大学物理简明教程_第七章静电场

合集下载

大学物理静电场知识点全面概括

大学物理静电场知识点全面概括
NEXT
大学物理静电场知识点全面概括
导体在静电场中会产生静电 感应现象,导致导体表面的 电荷重新分布
导体内部的电场分布满足拉 普拉斯方程,可以通过解拉 普拉斯方程得到导体内部的 电场分布情况
电解质在静电场中的行为
这一现象可以用高斯定理和 电场强度的环路定理进行解 释
导体表面的电荷分布
极化现象
导体内部的电场分布
大学物理静电场知识点全面概括
电场强度的大小和方 向可以表示电场的强 弱和方向
电势的大小和方向可 以表示电场的高低和 方向
电场线密度越大的地 方,电场强度越大
电势 电场线 电场力的计算
电势是指单位电荷在 电场中具有的能量, 用V表示
电场线是一种形象化 的描述电场的方法, 可以用于表示电场的 强弱和方向
大学物理静电场知识点全面概括
本文对静电场的知识点进行了全面概括,旨在帮助学生更好地理解和掌握这一知识点 在未来的学习中,我们可以进一步探讨静电场在不同领域的应用,为实际问题的解决提供有力的理论支 持 ② 静电场中的导体与电解质知识点全面概括 摘要 静电场中的导体与电解质是大学物理中的重要知识点,涵盖了导体和电解质在静电场中的行为、极化现 象、静电感应现象等 本文将对这些知识点进行全面概括,以帮助学生更好地理解和掌握这一知识点 绪论 研究背景
电场力的计算可以利 用库仑定律进行,即 F=qE
大学物理静电场知识点全面概括
其中,F为电场力,q为 电荷量,E为电场强度
电场强度和电势都是标 量场,可以利用梯度、 旋度等操作符对其进行 描述
电场线的密度和方向可 以表示电场的分布情况
静电场的描述方法 矢量场描述 静电场的性质
标量场描述
电场线是一种矢量场描 述方法,可以用于表示 电场的强弱和方向

《大学物理第七章》PPT课件

《大学物理第七章》PPT课件
p p
电势叠加原理: U p
Up
i 1
n
40 ri
qi
U1 U 2 U n 1 dq Up 40 r
p
例1、均匀带电圆环,带电量为q,半径为a, 求轴线上任意一点的P电势。
r dl a P x 2 a dq qdl x dU 4 o r 8 2 o ar 标量叠加 q q 2 a U dU dl 2 2 L 8 o ar 8 o ar
r
电势分布曲线
r
1
O
r
例4、求无限长均匀带电直线外任一点P的电势。 (电荷密度)
解:先应用电势差和场强的关系式,求出在轴上P y 点P1和点的电势差
VP VP1 r E dr r1 dr r1 ln r 20 r 20 r
r1
O
r
P r1 P1 x
0
( a x a)
+
- -a o
a x
a o
例6、如图所示,已知两点电荷电量分别为q1 = 3.010 -8C q2 = -3.0 10 -8 C。A 、B、C、D为电场中四个点,图中 a=8.0cm, r=6.0cm。(1)今将电量为2.010-9 C的点电荷从 无限远处移到A点,电场力作功多少?电势能增加多少? (2)将此电荷从A点移到B点,电场力作多少功?电势能增 加多少?(3)将此点电荷从C点移到D,电场力作多少功? 电势能增加多少?
R2 R1
Q
q
4 0 R1 4 0 R2 R1 <r< R2时 Q q U U1 U 2 4 0 r 4 0 R2
r> R2时
U U1 U 2

大学物理静电场ppt课件

大学物理静电场ppt课件
大学物理静电场ppt 课件
目录
• 静电场基本概念与性质 • 静电场中的电荷分布与电势 • 静电感应与电容器 • 静电场中的能量与动量 • 静电场与物质相互作用 • 总结回顾与拓展延伸
01
静电场基本概念与性质
电荷与电场
电荷的基本性质
同种电荷相互排斥,异种电荷相互吸引。
电场的概念
电荷周围存在的一种特殊物质,它对放入其中 的其他电荷有力的作用。
典型问题解析
电荷在电场中的受力与运动
根据库仑定律和牛顿第二定律分析电 荷在电场中的受力与运动情况。
电场强度与电势的关系
通过电场强度与电势的微分关系,分 析电场强度与电势的变化规律。
电容器与电容
分析平行板电容器、圆柱形电容器等 典型电容器的电容、电量、电压等物 理量的关系。
静电场的能量
计算静电场中电荷系统的电势能、电 场能量等物理量,分析静电场的能量 转化与守恒问题。
某些晶体在受到外力作用时,内部产生电极化现象,从而在晶体表面产生电荷的现象。 压电效应具有可逆性,即外力撤去后,晶体又恢复到不带电的状态。
热电效应
温差引起的电荷分布和电流现象。包括塞贝克效应(温差产生电压)和帕尔贴效应(电 流产生温差)。
压电效应和热电效应的应用
在传感器、换能器、制冷技术等领域有广泛应用。
静电场能量密度及总能量计算
静电场能量密度定义
01
单位体积内静电场所具有的能量。
计算公式
02
能量密度 = 1/2 * 电场强度平方 * 电介质常数。
静电场总能量计算
03
对能量密度在整个空间进行积分。
带电粒子在静电场中运动规律
运动方程
根据牛顿第二定律和库仑定律建立带电粒子在静 电场中的运动方程。

大学物理课件静电场

大学物理课件静电场

有限差分法求解边值问题
有限差分法原理
将连续的空间离散化为网格,用差分方程近 似代替微分方程进行数值求解。
有限差分法的离散化方案
常见的离散化方案包括向前差分、向后差分 和中心差分等。
有限差分法的求解步骤
建立差分方程、确定边界条件、采用迭代法 或直接法求解差分方程得到近似解。
06 静电危害防护与 安全措施
连续分布电荷系统势能计算方法
通过积分求解连续分布电荷的势能,需考虑电荷分 布的空间范围和形状。
静电场能量密度和总能量
静电场能量密度定义
单位体积内静电场所具有的能量。
静电场能量密度计算公式
$w = frac{1}{2} varepsilon_0 E^2$,其中$varepsilon_0$为真空 介电常数,$E$为电场强度。
静电场总能量计算
通过对静电场能量密度在空间上的积分,可求得静电场的总能量。
能量守恒定律在静电场中应用
能量守恒定律表述
在一个孤立系统中,无论发生何种变化,系统的总能量保持不变。
静电场中能量转化与守恒
在静电场中,电荷的移动和电场的变化都会伴随着能量的转化,但 总能量保持不变。
应用实例
如电容器充放电过程中,电场能与电源提供的电能或其他形式的能 量相互转化,但总能量不变。
分离变量法的适用范围
适用于具有规则几何形状和简单边界条件的静电场问题。
格林函数法求解边值问题
1 2
格林函数法原理
利用格林函数表示点源产生的场,并通过叠加原 理求解任意源分布产生的场。
格林函数的性质 格林函数具有对称性、奇异性和边界条件等性质。
3
格林函数法的应用步骤 确定格林函数、将源分布表示为点源的叠加、利 用格林函数求解场分布。

大学物理课件静电场

大学物理课件静电场

大学物理课件:静电场一、静电场的基本概念1.1电荷电荷是物质的一种属性,是带电粒子的基本单位。

根据电荷的性质,电荷可分为正电荷和负电荷。

自然界中,已知的电荷只有两种:电子和质子。

电子带负电,质子带正电。

电荷的量是量子化的,即电荷量总是元电荷的整数倍。

1.2静电场(1)存在势能:在静电场中,电荷之间存在电势差,电荷在电场中移动时会受到电场力的作用,从而具有势能。

(2)叠加原理:静电场中,任意位置的电场强度是由所有电荷在该点产生的电场强度的矢量和。

(3)保守性:静电场力做功与路径无关,只与初末位置有关,因此静电场是保守场。

1.3电场强度电场强度是描述电场中电荷受力大小的物理量。

电场强度E的定义为单位正电荷所受到的电场力F,即E=F/q。

电场强度是矢量,方向与正电荷所受电场力方向相同。

在国际单位制中,电场强度的单位为牛/库仑(N/C)。

二、库仑定律2.1库仑定律的表述库仑定律是描述静止电荷之间相互作用的定律。

库仑定律表明,两个静止点电荷之间的相互作用力与它们的电荷量的乘积成正比,与它们之间的距离的平方成反比,作用力在它们的连线上。

2.2库仑定律的数学表达式设两个点电荷的电荷量分别为q1和q2,它们之间的距离为r,则它们之间的相互作用力F可以用库仑定律表示为:F=kq1q2/r^2其中,k为库仑常数,其值为8.9910^9N·m^2/C^2。

2.3电场强度的计算根据库仑定律,可以求出单个点电荷产生的电场强度。

设一个点电荷q产生的电场强度为E,则距离该电荷r处的电场强度E 为:E=kq/r^2三、电势与电势差3.1电势电势是描述电场中某一点电荷势能的物理量。

电势的定义为单位正电荷从无穷远处移到该点时所做的功W,即V=W/q。

电势是标量,单位为伏特(V)。

3.2电势差的计算电势差是描述电场中两点间电势差异的物理量。

电势差U的定义为单位正电荷从一点移到另一点时所做的功W,即U=W/q。

电势差是标量,单位为伏特(V)。

大学物理教程课件讲义第七章静电场

大学物理教程课件讲义第七章静电场

7.5 导体和电介质中的静电场
2.空腔内有电荷的情况
在空腔导体内放入带电体+q,如图7.27所示,在空腔导体 内外表面之间作一高斯面S,由于静电平衡时,导体内的场强处 处为零,所以通过高斯面的电通量为零。根据高斯定理,高斯 面内电荷的代数和必定为零。
7.5 导体和电介质中的静电场
图7.26 带电体在空腔导体外 图7.27 带电体在空腔导体内
7.1 电荷 库仑定律
4.电荷的相对论不变性
实验还证明,一个电荷的电量与它的运动状态无关,即在不 同的参考系中测量的同一带电粒子的电量相同,电荷的这一特性 称为电荷的相对论不变性。
7.1 电荷 库仑定律
7.1.2 库仑定律
带电体之间的相互作用十分复
杂。它与带电体的电量、体积、形
状以及带电体间的相对位置等因素
7.5 导体和电介质中的静电场
3.静电屏蔽
如前所述,在静电平衡条件下,不论空腔导体本身是 否带电,只要腔内无其他带电体,空腔导体就能屏蔽外部 空间电场变化对腔内的影响。而接地的空腔导体既可以屏 蔽腔内电场的变化对外部空间的影响,也可以屏蔽外部空 间电场变化对腔内的影响.这种现象称为静电屏蔽。
7.5 导体和电介质中的静电场
7.3 电通量 静电场的高斯定理
在应用高斯定理求解场强时,带电体的场强分布必须 具有一定的对称性,以便能够找到合适的高斯面.下面列出
(1 (2)高斯面的选取是应用高斯定理求解场强的关键。 (3 (4)根据高斯定理,求出场强。
7.3 电通量 静电场的高斯定理
例7.6 高斯面的选择.
P,距离球心为r,以
图7.18 电场力的功
7.4 静电场的环路定理 电势
如图7.19所示,电场 中有一闭合路径acbda.让 试验电荷从a点沿路径acb 运动到b点和沿路径adb运 动到b点,电场力所做的功 相同。

大学物理第七章静电场思维导图

大学物理第七章静电场思维导图

绝缘体在静电场中表现特性
电荷保持
绝缘体不易导电,因此在静电场中,绝缘体上的电荷 难以移动或消失,能够长时间保持电荷。
极化现象
在静电场作用下,绝缘体中的正负电荷中心会发生相 对位移,形成电偶极子,从而产生极化现象。
介电常数
绝缘体的介电常数反映了其在静电场中的极化程度。 介电常数越大,绝缘体的极化能力越强。
导体和绝缘体之间相互作用
静电感应现象
当导体靠近绝缘体时,由于静电感应作用,导体会在靠近绝缘体的一侧感应出异号电荷,而绝缘体也会因为 极化作用在靠近导体的一侧出现束缚电荷。
电荷转移
在特定条件下,如导体与绝缘体接触或存在电位差时,可能会发生电荷转移现象。例如,在雷电天气中,云 层中的电荷可能会通过空气中的绝缘体(如水滴)转移到地面上的导体上。
电荷与电场关系
电荷
带正负电的粒子,是电场的源。
电场
电荷周围存在的一种特殊物质, 对放入其中的电荷有力的作用。
电荷与电场关系
电荷产生电场,电场对电荷有 力的作用。
电场强度与电势差
电场强度
描述电场的力的性质的物理量,表示电场的强弱和方向。
电势差
描述电场的能的性质的物理量,表示两点间电势的差值。
关系
电场强度与电势差密切相关,电场强度的方向是电势降低最快的 方向。
静电场中的导体和绝缘体
导体
内部存在自由电荷,能够导电的 物体。在静电场中,导体内部电 场为零,电荷分布在导体表面。
绝缘体
内部几乎没有自由电荷,不能导 电的物体。在静电场中,绝缘体 内部和表面都可能存在电荷。
静电感应
当导体靠近带电体时,由于静电 感应作用,导体内部电荷重新分 布,使得导体两端出现等量异号 电荷的现象。

大学物理授课教案 第七章 真空中的静电场

大学物理授课教案 第七章 真空中的静电场

第三篇 电磁学第七章 真空中的静电场本章只讨论真空中的电场,下一章再讨论介质中静电场。

静电场:相对于观察者静止的电荷产生的电场。

§7-1 电荷 库仑定律一、电荷1、电荷 种类 正电荷 负电荷作用 同性相斥异性相吸(一般地说:使物体带电就是使它获得多余的电子或从它取出一些电子) 2、电荷守恒定律电荷从物体的一部分转移到另一部分,这称为电荷守恒定律。

它是物理学的基本定律之一。

3、电荷量子化在自然界中所观察到的电荷均为基本电荷e 的整数倍。

这也是自然界中的一条基本规律,表明电荷是量子化的。

直到现在还没有足够的实验来否定这个规律。

二、库仑定律点电荷:带电体本身线度比它到其他带电体间的距离小得多时,带电体的大小和形状可忽略不计,这个带电体称为点电荷。

(如同质点一样,是假想模型)库仑定律:真空中两点电荷之间的相互作用力大小与他们电量乘积成正比,与他们之间距离成反比,方向在他们连线上,同性相斥、异性相吸。

这叫做库仑定律。

它构成全部⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧静电学的基础。

数学表达式:2q 受1q 的作用力:2122112r q q k F = 0> 斥力(同号)0< 吸引(异号) 采用国际单位制,其中的比例常数229/109c m N k ⋅⨯=。

写成矢量形式:123122112122122112r r q q k r r r q q k F =⎪⎪⎭⎫ ⎝⎛= 令041πε=k ,22120/1085.8m N c ⋅⨯=-ε⇒ 123122101241r r q q Fπε= (7-1) 说明:①12F 是1q 对2q 是作用力,12r是由1q 指到2q 的矢量。

②2q 对1q 的作用力为:()1212120212132121021441F r r q q r r q q F -=-==πεπε ③库仑定律的形式与万有引力定律形式相似。

但前者包含吸力和斥力,后者只是引力,这是区别。

大学物理第7章静电场演示课件

大学物理第7章静电场演示课件

x
lnx0 L 4 o x0
09.10.2020
求:
10
例题5
已知:总电量Q ;半径R 。 求: 均匀带电圆环轴线上的电势分布
dQ
R 0
解:
r
x
x
P
dU dQ
40r
U dQ 1 dQ
Q 40r 40r Q
r R2x2
Q
4 0 r
U
Q
4 0 R2 x2
09.10.2020
11
四、 场强和电势的微分关系
09.10.2020
8
2、利用叠加原理
点电荷电 场的电势
Ur
Q
4 0r
点电荷系UP = ?
Q2
r2
Q3
根据定义 U Edr
P
P E 1 E 2 E 3 d r P E 1 d rP E 2d rpE 3d r
U1U2U3
r3
r QQ 1 1
P
dQ
U
Qi
i 4 0ri
分立的点 电荷系
Q
P r
U dQ
Q 40r
连续分布的 带电体系
09.10.2020
9
例题4
均匀带电细棒,长 L ,电荷线密度 ,
沿线、距离一端 x0 米处的电势。
0P x0
解:
dU dQ
40 x
x0
dQdx
U
x L 0
dx
x 0
40x
L
40
lnx
x 0
x 0
L
x0 L
4olnx0Llnx0
Qdxx
Q
x
40
R2x2
3 2

大学物理第7章真空中的静电场答案解析

大学物理第7章真空中的静电场答案解析

第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。

解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。

7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。

(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。

解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。

(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y习题7-1图0 dqξd ξ习题7-2 图a204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。

θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。

解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。

对称分析E y =0。

θπεθλsin 420RRd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ= θθπελθd y dE E x x ⎰⎰-=-=0sin 4xdx习题7-2 图byx习题7-3图2022R q επ=,如图,方向沿x 轴正向。

大学应用物理第七章读书笔记

大学应用物理第七章读书笔记

⼤学应⽤物理第七章读书笔记静电场本章研究的是电磁运动中最简单的情况—静电场,所采⽤的研究⽅法为:从库仑定律开始,建⽴静电场的概念,从置于电场中的电荷所受的⼒和⼒做功的情况,研究静电场的性质,引⼊电场强度和电势两个重要的物理量。

建⽴场强叠加原理、⾼斯定理、环路定理等。

⼀、概念静电场:任何电荷周围都存在着电场,相对观察者为静⽌的电荷所激发的电场。

电场的特点(1) 电荷之间的相互作⽤是通过电场来传递(2) 对位于其中的带电体有⼒的作⽤(3) 带电体在电场中运动,电场⼒要作功——电场是种物质,具有能量、质量和动量。

电场强度:放⼊电场中某点的电荷所受静电⼒F跟它的电荷量⽐值,叫做该点的电场强度。

定义式:E=F/q ,F为电场对试探电荷的作⽤⼒,q为放⼊电场中检验电荷(试探电荷)的电荷量。

电场强度的⽅向:规定为放在该点的正电荷受到的静电⼒⽅向。

与正电荷受⼒⽅向相同,与负电荷受⼒⽅向相反电场⼒:电荷之间的相互作⽤是通过电场发⽣的。

只要有电荷存在,电荷的周围就存在着电场,电场的基本性质是它对放⼊其中的电荷有⼒的作⽤,这种⼒就叫做电场⼒判断⽅向⽅法:正电荷沿电场线的切线⽅向,负电荷沿电场线的切线⽅向的反⽅向。

计算:电场⼒的计算公式是F=qE,其中q为点电荷的带电量,E为场强。

或由W=Fd,也可以根据电场⼒做功与在电场⼒⽅向上运动的距离来求。

电磁学中另⼀个重要公式W=qU(其中U为两点间电势差),可由此公式推导得出。

静电⼒作功的特点:单个点电荷产⽣的电场中任意带电体系产⽣的电场中电荷系q1、q2、…的电场中,移动q0,有结论:电场⼒作功只与始末位置有关,与路径⽆关,所以静电⼒是保守⼒,静电场是保守⼒场。

电通量:通过电场中任意给定⾯积的电场线的数⽬,叫做通过该⾯积的电场强度通量,简称电通量。

(它是研究电场性质的常⽤物理量)公式:电通量密度是通过垂直于电场⽅向的单位⾯积的电通量,它等于该处电场的⼤⼩E 。

电通量密度精确地描述了电⼒线的疏密。

大学物理第七章和第八章习题答案

大学物理第七章和第八章习题答案

2
R2 R1
(5) C'
rC
4 0 r R1R2 R2 R1
2. 如图所示,,两块分别带有等量异号电荷的平行金属平板 A 和 B,相距为 d=5.0mm,两板 面积均为 S=150 cm2。所带电量均为 q=2.66×10-8C, A 板带正电并接地。求:(1)B 板的电 势;(2)A、B 板间距 A 板 1.0mm 处的电势。
(4)该电容存储的电场能量;
(5)若在两极板之间充满相对介电常数为r 的各向同性均匀电介质,则电容值变为多少?
解:(1)设极板上分别带电量+Q 和-Q,距离为 d,极板间产生均匀电场,
E Q /( 0 S ) 方向为由带+Q 的极板指向带-Q 的极板
极板外侧 E' 0
(2)两极板间的电势差为U12
金属球壳、设无穷远处为电势零点,则在
球壳内半径为 r 的 P 点处的场强和电势为:
[D]
(A)E= Q ,U Q (B)E=0,U Q
4 0r 2
4 0r
4 0 r1
(C)E=0,U Q 4 0 r
(D)E=0,U Q 40r2
r1
+Q
r
r2
P
5. 关于高斯定理,下列说法中哪一个是正确的? [ C ]
专业班级_____ 姓名________ 学号________
第七章 静电场中的导体和电介质
一、选择题:
1,在带电体 A 旁有一不带电的导体壳 B,C 为导体壳空腔内的一点,如下图所示。则由静电 屏蔽可知:[ B ]
(A)带电体 A 在 C 点产生的电场强度为零; (B)带电体 A 与导体壳 B 的外表面的感应电荷在 C 点所产生的

大学物理第7章 静电场中的导体和电介质 课后习题及答案

大学物理第7章 静电场中的导体和电介质 课后习题及答案

第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr =21σσ 。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε 故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又 +2σ03=σ 故 1σ4σ=3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。

解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V由电势叠加原理,球心电势为=O V R qdq R 3π4π4100εε+⎰03π4π400=+'=Rq R q εε 故 -='q 3q 4.半径为1R 的导体球,带有电量q ,球外有内外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。

大学物理简明教程(第2版)(赵近芳)习题答案,习题7 静电场

大学物理简明教程(第2版)(赵近芳)习题答案,习题7 静电场

习题77-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题7-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题7-1图 题7-2图题7-2图7-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题7--2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题7-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q =7-3 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说2204q f d πε=,又有人说,因为f =qE ,0q E Sε=,所以20q f Sε=试问这两种说法对吗?为什么?f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.7-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷.试求:(1)在导线的延长线上与导线B 端相距1 5.0a cm =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强. 解: 如题7-4图所示题7-4图(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如题7-4图所示 由于对称性⎰=lQxE 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Q y Q E E 1C N -⋅,方向沿y 轴正向7-5 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题7-5(a)图所示.题7-5(3)图题7-5(a)图 题7-5(b)图 题7-5 (c)图7-6 均匀带电球壳内半径6 cm ,外半径10 cm ,电荷体密度为53210C m -⨯.试求距球心5cm,8 cm 及12 cm 的各点的场强. 解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4ρ=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外.7-7 半径为1R 和2R (21R R >)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1) 1r R <;(2) 12R r R <<;(3) 2r R >处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E7-8 两个无限大的平行平面都均匀带电,电荷的面密度分别为σ和-σ,试求空间各处电场强度。

大学物理静电场PPT课件

大学物理静电场PPT课件
象。
雷电防护
避雷针是利用尖端放电原理来保护建筑物等免受雷击的一种装置。在雷雨天气,云层中 的电荷使避雷针尖端感应出与云层相反的电荷,由于避雷针尖端的曲率大,电荷密度高 ,使得其周围电场强度特别强,容易将空气击穿而产生放电现象,从而将云层中的电荷
引入大地,避免了对建筑物的雷击。
02 静电场中的电介质
05 静电场在生活、生产中的应用
静电除尘原理及设备简介
静电除尘原理
利用静电场使气体中的粉尘荷电,然后在电场力的作用下使粉尘从 气流中分离出来的除尘技术。
设备组成
主要包括电极系统、高压电源、收尘装置、气流分布装置、振打清 灰装置及电除尘器的外壳等。
工作过程
含尘气体在通过高压电场时,粉尘颗粒荷电并在电场力作用下向电极 运动,最终沉积在电极上,通过振打等方式使粉尘落入灰斗中。
电源内部非静电力将正电荷从负极移 到正极所做的功与移送电荷量的比值 称为电源电动势,用符号E表示。电源 电动势反映了电源将其他形式的能转 化为电能的本领大小。
内阻
电源内部存在着阻碍电流通过的因素 称为内阻。内阻的大小反映了电源内 部损耗的大小。在电路中,内阻与负 载电阻串联连接,共同影响电路的性 能。
03 静电场能量与能量密度
静电场能量计算方法
电场能量定义
01
静电场中的电荷分布所具有的能量。
计算方法
02
通过对电场中所有电荷的电势能进行求和来计算。
公式表示
03
$W = frac{1}{2} int rho V dV$,其中$rho$为电荷密度,$V$
为电势。
能量密度概念及其物理意义
能量密度定义
应用实例
高压作业人员穿戴用金属丝制成的防护服,当接触高压线时,形成了等电位,使得作业人员的身体没有电流通过 ,起到了保护作用。此外,精密电子仪器和设备的金属外壳也是利用静电屏蔽原理来防止外部静电场对其内部电 子元件的干扰。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档