∵两点(2,0),(1,1)-连线的斜率13k =,∴1234k ≤<,综上可知,满足()()f x g x =在(0,9]上有8个不同的实数根的k 的取值范围为123⎡⎢⎣⎭,. 【答案】123⎡⎢⎣⎭6.【2017山东理15】若函数()e x f x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x = ④()22f x x =+【解析】①()e =e e 22xx x xy f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2x f x -=具有M 性质; ②()e =e e 33xx x x y f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3=e e xxy f x x =⋅,令()3e xg x x =⋅,则()()322e e 3e3xxxg x x x x x '=⋅+⋅=+,所以当3x >-时,()0g x '>;当3x <-时,()0g x '<,所以()3=e e xxy f x x =⋅在(),3-∞-上单调递减,在()3,-+∞上单调递增,故()3f x x =不具有M 性质;④()()2=e e 2x x y f x x =+.令()()2e 2x g x x =+, 则()()()22e 2e 2e 110xx x g x xx x ⎡⎤'=++⋅=++>⎣⎦,所以()()2=e e 2x x y f x x =+在R 上单调递增,故()22f x x =+具有M 性质.综上所述,具有M 性质的函数的序号为①④.【答案】①④7.【2017天津理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ). A.a b c << B.c b a <<C.b a c <<D.b c a <<【解析】 因为奇函数()f x 在R 上增函数,所以当0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在(0,)+∞上是增函数.()()22log 5.1log 5.1a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以0.8202log 5.13<<<,于是()()()0.822log 5.13g g g <<,即b a c <<.故选C.【答案】C8.【2018新课标II 卷11】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…( )A .50-B .0C .2D .50【解析】本题考点是函数的性质的具体应用,根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 由题意可知原函数的定义域为()∞+∞-,的奇函数,并且有()()x f x f +=-11,所以有()()()111--=-=+x f x f x f ,所以有()()()113-=+-=+x f x f x f ,即有()()4+=x f x f ,所以函数是以周期为4的周期函数.因此有()()()()()()()()[]()()2143211250321f f f f f f f f f f +++++=++++Λ.因为()()()()2413f f f f -=-=,,()()()()04321=+++f f f f ,由()()()113-=+-=+x f x f x f 可得()()()00112==+--=f f f从而()()()()()2150321==++++f f f f f Λ,选C .【答案】C9. .已知定义在错误!未找到引用源。
高考总复习二轮数学精品课件 专题1 函数与导数 第2讲 基本初等函数、函数的应用
3.函数的零点问题
(1)函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与
函数y=g(x)的图象交点的横坐标.
(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③
数形结合,利用两个函数图象的交点求解.
温馨提示函数的零点是一个实数,而不是几何图形.
质与相关函数的性质之间的关系进行判断.
对点练2
9 0.1
(1)(2023·广东湛江一模)已知 a=(11) ,b=log910,c=lg
A.b>c>a
B.c>b>a
C.b>a>c
D.c>a>b
11,则( A )
解析 根据指数函数和对数函数的性质,
可得
9 0.1
9 0
a=(11) < 11 =1,b=log910>log99=1,c=lg
1 1
B. - 2 , 2
1
C. 0, 2
1
1
D. - 2 ,0 ∪ 0, 2
(3)换底公式:logaN= log (a,b>0,且 a,b≠1,N>0).
(4)对数值符号规律:已知a>0,且a≠1,b>0,则logab>0⇔(a-1)(b-1)>0,
logab<0⇔(a-1)(b-1)<0.
1
温馨提示对数的倒数法则:logab= log
(a,b>0,且a,b≠1).
11>lg 10=1,
又由 2=lg 100>lg 99=lg 9+lg 11>2 lg9 × lg11,所以 1>lg
2024年高考数学一轮复习课件(新高考版) 第3章 §3.3 导数与函数的极值、最值
2024年高考数学一轮复习课件(新高考版)第三章 一元函数的导数及其应用§3.3 导数与函数的极值、最值考试要求1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.掌握利用导数研究函数最值的方法.4.会用导数研究生活中的最优化问题.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.函数的极值(1)函数的极小值函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点处的函数值f′(x)<0f′(x)>0都小,f′(a)=0;而且在点x=a附近的左侧,右侧,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y =f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点处的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧,右侧 ,则b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.(3)极小值点、极大值点统称为,极小值和极大值统称为 .f ′(x )>0f ′(x )<0极值点极值2.函数的最大(小)值(1)函数f (x )在区间[a ,b ]上有最值的条件:如果在区间[a ,b ]上函数y =f (x )的图象是一条 的曲线,那么它必有最大值和最小值.(2)求函数y =f (x )在区间[a ,b ]上的最大(小)值的步骤:①求函数y =f (x )在区间(a ,b )内的 ;②将函数y =f (x )的各极值与 比较,其中最大的一个是最大值,最小的一个是最小值.连续不断极值端点处的函数值f (a ),f (b )常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的极值可能不止一个,也可能没有.( )(2)函数的极小值一定小于函数的极大值.( )(3)函数的极小值一定是函数的最小值.( )(4)函数的极大值一定不是函数的最小值.( )√××√1.如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为√A.1B.2C.3D.4由题意知,只有在x=-1处,f′(-1)=0,且其两侧导数符号为左负右正,故f(x)的极小值点只有1个.2.函数f(x)=x3-ax2+2x-1有极值,则实数a的取值范围是_____________ _____________.f′(x)=3x2-2ax+2,由题意知f′(x)有变号零点,∴Δ=(-2a)2-4×3×2>0,43.若函数f(x)=x3-4x+m在[0,3]上的最大值为4,则m=____.f′(x)=x2-4,x∈[0,3],当x∈[0,2)时,f′(x)<0,当x∈(2,3]时,f′(x)>0,所以f(x)在[0,2)上单调递减,在(2,3]上单调递增.又f(0)=m,f(3)=-3+m,所以在[0,3]上,f(x)max=f(0)=4,所以m=4.第二部分命题点1 根据函数图象判断极值例1 (多选)(2023·华南师大附中模拟)如图是y =f (x )的导函数f ′(x )的图象,对于下列四个判断,其中正确的判断是A.当x =-1时,f (x )取得极小值B. f (x )在[-2,1]上单调递增C.当x =2时,f (x )取得极大值D. f (x )在[-1,2]上不具备单调性√√由导函数f′(x)的图象可知,当-2<x<-1时,f′(x)<0,则f(x)单调递减;当x=-1时,f′(x) =0;当-1<x<2时,f′(x)>0,则f(x)单调递增;当x=2时,f′(x)=0;当2<x<4时,f′(x)<0,则f(x)单调递减;当x=4时,f′(x)=0,所以当x=-1时,f(x)取得极小值,故选项A正确;f(x)在[-2,1]上有减有增,故选项B错误;当x=2时,f(x)取得极大值,故选项C正确;f(x)在[-1,2]上单调递增,故选项D错误.命题点2 求已知函数的极值例2 (2022·西南大学附中模拟)已知函数f(x)=ln x+2ax2+2(a+1)x(a≠0),讨论函数f(x)的极值.因为f(x)=ln x+2ax2+2(a+1)x,若a>0,则当x∈(0,+∞)时,f′(x)>0恒成立,故函数f(x)在(0,+∞)上单调递增,无极值.当a>0时,f(x)无极值.命题点3 已知极值(点)求参数例3 (1)(2023·福州质检)已知函数f(x)=x(x-c)2在x=2处有极小值,则c的值为√A.2B.4C.6D.2或6由题意,f′(x)=(x-c)2+2x(x-c)=(x-c)·(3x-c),则f′(2)=(2-c)(6-c)=0,所以c=2或c=6.若c=2,则f′(x)=(x-2)(3x-2),当x∈(2,+∞)时,f′(x)>0,f(x)单调递增,函数f(x)在x=2处有极小值,满足题意;若c=6,则f′(x)=(x-6)(3x-6),当x∈(-∞,2)时,f′(x)>0,f(x)单调递增;当x∈(2,6)时,f′(x)<0,f(x)单调递减;当x∈(6,+∞)时,f′(x)>0,f(x)单调递增,函数f(x)在x=2处有极大值,不符合题意.综上,c=2.(2)(2023·威海模拟)若函数f(x)=e x-ax2-2ax有两个极值点,则实数a的取值范围为√由f(x)=e x-ax2-2ax,得f′(x)=e x-2ax-2a.因为函数f(x)=e x-ax2-2ax有两个极值点,所以f′(x)=e x-2ax-2a有两个变号零点,当x>0时,g′(x)<0;当x<0时,g′(x)>0,所以g(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减.思维升华根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则a+b的值为A.-1或3B.1或-3√C.3D.-1因为f(x)=x3+ax2+bx-a2-7a,所以f′(x)=3x2+2ax+b,因为函数f(x)在x=1处取得极大值10,所以f′(1)=3+2a+b=0,①f(1)=1+a+b-a2-7a=10,②联立①②,解得a=-2,b=1或a=-6,b=9.当a=-6,b=9时,f′(x)=3x2-12x+9=(x-1)(3x-9),f(x)在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减,故f(x)在x=1处取得极大值10,符合题意.综上可得,a=-6,b=9.则a+b=3.√∴φ(x)在(0,2)上单调递减,在(2,+∞)上单调递增,又当x→+∞时,φ(x)→+∞,命题点1 不含参函数的最值例4 (2022·全国乙卷)函数f(x)=cos x+(x+1)sin x+1在区间[0,2π]的最小值、最大值分别为√f(x)=cos x+(x+1)sin x+1,x∈[0,2π],则f′(x)=-sin x+sin x+(x +1)·cos x=(x+1)cos x,x∈[0,2π].又f(0)=cos 0+(0+1)sin 0+1=2,f(2π)=cos 2π+(2π+1)sin 2π+1=2,命题点2 含参函数的最值例5 已知函数f(x)=-ln x(a∈R).(1)讨论f(x)的单调性;①若a≤0,则f′(x)<0在(0,+∞)上恒成立,所以f(x)在(0,+∞)上单调递减;②若a>0,则当x>a时,f′(x)<0;当0<x<a时,f′(x)>0,所以f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.所以f(x)max=f(a)=-ln a;思维升华求含有参数的函数的最值,需先求函数的定义域、导函数,通过对参数分类讨论,判断函数的单调性,从而得到函数f(x)的最值.跟踪训练2 (1)(2021·新高考全国Ⅰ)函数f(x)=|2x-1|-2ln x的最小值1为_____.函数f(x)=|2x-1|-2ln x的定义域为(0,+∞).当x>1时,f′(x)>0,所以f(x)min=f(1)=2-1-2ln 1=1;综上,f(x)min=1.(2)已知函数h(x)=x-a ln x+ (a∈R)在区间[1,e]上的最小值小于零,求a的取值范围.①当a+1≤0,即a≤-1时,h′(x)>0恒成立,即h(x)在(0,+∞)上单调递增,则h(x)在[1,e]上单调递增,故h(x)min=h(1)=2+a<0,解得a<-2;②当a+1>0,即a>-1时,在(0,a+1)上,h′(x)<0,在(a+1,+∞)上,h′(x)>0,所以h(x)在(0,a+1)上单调递减,在(a+1,+∞)上单调递增,若a+1≤1,求得h(x)min>1,不合题意;若1<a+1<e,即0<a<e-1,则h(x)在(1,a+1)上单调递减,在(a+1,e)上单调递增,故h(x)min=h(a+1)=2+a[1-ln(a+1)]>2,不合题意;若a+1≥e,即a≥e-1,则h(x)在[1,e]上单调递减,第三部分1.(多选)已知函数f(x)的导函数f′(x)的图象如图所示,则下列结论中正确的是A.f(x)在区间(-2,3)上有2个极值点B.f′(x)在x=-1处取得极小值C.f(x)在区间(-2,3)上单调递减D.f(x)在x=0处的切线斜率小于0√√√根据f′(x)的图象可得,在(-2,3)上,f′(x)≤0,∴f(x)在(-2,3)上单调递减,∴f(x)在区间(-2,3)上没有极值点,故A错误,C正确;由f′(x)的图象易知B正确;根据f′(x)的图象可得f′(0)<0,即f(x)在x=0处的切线斜率小于0,故D正确.√。
第2讲 函数与导数(2022年高考真题)(解析版)
第2讲 函数与导数一、单选题 1.(2022·全国·高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .1【答案】A 【解析】 【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出. 【详解】因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .2.(2022·全国·高考真题(理))已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑( )A .21-B .22-C .23-D .24-【答案】D 【解析】 【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=-,()()()462210f f f +++=-,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解. 【详解】因为()y g x =的图像关于直线2x =对称, 所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-, 所以()()()()35212510f f f +++=-⨯=-,()()()()46222510f f f +++=-⨯=-.因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-. 因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R , 所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-. 所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑. 故选:D 【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.3.(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤ )A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]【答案】C 【解析】 【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】∵ 球的体积为36π,所以球的半径3R =, 设正四棱锥的底面边长为2a ,高为h , 则2222l a h =+,22232(3)a h =+-, 所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l <≤0V '<,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =, 所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.4.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x x x g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.5.(2022·全国·高考真题(文))如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x xy x -+=+B .321x xy x -=+C .22cos 1x xy x =+ D .22sin 1xy x =+ 【答案】A 【解析】 【分析】由函数图像的特征结合函数的性质逐项排除即可得解. 【详解】设()321x xf x x -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x xh x x x =<≤++,故排除C; 设()22sin 1x g x x =+,则()2sin 33010g =>,故排除D. 故选:A.6.(2022·全国·高考真题(文))函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( )A .ππ22-,B .3ππ22-, C .ππ222-+,D .3ππ222-+, 【答案】D 【解析】 【分析】利用导数求得()f x 的单调区间,从而判断出()f x 在区间[]0,2π上的最小值和最大值. 【详解】()()()sin sin 1cos 1cos f x x x x x x x '=-+++=+,所以()f x 在区间π0,2⎛⎫ ⎪⎝⎭和3π,2π2⎛⎫ ⎪⎝⎭上()0f x '>,即()f x 单调递增;在区间π3π,22⎛⎫⎪⎝⎭上()0f x '<,即()f x 单调递减,又()()02π2f f ==,ππ222f ⎛⎫=+ ⎪⎝⎭,3π3π3π11222f ⎛⎫⎛⎫=-++=- ⎪ ⎪⎝⎭⎝⎭,所以()f x 在区间[]0,2π上的最小值为3π2-,最大值为π22+. 故选:D7.(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A 【解析】 【分析】 由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解. 【详解】 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞, ()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->, 所以b a >,所以c b a >>, 故选:A8.(2022·全国·高考真题(理))函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解. 【详解】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.9.(2022·全国·高考真题(理))当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1-B .12-C .12D .1【答案】B 【解析】 【分析】 根据题意可知12f ,()10f '=即可解得,a b ,再根据()f x '即可解出.【详解】因为函数()f x 定义域为()0,∞+,所以依题可知,12f ,()10f '=,而()2a b f x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x '=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-. 故选:B.10.(2022·全国·高考真题(文))已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >> C .0b a >> D .0b a >>【答案】A 【解析】 【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=. 又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. 故选:A. 二、多选题11.(2022·全国·高考真题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则( )A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =是曲线()y f x =的切线 【答案】AD 【解析】 【分析】根据三角函数的性质逐个判断各选项,即可解出. 【详解】由题意得:2π4πsin 033f ϕ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,所以4ππ3k ϕ+=,k ∈Z , 即4ππ,3k k ϕ=-+∈Z , 又0πϕ<<,所以2k =时,2π3ϕ=,故2π()sin 23f x x ⎛⎫=+ ⎪⎝⎭.对A ,当5π0,12x ⎛⎫∈ ⎪⎝⎭时,2π2π3π2,332x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =在5π0,12⎛⎫ ⎪⎝⎭上是单调递减;对B ,当π11π,1212x ⎛⎫∈- ⎪⎝⎭时,2ππ5π2,322x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =只有1个极值点,由2π3π232x +=,解得5π12x =,即5π12x =为函数的唯一极值点; 对C ,当7π6x =时,2π23π3x +=,7π()06f =,直线7π6x =不是对称轴;对D ,由2π2cos 213y x ⎛⎫'=+=- ⎪⎝⎭得:2π1cos 232x ⎛⎫+=- ⎪⎝⎭, 解得2π2π22π33x k +=+或2π4π22π,33x k k +=+∈Z , 从而得:πx k =或ππ,3x k k =+∈Z ,所以函数()y f x =在点⎛ ⎝⎭处的切线斜率为02π2cos 13x k y =='==-,切线方程为:(0)y x =--即y x =. 故选:AD .12.(2022·全国·高考真题)已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC 【解析】 【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解. 【详解】因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-, 所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误. 故选:BC. 【点睛】关键点点睛:解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解. 13.(2022·全国·高考真题)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线【答案】AC 【解析】【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D. 【详解】由题,()231f x x '=-,令()0f x '>得x >x <令()0f x '<得x <<所以()f x 在(上单调递减,在(,-∞,)+∞上单调递增,所以x =是极值点,故A 正确;因(10f =>,10f =>,()250f -=-<,所以,函数()f x 在,⎛-∞ ⎝⎭上有一个零点,当x ≥时,()0f x f ≥>⎝⎭,即函数()f x 在⎫∞⎪⎪⎝⎭上无零点, 综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-, 则()h x 是奇函数,(0,0)是()h x 的对称中心, 将()h x 的图象向上移动一个单位得到()f x 的图象, 所以点(0,1)是曲线()y f x =的对称中心,故C 正确;令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+, 故D 错误. 故选:AC. 三、双空题14.(2022·全国·高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 【答案】 1ey x = 1e y x =-【解析】 【分析】分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得; 【详解】解: 因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-, 又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e ey x -=-,即1ey x =; 当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x'=,所以111|x x y x ='=,所以切线方程为()()1111ln y x x x x --=-, 又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e ey x -=+-,即1ey x =-;故答案为:1ey x =;1e y x =-15.(2022·全国·高考真题(文))若()1ln 1f x a b x++-=是奇函数,则=a _____,b =______. 【答案】 12-; ln 2.【解析】 【分析】根据奇函数的定义即可求出. 【详解】因为函数()1ln 1f x a b x++-=为奇函数,所以其定义域关于原点对称. 由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211xf x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意.故答案为:12-;ln 2.四、填空题16.(2022·全国·高考真题(理))已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.【答案】1,1e ⎛⎫ ⎪⎝⎭【解析】 【分析】由12,x x 分别是函数()22e x f x a x =-的极小值点和极大值点,可得()()12,,x x x ∈-∞⋃+∞时,()0f x '<,()12,x x x ∈时,()0f x '>,再分1a >和01a <<两种情况讨论,方程2ln 2e 0x a a x ⋅-=的两个根为12,x x ,即函数ln xy a a =⋅与函数e y x =的图象有两个不同的交点,构造函数()ln xg x a a =⋅,利用指数函数的图象和图象变换得到()g x 的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案. 【详解】解:()2ln 2e xf x a a x '=⋅-,因为12,x x 分别是函数()22e x f x a x =-的极小值点和极大值点,所以函数()f x 在()1,x -∞和()2,x +∞上递减,在()12,x x 上递增,所以当()()12,,x x x ∈-∞⋃+∞时,()0f x '<,当()12,x x x ∈时,()0f x '>, 若1a >时,当0x <时,2ln 0,2e 0x a a x ⋅><,则此时()0f x '>,与前面矛盾, 故1a >不符合题意,若01a <<时,则方程2ln 2e 0x a a x ⋅-=的两个根为12,x x , 即方程ln e x a a x ⋅=的两个根为12,x x ,即函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点, ∵01a <<,∴函数x y a =的图象是单调递减的指数函数,又∵ln 0a <,∴ln x y a a =⋅的图象由指数函数x y a =向下关于x 轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的ln a 倍得到,如图所示:设过原点且与函数()y g x =的图象相切的直线的切点为()00,ln xx a a ⋅,则切线的斜率为()020ln x g x a a '=⋅,故切线方程为()0020ln ln x x y a a a a x x -⋅=⋅-, 则有0020ln ln x x a a x a a -⋅=-⋅,解得01ln x a=, 则切线的斜率为122ln ln eln a a a a ⋅=,因为函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,所以2eln e a <,解得1e ea <<,又01a <<,所以11e a <<,综上所述,a 的范围为1,1e ⎛⎫⎪⎝⎭.【点睛】本题考查了函数的极值点问题,考查了导数的几何意义,考查了转化思想及分类讨论思想,有一定的难度.17.(2022·全国·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________. 【答案】()(),40,∞∞--⋃+ 【解析】 【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围.【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e xk x a =++, 切线方程为:()()()00000e 1e x xy x a x a x x -+=++-, ∵切线过原点,∴()()()00000e 1e x xx a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a ∆=+>,解得4a 或0a >,∴a 的取值范围是()(),40,-∞-+∞,故答案为:()(),40,-∞-+∞五、解答题18.(2022·全国·高考真题(文))已知函数1()(1)ln f x ax a x x=--+.(1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围. 【答案】(1)1- (2)()0,+∞ 【解析】 【分析】(1)由导数确定函数的单调性,即可得解; (2)求导得()()()211ax x f x x --'=,按照0a ≤、01a <<及1a >结合导数讨论函数的单调性,求得函数的极值,即可得解. (1)当0a =时,()1ln ,0f x x x x =-->,则()22111x f x x x x-'=-=,当()0,1∈x 时,0f x ,()f x 单调递增; 当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 11f x f ==-; (2)()()11ln ,0f x ax a x x x =--+>,则()()()221111ax x a f x a x x x --+'=+-=,当0a ≤时,10-≤ax ,所以当()0,1∈x 时,0f x,()f x 单调递增;当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 110f x f a ==-<,此时函数无零点,不合题意; 当01a <<时,11a >,在()10,1,,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在11,a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;又()110f a =-<,由(1)得1ln 1x x +≥,即1ln 1x x ≥-,所以ln x x x <<当1x >时,11()(1)ln 2((2f x ax a x ax a ax a x x=--+>--+>-+则存在2312m a a⎛⎫=+> ⎪⎝⎭,使得()0f m >,所以()f x 仅在1,a ⎛⎫+∞ ⎪⎝⎭有唯一零点,符合题意;当1a =时,()()2210x f x x-'=≥,所以()f x 单调递增,又()110f a =-=,所以()f x 有唯一零点,符合题意; 当1a >时,11a <,在()10,,1,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在1,1a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;此时()110f a =->,由(1)得当01x <<时,1ln 1xx>-,1ln 21x ⎛> ⎝, 此时11()(1)ln 2(11)1f x ax a x ax ax x x ⎛=--+<--+-< ⎝ 存在2114(1)n a a=<+,使得()0f n <,所以()f x 在10,a ⎛⎫ ⎪⎝⎭有一个零点,在1,a ⎛⎫+∞ ⎪⎝⎭无零点,所以()f x 有唯一零点,符合题意; 综上,a 的取值范围为()0,+∞. 【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.19.(2022·全国·高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.【答案】(1)()f x 的减区间为(),0-∞,增区间为()0,+∞. (2)12a ≤(3)见解析 【解析】 【分析】 (1)求出fx ,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t tt<-对任意的1t >恒成立,从而可得()ln 1ln n n +-<的*n N ∈恒成立,结合裂项相消法可证题设中的不等式. (1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,0fx,当0x >时,0fx,故()f x 的减区间为(),0-∞,增区间为()0,+∞. (2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-, 则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->, 因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有0g x ,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++, 故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立. 由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤, 故()0h x '≤总成立,即()h x 在()0,+∞上为减函数, 所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-. 综上,12a ≤. (3) 取12a =,则0x ∀>,总有12e e 10x x x -+<成立, 令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有 整理得到:()ln 1ln n n +-<()21ln 2ln1ln 3ln 2ln 1ln n n n n++>-+-+++-+()ln 1n =+,故不等式成立. 【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.20.(2022·全国·高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列. 【答案】(1)1a = (2)见解析【解析】 【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时, e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、yg x 有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列. (1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,+∞,而11()ax g x a x x'-=-=. 当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数, 当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数, 故()min ()ln ln f x f a a a a ==-. 当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数, 当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数, 故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值, 故11lnln a a a a -=-,整理得到1ln 1a a a-=+,其中0a >, 设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++, 故()g a 为()0,+∞上的减函数,而10g ,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =. 综上,1a =. (2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e x S x x b =--,()e 1xS x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>, 故()S x 在(),0-∞上为减函数,在()0,+∞上为增函数, 所以()()min 010S x S b ==-<,而()e 0b S b --=>,()e 2bS b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=, 当01x <<时,0T x,当1x >时,()0T x '>,故()T x 在0,1上为减函数,在()1,+∞上为增函数, 所以()()min 110T x T b ==-<, 而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点, 当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点, 故若存在直线y b =与曲线()y f x =、y g x 有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-, 设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,+∞上为增函数,故()()00s x s >=即e 1x x >+, 所以1()1210h x x x '>+-≥->,所以()h x 在()0,+∞上为增函数,而(1)e 20h =->,31e 333122()e 3e 30e e eh =--<--<,故()h x 在()0,+∞上有且只有一个零点0x ,0311e x <<且: 当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <, 当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >, 因此若存在直线y b =与曲线()y f x =、yg x 有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<, 此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e 0x b x b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解, 所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=. 【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.21.(2022·全国·高考真题(理))已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围. 【答案】(1)2y x = (2)(,1)-∞- 【解析】 【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究 (1)()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e xx f x x f =++=,所以切点为(0,0)11(),(0)21e x x f x f x ''-=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x = (2)()ln(1)e xaxf x x =++()2e 11(1)()1e (1)e x x x a x a x f x x x '+--=+=++ 设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意2︒若10a -,当,()0x ∈+∞,则()e 20x g x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+,即()0f x '>所以()f x 在(0,)+∞上单调递增,()(0)0f x f >=故()f x 在(0,)+∞上没有零点,不合题意3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增(0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m当(0,),()0,()x m f x f x '∈<单调递减当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<=当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x ∈-=+- 设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增1(1)20,(0)10eg a g ''-=+<=> 所以存在(1,0)n ∈-,使得()0g n '=当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+< 又1(1)0eg -=> 所以存在(1,)t n ∈-,使得()0g t =,即()0f t '=当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点即()f x 在(1,0)-上有唯一零点所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-【点睛】方法点睛:本题的关键是对a 的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.22.(2022·全国·高考真题(理))已知函数()ln xf x x a xx e -=+-. (1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则环121x x <.【答案】(1)(,1]e -∞+(2)证明见的解析【解析】【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,再利用导数即可得证.(1)()f x 的定义域为(0,)+∞,2111()e 1x f x x x x ⎛⎫'=--+ ⎪⎝⎭1111e 1e 11x x x x x x x x ⎛⎫-⎛⎫⎛⎫=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()0f x =,得1x =当(0,1),()0,()x f x f x '∈<单调递减当(1,),()0,()x f x f x >'∈+∞单调递增()(1)e 1f x f a ≥=+-,若()0f x ≥,则e 10a +-≥,即1a e ≤+所以a 的取值范围为(,1]e -∞+(2)由题知,()f x 一个零点小于1,一个零点大于1不妨设121x x要证121x x <,即证121x x <因为121,(0,1)x x ∈,即证()121f x f x ⎛⎫> ⎪⎝⎭因为()()12f x f x =,即证()221f x f x ⎛⎫> ⎪⎝⎭即证1e 1ln e ln 0,(1,)x x x x x x x x x-+--->∈+∞ 即证1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦ 下面证明1x >时,1e 11e 0,ln 02x x x x x x x ⎛⎫->--< ⎪⎝⎭设11(),e e xx g x x xx =->, 则11122111111()e e e 1e e 1x x x x x g x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'=--+⋅-=--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 111e 1e 1e e x x x x x x x x x ⎛⎫⎛⎫-⎛⎫=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设()()()22e 1111,e e 0x x x x x x x x x x x ϕϕ-⎛⎫=>=-=⎪⎭'> ⎝ 所以()()1e x ϕϕ>=,而1e e x < 所以1e e 0xx x ->,所以()0g x '> 所以()g x 在(1,)+∞单调递增即()(1)0g x g >=,所以1e e 0xx x x-> 令11()ln ,12h x x x x x ⎛⎫=--> ⎪⎝⎭ 2222211121(1)()10222x x x h x x x x x ----⎛⎫'=-+==< ⎪⎝⎭ 所以()h x 在(1,)+∞单调递减即()(1)0h x h <=,所以11ln 02x x x ⎛⎫--< ⎪⎝⎭; 综上, 1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,所以121x x <. 【点睛】关键点点睛 :本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式11()ln 2h x x x x ⎛⎫=-- ⎪⎝⎭这个函数经常出现,需要掌握。
高中数学高考总复习:导数与函数的综合知识讲解及考点梳理
求曲线 y f (x) 过点 P(x0, y0 ) 的切线,可以分两种情况:
①切点为 P(x0, y0 ) 时,方法同(1)
② 切 点 不 为 P(x0, y0 ) 时 , 可 以 设 切 点 为 M (x1, y1) , 然 后 列 出 方 程 y1 f (x1) 及
2
①函数最大值和最小值是比较整个定义域上的函数值得出的,是整个定义区间上的一个概 念,而函数的极值则是比较极值点附近两侧的函数值而得出的,是局部的概念; ②极值可以有多个,最大(小)值若存在只有一个;
③极值只能在区间内取得,不能在区间端点取得;而使函数取得最大值、最小值的点可能 在区间的内部,也可能在区间的端点。
①若 a 0 f '(x) 0 恒成立,
此时 f(x)在 R 上为单调函数,只有一个单调区间为(-∞,+∞),不合题意;
②若 a 0
f '(x) 0 - - 1 x - 1 , f '(x) 0 x - - 1或x - 1
a
a
a
a
综上,a<0 时有三个单调区间,
增区间为: -
b
若函数 y
f (x) 在区间b,b上是奇函数,则
f (x)dx 0
b
;
b
b
若函数 y
f (x) 在区间b,b上是偶函数,则
f (x)dx 2
b
0
f (x)dx
.
2.微积分基本定理:
b
f (x)dx F(x)
a
b a
F(b) F(a)
.
【高清课堂:函数的概念、图象和性质 368992 知识要点】
果曲线有切线的话,则切线是水平的,从而有 f '(x) 0 。但反过来不一定。如函数 y=x3,
2023年高考数学总复习第三章 导数及其应用第2节:导数与函数的单调性(教师版)
2023年高考数学总复习第三章导数及其应用第2节导数与函数的单调性考试要求 1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.利用导数研究函数的单调性,并会解决与之有关的方程(不等式)问题.1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.利用导数求函数单调区间的基本步骤(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)由f′(x)>0(或<0)解出相应的x的取值范围.当f′(x)>0时,f(x)在相应的区间内是单调递增函数;当f′(x)<0时,f(x)在相应的区间内是单调递减函数.3.单调性的应用若函数y=f(x)在区间(a,b)上单调,则y=f′(x)在该区间上不变号.若函数f(x)在区间(a,b)上递增,则f′(x)≥0,所以“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.1.思考辨析(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)函数在(a,b)内单调递减与函数的单调递减区间为(a,b)是不同的.()(4)函数f(x)=x-sin x在R上是增函数.()答案(1)×(2)√(3)√(4)√解析(1)f(x)在(a,b)内单调递增,则有f′(x)≥0.2.(易错题)函数f(x)=x+ln(2-x)的单调递增区间为()A.(-∞,1)B.(-∞,2)C.(1,+∞)D.(2,+∞)答案A解析由f(x)=x+ln(2-x),得f′(x)=1-12-x=1-x2-x(x<2).令f′(x)>0,即1-x2-x>0,解得x<1.∴函数f(x)=x+ln(2-x)的单调递增区间为(-∞,1).3.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图像如图所示,则函数y=f(x)的图像可能是()答案D解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图像易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.4.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.R答案B解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上递增,而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1,故选B.5.(易错题)若函数f(x)=13x3-32x2+ax+4的单调递减区间为[-1,4],则实数a的值为________.答案-4解析f′(x)=x2-3x+a,且f(x)的单调递减区间为[-1,4],∴f′(x)=x2-3x+a≤0的解集为[-1,4],∴-1,4是方程f′(x)=0的两根,则a=(-1)×4=-4.6.(2021·青岛检测)已知函数f(x)=sin2x+4cos x-ax在R上单调递减,则实数a 的取值范围是________.答案[3,+∞)解析f′(x)=2cos2x-4sin x-a=2(1-2sin2x)-4sin x-a=-4sin2x-4sin x+2-a=-(2sin x+1)2+3-a.由题设,f′(x)≤0在R上恒成立.因此a≥3-(2sin x+1)2恒成立,则a≥3.考点一不含参函数的单调性1.函数f(x)=x+3x+2ln x的单调递减区间是()A.(-3,1)B.(0,1)C.(-1,3)D.(0,3)答案B 解析法一函数的定义域是(0,+∞),f ′(x )=1-3x 2+2x ,令f ′(x )=1-3x 2+2x<0,得0<x <1,故所求函数的单调递减区间为(0,1),故选B.法二由题意知x >0,故排除A 、C 选项;又f (1)=4<f (2)=72+2ln 2,故排除D选项.故选B.2.函数f (x )=(x -3)e x 的单调递增区间为________.答案(2,+∞)解析f (x )的定义域为R ,f ′(x )=(x -2)e x ,令f ′(x )>0,得x >2,∴f (x )的单调递增区间为(2,+∞).3.已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为________.答案0,π6,5π6,π解析f ′(x )=1-2sin x ,x ∈(0,π),令f ′(x )=0,得x =π6或x =5π6,当0<x <π或5π<x <π时,f ′(x )>0,∴f (x )0,π6,5π6,π.感悟提升确定函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.考点二讨论含参函数的单调性例1已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.解函数f (x )的定义域为(0,+∞),f′(x)=ax-(a+1)+1x=ax2-(a+1)x+1x=(ax-1)(x-1)x.(1)当0<a<1时,1a>1,∴x∈(0,1)f′(x)>0;x f′(x)<0,∴函数f(x)在(0,1)(2)当a=1时,1a=1,∴f′(x)≥0在(0,+∞)上恒成立,∴函数f(x)在(0,+∞)上单调递增;(3)当a>1时,0<1a<1,∴x(1,+∞)时,f′(x)>0;x f′(x)<0,∴函数f(x)(1,+∞).综上,当0<a<1时,函数f(x)在(0,1)减;当a=1时,函数f(x)在(0,+∞)上单调递增;当a>1时,函数f(x)(1,+∞).感悟提升 1.含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.遇二次三项式常考虑二次项系数、对应方程的判别式以及根的大小关系,以此来确定分界点,分情况讨论.2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.3.个别导数为0的点不影响所在区间的单调性,如f(x)=x3,f′(x)=3x2≥0(f′(x)=0在x=0时取到),f(x)在R上是增函数.训练1已知f (x )=a (x -ln x )+2x -1x 2,a >0,讨论f (x )的单调性.解f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3=a (x -1)x 3x -2a x +2a (1)当0<a <2时,2a>1,当x (0,1)∪2a,+∞时,f ′(x )>0,当x 1,2a 时,f ′(x )<0.(2)当a =2时,2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )递增.(3)当a >2时,0<2a <1,当x 0,2a ∪(1,+∞)时,f ′(x )>0,当x 2a,1时,f ′(x )<0.综上所述,当0<a <2时,f (x )在(0,1)2a ,+∞内递增,在1,2a 内递减.当a =2时,f (x )在(0,+∞)内递增;当a >2时,f (x )0,2a (1,+∞)2a,1.考点三根据函数单调性求参数值(范围)例2(经典母题)已知x =1是f (x )=2x +bx +ln x 的一个极值点.(1)求函数f (x )的单调递减区间;(2)设函数g (x )=f (x )-3+ax,若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围.解(1)f (x )=2x +bx+ln x ,定义域为(0,+∞).∴f ′(x )=2-b x 2+1x =2x 2+x -bx2.因为x=1是f(x)=2x+bx+ln x的一个极值点,所以f′(1)=0,即2-b+1=0.解得b=3,经检验,适合题意,所以b=3.所以f′(x)=2x2+x-3x2,令f′(x)<0,得0<x<1.所以函数f(x)的单调递减区间为(0,1).(2)g(x)=f(x)-3+ax=2x+ln x-ax(x>0),g′(x)=2+1x+ax2(x>0).因为函数g(x)在[1,2]上单调递增,所以g′(x)≥0在[1,2]上恒成立,即2+1x+ax2≥0在[1,2]上恒成立,所以a≥-2x2-x在[1,2]上恒成立,所以a≥(-2x2-x)max,x∈[1,2].因为在[1,2]上,(-2x2-x)max=-3,所以a≥-3.所以实数a的取值范围是[-3,+∞).迁移在本例(2)中,若函数g(x)在区间[1,2]上不单调,求实数a的取值范围.解∵函数g(x)在区间[1,2]上不单调,∴g′(x)=0在区间(1,2)内有解,则a=-2x2-x=-+18在(1,2)内有解,易知该函数在(1,2)上是减函数,∴a=-2x2-x的值域为(-10,-3),因此实数a的取值范围为(-10,-3).感悟提升 1.已知函数的单调性,求参数的取值范围,应用条件f′(x)≥0(或f′(x)≤0),x∈(a,b)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f′(x)不恒等于0的参数的范围.2.如果能分离参数,则尽可能分离参数后转化为参数值与函数最值之间的关系.3.若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解.训练2(1)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是()A.13,+∞ B.-∞,13C.13,+∞ D.-∞,13(2)(2022·郑州调研)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.答案(1)C(2)(1,2]解析(1)由y =x 3+x 2+mx +1是R 上的单调函数,所以y ′=3x 2+2x +m ≥0恒成立,或y ′=3x 2+2x +m ≤0恒成立,显然y ′=3x 2+2x +m ≥0恒成立,则Δ=4-12m ≤0,所以m ≥13.(2)易知f (x )的定义域为(0,+∞),且f ′(x )=x -9x.又x >0,令f ′(x )=x -9x ≤0,得0<x ≤3.因为函数f (x )在区间[a -1,a +1]上单调递减,a -1>0,a +1≤3,解得1<a ≤2.考点四与导数有关的函数单调性的应用角度1比较大小例3(1)已知函数f (x )=x sin x ,x ∈R ,则π5f (1),f -π3的大小关系为()A.-π3f (1)>π5B.f (1)>-π3π5C.π5f (1)>-π3D.-π3π5>f (1)(2)已知y =f (x )是定义在R 上的奇函数,且当x <0时不等式f (x )+xf ′(x )<0成立,若a =30.3·f (30.3),b =log π3·f (log π3),c =log 319·则a ,b ,c 的大小关系是()A.a >b >cB.c >b >aC.a >c >bD.c >a >b答案(1)A(2)D解析(1)因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以又当x f ′(x )=sin x +x cos x >0,所以函数f (x )f (1)<f (1)> A.(2)设g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x ),又当x <0时,f (x )+xf ′(x )<0,∴x <0时,g ′(x )<0,g (x )在(-∞,0)上单调递减.由y =f (x )在R 上为奇函数,知g (x )在R 上为偶函数,∴g (x )在(0,+∞)上是增函数,∴c =g (-2)=g (2),又0<log π3<1<30.3<3<2,∴g (log π3)<g (30.3)<g (2),即b <a <c .角度2解不等式例4已知f (x )在R 上是奇函数,且f ′(x )为f (x )的导函数,对任意x ∈R ,均有f (x )>f ′(x )ln 2成立,若f (-2)=2,则不等式f (x )>-2x -1的解集为()A.(-2,+∞)B.(2,+∞)C.(-∞,-2)D.(-∞,2)答案D解析f (x )>f ′(x )ln 2⇔f ′(x )-ln 2·f (x )<0.令g(x)=f(x)2x,则g′(x)=f′(x)-f(x)·ln22x,∴g′(x)<0,则g(x)在(-∞,+∞)上是减函数.由f(-2)=2,且f(x)在R上是奇函数,得f(2)=-2,则g(2)=f(2)22=-12,又f(x)>-2x-1⇔f(x)2x>-12=g(2),即g(x)>g(2),所以x<2.感悟提升 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.与抽象函数有关的不等式,要充分挖掘条件关系,恰当构造函数;题目中若存在f(x)与f′(x)的不等关系时,常构造含f(x)与另一函数的积(或商)的函数,与题设形成解题链条,利用导数研究新函数的单调性,从而求解不等式.训练3(1)已知函数f(x)=3x+2cos x.若a=f(32),b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<cB.c<b<aC.b<a<cD.b<c<a(2)(2021·西安模拟)函数f(x)的导函数为f′(x),对任意x∈R,都有f′(x)>-f(x)成立,若f(ln2)=12,则满足不等式f(x)>1e x的x的取值范围是()A.(1,+∞)B.(0,1)C.(ln2,+∞)D.(0,ln2)答案(1)D(2)C解析(1)由题意,得f′(x)=3-2sin x.因为-1≤sin x≤1,所以f′(x)>0恒成立,所以函数f(x)是增函数.因为2>1,所以32>3.又log 24<log 27<log 28,即2<log 27<3,所以2<log 27<32,所以f (2)<f (log 27)<f (32),即b <c <a .(2)对任意x ∈R ,都有f ′(x )>-f (x )成立,即f ′(x )+f (x )>0.令g (x )=e x f (x ),则g ′(x )=e x [f ′(x )+f (x )]>0,所以函数g (x )在R 上单调递增.不等式f (x )>1e x 即e xf (x )>1,即g (x )>1.因为f (ln 2)=12,所以g (ln 2)=e ln 2f (ln 2)=2×12=1.故当x >ln 2时,g (x )>g (ln 2)=1,所以不等式g (x )>1的解集为(ln 2,+∞).1.如图是函数y =f (x )的导函数y =f ′(x )的图像,则下列判断正确的是()A.在区间(-2,1)上f (x )单调递增B.在区间(1,3)上f (x )单调递减C.在区间(4,5)上f (x )单调递增D.在区间(3,5)上f (x )单调递增答案C解析在区间(4,5)上f ′(x )>0恒成立,∴f (x )在区间(4,5)上单调递增.2.函数f (x )=ln x -ax (a >0)的单调递增区间为()D.(-∞,a)答案A解析函数f(x)的定义域为(0,+∞),f′(x)=1x-a,令f′(x)=1x-a>0,得0<x<1a,所以f(x)3.函数y=f(x)的图像如图所示,则y=f′(x)的图像可能是()答案D解析由函数f(x)的图像可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上,f′(x)>0;在(0,+∞)上,f′(x)<0,选项D满足. 4.(2021·德阳诊断)若函数f(x)=e x(sin x+a)在R上单调递增,则实数a的取值范围为()A.[2,+∞)B.(1,+∞)C.[-1,+∞)D.(2,+∞)答案A解析因为f(x)=e x(sin x+a),所以f′(x)=e x(sin x+a+cos x).要使函数f(x)在R上单调递增,需使f′(x)≥0恒成立,即sin x+a+cos x≥0恒成立,所以a≥-sin x-cos x.因为-sin x-cos x=-2sin所以-2≤-sin x-cos x≤2,所以a≥ 2.5.(2021·江南十校联考)已知函数f(x)=ax2-4ax-ln x,则f(x)在(1,4)上不单调的一个充分不必要条件可以是()A.a>-12B.0<a<116C.a>116或-12<a<0 D.a>116答案D解析f′(x)=2ax-4a-1x=2ax2-4ax-1x,令g(x)=2ax2-4ax-1,则函数g(x)=2ax2-4ax-1的对称轴方程为x=1,若f(x)在(1,4)上不单调,则g(x)在区间(1,4)上有零点.当a=0时,显然不成立;当a≠0>0,(1)=-2a-1<0,(4)=16a-1>0,<0,(1)=-2a-1>0,(4)=16a-1<0,解得a>116或a<-12.∴a>116是f(x)在(1,4)上不单调的一个充分不必要条件.6.已知函数y=f(x+1)是偶函数,当x∈(1,+∞)时,函数f(x)=sin x-x,设a=b=f(3),c=f(0),则a,b,c的大小关系为()A.b<a<cB.c<a<bC.b<c<aD.a<b<c答案A解析由函数y=f(x+1)是偶函数,可得函数f(x)的图像关于直线x=1对称,则a=b=f(3),c=f(0)=f(2),又当x∈(1,+∞)时,f′(x)=cos x-1≤0,所以f(x)=sin x-x在(1,+∞)上为减函数,所以b<a<c,故选A.7.若函数f (x )=ax 3+3x 2-x +1恰好有三个单调区间,则实数a 的取值范围为________.答案(-3,0)∪(0,+∞)解析依题意知,f ′(x )=3ax 2+6x -1有两个不相等的零点,≠0,=36+12a >0,解得a >-3且a ≠0.8.(2022·哈尔滨调研)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.答案1解析f ′(x )=4x -1x =(2x -1)(2x +1)x(x >0),令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.-1≥0,-1<12<k +1,解之得1≤k <32.9.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________.答案(-∞,-2)∪(0,2)解析令φ(x )=f (x )x,∵当x >0时,f (x )x ′=x ·f ′(x )-f (x )x 2<0,∴φ(x )=f (x )x 在(0,+∞)上为减函数,又f (2)=0,即φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f(x)为奇函数,∴h(x)=x2f(x)也为奇函数,由数形结合知x∈(-∞,-2)时,f(x)>0.故x2f(x)>0的解集为(-∞,-2)∪(0,2).10.已知函数f(x)=ln x+ke x(k为常数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求实数k的值;(2)求函数f(x)的单调区间.解(1)f′(x)=1x-ln x-ke x(x>0).又由题意知f′(1)=1-ke=0,所以k=1.(2)由(1)知,f′(x)=1x-ln x-1e x(x>0).设h(x)=1x-ln x-1(x>0),则h′(x)=-1x2-1x<0,所以h(x)在(0,+∞)上单调递减.由h(1)=0知,当0<x<1时,h(x)>0,所以f′(x)>0;当x>1时,h(x)<0,所以f′(x)<0.综上f(x)的单调增区间是(0,1),减区间为(1,+∞).11.讨论函数g(x)=(x-a-1)e x-(x-a)2的单调性.解g(x)的定义域为R,g′(x)=(x-a)e x-2(x-a)=(x-a)(e x-2),令g′(x)=0,得x=a或x=ln2,①当a>ln2时,x∈(-∞,ln2)∪(a,+∞)时,f′(x)>0,x∈(ln2,a)时,f′(x)<0;②当a=ln2时,f′(x)≥0恒成立,∴f(x)在R上单调递增;③当a<ln2时,x∈(-∞,a)∪(ln2,+∞)时,f′(x)>0,x∈(a,ln2)时,f′(x)<0,综上,当a>ln2时,f(x)在(-∞,ln2),(a,+∞)上单调递增,在(ln2,a)上单调递减;当a=ln2时,f(x)在R上单调递增;当a<ln2时,f(x)在(-∞,a),(ln2,+∞)上单调递增,在(a,ln2)上单调递减.12.已知a=ln33,b=e-1,c=3ln28,则a,b,c的大小关系为()A.b>c>aB.a>c>bC.a>b>cD.b>a>c答案D解析依题意,得a=ln33=ln33,b=e-1=ln ee,c=3ln28=ln88.令f(x)=ln xx(x>0),则f′(x)=1-ln xx2,易知函数f(x)在(0,e)上单调递增,在(e,+∞)上单调递减.所以f(x)max=f(e)=1e=b,且f(3)>f(8),即a>c,所以b>a>c.13.(2021·成都诊断)已知函数f(x)是定义在R上的偶函数,其导函数为f′(x).若x>0时,f′(x)<2x,则不等式f(2x)-f(x-1)>3x2+2x-1的解集是________.答案1解析令g(x)=f(x)-x2,则g(x)是R上的偶函数.当x>0时,g′(x)=f′(x)-2x<0,则g(x)在(0,+∞)上递减,于是在(-∞,0)上递增.由f(2x)-f(x-1)>3x2+2x-1得f(2x)-(2x)2>f(x-1)-(x-1)2,即g (2x )>g (x -1),于是g (|2x |)>g (|x -1|),则|2x |<|x -1|,解得-1<x <13.14.(2021·全国乙卷)已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.解(1)由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ).①当a ≥13时,Δ≤0,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3,令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )∞(1+1-3a 3,+∞)上单调递增,在.(2)记曲线y =f (x )过坐标原点的切线为l ,切点为P (x 0,x 30-x 20+ax 0+1).因为f ′(x 0)=3x 20-2x 0+a ,所以切线l 的方程为y -(x 30-x 20+ax 0+1)=(3x 20-2x 0+a )(x -x 0).由l 过坐标原点,得2x 30-x 20-1=0,解得x 0=1,所以切线l 的方程为y =(1+a )x .=(1+a )x ,=x 3-x 2+ax +1,=1,=1+a=-1,=-1-a .所以曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标为(1,1+a)和(-1,-1-a).。
2021年高考数学函数与导数解析版
函数与导数【命题趋势】在目前高考全国卷的考点中,导数板块常常作为压轴题的形式出现,这块部分的试题难度呈现非减的态势,因此若想高考中数学拿高分的同学,都必须拿下导数这块的内容.函数单调性的讨论、零点问题和不等式恒成立的相关问题(包含不等式证明和由不等式恒成立求参数取值范围)是出题频率最高的.对于导数内容,其关键在于把握好导数,其关键在于把握好导数的几何意义即切线的斜率,这一基本概念和关系,在此基础上,引申出函数的单调性与导函数的关系,以及函数极值的概念求解和极值与最值的关系以及最值的求解.本专题选取了有代表性的选择,填空题与解答题,通过本专题的学习熟悉常规导数题目的思路解析与解题套路,从而在以后的导数题目中能够快速得到导数问题的得分技巧.【满分技巧】对于导数的各类题型都是万变不离其宗,要掌握住导数的集中核心题型,即函数的极值问题,函数的单调性的判定.因为函数零点问题可转化为极值点问题,函数恒成立与存在性问题可以转化为函数的最值问题,函数不等式证明一般转化为函数单调性和最值求解,而函数的极值和最值是由函数的单调性来确定的.所以函数导数部分的重点核心就是函数的单调性.对于函数零点问题贴别是分段函数零点问题是常考题型,数形结合是最快捷的方法,在此方法中应学会用导数的大小去判断原函数的单调区间,进而去求出对应的极值点与最值.恒成立与存在性问题也是伴随着导数经典题型,对于选择题来说,恒成立选择小题可以采用排除法与特殊值法相结合的验证方法能够比较快捷准确得到答案,对于填空以及大题则采用对函数进行求导,从而判定出函数的最值.函数的极值类问题是解答题中的一个重难点,对于非常规函数,超出一般解方程的范畴类题目则采用特殊值验证法,特殊值一般情况下是0,1等特殊数字进行验证求解.对于理科类导数类题目,对于比较复杂的导数题目.一般需要二次求导,但是要注意导数大小与原函数之间的关系,搞清楚导数与原函数的关系是解决此类题目的关键所在.含参不等式证明问题也是一种重难点题型,对于此类题型应采取的方法是:一 双变量常见解题思路:1双变量化为单变量→寻找两变量的等量关系;2转化为构造新函数;二含参不等式常见解题思路:1参数分离;2通过运算化简消参(化简或不等关系);3将参数看成未知数,通过它的单调关系来进行消参.那么两种结构的解题思路理顺了,那么我们来看这道题.这是含参的双变量问题,一般来说,含参双变量问题我们一般是不采用转化为构造新函数,我们最好就双变量化为单变量,这就是我们解这道题的一个非常重要的思路:① 寻找双变量之间的关系并确定范围,并且确定参数的取值范围;②化简和尝试消参;③双变量化为单变量.④证明函数恒成立(求导、求极值……)(经典题型2018年全国一卷理21题)【考查题型】选择题,填空,解答题21题【限时检测】一、单选题1.(2021·北京高三期末)已知定义在R 上的奇函数()f x 满足(2)()f x f x +=,且(1)0f =,当(0,1)x ∈时,()2x f x x =+.设(5)a f =,1()3b f =,5()2c f =-,则,,a b c的大小关系为( ) A .b a c >>B .a c b >>C .c a b >>D .b c a >>【答案】A 解:因为定义在R 上的奇函数()f x 满足(2)()f x f x +=,所以()f x 是以2为周期的周期函数,且()00f =,又(0,1)x ∈,()2x f x x =+,因为2xy =与y x =在(0,1)x ∈上单调递增,所以()2x f x x =+在(0,1)x ∈上单调递增,根据奇函数的对称性可得()f x 在()1,1-上单调递增,所以()()(5)100a f f f ====,2152c f f ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,1()3b f =因为11032>>-,所以()11032f f f ⎛⎫⎛⎫>>- ⎪ ⎪⎝⎭⎝⎭,即b a c >> 故选:A2.(2021·海南高三二模)设2364log 3log 6log log (28)m m ⋅⋅=+,则m =( ) A .2 B .4C .8D .-2或4【答案】B【分析】条件中的等式左边224ln3ln 6ln log log ln 2ln3ln 6mm m =⨯⨯==, 所以228m m =+, 解得4m =或2m =- (舍去). 故选:B3.(2021·全国高三专题练习(理))将函数()()sin 2f x x ϕ=+的图象向左平移π4个单位后得到函数()g x 的图象,()g x 的图象在π6x =处切线垂直于y 轴,且()ππ04g g ⎛⎫+> ⎪⎝⎭,则当ϕ取最小正数时,不等式()12g x ≥的解集是( )A .()πππ,π36k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()ππ,π3k k k ⎡⎤+∈⎢⎥⎣⎦Z C .()2ππ,ππ3k k k ⎡⎤--∈⎢⎥⎣⎦Z D .()ππ,π2k k k ⎡⎤-∈⎢⎥⎣⎦Z 【答案】C【分析】将函数()()sin 2f x x ϕ=+的图象向左平移π4个单位后,得到函数()()πsin 2cos 22g x x x ϕϕ⎛⎫=++=+ ⎪⎝⎭的图象, ()g x 的图象在π6x =处切线垂直于y 轴,即()g x 的图象在π6x =处切线斜率为零, 由()()'2cos 2g x x ϕ=-+ 得ππ2sin 2066g ϕ⎛⎫⎛⎫'=-⨯+=⎪⎪⎝⎭⎝⎭,则,,3k k Z πϕπ+=∈ 若取ϕ=2π3,此时,()2πsin 23f x x ⎛⎫=+ ⎪⎝⎭,()2πcos 23g x x ⎛⎫=+ ⎪⎝⎭.此时,()π1π0422g g ⎛⎫+=--<⎪⎝⎭,不满足条件.若取π3ϕ=-,()πcos 23g x x ⎛⎫=- ⎪⎝⎭,()π1π0422g g ⎛⎫+=+> ⎪⎝⎭, 满足条件.则当ϕ取最小正数5π3时,不等式()5π1cos 232g x x ⎛⎫=+ ⎪⎝⎭≥,即5π1cos 232x ⎛⎫+⎪⎝⎭≥,故5π5π7π2π22π333k x k +≤+≤+,求得πππ3k x k ≤≤+. 由于函数()f x 的周期为π,故πππ3k x k ≤≤+,即2ππππ3k x k -≤≤-. 故不等式的解集为2ππππ,3x k x k k ⎧⎫-≤≤-∈⎨⎬⎩⎭Z , 故选:C .4.(2021·浙江台州市·高三期末)已知函数()2sin 262x f x x mx π⎛⎫=+-- ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上单调递减,则实数m 的最小值是( )A.B. CD【答案】D【分析】由()2sin 262x f x x mx π⎛⎫=+-- ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上单调递减, 得()2cos 206f x x x m π⎛⎫'=+--≤ ⎪⎝⎭06x ,⎛π⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭, 即2cos 26x x m π⎛⎫+-≤ ⎪⎝⎭, 令()2cos 26g x x x π⎛⎫=+- ⎪⎝⎭06x ,⎛π⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,则()4sin 216g x x π⎛⎫'=-+- ⎪⎝⎭, 当0,6x π⎡⎤∈⎢⎥⎣⎦时,2662x πππ≤+≤ ,则24sin 246x π⎛⎫≤+≤ ⎪⎝⎭, 所以54sin 2136x π⎛⎫-≤+-≤- ⎪⎝⎭,即()0g x '<, 所以()g x 在0,6x π⎡⎤∈⎢⎥⎣⎦是单调递减函数,max ()(0)g x g ≤得m ≥,m故选:D.5.(2021·江苏常州市·高三期末)函数()x x f x -=的图象大致为( )A .B .C .D .【答案】A 【分析】 设())lng x x =,对任意的x ∈Rx x >≥-0x >,则函数()g x 的定义域为R ,())ln xxg x x-==)()lnx g x ==-=-,所以,函数())ln g xx =为奇函数,令())lng x x ==1x =1x =-,所以,10x -≥,可得1x ≤1x =-可得()2211x x +=-,解得0x=.所以,函数()x x f x -=的定义域为{}0x x ≠,()()()()2222x x x xf x f xg x g x --++-==-=--,所以,函数()f x 为奇函数,排除BD 选项,当0x >时,)ln ln10x >=,220x x -+>,所以,()0f x >,排除C 选项.故选:A.6.(2021·北京高三期末)对于定义在R 上的函数()y f x =,若存在非零实数0x ,使函数()y f x =在0(,)x -∞和0,)x +∞(上均有零点,则称0x 为函数()y f x =的一个“折点”.下列四个函数存在“折点”的是( ) A .1()32x f x -=+B .()lg(2021)x f x =+C .3()13x f x x =--D .2()21f x x mx =--【答案】D【分析】因为1()322x f x -=+>恒成立,所以函数()f x 不存在零点,所以函数()f x 不存在折点,故A 错误;因为20212021x +≥,所以函数()lg(2021)x f x =+不存在零点,即不存在折点,故B 错误;对函数3()13x f x x =--,2()1(1)(1)f x x x x '=-=+-,()0f x '>时,1x <-或1x >;()0f x '<时,11x -<<,所以函数3()13x f x x =--在(),1-∞-和()1,+∞上单调递增,在()1,1-上单调递减,又1(1)03f -=-<,所以函数3()13x f x x =--只有一个零点,所以函数不存在折点,故C 错误;对于函数()222()211f x x mx x m m =--=+--,由于2()11f m m -=--≤-,结合图像可知该函数一定有折点,故D 正确;故选:D.7.(2021·云南昆明市·昆明一中高三月考(理))若函数31()ln 3f x x a x =-在(2,)+∞上单调递增,则实数a 的取值范围是( ) A .(,4)-∞ B .(,4]-∞C .(,8)-∞D .(8],-∞【答案】D【分析】因为31()ln 3f x x a x =-,所以2()a f x x x'=-; 又因为31()ln 3f x x a x =-在(2,)+∞上单调递增, 所以20ax x-≥在(2,)+∞上恒成立, 即3a x ≤在(2,)+∞上恒成立,只需要()min3a x≤,(2,)x ∈+∞因为3y x =在(2,)+∞单调递增,所以3328y x =>=,所以8a ≤. 故选:D .8.(2021·宁夏固原市·高三期末(理))已知定义在0,上的函数()f x ,fx 是()f x 的导函数,满足()()0xf x f x '-<,且()2f =2,则()0x x f e e ->的解集是( ) A .()20,eB .()ln2+∞,C .()ln2-∞,D .()2e +∞,【答案】C【分析】因为2()()()0f x xf x f x x x ''-⎡⎤=<⎢⎥⎣⎦,所以函数()f x x 在区间0,上单调递减不等式()0xxf ee->可化为()(2)2x xf e f e >,即2xe <,解得ln 2x <故选:C9.(2021·北京顺义区·高三期末)已知函数()13xaxf x x+=-.若存在()0,1x ∈-∞-,使得()00f x =,则实数a 的取值范围是( )A .4,3⎛⎫-∞ ⎪⎝⎭B .40,3⎛⎫ ⎪⎝⎭C .(),0-∞D .4,3⎛⎫+∞⎪⎝⎭【答案】B【分析】由()130xax f x x +=-=,可得13x a x =-,令()13x g x x=-,其中(),1x ∈-∞-,由于存在()0,1x ∈-∞-,使得()00f x =,则实数a 的取值范围即为函数()g x 在(),1-∞-上的值域.由于函数3xy =、1y x=-在区间(),1-∞-上为增函数,所以函数()g x 在(),1-∞-上为增函数.当(),1x ∈-∞-时,()1143313xg x x -=-<+=,又()130x g x x=->, 所以,函数()g x 在(),1-∞-上的值域为40,3⎛⎫ ⎪⎝⎭.因此,实数a 的取值范围是40,3⎛⎫ ⎪⎝⎭.故选:B.10.(2020·烟台市福山区教育局高三期中)已知函数()3ln ,393x f x x x <≤=⎨<≤⎪⎩,若函数()()g x f x ax =-有两个不同的零点,则实数a 的取值范围是( )A.1,32⎫⎪⎪⎣⎭B .ln 311,932e ⎡⎤⎧⎫⋃⎨⎬⎢⎥⎣⎦⎩⎭C.1ln 31,,3923e ⎡⎫⎡⎫⋃⎪⎢⎪⎢⎪⎣⎭⎣⎭D.ln 3110,9332e ⎫⎛⎫⎧⎫⋃⋃⎪⎨⎬ ⎪⎪⎝⎭⎩⎭⎣⎭【答案】D【分析】函数()()g x f x ax =-有两个不同的零点等价于方程()f x a x=有两个不同的根,3,()ln3,39,x x f x x x x x<≤⎪⎪=⎨⎪<≤⎪⎩,令()u x =,∴''()u x == ''()012,()023,u x x u x x >⇒<<<⇒<< ∴()u x 在(1,2)递增,在(2,3)递减,∴1(1)0,(2),(3)23u u u ===∴()(0,]3u x ∈,且 令lnln33()33x xv x x x ==⨯,39x <≤,令3xt =,则1ln ()3t y v x t ==,13t <≤,'211ln 3t y t-=⋅,当'0y t e =⇒=,'01y t e >⇒<<,'03y e t <⇒<<,∴y 在(1,)e 递增,在(,3)e 递减,且1ln 3(1)0,(),(3)39y y e y e === ∴1()(0,]3v x e∈, 所以直线y a =与3,()ln3,39,x f x x x x x<≤⎪=⎨⎪<≤⎪⎩有两个交点, 可得a的取值范围为:ln 3110,9332e ⎫⎛⎫⎧⎫⋃⋃⎪⎨⎬ ⎪⎪⎝⎭⎩⎭⎣⎭. 故选:D.11.(2020·吉林长春市实验中学高三期中(理))已知函数()()ln 1xf x ex =-,1,2x ⎡⎤∈+∞⎢⎥⎣⎦若存在[]2,1a ∈-,使得21223f a a e m ⎛⎫-≤+-- ⎪⎝⎭成立,则实数m 的取值范围为( )A .31,2⎡⎤⎢⎥⎣⎦B .[]1,+∞C .2,3⎡⎤+∞⎢⎥⎣⎦D .2,13⎡⎤⎢⎥⎣⎦【答案】D【分析】'1()ln 1xf x e x x ⎛⎫=+- ⎪⎝⎭,令1()ln 1g x x x=+-,则'22111()x g x x x x -=-=,故当112x <<时,)'(0g x <,()g x 单调递减,当1x >时,'()0,()g x g x >单调递增,()(1)0g x g ∴≥=,从而当1,2x ⎡⎫∈+∞⎪⎢⎣⎭时,'()0f x ≥,()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.设()()222314h a a a e a e =+--=+--,则()h a 在[]2,1--上单调递减,在[]1,1-上单调递增,()max ()1h a h e ==-,存在[]2,1a ∈-,使21223f a a e m ⎛⎫-≤+-- ⎪⎝⎭成立,等价于()121f e f m ⎛⎫-≤-= ⎪⎝⎭.1211122m m ⎧-≤⎪⎪∴⎨⎪-≥⎪⎩,解得213m ≤≤.故选:D.12.(2020·甘肃兰州市·西北师大附中高三期中)已知函数()f x 的导函数为()f x ',且对任意的实数x 都有()()()23x f x e x f x -'=+-(e 是自然对数的底数),且()01f =,若关于x 的不等式()0f x m -<的解集中恰有两个整数,则实数m 的取值范围是( ) A .[),0e - B .)2,0e ⎡-⎣C .(],0e -D .(2,0e ⎤-⎦【答案】C【分析】()()23xx f x f x e+'=-即()()23xe f x f x x '+=+⎡⎤⎣⎦, 所以()23xe f x x '⎡⎤=+⎣⎦,则()23x e f x x x c =++,所以()23xx x c f x e ++=,因为()01f =,所以()001cf c e===,所以()231xx x f x e ++=,()()()()()()2222331221x x xxx x e e x x x x x x f x e e e+-++-+--+-'===,由()0f x '>得21x -<<,此时()f x 单调递增, 由()0f x '<得2x <-或1x >,此时()f x 单调递减, 所以1x =时,()f x 取得极大值为()51f e=, 当2x =-时,()f x 取得极小值()220f e -=-<,又因为()10f e -=-<,()010f =>,()330f e -=>,且1x >时,()0f x >,()0f x m -<的解集中恰有两个整数等价于()231xx x f x e++=在y m=下方的图象只有2个横坐标为整数的点,结合函数图象可得: 则()10f m -<≤,解得0e m -<≤,所以0e m -<≤时,()0f x m -<的解集中恰有两个整数1,2--, 故实数m 的取值范围是(],0e - 故选:C13.(2020·全国高三专题练习(理))定义在R 上的函数()f x 的导函数为()f x ',当[)0,x ∈+∞时,()2sin cos 0x x f x '⋅->且x R ∀∈,()()cos21f x f x x -++=.则下列说法一定正确的是( )A .15324643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭B .15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭C .3134324f f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭D .1332443f f ππ⎛⎫⎛⎫-->- ⎪ ⎪⎝⎭⎝⎭【答案】B【分析】令()()2sin F x x f x =-,x R ∀∈,()()cos21f x f x x -++=,所以,()()()()()()()222sinsin 2sin F x F x x f x x f x x f x f x -+=---+-=--+⎡⎤⎣⎦()1cos21cos20x x =---=,()()F x F x ∴-=-,所以,函数()F x 为R 上的奇函数, ()()sin 2F x x f x =-'',当[)0,x ∈+∞时,()2sin cos 0x x f x '⋅->,即()sin 2x f x >',()0F x '∴>, 所以,()()2sin F x x f x =-在[)0,+∞上单调递增,由奇函数的性质可知,函数()F x 在(],0-∞上单调递增, 所以,函数()F x 在R 上单调递增.对于A 选项,5263ππ-<-,则5263F F ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,即15324643f f ππ⎛⎫⎛⎫--<-- ⎪ ⎪⎝⎭⎝⎭,A 选项错误;对于B 选项,5463ππ->-,5463F F ππ⎛⎫⎛⎫∴->- ⎪ ⎪⎝⎭⎝⎭,即15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭,B 选项正确; 对于C 选项,334ππ<,334F F ππ⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭,即3134324f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,C 选项错误;对于D 选项,343ππ-<,343F F ππ⎛⎫⎛⎫∴-< ⎪ ⎪⎝⎭⎝⎭,即1332443f f ππ⎛⎫⎛⎫--<- ⎪ ⎪⎝⎭⎝⎭,D 选项错误. 故选:B.14.(2021·江苏省新海高级中学高三期末)已知函数2()31f x x x =---,()e g 2x exx ex+=,实数m ,n 满足0m n <<,若[]1,x m n ∀∈,()20,x ∃∈+∞,使得()()12f x g x =成立,则n m -的最大值为( )A.1 BC .D【答案】A 【分析】()()()()'22222222214222xx x x x x x e e ex e ex eex e e e x e e x g x e e x ex exex +⋅-+⋅⋅-⋅⋅--====⋅, 所以当01x <<时,()()'0,g x g x <递减;当1x >时,()()'0,g x g x >递增. 所以在区间()0,∞+上,()g x 的最小值为()112e eg e+==. ()23524f x x ⎛⎫=-++ ⎪⎝⎭,故()f x 在32x =-时取得最大值54.画出()()0f x x <和()()0g x x >图象如下图所示, 令()1f x =,解得2x =-或1x =-.依题意,实数m ,n 满足0m n <<,若[]1,x m n ∀∈,()20,x ∃∈+∞,使得()()12f x g x =成立,由图可知,n m -的最大值为()121---=. 故选:A二、填空题15.(2020·罗山县楠杆高级中学高三月考(文))已知()f x 为偶函数,当0x <时,()()ln 2f x x x =-+,则曲线()y f x =在点()()1,1f 处的切线方程是__________.【答案】10x y ++=【分析】令0x >,则0x -<,因为当0x <时,()()ln 2f x x x =-+,所以()ln 2-=-f x x x ,又()f x 为偶函数,所以()()ln 2=-=-f x f x x x , 所以当0x >时,()ln 2f x x x =-,所以12f ,又()12f x x'=-,所以()11f '=-, 所以曲线()y f x =在点()()1,1f 处的切线方程是()21y x +=--,即10x y ++=. 故答案为:10x y ++=16.(2020·海口市第四中学高三期中)已知k 为常数,函数2,0()1ln ,0x x f x x x x +⎧≤⎪=-⎨⎪>⎩,若关于x 的函数()()2g x f x kx =--有4个零点,则实数k 的取值范围为________. 【答案】310,e ⎛⎫⎪⎝⎭【分析】因为函数()()2g x f x kx =--有4个零点, 所以()y f x =与2y kx =+有4个不同的交点,在同一坐标系中作出()y f x =与2y kx =+的图象,如图所示:当0x ≤时,311y x =+-单调递减, 与2y kx =+有一个交点,则0k >; 所以当0x >时,有3个交点,求出2y kx =+与|ln |y x =相切时的k 值, 当1x >时,设切点为()00,ln x x ,所以1y x'=,则01k x =,所以切线方程为()0001ln y x x x x -=-, 又因为点()0,2在切线上,所以则()00012ln 0x x x -=-, 解得30x e =,所以31k e =, 由图像知()()2g x f x kx =--有4个零点,则310k e <<, 故答案为: 310,e ⎛⎫⎪⎝⎭17.(2021·北京高三期末)已知函数()4,0,0x x e x f x e x x+≤⎧⎪=⎨>⎪⎩,若存在10x ≤,20x >,使得()()12f x f x =,则()12x f x 的取值范围是______. 【答案】24,0e ⎡⎤-⎣⎦【分析】因为()()12f x f x =,所以2124x e x e x +=,所以2124x e x e x =-, 因为10x ≤,所以224x e e x ≤, 当0x >时,()x e f x x =,22(1)()x x x e x e e x f x x x'--==, 由()0f x '>得1x >,由()0f x '<得01x <<,所以()f x 在(0,1)上递减,在(1,)+∞上递增,所以()f x 在1x =处取得最小值e ,所以224x e e e x ≤≤, 所以()12x f x 22224x x e e e x x ⎛⎫=- ⎪⎝⎭222224x x e e e x x ⎛⎫=-⋅ ⎪⎝⎭, 令22x e t x =,则4e t e ≤≤,所以()12x f x 24t et =-()2224t e e =--,所以当2t e =时,12()x f x 取得最小值24e -,当4t e =时,12()x f x 取得最大值0, 所以12()x f x 的取值范围是24,0e ⎡⎤-⎣⎦. 故答案为:24,0e ⎡⎤-⎣⎦18.(2021·江西新余市·高三期末(理))已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是_______.【答案】(,]e -∞∵()(ln )xe f x k x x x =+-,∴22(1)1(1)()()(1)x x x e x e kx f x k x x x'---=+-= ∴x =1是函数f (x )的唯一极值点,0x x e k ∴-=在(0,)x ∈+∞上无解,或有唯一解x =1,①当x =1为其唯一解时,k =e ,令()(0)xh x e ex x =->,()xh x e e '=-,当(0,1)x ∈时,()0h x '<,即h (x )的单调递减区间为(0,1),当(1,)x ∈+∞时,()0h x '>,即()h x 的单调递增区间为(1,)+∞,∴()h x 在x =1处,取得极小值,∴k =e 时,x =1是f (x )的唯一极值点;②当xe k x =在(0,)x ∈+∞上无解,设()x e g x x=则2(1)()x e x g x x '-=, 当(0,1)x ∈时,()0g x '<,即g (x )的单调递减区间为(0,1),当(1,)x ∈+∞时,()0g x '>,即()g x 的单调递增区间为(1,)+∞,∴()g x 在x =1处,取得极小值,也是其最小值,min ()(1)g x g e ==,又k xe x=在(0,)x ∈+∞上无解,e k ∴<,综上k e ≤故答案为:(,]e -∞.19.(2020·湖北高三月考)若10,x e ⎛⎫∈ ⎪⎝⎭时,关于x 不等式32ln 0ax ax e x +≤恒成立,则实数a 的最大值是______. 【答案】2e【分析】当0a ≤,10,x e ⎛⎫∈ ⎪⎝⎭时,x 不等式32ln 0ax ax e x +≤显然恒成立. 当0a ≥时,32ln 0ax ax e x +≤ 32ln ax ax e x ∴≤-.由于10,x e ⎛⎫∈ ⎪⎝⎭22ln ax x axe x --∴≤,即22l ln n ax ax x e e x --∴≤.所以原不等式32ln 0ax ax e x +≤恒成立,等价于22ln ln ax ax e x x e --≤恒成立. 构造函数()ln f x x x =,()'1ln f x x =+.易知()f x 在1(0,)e上单调递减,在1(,)e+∞上单调递增.则原不等式等价于要证2(())ax f f x e -≤.因为22(,)x e -∈+∞,要使实数a 的最大,则应2ax e x -≤.即2ln x a x -≤. 记函数2ln 1()(0)x g x x x e -=<<,则22(1ln )'()x g x x --=.易知10x e <<,22(1ln )'()0x g x x--=<.故函数()g x 在1(0,)e 上单调递减,所以1()()2g x g e e<=. 因此只需2a e ≤.综上所述,实数a 的最大值是2e . 故答案为:2e三、解答题20.(2021·浙江台州市·高三期末)已知a ,b R ∈,函数()2f x axe b =+,曲线()y f x =在点()()0,0f 处的切线方程为1y x =-.(Ⅰ)求a ,b 的值及()f x 的最小值;(Ⅱ)设函数()ln g x x x =,若对于任意的()0,x ∈+∞,()()21f x g mx +≥恒成立,求实数m 的取值范围.【答案】(Ⅰ)1a =,1b =-;()min 11f x e=--;(Ⅱ)(]0,2e . 【分析】(Ⅰ)()e xf x a x b =⋅+,()0f b =,()()1xf x a x e '=+,()0f a '=, 故切线方程为1y ax b x =+=-,得1a =,1b =-;()1x f x xe ∴=-,()()1x f x x e '∴=+,当(),1x ∈-∞-时,()0f x '<,()f x 单调递减, 当()1,x ∈-+∞时,()0f x '>,()f x 单调递增, 所以,()()min 111f x f e=-=--; (Ⅱ)()()21f x g mx +≥即()22ln xx emx mx ⋅≥⋅,因为0,0x m >>,即22ln ln 0x e x m m--≥对于任意的()0,x ∈+∞恒成立,设()22ln ln xh x e x m m=--,0x >,0m >, ()241x h x e m x'=-, 因为2xy e =和1y x=-在()0,x ∈+∞时为单调增函数 则函数()h x '在()0,∞+上单调递增,当0x →时,()0h x '<,当x →+∞时,()0h x '>,则存在()00x ∈+∞,,使得()0200410x h x e m x -'==, 当()00,x x ∈时,()0h x '<,()0,x x ∈+∞时,()0h x '>, 故()h x 在()00,x 上单调递减,在()0,x +∞上单调递增,()()02000min 021ln ln ln ln 02x h x h x e x m x m m x ∴==--=--≥; 由020410x e m x -=,得0204x m x e =, ()0000122ln 2ln 202h x x x x ∴=---≥, 因为122y x x=-和2ln y x =-在()0,x ∈+∞上单调递减, 所以函数()0000122ln 2ln 22h x x x x =---,在()00x ∈+∞,上单调递减,且102h ⎛⎫=⎪⎝⎭,故010,2x ⎛⎤∈ ⎥⎝⎦, 因为4y x =和2xy e =在()0,x ∈+∞上单调递增.所以函数0204x m x e=在010,2x ⎛⎤∈ ⎥⎝⎦上单调递增,02m e ∴<≤,因此,实数m 的取值范围是(]0,2e .21.(2020·北京高考真题)已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.【答案】(Ⅰ)2130x y +-=,(Ⅱ)32.【分析】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=. (Ⅱ)显然0t ≠, 因为()y f x =在点()2,12t t-处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t+=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t++==++,所以()S t '=4222211443(848)(324)44t t t t t +-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==, 由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增, 所以2t =时,()S t 取得极小值, 也是最小值为()16162328S ⨯==. 22.(2021·北京顺义区·高三期末)已知函数2()ln (0)f x x a x a =->.(1)若2a =,求曲线()y f x =的斜率等于3的切线方程;(2)若()y f x =在区间1,e e⎡⎤⎢⎥⎣⎦上恰有两个零点,求a 的取值范围.【答案】(1)322ln 20x y ---=;(2)2(2,)e e .【分析】由已知函数()f x 定义域是(0,)+∞,(1)2()2ln f x x x =-,22(1)(1)()2x x f x x x x'+-=-=,由2()23f x x x'=-=解得2x =(12x =-舍去),又()422ln 2f =-,所以切线方程为(42ln 2)3(2)y x --=-,即322ln 20x y ---=;(2)222()2x x a x a f x x x x x⎛-+ -⎝⎭⎝⎭'=-==,易知()f x()f x有两个零点,则1e e<<,即2222a e e<<,此时在1e ⎛ ⎝上()0f x '<,()f x递减,在e ⎫⎪⎪⎭上()0f x '>,()f x 递增, ()f x在x =2a f a =-所以22111ln 0()ln 002f a e ee f e e a e a f a ⎧⎛⎫⎪=-> ⎪⎪⎝⎭⎪=->⎨⎪⎪=-<⎪⎩,解得22e a e <<.综上a 的范围是2(2,)e e .23.(2020·天津高考真题)已知函数3()ln ()f x x k x k R =+∈,()'f x 为()f x 的导函数.(Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程;(ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅱ)当3k -时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.【答案】(Ⅰ)(i )98y x =-;(ii )()g x 的极小值为(1)1g =,无极大值;(Ⅱ)证明见解析.【分析】(Ⅰ) (i) 当k =6时,()36ln f x x x =+,()26'3f x x x=+.可得()11f =,()'19f =,所以曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-. (ii) 依题意,()()32336ln ,0,g x x x x x x=-++∈+∞. 从而可得()2263'36g x x x x x=-+-, 整理可得:323(1)(1)()x x g x x '-+=,令()'0g x =,解得1x =.当x 变化时,()()',g x g x 的变化情况如下表:所以,函数g (x )的单调递减区间为(0,1),单调递增区间为(1,+∞); g (x )的极小值为g (1)=1,无极大值.(Ⅱ)证明:由3()ln f x x k x =+,得2()3k f x x x'=+. 对任意的12,[1,)x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭. ①令1()2ln ,[1,)h x x x x x=--∈+∞. 当x >1时,22121()110h x x x x '⎛⎫=+-=-> ⎪⎝⎭,由此可得()h x 在[)1,+∞单调递增,所以当t >1时,()()1h t h >,即12ln 0t t t-->.因为21x ≥,323331(1)0t t t t -+-=->,3k ≥-,所以()()332322113312ln 33132ln x t t t k t t tt t t t tt ⎛⎫⎛⎫-+-+------- ⎪+ ⎪⎝⎭⎝⎭32336ln 1t t t t=-++-. ②由(Ⅰ)(ii)可知,当1t >时,()()1g t g >,即32336ln 1t t t t-++>, 故32336ln 10t t t t-++-> ③ 由①②③可得()()()()()()()12121220x x fx f x f x f x ''-+-->.所以,当3k ≥-时,任意的[)12,1,x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 24.(2020·全国高考真题(理))设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 【答案】(1)34b =-;(2)证明见解析 【分析】(1)因为'2()3f x x b =+,由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭则34b =-; (2)由(1)可得33()4f x x x c =-+, '2311()33()()422f x x x x =-=+-,令'()0f x >,得12x >或12x <-;令'()0f x <,得1122x -<<, 所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+, 若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f ->或(1)0f <,即14c >或14c <-. 当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>,又32(4)6434(116)0f c c c c c c -=-++=-<,由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x ,即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<,又32(4)6434(116)0f c c c c c c -=++=->,由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0'x , 即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1.25.(2020·全国高考真题(理))已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 【答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27,4e ⎡⎫-+∞⎪⎢⎣⎭【分析】(1)当1a =时,()2x x x e f x =+-,()21x f x e x '=+-,由于()20x f x e ''=+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减,当()0,x ∈+∞时,()()0,f x f x '>单调递增.(2)由()3112f x x ≥+得,23112x e ax x x +-+,其中0x ≥,①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,32112x e x x a x ----,记()32112x e x x g x x ---=-,()()231212xx e x x g x x ⎛⎫---- ⎪⎝⎭'=-,令()()21102x e x x h x x ---≥=,则()1x h x e x '=--,()10x h x e ''=-≥,故()'h x 单调递增,()()00h x h ''≥=,故函数()h x 单调递增,()()00h x h ≥=, 由()0h x ≥可得:21102x e x x ---恒成立, 故当()0,2x ∈时,0g x,()g x 单调递增; 当()2,x ∈+∞时,0g x ,()g x 单调递减; 因此,()()2max 724e g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是27,4e ⎡⎫-+∞⎪⎢⎣⎭.。
2025高考数学一轮复习导数与三角函数问题
(2)若 x∈0,π2,求证:当 a≤3 时.f(x)+12x3+3≥0.
令 h(x)=f(x)+12x3+3, 则 h′(x)=f′(x)+32x2=3sin x-ax+23x2, ∵a≤3,∴h′(x)≥3sin x-3x+32x2, 令 p(x)=3sin x-3x+32x2,则 p′(x)=3cos x-3+3x, 令 m(x)=3cos x-3+3x,则 m′(x)=-3sin x+3≥0, ∴m(x)在0,π2上单调递增,即 m(x)≥m(0)=0,∴p′(x)≥0,
∴∃x0∈(0,π) ,使h′(x0)=0,且x∈(0,x0)时,h′(x)>0,h(x)>h(0)=0, g′(x)>0,∴g(x)在(0,x0)上单调递增,∴g(x)>g(0)=0,不符合题意; 综上,a 的取值范围是13,+∞.
规律方法
导数与三角函数问题的解法 (1)利用三角函数的有界性:在含参数的问题中,往往需要分类讨论, 若能有效地利用三角函数的有界性,则能快速找到分类讨论的依据, 从而实现问题的求解. (2)利用三角函数的周期性:涉及零点问题时,可根据三角函数的周期 性分段来研究. (3)利用分隔直线法:常见的一些不等式如:当 x∈0,π2时,sin x<x<tan x, ln(x+1)≤x 等,可利用这些不等式放缩再解决问题.
②当 3a≥1,即 a≥31时,h′(x)≤0,h(x)在[0,+∞)上单调递减, ∴h(x)≤h(0)=0,∴g′(x)≤0,∴g(x)在[0,+∞)上单调递减,
∴g(x)≤g(0)=0,符合题意; ③当-1<3a<1,即-31<a<13时, 由h′(0)=1-3a>0,h′(π)=-1-3a<0,
高考数学第二章 函数与导数
1.(20152( ) A .[-3,1]B .(-3,1)C .(-∞,-3]∪[1,+∞)D .(-∞,-3)∪(1,+∞)2.(2015·湖北)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6]3.(2015·陕西)设f (x )=⎩⎪⎨⎪⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1B.14C.12D.324.(2015·新课标全国Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( ) A .-74B .-54C .-34D .-145.(2015·山东)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =( )A .1B.78C.34D.126.(2015·湖北)设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x7.(2015·浙江)设实数a ,b ,t 满足|a +1|=|sin b |=t ( ) A .若t 确定,则b 2唯一确定 B .若t 确定,则a 2+2a 唯一确定 C .若t 确定,则sin b2唯一确定D .若t 确定,则a 2+a 唯一确定8.(2014·山东)函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)9.(2014·江西)已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( )A .1B .2C .3D .-110.(2014·浙江)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >911.(2014·江西)已知函数f (x )=⎩⎪⎨⎪⎧a ·2x,x ≥0,2-x ,x <0(a ∈R ),若f [f (-1)]=1,则a =( )A.14B.12 C .1D .212.(2014·福建)在平面直角坐标系中,两点P 1(x 1,y 1),P 2(x 2,y 2)间的“L 距离”定义为||P 1P 2||=|x 1-x 2|+|y 1-y 2|,则平面内与x 轴上两个不同的定点F 1,F 2的“L 距离”之和等于定值(大于||F 1F 2||)的点的轨迹可以是( )13.(2015·安徽)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________.14.(2014·湖北)如图所示,函数y =f (x )的图象由两条射线和三条线段组成.若∀x ∈R ,f (x )>f (x -1),则正实数a 的取值范围为________.15.(2014·浙江)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0,若f (f (a ))=2,则a =________.1.(2015( )A .RB .(0,3)C .(1,3)D.(]-∞,1∪[)3,+∞2.(2015·黄冈中学期中)函数f (x )=2-x -lg(x -1)的定义域是( )A .(-∞,2]B .(2,+∞)C .(1,2]D .(1,+∞)3.(2015·抚州市模拟)函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)4.(2015·临川一中检测)已知函数y =f (x -1)的定义域为[1,3],则函数y =f (log 3x )的定义域为( )A .[1,9]B .[0,1]C .[0,2]D .[0,9]5.(2015·眉山市一诊)若f (x )=4log 2x +2,则f (2)+f (4)+f (8)=( )A .12B .24C .30D .486.(2015·江西省质检三)已知函数f (x )=⎩⎪⎨⎪⎧2cos π6x ,x ≥2 000,x -15,x <2 000,则f [f (2015)]等于( )A.3B .- 3 C .1D .-17.(2015·江西省监测)已知f (x )=⎩⎪⎨⎪⎧-sin πx 2,x ≤0,f (x -2)+1,x >0,则f (3)=( )A.12B .-12 C .-1D .38.(2015·济宁市统考)若点(16,2)在函数y =log a x (a >0且a ≠1)的图象上,则tana π3的值为( )A .-3B .-33C.33D. 3 9.(2015·武昌区调研)函数f (x )=⎩⎪⎨⎪⎧sin (πx 2)(-1<x <0),e x -1 (x ≥0),满足f (1)+f (a )=2,则a 的所有可能值为( )A .1或-22B .-22C .1D .1或2210.(2015·济宁市统考)函数y =(e x -e -x )·sin x 的图象大致是( )11.(2015·中山质检)如图所示,该图象的函数解析式可能是( )A .y =2x -x 2-1B .y =2x sin x 4x +1C .y =(x 2-2x )e xD .y =xln x12.(2015·泰安市高三期末)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≤0,-x 2,x >0,若f (f (t ))≤2,则实数t 的取值范围是( )A .(-∞,2]B .[2,+∞)C .(-∞,-2]D .[-2,+∞)13.(2015·山西省三诊)已知f (x )=⎩⎪⎨⎪⎧2x -2(x ≤2),log 2(x -1) (x >2),则f (f (5))=________.14.(2015·南昌检测)若函数f (x )的定义域是[2,+∞),则函数y =f (2x )x -2的定义域是________.15.(2015·绵阳市一诊)定义:如果函数y =f (x )的定义域内给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点.例如y =|x |是[-2,2]上的平均值函数,0就是它的均值点,若函数f (x )=x 2-mx -1是[-1,1]上的“平均值函数”,则实数m 的取值范围是________.1. (2015A .y =x B .y =e x C .y =cos x D .y =e x -e -x2.(2015·北京)下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x |D .y =2-x3.(2015·广东)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +sin2xB .y =x 2-cos xC .y =2x +12x D .y =x 2+sin x4.(2015·浙江)函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )5.(2015·新课标全国Ⅰ)设函数y =f (x )的图象与y =2x +a 的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a =( )A .-1B .1C .2D .46.设f (x )=x -sin x ,则f (x )( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数7.(2015·新课标全国Ⅱ)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞)C.⎝ ⎛⎭⎪⎫-13,13 D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞8.(2014·陕西)下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( )A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=3x9.(2014·新课标全国Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数10.(2014·大纲全国)奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( )A .-2B .-1C .0D .111.(2014·辽宁)已知f (x )为偶函数,当x ≥0时,f (x )=⎩⎪⎨⎪⎧cos πx ,x ∈⎣⎢⎡⎦⎥⎤0,12,2x -1,x ∈⎝ ⎛⎭⎪⎫12,+∞,则不等式f (x -1)≤12的解集为( ) A.⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74 B.⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤14,23C.⎣⎢⎡⎦⎥⎤13,34∪⎣⎢⎡⎦⎥⎤43,74 D.⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤13,3412.(2014·湖北)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.[-16,16]B.[-66,66]C.[-13,13]D.[-33,33]13.(2015·福建)若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于________.14.(2015·湖北)a为实数,函数f(x)=|x2-ax|在区间[0,1]上的最大值记为g(a).当a=________时,g(a)的值最小.15.(2015·四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1,x2,设m=f(x1)-f(x2)x1-x2,n=g(x1)-g(x2)x1-x2,现有如下命题:①对于任意不相等的实数x1,x2,都有m>0;②对于任意的a及任意不相等的实数x1,x2,都有n>0;③对于任意的a,存在不相等的实数x1,x2,使得m=n;④对于任意的a,存在不相等的实数x1,x2,使得m=-n.其中真命题有________(写出所有真命题的序号).1.(2015)上为增函数的是( )A.y=ln(x-1)B.y=|x-1|C .y =⎝⎛⎭⎪⎫12x D .y =sin x +2x 2.(2015·广东佛山模拟)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为( )A .-4B .4C .-6D .63.(2015·江西省监测)已知函数f (x )在R 上递增,若f (2-x )>f (x 2),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)4.(2015·唐山市高三摸底)函数f (x )=2x -2-x2是( ) A .偶函数,在(0,+∞)是增函数B .奇函数,在(0,+∞)是增函数C .偶函数,在(0,+∞)是减函数D .奇函数,在(0,+∞)是减函数5.(2015·贵阳市高三摸底)已知f (x )是定义在R 上的奇函数,且x ≥0时f (x )的图象如图所示,则f (-2)=( )A .-3B .-2C .-1D .26.(2015·洛阳市统考)设f (x )是定义在[-2,2]上的奇函数,若f (x )在[-2,0]上单调递减,则使f (a 2-a )<0成立的实数a 的取值范围是( )A .[-1,2]B .[-1,0)∪(1,2]C .(0,1)D .(-∞,0)∪(1,+∞)7.(2015·云南省名校统考)定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时f (x )=2x +15,则f (log 220)=( )A .-1B.45C .1D .-458.(2015·沈阳市四校联考)定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x ≤-1时,f (x )=-(x +2)2,当-1≤x <3时,f (x )=x ,则f (1)+f (2)+…+f (2012)=( )A .335B .338C .1678D .20129.(2015·石家庄名校联考)函数y =sin x x[x ∈(-π,0)∪(0,π)]的图象大致是( )10.(2015·山东潍坊模拟)已知函数f (x )的图象向左平移1个单位长度后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c11.(2015·荆门市高三调研)若f (x )=⎩⎪⎨⎪⎧|x -1|(x ≤1),3x (x >1),若f (x )=2,则x =________.12.(2015·宿迁市高三摸底)设函数f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=x 2+x ,则关于x 的不等式f (x )<-2的解集是________.13.(2015·南京市调研)若f (x )=⎩⎪⎨⎪⎧a x ,x ≥1,-x +3a ,x <1是R 上的单调函数,则实数a 的取值范围为________.14.(2015·玉溪一中高三期中)若函数f (x )=|3x -1|+ax +3有最小值,则实数a 的取值范围为________.1.(20150.6,则a ,b ,c的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a2.(2015·四川)设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件3.(2015·湖南)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( )A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数4.(2015·新课标全国Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( ) A .3B .6C .9D .125.(2015·安徽)函数f (x )=ax +b (x +c )2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <06.(2015·天津)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .a <b <cB .c <a <bC .a <c <bD .c <b <a7.(2015·四川)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )A .16小时B .20小时C .24小时D .28小时8.(2015·山东)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 取值范围是( ) A.⎣⎢⎡⎦⎥⎤23,1B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞D .[1,+∞) 9.(2014·福建)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )10.(2014·北京)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟11.(2015·四川)lg0.01+log 216=________12.(2015·安徽)lg 52+2lg2-⎝ ⎛⎭⎪⎫12-1=________. 13.(2015·浙江)计算:log 222=____________,2log 23+log 43=____________. 14.(2015·北京)2-3,312,log 25三个数中最大的数是________. 15.(2014·江苏)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.考点5 基本初等函数一年模拟试题精练1.(2015A .lg 32B .lg5C .lg6D .lg9 2.(2015·山东省实验中学二诊)如果方程x 2+(m -1)x +m 2-2=0的两个实根一个小于1,另一个大于1,那么实数m 的取值范围是( )A .(-2,2)B .(-2,0)C .(-2,1)D .(0,1)3.(2015·江西省监测)已知幂函数y =(m 2-m -1)·xm 2-2m -3在区间x ∈(0,+∞)上为减函数,则m 的值为( )A .2B .-1C .2或-1D .-2或14.(2015·江西省监测)对数函数f (x )=ln|x -a |在[-1,1]区间上恒有意义,则a 的取值范围是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,0)∪(0,+∞)5.(2015·山西省二诊)已知定义在R 上的奇函数f (x ),当x >0时,f (x )=log 2(2x +1),则f ⎝ ⎛⎭⎪⎫-12等于( ) A .log 23B .log 25C .1D .-16.(2015·东北三校第一次联考)若函数f (x )=log a (x +b )的图象如图,其中a ,b 为常数,则函数g (x )=a x +b 的大致图象是( )7.(2015·江西省质检三)若a =ln 33,b =ln 44,c =ln 55,则( ) A .a <b <c B .c <b <aC .c <a <bD .b <a <c8.(2015·江西省质检三)函数y =-(x -2)|x |的递增区间是( )A .[0,1]B .(-∞,1)C .(1,+∞)D .[0,1)和(2,+∞)9.(2015·宁夏质检)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0.若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)10.(2015·山西省二诊)设a =14,b =log 985,c =log 83,则a ,b ,c 之间的大小关系是( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a11.(2015·抚州市模拟)(3-a )(a +6)(-6≤a ≤3)的最大值为________.12.(2015·贵阳市高三摸底)已知幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫14,12,则该函数的解析式为________. 13.(2015·江西省监测)设a =log 23,b =log 46,c =log 89,则a ,b ,c 的大小关系是________.14.(2015·宿迁市高三摸底)已知函数f (x )=x 2-2ax +a 2-1,若关于x 的不等式f (f (x ))<0的解集为空集,则实数a 的取值范围是________.1.(2015·( )A .y =ln xB .y =x 2+1C .y =sin xD .y =cos x2.(2015·天津)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点个数为( )A .2B .3C .4D .53.(2014·北京)已知函数f (x )=6x-log 2x .在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)4.(2014·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x .则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}5.(2014·新课标全国Ⅰ)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)6.(2015·湖南)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.7.(2015·江苏)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.8.(2015·湖北)函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2的零点个数为________.9.(2015·湖南)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________.10.(2015·安徽)设x 3+ax +b =0,其中a ,b 均为实数,下列条件中,使得该三次方程仅有一个实根的是________(写出所有正确条件的编号).①a =-3,b =-3;②a =-3,b =2;③a =-3,b >2;④a =0,b =2;⑤a =1,b =2.11.(2015·北京)设函数f (x )=x 22-k ln x ,k >0. (1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.考点6 函数与方程一年模拟试题精练1.(2015·保定模拟)已知函数f (x )=⎩⎪⎨⎪⎧x ∈[-1,2],x -3,x ∈(2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或42.(2015·荆门市调研)对于函数f (x )=x 2+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内( )A .一定有零点B .一定没有零点C .可能有两个零点D .至少有一个零点3.(2015·广东二模)如图是函数f (x )=x 2+ax +b 的部分图象,则函数g (x )=ln x +f ′(x )的零点所在的区间是( )A.⎝ ⎛⎭⎪⎫14,12B .(1,2) C.⎝ ⎛⎭⎪⎫12,1D .(2,3) 4.(2015·赤峰市高三统考)设a 为非零实数,则关于函数f (x )=x 2+a |x |+1,x ∈R 的以下性质中,错误的是( )A .函数f (x )一定是个偶函数B .函数f (x )一定没有最大值C .区间[0,+∞)一定是f (x )的单调递增区间D .函数f (x )不可能有三个零点5.(2015·昆明一中摸底)若函数f (x )=ax 2-ln x 在(0,1]上存在唯一零点,则实数a 的取值范围是( )A .[0,2e]B.⎣⎢⎡⎦⎥⎤0,12e C .(-∞,-1]D .(-∞,0]6.(2015·衡水二调)已知函数f (x )=e |x |+|x |,若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是( )A .(0,1)B .(1,+∞)C .(-1,0)D .(-∞,-1)7.(2015·济宁一中研考)已知e 是自然对数的底数,函数f (x )=e x +x -2的零点为a ,函数g (x )=ln x +x -2的零点为b ,则下列不等式成立的是( )A .f (1)<f (a )<f (b )B .f (a )<f (b )<f (1)C .f (a )<f (1)<f (b )D .f (b )<f (1)<f (a )8.(2015·山西省二诊)函数f (x )是定义在R 上的偶函数,且满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=2x ,若方程ax -a -f (x )=0(a >0)恰有三个不相等的实数根,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,1B .[0,2] C .(1,2)D .[1,+∞)9.(2015·邯郸市高三质检)已知函数y =f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=⎩⎪⎨⎪⎧54sin ⎝ ⎛⎭⎪⎫π2x (0≤x ≤1),⎝ ⎛⎭⎪⎫14x +1 (x >1),若关于x 的方程5[f (x )]2-(5a +6)f (x )+6a =0,(a ∈R ),有且仅有6个不同的实数根,则实数a 的取值范围是( )A .0<a <1或a =54B .0≤a ≤1或a =54C .0<a ≤1或a =54D .1<a ≤54或a =0 10.(2015·宝鸡市质检一)函数g (x )=log 2x ,关于方程|g (x )|2+m |g (x )|+2m +3=0在(0,2)内有三个不同实数解,则实数m 的取值范围是( )A .(-∞,4-27)∪(4+27,+∞)B .(4-27,4+27)C.⎝ ⎛⎭⎪⎫-34,-23 D.⎝ ⎛⎦⎥⎤-32,-43 11.(2015·南京市调研)设f (x )=x 2-3x +a ,若函数f (x )在区间(1,3)内有零点,则实数a 的取值范围为________.12.(2015·北京东城区高三期末)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,4x ,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=________.若函数g (x )=f (x )-k 存在两个零点,则实数k 的取值范围是________.13.(2015·北京西城区高三期末)设函数f (x )=⎩⎪⎨⎪⎧|x -a |,x ≤1,log 3x ,x >1. (1)如果f (1)=3,那么实数a =________.(2)如果函数y =f (x )-2有且仅有两个零点,那么实数a 的取值范围是________. 考点7 导数的概念及几何意义两年高考真题演练1.数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列结论成立的是( )A .a >0,b <0,c >0,d >0B .a >0,b <0,c <0,d >0C .a <0,b <0,c >0,d >0D .a >0,b >0,c >0,d <0 2.(2014·陕西)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A .y =12x 3-12x 2-xB.y=12x3+12x2-3xC.y=14x3-xD.y=14x3+12x2-2x3.(2015·新课标全国Ⅰ)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________.4.(2015·新课标全国Ⅱ)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.5.(2014·江西)若曲线y=x ln x上点P处的切线平行于直线2x -y+1=0,则点P的坐标是________.6.(2014·江苏)在平面直角坐标系xOy中,若曲线y=ax2+bx (a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y +3=0平行,则a+b的值是________.7.(2014·广东)曲线y=-5e x+3在点(0,-2)处的切线方程为______________.8.(2014·安徽)若直线l与曲线C满足下列两个条件:(1)直线l在点P(x0,y0)处与曲线C相切;(2)曲线C在点P附近位于直线l的两侧,则称直线l在点P处“切过”曲线C.下列命题正确的是________(写出所有正确命题的编号).①直线l:y=0在点P(0,0)处“切过”曲线C:y=x3;②直线l:x=-1在点P(-1,0)处“切过”曲线C:y=(x+1)3;③直线l:y=x在点P(0,0)处“切过”曲线C:y=sin x;④直线l:y=x在点P(0,0)处“切过”曲线C:y=tan x;⑤直线l:y=x-1在点P(1,0)处“切过”曲线C:y=ln x.9.(2015·山东)设函数f(x)=(x+a)ln x,g(x)=x2e x.已知曲线y=f(x)在点(1,f(1))处的切线与直线2x-y=0平行.(1)求a的值;(2)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(3)设函数m(x)=min{f(x),g(x)}(min{p,q}表示p,q中的较小值),求m(x)的最大值.1.(2015·赣州市十二县联考)函数f(x)=3ln x+x2-3x+3在点(3,f(3))处的切线斜率是( )A.-23B.3C.23D.4 32.(2015·唐山一中高三检测)如果f′(x)是二次函数,且f′(x)的图象开口向上,顶点坐标为(1,3),那么曲线y=f(x)上任一点的切线的倾斜角α的取值范围是( )A.⎝⎛⎦⎥⎤0,π3 B.⎣⎢⎡⎭⎪⎫π3,π2 C.⎝ ⎛⎦⎥⎤π2,2π3 D.⎣⎢⎡⎭⎪⎫π3,π 3.(2015·大庆市高三质检)已知函数f (x )=13x 3-2x 2+3x +13,则与f (x )图象相切的斜率最小的切线方程为( )A .2x -y -3=0B .x +y -3=0C .x -y -3=0D .2x +y -3=04.(2015·东北三校联考)设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =3x +1B .y =-3xC .y =-3x +1D .y =3x -35.(2015·浙江金华十校联考)设函数y =x sin x +cos x ,且在f (x )图象上点(x 0,y 0)处的切线的斜率为k ,若k =g (x 0),则函数k =g (x 0)的图象大致为( )6.(2015·昆明三中模拟)设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎢⎡⎦⎥⎤0,5π12,则导数f ′(1)的取值范围是( ) A .[-2,2]B .[2,3]C .[3,2]D .[2,2]7.(2015·湖南怀化市监测)已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1,x ≤0,f (x -1),x >0,y =g (x )为曲线h (x )=ln x +a +1在x =1处的切线方程,若方程f (x )=g (x )有两个不同实根,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,1]C .(0,1)D .[0,+∞)8.(2015·江西省监测)曲线y =x 3在P (1,1)处的切线方程为________.9.(2015·宝鸡市质检一)已知直线y =kx +1与曲线y =x 3+ax +b 切于点(1,3),则b 的值为________.10.(2015·湖北八校联考)在平面直角坐标系xOy 中,直线y =2x +b 是曲线y =a ln x 的切线,则当a >0时,实数b 的最小值是________.11.(2015·江西省监测)已知函数f (x )=x 2+ax ,g (x )=bx 3+x .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点C (1,m )处具有公共切线,求实数m 的值;(2)当b =13,a =-4时,求函数F (x )=f (x )+g (x )在区间[-3,4]上的最大值.考点8 导数的应用一(单调性与极值)两年高考真题演练1x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是( )A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)2.(2014·新课标全国Ⅱ)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是( )A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)3.(2014·江西)在同一直角坐标系中,函数y=ax2-x+a2与y=a2x3-2ax2+x+a(a∈R)的图象不可能的是( )4.(2015·陕西)函数y =x e x 在其极值点处的切线方程为________.5.(2015·重庆)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性.6.(2015·安徽)已知函数f (x )=ax (x +r )2(a >0,r >0). (1)求f (x )的定义域,并讨论f (x )的单调性;(2)若a r=400,求f (x )在(0,+∞)内的极值.7.(2014·重庆)已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.考点8 导数的应用一(单调性与极值)一年模拟试题精练1′(x )的图象如图所示,则y =f (x )的图象可能为( )2.(2015·郑州市一预)已知定义在R 上的函数f (x )满足f (-3)=f (5)=1,f ′(x )为f (x )的导函数,且导函数y =f ′(x )的图象如图所示.则不等式f (x )<1的解集是( )A .(-3,0)B .(-3,5)C .(0,5)D .(-∞,-3)∪(5,+∞)3.(2015·云南师大附中检测)若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,518B .(-∞,3]C.⎣⎢⎡⎭⎪⎫518,+∞D .[3,+∞) 4.(2015·邢台市高三摸底)已知定义在(-1,1)上的奇函数f (x ),其导函数为f ′(x )=1+cos x ,如果f (1-a )+f (1-a 2)<0,则实数a 的取值范围为( )A .(0,1)B .(1,2)C .(-2,-2)D .(1,2)∪(-2,-1)5.(2015·巴蜀中学一模)定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f (x )e x<1的解集为( )A .(-∞,0)B .(0,+∞)C .(-∞,2)D .(2,+∞)6.(2015·山东省实验中学二诊)已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导函数f ′(x )<13,则f (x )<x 3+23的解集是( )A .{x |-1<x <1}B .{x |x <-1}C .{x |x <-1或x >1}D .{x |x >1}7.(2015·深圳市五校一联)已知函数f (x )是定义在R 上的奇函数,f (1)=0,当x >0时,有xf ′(x )-f (x )x2>0成立,则不等式f (x )>0的解集是( )A .(-1,0)∪(1,+∞)B .(-1,0)C .(1,+∞)D .(-∞,-1)∪(1,+∞)8.(2015·烟台市高三检测)已知定义在R 上的函数y =f (x )满足f (-x )+f (x )=0,当x ∈(-∞,0)时不等式f (x )+xf ′(x )<0总成立,若记a =20.2f (20.2),b =(log π3)·f (log π3),c =(-3)·f ⎝⎛⎭⎪⎫log 3127,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b9.(2015·珠海模拟)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________.10.(2015·山西省二诊)函数f (x )=2x -sin x 的零点个数为________.11.(2015·江西省监测)已知函数f (x )=12x 2-ax -ln x (x ∈R ).(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的取值范围;(2)若函数f (x )在区间(1,2)上存在极小值,求实数a 的取值范围.考点9 导数的应用(二)(最值与不等式)两年高考真题演练1.(2015·新课标全国Ⅱ)已知f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.2.(2015·新课标全国Ⅰ)设函数f(x)=e2x-a ln x.(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a.3.(2015·湖南)已知a >0,函数f (x )=a e x cos x (x ∈[0,+∞)).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点.(1)证明:数列{f (x n )}是等比数列;(2)若对一切n ∈N *,x n ≤|f (x n )|恒成立,求a 的取值范围.4.(2014·辽宁)已知函数f (x )=π(x -cos x )-2sin x -2,g (x )=(x -π)1-sin x 1+sin x +2xπ-1.证明:(1)存在唯一x 0∈⎝⎛⎭⎪⎫0,π2,使f (x 0)=0;(2)存在唯一x 1∈⎝ ⎛⎭⎪⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1>π.A .-1B .-eC .-1eD .不存在2.(2015·唐山一中高三期中)设点P 在曲线y =12e x上,点Q 在曲线y =ln(2x )上,则|PQ |最小值为( )A .1-ln2B.2(1-ln2) C .1+ln2D.2(1+ln2)3.(2015·石家庄质检一)设函数f (x )=e x +2x -a (a ∈R ,e 为自然对数的底数),若存在b ∈[0,1],使得f (f (b ))=b ,则a 的取值范围是( )A .[1,e]B .[1,1+e]C .[e ,1+e]D .[0,1]4.(2015·晋冀豫三省调研)设函数f (x )=x 3-2e x 2+mx -ln x ,记g (x )=f (x )x,若函数g (x )至少存一个零点,则实数m 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,e 2+1eB.⎝ ⎛⎦⎥⎤0,e 2+1eC.⎝ ⎛⎭⎪⎫e 2+1e ,+∞D.⎝⎛⎦⎥⎤-e 2-1e ,e 2+1e5.(2015·沈阳市四校联考)函数f (x )=ax 3-3x +1对于x ∈[-1,1],总有f (x )≥0成立,则a =________.6.(2015·泗水中学二调)下列说法,其中正确命题的序号为________.①若函数f (x )=x (x -c )2在x =2处有极大值,则实数c =2或6; ②对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有f(0)+f(2)>2f(1)③若函数f(x)=x3-3x在(a2-17,a)上有最大值,则实数a的取值范围为(-1,4);④已知函数f(x)是定义在R上的奇函数,f(1)=0,xf′(x)-f(x)>0(x>0),则不等式f(x)>0的解集是(-1,0)∪(1,+∞).7.(2015·泰安市统考)某工厂为提高生产效益,决定对一条生产线进行升级改造,该生产线升级改造后的生产效益y万元与升级改造的投入x(x>10)万元之间满足函数关系:y=m ln x-1100x2+10150x+ln10(其中m为常数)若升级改造投入20万元,可得到生产效益为35.7万元.试求该生产线升级改造后获得的最大利润.(利润=生产效益-投入)(参考数据:ln2=0.7,ln5=1.6).8.(2015·江西省质检三)已知函数f(x)=ln x-x.(1)求f(x)的单调区间;(2)已知数列{a n}的通项公式为a n=1+12n(n∈N*),求证:a1a2a3…a n<e(e为自然对数的底数);(3)若k<xf(x)+x2x-1对任意x>2恒成立,求实数k的最大值.参考答案 第二章 函数与导数 考点3 函数的概念及表示【两年高考真题演练】1.D [需满足x 2+2x -3>0,解得x >1或x <-3,所以f (x )的定义域为(-∞,-3)∪(1,+∞).]2.C [依题意,有4-|x |≥0,解得-4≤x ≤4①;且x 2-5x +6x -3>0,解得x >2且x ≠3②;由①②求交集得函数的定义域为(2,3)∪(3,4].故选C.]3.C [∵f (-2)=2-2=14>0,则f (f (-2))=f ⎝ ⎛⎭⎪⎫14=1-14=1-12=12,故选C.] 4.A [若a ≤1,f (a )=2a -1-2=-3,2a -1=-1(无解); 若a >1,f (a )=-log 2(a +1)=-3,a =7, f (6-a )=f (-1)=2-2-2=14-2=-74.]5.D [由题意,得f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b .若52-b ≥1,即b ≤32时,252-b =4,解得b =12. 若52-b <1,即b >32时,3×⎝ ⎛⎭⎪⎫52-b -b =4,解得b =78(舍去).所以b =12.]6.D [对于选项A ,右边=x |sgn x |=⎩⎪⎨⎪⎧x ,x ≠0,0,x =0,而左边=|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,显然不正确;对于选项B ,右边=x sgn|x |=⎩⎪⎨⎪⎧x ,x ≠0,0,x =0,而左边=|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,显然不正确;对于选项C ,右边=|x |sgn x=⎩⎪⎨⎪⎧x ,x >00,x =0x ,x <0,而左边=|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,显然不正确;对于选项D ,右边=x sgn x =⎩⎪⎨⎪⎧x ,x >0,0,x =0,-x ,x <0,而左边=|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,显然正确;故应选D.]7.B [当t 确定时,∵|a +1|=t ,∴|a +1|2=t 2,a 2+2a +1=t 2,∴a 2+2a =t 2-1(定值).而对于|sin b |=t ,b 的值不唯一确定.故选B.]8.C [由题意可知x 满足log 2x -1>0,即log 2x >log 22,根据对数函数的性质得x >2,即函数f (x )的定义域是(2,+∞).]9.A [因为f [g (1)]=1,且f (x )=5|x |,所以g (1)=0,即a ·12-1=0,解得a =1.]10.C [由已知得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c-1+a -b +c =-27+9a -3b +c ,解得⎩⎪⎨⎪⎧a =6,b =11,又0<f (-1)=c -6≤3,所以6<c ≤9.] 11.A [因为-1<0,所以f (-1)=2-(-1)=2,又2>0,所以f [f (-1)]=f (2)=a ·22=1,解得a =14.]12.A [设P (x ,y ),F 1(-c ,0),F 2(c ,0),c >0,则||F 1F 2||=2c ,依题意,得||PF 1||+||PF 2||=2d (d 为常数且d >c ),所以|x +c |+|y -0|+|x -c |+|y -0|=2d ,即|x +c |+|x -c |+2|y |=2d ,①当-c ≤x ≤c 时,(x +c )+c -x +2|y |=2d ,即y =±(d -c ); ②当x <-c 时,-(x +c )+c -x +2|y |=2d ,即x ±y +d =0; ③当x >c 时,(x +c )+x -c +2|y |=2d ,即x ±y -d =0. 画出以上三种情形的图象,即可知选项A 正确,故选A.] 13.-12 [∵|x -a |≥0恒成立,∴要使y =2a 与y =|x -a |-1只有一个交点,必有2a =-1,解得a =-12.]14.⎝⎛⎭⎪⎫0,16 [由题中图象知f (x )为奇函数,当x ≤-2a 或x ≥2a时,f (x )为增函数,f (x )>f (x -1)恒成立;又∀x ∈R ,f (x )>f (x -1),且f (4a )=f (-2a )=a ,故只需4a -(-2a )<1,即a <16,又a 为正实数,故a ∈⎝⎛⎭⎪⎫0,16.]15. 2 [当a ≤0时,f (a )=a 2+2a +2>0,f (f (a ))<0,显然不成立;当a >0时,f (a )=-a 2,f (f (a ))=a 4-2a 2+2=2,则a =±2或a =0,故a = 2.]【一年模拟试题精练】1.D [x 2-4x +3≥0,解得x ∈(-∞,1]∪[3,+∞).]2.C [由题意得:⎩⎪⎨⎪⎧2-x ≥0,x -1>0,解得x ∈(1,2].]3.D[由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0.解得x ∈(-1,0)∪(0,1).]4.A [∵1≤x ≤3,∴0≤x -1≤2, ∴0≤log 3x ≤2,即x ∈[1,9].]5.C [∵f (2)=4log 22+2=4×1+2=6,f (4)=4log 24+2=4×2+2=10,f (8)=4log 28+2=4×3+2=14,∴f (2)+f (4)+f (8)=6+10+14=30.]6.D [∵f [f (2015)]=f (2015-15)=f (2000), ∴f (2000)=2cos 2 000π6=-2cos 13π=-1.]7.D [f (3)=f (3-2)+1=f (1)+1=f (1-2)+2=f (-1)+2=-sin π2+2=3.]8.D [∵(16,2)在y =log a x 上, ∴log a 16=2,得a =4. ∴tan απ3=tan 4π3= 3.]9.A [∵f (1)+f (a )=2,∴f (a )=1,当a ≥0时,f (a )=e a -1=1,得a =1,当-1<a <0时,f (a )=sin πa 2=1,得a =-22.]10.A [∵f (-x )=(e -x -e x )sin(-x )=(e x -e -x )sin x =f (x ), ∴f (x )为偶函数,∴f (x )的图象关于y 轴对称,排除选项B 、C. ∵f (π)=0,f ⎝ ⎛⎭⎪⎫π2=(e π2-e -π2)sin π2=e π2-e -π2>0,故排除选项D.]11.C [对于A ,当x =-1时,y =-32<0,不合题意;对于B ,当x =-π时,sin x =0,故y =0,不合题意;对于D ,当x <0时,函数无意义,故选C.]12.A [令a =f (t ),则f (a )≤2,当a ≤0时,a 2+a -2≤0,a ∈[-2,0]当a >0时,-a 2≤2,故a >0,综上,a ≥-2,因此f (t )≥-2, 当t ≤0时,t 2+t +2≥0,t ≤0均成立;当t >0时,-t 2≥-2,t ∈(0,2],故t ∈(-∞,2].]13.1 [∵5>2,∴f (5)=log 2(5-1)=2,∴f (f (5))=f (2)=22-2=20=1.]14.{x |x ≥1,且x ≠2} [依题意有⎩⎪⎨⎪⎧2x ≥2,x -2≠0,解得x ≥1且x≠2,故所求函数的定义域是{x |x ≥1,且x ≠2}.]15.(0,2) [因为函数f (x )=x 2-mx -1是[-1,1]上的“平均值函数”,所以存在x 0∈(-1,1)使x 20-mx 0-1=-m -m2得,x 20-1=(x 0-1)m ⇒m =x 0+1,又x 0∈(-1,1)所以实数m 的取值范围是m∈(0,2).]考点4 函数的基本性质【两年高考真题演练】1.D [由奇函数定义易知y =e x -e -x 为奇函数,故选D.] 2.B [由f (-x )=f (x ),且定义域关于原点对称,可知A 为奇函数,B 为偶函数,C 定义域不关于原点对称,D 为非奇非偶函数.]3.D [对于A ,f (-x )=-x +sin2(-x )=-(x +sin2x )=-f (x ),为奇函数;对于B ,f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),为偶函数;对于C ,f (-x )=2-x+12-x =2x+12x =f (x ),为偶函数;y =x 2+sin x 既不是偶函数也不是奇函数,故选D.]4.D [∵f (x )=(x -1x)cos x ,∴f (-x )=-f (x ),∴f (x )为奇函数,排除A ,B ;当x →π时,f (x )<0,排除C.故选D.]5.C [设f (x )上任意一点为(x ,y )关于y =-x 的对称点为(-y ,-x ),将(-y ,-x )代入y =2x +a ,所以y =a -log 2(-x ),由f (-2)+f (-4)=1,得a -1+a -2=1,2a =4,a =2.]6.B [f (x )=x -sin x 的定义域为R ,关于原点对称,且f (-x )=-x -sin(-x )=-x +sin x =-f (x ),故f (x )为奇函数.又f ′(x )=1-sin x ≥0恒成立,所以f (x )在其定义域内为增函数,故选B.]7.A [由f (x )=ln(1+|x |)-11+x 2,知f (x )为R 上的偶函数,于是f (x )>f (2x -1)即为f (|x |)>f (|2x -1|).当x >0时,f (x )=ln(1+x )-11+x 2,得f ′(x )=11+x+2x(1+x 2)2>0,所以f (x )为[0,+∞)上的增函数,则由f (|x |)>f (|2x -1|)得|x |>|2x -1|,平方得3x 2-4x +1<0,解得13<x <1,故选A.]8.D [f (x )=x 12,f (x +y )=(x +y )12≠x 12·y 12,不满足f (x +y )=f (x )f (y ),A 不满足题意.f (x )=x 3,f (x +y )=(x +y )3≠x 3·y 3,不满足f (x +y )=f (x )f (y ),B 不满足题意.f (x )=⎝ ⎛⎭⎪⎫12x ,f (x +y )=⎝ ⎛⎭⎪⎫12x +y =⎝ ⎛⎭⎪⎫12x ·⎝ ⎛⎭⎪⎫12y ,满足f (x +y )=f (x )f (y ),但f (x )=⎝ ⎛⎭⎪⎫12x不是增函数,C 不满足题意.f (x )=3x ,f (x +y )=3x +y =3x ·3y ,满足f (x +y )=f (x )·f (y ),且f (x )=3x 是增函数,D 满足题意.]9.C [f (x )为奇函数,g (x )为偶函数,故f (x )g (x )为奇函数,f (x )|g (x )|为奇函数,|f (x )|g (x )为偶函数,f (x )|g (x )|为奇函数,|f (x )g (x )|为偶函数,故选C.]10.D [由函数f (x +2)为偶函数可得,f (2+x )=f (2-x ). 又f (-x )=-f (x ),故f (2-x )=-f (x -2), 所以f (2+x )=-f (x -2),即f (x +4)=-f (x ).所以f (x +8)=-f (x +4)=-[-f (x )]=f (x ),故该函数是周期为8的周期函数.又函数f (x )为奇函数,故f (0)=0.所以f (8)+f (9)=f (0)+f (1)=0+1=1,故选D.]11.A [当0≤x ≤12时,令f (x )=cos πx ≤12,解得13≤x ≤12;当x >12时,令f (x )=2x -1≤12,解得12<x ≤34,故有13≤x ≤34.因为f (x )是偶函数,所以f (x )≤12的解集为⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤13,34,故f (x -1)≤12的解集为⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74,故选A.]12.B [当x≥0时,f(x)=⎩⎪⎨⎪⎧-x,0≤x≤a2-a2,a2<x≤2a2x-3a2,x>2a2,又f(x)为奇函数,可得f(x)的图象如图所示,由图象可得,当x≤2a2时,f(x)max=a2,当x>2a2时,令x-3a2=a2,得x=4a2,又∀x∈R,f(x-1)≤f(x),可知4a2-(-2a2)≤1⇒a∈⎣⎢⎢⎡⎦⎥⎥⎤-66,66,选B.]13.1 [∵f(1+x)=f(1-x),∴f(x)的对称轴x=1,∴a=1,f(x)=2|x-1|,∴f(x)的增区间为[1,+∞),∵[m,+∞)⊆[1,+∞),∴m ≥1.∴m的最小值为1.]14.22-2 [①当a≤0时,f(x)=|x2-ax|在[0,1]上是增函数,所以g(a)=f(1)=1-a,此时g(a)min=1;②当0<a<2时,作出函数f(x)=|x2-ax|的大致图象如图:由图易知,f(x)=|x2-ax|在⎣⎢⎡⎦⎥⎤0,a2上是增函数,在⎣⎢⎡⎦⎥⎤a2,a上是减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与导数【考纲解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;在实际情景中,会根据不同的需要选择恰当的方法表示函数;了解简单的分段函数,并能简单应用.2.理解函数的单调性及几何意义;学会运用函数图象研究函数的性质,感受应用函数的单调性解决问题的优越性,提高观察、分析、推理、创新的能力.3.了解函数奇偶性的含义;会判断函数的奇偶性并会应用;掌握函数的单调性、奇偶性的综合应用.4.掌握一次函数的图象和性质;掌握二次函数的对称性、增减性、最值公式及图象与性质的关系,理解“三个二次”的内在联系,讨论二次方程区间根的分布问题.7.了解幂函数的概念;结合函数12321,,,,y x y x y x y y xx=====的图象,了解它们的变化情况.8.掌握解函数图象的两种基本方法:描点法、图象变换法;掌握图象变换的规律,能利用图象研究函数的性质.9.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数;根据具体函数的图象,能够用二分法求相应方程的近似解.10.了解指数函数、对数函数及幂函数的境长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;了解函数模型(指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.11.了解导数概念的实际背景;理解导数的几何意义;能利用基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数.12.了解函数单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次);了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次),会求在闭区间函数的最大值、最小值(多项式函数一般不超过三次);会用导数解决某些实际问题。
【知识网络构建】【重点知识整合】一、函数、基本初等函数的图象与性质1.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质,是函数中最常涉及的性质,特别注意定义中的符号语言;(2)奇偶性:偶函数其图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数其图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.特别注意定义域含0的奇函数f(0)=0;(3)周期性:f(x+T)=f(x)(T≠0),则称f(x)为周期函数,T是它的一个周期.2.对称性与周期性的关系(1)若函数f(x)的图象有两条对称轴x=a,x=b(a≠b),则函数f(x)是周期函数,2|b -a|是它的一个正周期,特别地若偶函数f(x)的图象关于直线x=a(a≠0)对称,则函数f(x)是周期函数,2|a|是它的一个正周期;3.函数的图象(1)指数函数、对数函数和幂函数、一次函数、二次函数等初等函数的图象的特点;(2)函数的图象变换主要是平移变换、伸缩变换和对称变换.4.指数函数、对数函数和幂函数的图象和性质(注意根据图象记忆性质)指数函数y=a x(a>0,a≠1)的图象和性质,分0<a<1,a>1两种情况;对数函数y =log a x(a>0,a≠1)的图象和性质,分0<a<1,a>1两种情况;幂函数y=xα的图象和性质,分幂指数α>0,α=0,α<0三种情况.二、函数与方程、函数的应用1.函数的零点方程的根与函数的零点的关系:由函数的零点的定义可知,函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.所以,方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.2.二分法用二分法求函数零点的一般步骤:第一步:确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;第二步:求区间[a,b]的中点c;第三步:计算f(c):(1)若f(c)=0,则c就是函数的零点;(2)若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));(3)若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b));(4)判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)~(4).3.函数模型解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是:(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转译成实际问题作出解答.三、导数在研究函数性质中的应用及定积分1.导数的几何意义4.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值的最小者.5.定积分与曲边形面积(1)曲边为y=f(x)的曲边梯形的面积:在区间[a,b]上的连续的曲线y=f(x),和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛ab|fx |d x.当f (x )≥0时,S =⎠⎛a b f (x )d x ;当f(x)<0时,S =-⎠⎛ab f (x )d x .(2)曲边为y =f (x ),y =g (x )的曲边形的面积:在区间[a ,b ]上连续的曲线y =f (x ),y =g (x ),和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛a b |f (x )-g (x )|d x .当f (x )≥g (x )时,S =⎠⎛a b [f (x )-g (x )]d x ;当f (x )<g (x )时,S =⎠⎛a b [g (x )-f (x )]d x .【高频考点突破】 考点一、函数及其表示函数的三要素:定义域、值域、对应关系.两个函数当且仅当它们的三要素完全相同时才表示同一个函数,定义域和对应关系相同的两个函数是同一函数. 1.求函数定义域的类型和相应方法(1)若已知函数的解析式,则这时函数的定义域是使解析式有意义的自变量的取值范围,只需构建并解不等式(组)即可.(2)对于复合函数求定义域问题,若已知f (x )的定义域[a ,b ],其复合函数f (g (x ))的定义域应由不等式a ≤g (x )≤b 解出.(3)实际问题或几何问题除要考虑解析式有意义外,还应使实际问题有意义. 2.求f (g (x ))类型的函数值应遵循先内后外的原则;而对于分段函数的求值、图像、解不等式等问题,必须依据条件准确地找出利用哪一段求解;特别地对具有周期性的函数求值要用好其周期性. 例1、函数f (x )=11-x+lg(1+x )的定义域是 ( ) A .(-∞,-1) B .(1,+∞) C .(-1,1)∪(1,+∞)D .(-∞,+∞)【变式探究】设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎨⎧gx +x +4,x <g x ,gx -x ,x ≥gx .则f (x )的值域是 ( ) A .[-94,0]∪(1,+∞) B .[0,+∞)C .[-94,+∞)D .[-94,0]∪(2,+∞)解析:令x <g (x ),即x 2-x -2>0,解得x <-1或x >2.令x ≥g (x ),即x 2-x -2≤0,解得-1≤x ≤2. 故函数f (x )=⎩⎨⎧x 2+x +2x <-1或x >2,x 2-x -2-1≤x ≤2.当x <-1或x >2时,函数f (x )>f (-1)=2; 当-1≤x ≤2时,函数f (12)≤f (x )≤f (-1), 即-94≤f (x )≤0.故函数f (x )的值域是[-94,0]∪(2,+∞).答案:D考点二、函数的图像作函数图像有两种基本方法:一是描点法;二是图像变换法,其中图像变换有平移变换、伸缩变换、对称变换.例2、函数y =x2-2sin x 的图像大致是 ( )【变式探究】函数y=x ln(-x)与y=x ln x的图像关于()A.直线y=x对称B.x轴对称C.y轴对称D.原点对称考点三、函数的性质1.单调性是函数的一个局部性质,一个函数在不同的区间上可以有不同的单调性.判定函数的单调性常用定义法、图像法及导数法.对于选择题和填空题,也可用一些命题,如两个增(减)函数的和函数仍为增(减)函数等.2.函数的奇偶性反映了函数图像的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.例3、对于函数f(x)=asinx+bx+c(其中,a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是() A.4和6 B.3和1C.2和4 D.1和2考点四二次函数的图像与性质:(1)二次函数y =ax 2+bx +c (a ≠0)的图像是抛物线 ①过定点(0,c );②对称轴为x =-b 2a ,顶点坐标为(-b 2a ,4ac -b 24a ).(2)当a >0时,图像开口向上,在(-∞,-b 2a ]上单调递减,在[-b2a ,+∞)上单调递增,有最小值4ac -b 24a ;当a <0时,图像开口向下,在(-∞,-b 2a ]上单调递增,[-b2a ,+∞)上单调递减,有最大值4ac -b 24a .例 4、已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数. 解:(1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,x ∈[-5,5], ∴x =1时,f (x )取得最小值1; x =-5时,f (x )取得最大值37.(2)函数f (x )=(x +a )2+2-a 2的图像的对称轴为直线x =-a , ∵y =f (x )在区间[-5,5]上是单调函数, ∴-a ≤-5或-a ≥5.故a 的取值范围是(-∞,-5]∪[5,+∞).【变式探究】设二次函数f (x )=ax 2+bx +c ,如果f (x 1)=f (x 2)(x 1≠x 2),则f (x 1+x 2)=( )A .-b2a B .-ba C .cD.4ac -b 24a【方法技巧】求二次函数在某段区间上的最值时,要利用好数形结合,特别是含参数的两种类型:“定轴动区间,定区间动轴”的问题,抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指的是对称轴.考点五指数函数、对数函数及幂函数指数函数与对数函数的性质:指数函数y=a x(a>0且a≠1)对数函数y=log a x(a>0且a≠1)定义域(-∞,+∞)(0,+∞)值域(0,+∞)(-∞,+∞)不变性恒过定点(0,1) 恒过定点(1,0)1.对于两个数都为指数或对数的大小比较:如果底数相同,直接应用指数函数或对数函数的单调性比较;如果底数与指数(或真数)皆不同,则要增加一个变量进行过渡比较,或利用换底公式统一底数进行比较.2.对于含参数的指数、对数问题,在应用单调性时,要注意对底数进行讨论,解决对数问题时,首先要考虑定义域,其次再利用性质求解.例5、已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x2,那么函数y=f(x)的图像与函数y=|lg x|的图像的交点共有()A.10个B.9个C.8个D.1个解析:画出两个函数图像可看出交点有10个.答案:A考点六函数的零点1.函数的零点与方程根的关系:函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图像与函数y =g (x )的图像交点的横坐标. 2.零点存在性定理:如果函数y =f (x )在区间[a ,b ]上的图像是连续不断的一条曲线,且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b )使得f (c )=0,这个c 也就是方程f (x )=0的根.例6、 函数f (x )=x -cos x 在[0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点【变式探究】在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为 ( )A .(-14,0) B .(0,14) C .(14,12)D .(12,34)解析:因为f (14)=e14+4×14-3=e14-2<0,f (12)=e12+4×12-3=e12-1>0,所以f (x )=e x +4x -3的零点所在的区间为(14,12). 答案:C【方法技巧】函数零点(即方程的根)的确定问题,常见的有①数值的确定;②所在区间的确定;③个数的确定.解决这类问题的常用方法有解方程、根据区间端点函数值的符号数形结合,尤其是那些方程两边对应的函数类型不同的方程多以数形结合求解. 考点七 函数的应用例7、如图,长方体物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为v(v>0),雨速沿E移动方向的分速度为c(c∈R).E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与|v-c|×S成正比,比例系数为110;(2)其他面的淋雨量之和,其值为12.记y为E移动过程中的总淋雨量.当移动距离d=100,面积S=32时,(1)写出y的表达式;(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少.①当0<c≤103时,y是关于v的减函数.故当v=10时,y min=20-3c 2.②当103<c ≤5时,在(0,c ]上,y 是关于v 的减函数;在(c,10]上,y 是关于v 的增函数,故当v =c 时,y min =50c .【变式探究】某货轮匀速行驶在相距300海里的甲、 乙两地间运输货物,运输成本由燃料费用和其他费用组成,已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时.(1)请将从甲地到乙地的运输成本y (元)表示为航行速度x (海里/小时)的函数; (2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?故当货轮航行速度为40海里/小时时,能使该货轮运输成本最少. 法二:由(1)y =150⎝ ⎛⎭⎪⎫x +1 600x (0<x ≤50)令f (x )=x +1 600x (0<x ≤50),f ′(x )=1-1 600x 2, 则x ∈(0,40)时,f ′(x )<0,f (x )单调递减, 则x ∈(40,50)时,f ′(x )>0,f (x )单调递增; ∴x =40时,f (x )取最小值80, y min =12 000.故当货轮航行速度为40海里/小时时,能使该货轮运输成本最少. 【方法技巧】应用函数知识解应用题的步骤(1)正确地将实际问题转化为函数模型,这是解应用题的关键,转化来源于对已知条件的综合分析、归纳与抽象,并与熟知的函数模型相比较,以确定函数模型的种类.(2)用相关的函数知识,进行合理设计,确定最佳解题方案,进行数学上的计算求解.(3)把计算获得的结果带回到实际问题中去解释实际问题,即对实际问题进行总结作答.考点八利用导数求切线导数的几何意义:(1)函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0).(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).(3)导数的物理意义:s′(t)=v(t),v′(t)=a(t).例8、曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是() A.-9B.-3C.9 D.15【方法技巧】求曲线y=f(x)的切线方程的类型及方法(1)已知切点P(x0,y0),求切线方程:求出切线的斜率f′(x0),由点斜式写出方程;(2)已知切线的斜率k,求切线方程:设切点P(x0,y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求切线方程:设切点P(x0,y0),利用导数求得切线斜率f′(x0),再由斜率公式求得切线斜率.列方程(组)解得x0,再由点斜式或两点式写出方程.考点九、利用导数研究函数的单调性函数的单调性与导数的关系: 在区间(a ,b )内,如果f ′(x )>0,那么函数f (x )在区间(a ,b )上单调递增;如果f ′(x )<0,那么函数f (x )在区间(a ,b )上单调递减. 例9、设a >0,讨论函数f (x )=ln x +a (1-a )x 2-2(1-a )x 的单调性. 解:由题知a >0,x >0, f ′(x )=2a1-ax 2-21-a x +1x,令g (x )=2a (1-a )x 2-2(1-a )x +1, (1)当a =1时,g (x )=1>0,f ′(x )>0, 故f (x )在(0,+∞)上单调递增;(2)当0<a <1时,g (x )的图像为开口方向向上的抛物线, Δ=[-2(1-a )]2-8a (1-a )=4(1-a )(1-3a )若13≤a <1,Δ≤0,g (x )≥0,f ′(x )≥0,仅当a =13,x =32时取等号, ∴f (x )在(0,+∞)上单调递增;综上,当0<a <13时,f (x )在(0,x 1),(x 2,+∞)上单调递增,在(x 1,x 2)上单调递减;当13≤a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,x 1)上单调递增,在(x 1,+∞)上单调递减. 其中x 1=1-a-1-a 1-3a2a1-a ,x 2=1-a+1-a 1-3a2a 1-a. 考点10、利用函数单调性求极值1.若在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数 f (x )的极大值;若在x 0 附近左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.2.设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且在极值点或端点处取得. 例10、设f (x )=-13x 3+12x 2+2ax .(1)若f (x )在(23,+∞)上存在单调递增区间,求a 的取值范围;(2)当0<a <2时,f (x )在[1,4]上的最小值为-163,求f (x )在该区间上的最大值. 解:(1)由f ′(x )=-x 2+x +2a =-(x -12)2+14+2a , 当x ∈[23,+∞)时,f ′(x )的最大值为f ′(23)=29+2a ; 令29+2a >0,得a >-19.所以,当a >-19时,f (x )在(23,+∞)上存在单调递增区间.【方法技巧】1.利用导数研究函数的极值的一般步骤 (1)确定定义域. (2)求导数f ′(x ).(3)①若求极值,则先求方程f ′(x )=0的根,再检验f ′(x )在方程根左、右值的符号, 求出极值.(当根中有参数时要注意分类讨论根是否在定义域内)②若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况,从 而求解.2.求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤 (1)求函数y =f (x )在(a ,b )内的极值;(2)将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较, 其中最大的一个是最大值,最小的一个是最小值. 【难点探究】难点一 函数的性质的应用例1、设f (x )是定义在R 上的奇函数,当x ≤0时,f (x ) = 2x 2-x ,则f (1)=( ) A .-3 B .-1 C .1 D .3(2)设奇函数y =f (x )(x ∈R),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________.【点评】 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的实际通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.本题第(2)小题中,实际上就是用已知条件给出了这个函数,解决问题的基本思路有两条:一条是把这个函数在整个定义域上的解析式求出,然后再求解具体的函数值;一条是推证函数的性质,把求解的函数值转化到已知函数解析式的区间上的函数值.本题根据对任意t ∈R 都有f (t )=f (1-t )还可以推证函数y =f (x )的图象关于直线x =12对称,函数又是奇函数,其图象关于坐标原点对称,这样就可以画出这个函数在⎣⎢⎡⎦⎥⎤-12,32上的图象,再根据周期性可以把这个函数的图象拓展到整个定义域上,进而通过函数的图象解决求指定的函数值,研究这个函数的零点等问题,在复习中要注意这种函数图象的拓展.【变式探究】设偶函数f (x )对任意x ∈R ,都有f (x +3)=-1f x ,且当x ∈[-3,-2]时,f (x )=4x ,则f (107.5)=( ) A .10 B.110 C .-10 D .-110 【答案】B【解析】 根据f (x +3)=-1fx ,可得f (x +6)=-1fx +3=-1-1f x=f (x ),所以函数y=f(x)的一个周期为6.所以f(107.5)=f(108-0.5)=f(-0.5)=f(0.5)=f(-2.5+3)=-1f-2.5=110.难点二函数的图象的分析判断例2、函数f(x)=ax m(1-x)n在区间[0,1]上的图象如图2-1所示,则m,n的值可能是()图2-1A.m=1,n=1 B.m=1,n=2C.m=2,n=1 D.m=3,n=1【答案】B【点评】函数图象分析类试题,主要就是推证函数的性质,然后根据函数的性质、特殊点的函数值以及图象的实际作出判断,这类试题在考查函数图象的同时重点是考查探究函数性质、用函数性质分析问题和解决问题的能力.利用导数研究函数的性质、对函数图象作出分析判断类的试题,已经逐渐成为高考的一个命题热点。