概率论测试题

合集下载

概率论测试题

概率论测试题

第一章测试题一、填空题()()11,P(AB)0,(AC)P(BC ,1.)416P A P P B P C ======则事件A,B,C 全不发生的概已知()率为()2.,(A)0.5,(B)0.6P(B|A)0.8A B P P B ===设事件满足,,则P (A )=()3.P =p =q =∅已知(A ),P (B )且AB ,则A 与B 恰有一个发生的概率为()4.====A B P 设事件,满足(A )0.4,P (B )0.3,P (A B )0.6,则P (AB )()5.r r ≤设有(3<r 365)个人,并设每人的生日在一年365天中的每一天的可能性为均等性,则此个人中恰有3个人生日相同(其他人的生日各不相同)的概率为()6.103张奖券中含有张中奖的奖券,现有三人各买1张,则恰有一人中奖的概率为()7.n n<N N 将个小球随机放到()个盒子中去,则某指定盒子中至多有1球的概率是()8.48081一袋中有两个黑球和若干个白球,现有放回地摸球次,若至少摸到一次白球的概率为,则袋中白球数是()9.a b k k+袋中有个白球,个黑球,现从中一次取球,则第次和第1次取得不同颜色球的概率是()111110.,,,5436A B C D 四人独立破译一份密码,已知每人能破译的概率分别为,,,,则密码最终能破译的概率为()11.若在区间(0,1)内任取两个数,则事件“两数之和小于1.2”的概率为()。

12.p n A A 设在一次试验中事件发生的概率为,现重复进行次独立试验,则事件至多发生一次的概率为()13.a h l l o o halloo 将,,,,,这六个字母任排一行,则拍成的概率为14.1042设件产品中有件不合格品,从中任取件,已知所取的2件中有1件是不合格品,则另一件也是不合格品的概率为()15.%%%设一批产品中的一、二、三等品各占60,30,10,先从中任取一件,结果不是三等品,则取到的是一等品的概率为()二、单项选择题1.,. =-=-==A B A P B 设为随机事件,则下列各式中正确的是()(AB )P(A)P (B ) B. P (A B )P (A )P (B )C. P (A )P (A-B ) D. P (AB )P(A)+P(B)2.. B.C. A A A 若用事件表示“甲产品畅销,乙产品滞销”,则事件表示()甲产品滞销,乙产品畅销甲、乙两产品均畅销甲产品滞销 D.甲产品滞销或乙产品畅销3.A. P -=A B A 设,为随机事件,则下列各式中不能恒成立的是()(A B )P(A)-P(AB) B. P(AB)=P(B)P(A|B),其中P (B )>0C. P(A B)=P(A)+P(B) D. P(A)+P()=14.A. P P 1. P =+AB C ≠∅≥≤≤若,则下列各式中错误的是()(AB )0 B.(AB )(A B )P (A )P (B ) D.P(A-B)P(A)5.. A,B B. =. = D. P(A-B)=P(A)AB A A B C AB ≠∅∅若,则()为对立事件6.,A. . B A A B P C ⊂若则()(A )<P(B) B. P(B-A)>0若不发生则也不发生 D. 若B 发生则A 必发生1117.. P min{P } B. A n {}()nnni i A P Ai Ai P Ai ==≤≠Ω≤≤∑∑下列关于概率的不等式,不正确的是()(AB )(A ),P (B )若,则(A )<1C. P()P(A1A2A ) D. P 8.今有十张电影票,其中只有两张座号在第一排,现采取抽签方式发放给10名同学,则()A. 先抽者有更大可能性抽到第一排座票B. 后抽者更可能获得第一排座票C. 各人抽签结果与抽签顺序无关D. 抽签结果受抽签顺序的制约12121212129.10052=≥设件产品中有件不合格产品,今从中依次取件。

概率论第一章小测试

概率论第一章小测试

第一章小测试一、选择题1.设A 、B 、C 为三个事件,则A 、B 、C 不全发生可表示为( )A. ABCB. ABCC. C B AD. C B A2.设事件A 和B 互为对立事件,则下列各式不成立的是( )A. ()0P AB =B. ()0P AB =C. ()1P A B =D.()1P B A =3.将一枚均匀硬币抛掷3次,则至少有2次出现币值面朝上的概率是( )A. 18B. 38C. 12D. 584.盒内有6个产品,其中正品4个次品2个,不放回地一个一个往外取产品,则第二次才取到次品的概率与第二次取产品时取到次品的概率分别为( )A. 41153,B. 441515,C. 1133, D. 14315, 5.设两个事件A 和B 相互独立,且()0.5P A =,()0.4P B =, 则()P A B 的值是( ) A. 0.9 B. 0.8 C. 0.7 D. 0.66.对于任意事件A,B,若A B ⊂,则下列各等式不成立的是( )A. B B A =B. φ=B -AC. B B A =D. φ=B A7.设A,B 为任意两个概率不为0的互斥事件,则下列结论中一定正确的是( )A. ()()P A B P A =B. ()()()P A B P A P B -=-C. ()()()P AB P A P B =D.()()P A B P A -=8.将一枚均匀硬币抛掷3次,则恰有一次出现币值面朝上的概率是( )A. 38B. 18C. 58D. 129. 已知在10只电子元件中,有2只是次品,从其中取两次,每次随机地取一只,作不放回抽取,则第二次取出的是次品的概率是( )A. 145B. 15C. 1645D. 84510.设两个事件A 和B 相互独立,且()0.6P A =,()0.3P B =, 则()P A B 的值是( ) A. 0.3 B. 0.7 C. 0.72 D. 0.911.事件A 、B 、C 中恰有一个事件发生的事件是( )A .ABCB .C AB C .C B AD .C B A C B A C B A ++12.设A 和B 是两个随机事件,则下列关系式中成立的是( )A.()()()P A B P A P B -=-B.()()()P AB P A P B =+ C.()()()P A B P A P B -≤- D.()()()P AB P A P B ≤+13.设B A ,满足1)(=B A P , 则有( ) A .A 是必然事件 B .B 是必然事件C .Φ=⋂B A D.)B (P )A (P ≥14.已知A ,B 是两个随机事件,且知()0.5P A =,()0.8P B =,则()P AB 的最大值是( )A. 0.5B. 0.8C. 1D. 0.315. 设每次试验成功的概率为)10(<<p p ,重复进行试验直到第n 次才取得成功的概率为( )A .1(1)n p p --B .1(1)n np p --C .1(1)(1)n n p p --- D.1(1)n p --16. 掷一枚钱币,反复掷4次,则恰有3次出现正面的概率是( ).A .116B . 18C . 110 D.1417.设A 、B 、C 为三个事件,则A 、B 、C 全不发生的事件可表示为( )(A )ABC (B )C B A (C )C B A (D )C B A18.设A 和B 是两个随机事件,且A B ⊂,则下列式子正确的是( )(A ))()(A P B A P = (B ))()(A P AB P =(C ))()(B P A B P = (D ))()()(A P B P A B P -=-19.设A 和B 相互独立,4.0)(,6.0)(==B P A P ,则=)(B A P ( )(A )0.4 (B )0.6 (C )0.24 (D )0.520.设c B A P b B P a A P ===)(,)(,)( ,则)(B A P =( )(A )b a - (B )b c - (C ))1(b a - (D )a b -21随机掷两颗骰子,已知点数之和为8,则两颗骰子的点数都是偶数的概率为( )(A )53 (B )21 (C )121 (D )3122.设N 件产品中有n 件是不合格品,从这N 件产品中任取2件,则2件都是不合格品的概率是( )(A )121---n N n (B ))1()1(--N N n n (C )2)1(N n n - (D ))(21n N n -- 23. 设A 和B 是两个随机事件,则下列关系式中成立的是( )A .()()()P AB P A P B -=- B.()()()P A B P A P B =+C.()()()P A B P A P B -≤-D.()()()P A B P A P B ≤+24. 将3个相同的小球随机地放入4个盒子中,则盒子中有小球数最多为一个的概率为( )A. 3/32B. 1/16C. 3/8D. 1/825. 同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( )A .0.125B .0.25C .0.375D .0.5026. 设在三次独立重复试验中,事件A 出现的概率都相等,若已知三次独立试验中A 至少出现一次的概率为1927,则事件A 在一次试验中出现的概率为( )A . 31 B .41 C .61 D .21 27. 设A 和B 为两个随机事件,且()0P A >,则[()]P A B A =( )A. ()P ABB. ()P AC. ()P BD. 128. 已知A ,B 是两个随机事件,且知()0.5P A =,()0.8P B =,则()P AB 的最大值是( )A. 0.5B. 0.8C. 1D. 0.329. 设事件A 和B 互斥,且()0P A >,()0P B >,则有( )A .()1P AB =B .()1()P A P B =-C .()()()P AB P A P B =D .()1P A B =30. 设A 、B 相互独立,且()0P A >,()0P B >,则下列等式成立的是( )A .()0P AB =B .()()()P A B P A P B -=C .()()1P A P B +=D .()0P A B =31. 设A 为随机事件,则下列命题中错误的是( )A. A 与A 互为对立事件B. A 与A 互斥C. A A =D. A A =Ω32. 设A 与B 相互独立,()0.2P A =,()0.4P B =,则()P A B =( )A. 0.2B. 0.4C. 0.6D. 0.833. 检查产品时,从一批产品中任取3件样品进行检查,则可能的结果是:未发现次品,发现一件次品,发现两件次品,发现3件次品。

概率论第一章单元测试题

概率论第一章单元测试题

概率论第一章单元测试题一、判断题(每题1分,共5分)1.事件“A,B至少发生一个”与事件“A,B至多发生一个”是对立事件.()2.设A与B为任意两个互不相容事件,则P(AB)=P(A)P(B).()3.设A与B为任意两事件,则A-B不等于B A.()4.设A与B互为对立事件,且P(A)>0,P(B)>0,则()0P B A=.()5.已知P(A)>0,P(B) >0,若A与B互不相容,则A,B一定不独立.()二、选择题(每题1分,共15分)1.设A,B,C是3个事件,则A发生且B与C都不发生可表示为().A.BCA B.CB A C.)S-A D.BC(CB2.设A,B为两个事件,且A≠φ,B≠φ,则)+A+(表示AB)(BA.必然事件B.不可能事件C.A与B不能同时发生 D.A与B恰有一个发生3.对于事件A,B,下列命题正确的是().A.若A,B,互不相容,则BA,也互不相容B.若A,B,相容,则BA,也相容C.若A,B,互不相容,且概率都大于零,则BA,也相互独立D.若A,B,相互独立,则BA,也相互独立4.设随机事件A与B相互独立且P(B)=0.5,P(A-B)=0.3,则P(B-A)=().A .0.1B .0.2 C.0.3D.0.42”的概率是().5.在区间(0,1)中随机的取两个数,则事件“两数之和大于3A .31B .97C .32D . 92 6. 设A 与B 为任意两个互不相容,且P (A )P (B )>0,则必有( ).A .)(1)(B P A P -= B .)()()(B P A P AB P =C .1)(=B A PD .1)(=AB P7. 设A 与B 为任意两个事件,则使P (A -C )=P (A )-P (C )成立的C 为( ).A .A C =B .B AC = C .))((B A B A C -=D .)()(A B B A C --=8. 将两封信随机地投入四个邮筒中,则未向前两个邮筒中投信的概率( ).A .2242B .2412C C C .24A 2!D .4!2! 9. 设A ,B 为随机事件,P (B )>0,()1P A B =,则必有( ).A .)()(A PB A P = B .B A ⊂C .)()(B P A P =D .)()(A P AB P =10. 设随机事件A 与B 互不相容,P (A )=0.4,P (B )=0.2,则()P A B = ( ).A .0.2B .0.4C .0D .0.511. 设P (A )>0,P (B )>0,则由A 与B 相互独立不能推出( ).A .)()()(B P A P B A P += B .()()P A B P A =C .()()P B A P B =D .)()()(B P A P B A P =12. A ,B 为任意两个事件,则下列叙述正确的是( ).A .)()()(B P A P AB P ≤ B .)()()(B P A P AB P ≥C .2)()()(B P A P AB P +≤D .2)()()(B P A P AB P +≥ 13. 事件A ,B 满足P (A )+P (B )>1,则A 与B 一定( ).A .不相互独立B .相互独立C .互不相容D .不互斥14. 设A ,B ,C 是3个随机事件,且A 与C 相互独立,B 与C 相互独立,则B A 与C相互独立的充要条件是( ).A .A 与B 相互独立 B .A 与B 互不相容C .AB 与C 相互独立D .AB 与C 互不相容15. 某人连续向一目标射击,每次命中目标的概率为43,他连续射击直到命中为止,则射击次数为3的概率是( ).A .343⎪⎭⎫ ⎝⎛B .41432⨯⎪⎭⎫ ⎝⎛C .43412⨯⎪⎭⎫ ⎝⎛D .4341223⨯⎪⎭⎫ ⎝⎛C 三、填空题(每题2分,共30分)1. 设Ω为随机试验的样本空间A ,为随机事件,且{}=05x x Ω≤≤,A={}12x x ≤≤,B={}02x x ≤≤,试求:=B A ,B -A= .2. 设两个相互独立的事件A 和B 都不发生的概率是91,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则P (A ) = .3. 若111(),(),()432P A P B A P A B ===,则()P A B = . 4. 若()0.4,()0.3,()0.5P A P B P A B ===,则()P A B -= .5. 从10个整数0,1,2,…,9中任取4个不同的数字,此4个数字组成4位偶数的概率 .此4个数字组成4位奇数的概率 .6. 将3只球随机地放入4个杯子中去,则杯子中球的最大个数为3的概率 .杯子中球的最大个数为2的概率 .7. 一批产品共100件,次品率为10%,每次从中任取一件,取后不放回且连续3次,则第三次才取到合格品的概率为 .8. 某一3口之家,患某种传染病的概率有以下规律:P{孩子得病}=0.6,P{母亲得病/孩子得病}=0.5,P{父亲得病/母亲及孩子得病}=0.4则母亲及孩子得病而父亲未得病的概率.9.在一次考试中某班学生数学和外语的及格率都是0.7,且这两门课是否及格相互独立,现从该班任选一名学生,该生数学及外语只有一门及格的概率.10.已知10把钥匙中有3把能打开门,现任取两把,则能打开门的概率为.11.掷两颗骰子,则点数之和为偶数或小于5的概率.12.甲盒装有5只红球,4只白球;乙盒装有4红球,5只白球;先从甲盒中任取两球放入乙盒,然后从乙盒任取一球,则取到白球的概率.13.某种商品的商标为“MAXAM”,其中有两个字母脱落,有人捡起随意放回,则放回后仍为“MAXAM”的概率.14.已知男子有5%是色盲患者,女子有0.25%是色盲患者.今从男女人数相等的人群中随机挑选一人,恰好是色盲患者,则此人是男性的概率.15.某宾馆大楼有4部电梯,通过调查,知道在某时刻T,各电梯正在运行的概率均为0.75,则在此时刻至少有1台电梯在运行的概率.在此时刻恰好有一半电梯在运行的概率.四、计算题(40分)1.(2分)将15名新生随机地平均分配到3个班级中去,这15名新生中有3名是优等生,求(1)每个班级各分配到一名优等生的概率(2)3名优等生分配在同一班级的概率2.(8分)一学生接连参加同一课程的两次考试.第一次及格的概率为p,若第一次及p.格则第二次及格的概率也为p;若第一次不及格则第二次及格的概率为2(1) 若至少有一次及格则他能取得某种资格,求他取得该资格的概率.(2) 若已知他第二次及格了,求他第第一次及格的概率.解:设A i=“第i次及格”,i=1,2.3.(5分)甲乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率是多少?4.(7分)雨伞掉了,落在图书馆中的概率为%.0;落50,这种情况下找回的概率为80在教室里的概率为%20,这种30,这种情况下找回的概率为60.0;落在商场的概率为%情况找回的概率为05.0,求:(1)找回雨伞的概率;(2)雨伞被找回,求它掉在图书馆的概率.5.(10分)每箱产品有10件,其中次品从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品为不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.求检验一箱产品能通过验收的概率.6.(5分)在100件产品有5件次品,从中连续取二件,每次取一件,取后不放回,试求:(1) 第一次取得次品后第二次取得正品的概率;(2) 第二次才取得正品的概率.7.(3分)已知电路如图所示,若A,B,C 损坏与否相互独立,且它们损坏的概率分布为0.3,0.2,0.1,求电路断电的概率五、证明题(10分)1. (5分)设A ,B 为两个随机事件,0()1P B <<,()()P A B P A B =,证明:A 与B 相互独立.2.(5分)设事件A ,B ,C 的概率都是21,且)()(C B A P ABC P =,证明:21)()()()(2-++=BC P AC P AB P ABC P .。

概率论与数理统计第一章测试题

概率论与数理统计第一章测试题

第一章 随机事件和概率一、选择题1. 设A, B, C 为任意三个事件, 则与A 一定互不相容的事件为(A )C B A ⋃⋃ (B )C A B A ⋃ (C ) ABC (D ))(C B A ⋃2.对于任意二事件A 和B, 与 不等价的是(A )B A ⊂ (B )A ⊂B (C )φ=B A (D )φ=B A3. 设 、 是任意两个事件, , , 则下列不等式中成立的是( ).A ()()P A P A B < .B ()()P A P A B ≤.C ()()P A P A B > .D ()()P A P A B ≥4. 设 , , , 则( ).A 事件A 与B 互不相容 .B 事件A 与B 相互独立.C 事件A 与B 相互对立 .D 事件A 与B 互不独立5. 设随机事件 与 互不相容, 且 , 则 与 中恰有一个发生的概率等于( ).A p q + .B p q pq +-.C ()()11p q -- .D ()()11p q q p -+-6. 对于任意两事件 与 , ( ).A ()()P A P B - .B ()()()P A P B P AB -+.C ()()P A P AB - .D ()()()P A P A P AB +- 7. 若 、 互斥, 且 , 则下列式子成立的是( ).A ()()P A B P A = .B ()0P B A >.C ()()()P AB P A P B = .D ()0P B A =8. 设 , 则下列结论中正确的是( ).A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独立 .D A B ⊃9. 设 、 互不相容, , 则下列结论肯定正确的是( ).A A 与B 互不相容 .B ()0P B A >.C ()()()P AB P A P B = .D ()()P A B P A -=10. 设 、 、 为三个事件, 已知 , 则 ( ).A 0.3 .B 0.24 .C 0.5 .D 0.2111. 设A, B 是两个随机事件, 且0<P(A)<1, P(B)>0, , 则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠(C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠12. 随机事件A, B, 满足 和 , 则有(A )Ω=⋃B A (B )φ=AB (C ) 1)(=⋃B A P (D )0)(=-B A P13. 设随机事件A 与B 互不相容, , , 则下面结论一定成立的是(A )A, B 为对立事件 (B ) , 互不相容 (C ) A, B 不独立 (D )A, B 独立14.对于事件A 和B, 设 , P(B)>0, 则下列各式正确的是(A ))()|(B P A B P = (B ))()|(A P B A P = (C ) )()(B P B A P =+ (D ))()(A P B A P =+15. 设事件A 与B 同时发生时, 事件C 必发生, 则(A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P(C ) )()(AB P C P = (D ))()(B A P C P ⋃=16. 设A,B,C 是三个相互独立的随机事件, 且0<P(C)<1。

高中数学概率论测试题

高中数学概率论测试题

高中数学概率论测试题在高中数学的学习中,概率论是一个充满趣味和挑战的领域。

它不仅能帮助我们理解生活中的各种随机现象,还能培养我们的逻辑思维和数学应用能力。

接下来,让我们一起通过一些测试题来深入探索概率论的奇妙世界。

一、选择题1、从装有 2 个红球和 2 个黑球的口袋内任取 2 个球,那么互斥而不对立的两个事件是()A 至少有一个黑球与都是黑球B 至少有一个黑球与至少有一个红球C 恰有一个黑球与恰有两个黑球D 至少有一个黑球与都是红球答案:C解析:A 选项中,“至少有一个黑球”包含“都是黑球”,不是互斥事件;B 选项中,“至少有一个黑球”和“至少有一个红球”都包含“一个黑球一个红球”的情况,不是互斥事件;C 选项中,“恰有一个黑球”和“恰有两个黑球”不能同时发生,是互斥事件,且不是对立事件;D 选项中,“至少有一个黑球”与“都是红球”不能同时发生,是互斥事件,且是对立事件。

2、已知随机变量 X 服从正态分布 N(3,1),且P(2≤X≤4) = 06826,则 P(X > 4) =()A 01588B 01587C 01586D 01585答案:B解析:因为随机变量 X 服从正态分布 N(3,1),所以图象关于 x = 3对称。

P(2≤X≤4) = 06826,所以 P(X > 4) = 05 05×06826 = 01587 。

3、甲、乙两人独立地解同一问题,甲解决这个问题的概率是 p1,乙解决这个问题的概率是 p2,那么恰好有 1 人解决这个问题的概率是()A p1p2B p1(1 p2) + p2(1 p1)C 1 p1p2D 1 (1 p1)(1 p2)答案:B解析:恰好有1 人解决这个问题,分两种情况:甲解决,乙没解决,概率为 p1(1 p2);乙解决,甲没解决,概率为 p2(1 p1)。

所以恰好有 1 人解决这个问题的概率是 p1(1 p2) + p2(1 p1) 。

二、填空题1、从 1,2,3,4,5 这 5 个数字中,随机抽取 3 个数字组成一个三位数,其中奇数的个数为_____。

概率单元测试题及答案大全

概率单元测试题及答案大全

概率单元测试题及答案大全一、选择题1. 一个袋子里有3个红球和2个蓝球,随机取出一个球,下列哪个事件的概率最大?A. 取出红球B. 取出蓝球C. 取出白球D. 取出黑球答案:A2. 投掷一枚公正的硬币,出现正面的概率是多少?A. 0.2B. 0.5C. 0.8D. 1答案:B3. 如果事件A和事件B是互斥的,且P(A)=0.3,P(B)=0.4,那么P(A∪B)是多少?A. 0.1B. 0.3C. 0.7D. 无法确定答案:C二、填空题4. 一个骰子有6个面,每个面出现的概率是________。

答案:1/65. 如果一个事件的概率为0,那么这个事件是________。

答案:不可能事件6. 一个事件的概率为1,表示这个事件是________。

答案:必然事件三、计算题7. 一个袋子里有5个白球和5个黑球,随机取出2个球,求取出的2个球都是白球的概率。

答案:首先计算取出第一个白球的概率为5/10,然后计算在取出第一个白球后,再取出第二个白球的概率为4/9。

所以,两个都是白球的概率为(5/10) * (4/9) = 2/9。

8. 一个班级有30个学生,其中15个男生和15个女生。

随机选择3个学生,求至少有1个女生的概率。

答案:首先计算没有女生的概率,即选择3个男生的概率为(15/30) * (14/29) * (13/28)。

然后用1减去这个概率,得到至少有1个女生的概率为1 - [(15/30) * (14/29) * (13/28)]。

四、简答题9. 什么是条件概率?请给出一个例子。

答案:条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。

例如,如果我们知道一个班级中有50%的学生是左撇子,那么在随机选择一个学生是左撇子的条件下,这个学生是数学专业的学生的概率。

10. 请解释什么是独立事件,并给出一个例子。

答案:独立事件是指一个事件的发生不影响另一个事件发生的概率。

例如,投掷一枚公正的硬币两次,第一次的结果不会影响第二次的结果。

概率论第一、二章测试题答案

概率论第一、二章测试题答案

概率论第一、二章测试题(答案)一、选择题1.选B 。

因为A 与B 相互独立,故A 与B 也相互独立。

根据独立的定义(P(AB)=P(A)P(B)),所以有P(A B )=P(A)P(B )。

2.选B 。

因为P (A B )= P (A )- P (AB )⇒ P (AB )= P (A )-P (A B )=0.6-0.2=0.43.选A 。

因为P (AB )=P (A )P (B ),根据两个随机事件的相互独立的定义可知A 正确。

4 选B .A.P (A )=1-P (B )(正确) B.P (AB )=P (A )P (B )(因为互为逆事件,故AB=φ,又P (A )>0,P (B )>0;则P (AB )=0≠ P (A )P (B ),所以是错误的)C.P 1)(=AB (正确)(因为AB=φ)D.P (A ∪B )=1(正确)5.选B 。

与正态分布的概率密度公式f (x)=222)(21σμσπ--x e 相比较,可得4,12=-=σμ6.选C 。

因为根据正态分布的线性组合(Y=aX+b )也为正态分布,且服从N (22,σμa b a +), 现X~N (1,4),Y=2X+1,可知1,2,4,12====b a σμ。

代入N (22,σμa b a +)即可。

7.选A 。

用对立事件求解。

设A={3次独立重复试验中至少成功一次},则A ={3次独立重复试验中没有一次成功},在一次试验中成功的概率为p ,则不成功的概率为1-p 。

故P (A )=1- P (A )=3)1(1p --。

8.选D 。

由分布函数的定义,F (3)=P { X 3≤ }= P { X=0 }+ P { X=1 }+ P { X=2 }+ P { X=3 }=19.选C 。

因为P{|X-μ|<σ}= P{1<-σμX }=1)1(2-Φ为常数。

10.选C 。

因为一维随机变量的均匀分布的概率实际上是长度,但是一定要计算落入随机变量X 所在区间的长度 。

大学概率论习题及答案

大学概率论习题及答案

《经济应用数学三(概率论)》综合测试题(二)一、单项选择题1.设A,B为两随机事件,且,则下列式子正确的是()。

A.B.C.D.2.从装有2只红球,2只白球的袋中任取两球,记:A=“取到2只白球”则=()。

A.取到2只红球B.取到1只红球C.没有取到白球D.至少取到1只红球3.事件A,B相互独立,且()。

A.0.46B.0.42C.0.56D.0.144.下列函数为正态分布密度的是()。

A.B.C.D.5.设随机变量服从, 其分布密度函数为, 则()。

A.0B.1C.D.6.设随机变量的密度函数为,则。

A.0B.C.1D.7.设随机变量X的可能取值为, 随机变量Y的可能取值为,如果, 则随机变量X 与Y ()。

A.一定不相关B.一定独立C.一定不独立D.不一定独立8.若二维随机变量的联合概率密度为,则系数()。

A.B.C.1D.9.对随机变量来说,如果,则可断定不服从()。

A.二项分布B.指数分布C.泊松分布D.正态分布10.设服从参数为的指数分布,则()。

A.B.C.D.二、填空题1.若事件A与B互斥,P(A)=0.6,P(A∪B)=0.8,则2.随机变量X服从区间 [1,4]上的均匀分布,则P { 0<X<3} = __________。

3.设随机变量的概率分布为,则__________。

4.设二维随机变量(X,Y)的联合分布律为:则a=________,b=________。

5.设服从正态分布,则D(-2X+1)= ________三、计算题1.设某产品的合格率为80% 。

检验员在检验时合格品被认为合格的概率为97%,次品被认为合格的概率为2%。

(1)求任取一产品被检验员检验合格的概率;(2)若一产品通过了检验,求该产品确为合格品的概率。

2.设打一次电话所用时间X(分钟)服从参数为的指数分布,如果某人刚好在你前面走进公用电话亭,求你等待时间在10分钟到20分钟之间的概率。

3.已知随机向量的联合概率分布为(1)求的边缘分布;(2)判断与是否独立;4.设系统由100个相互独立的部件组成, 运行期间每个部件损坏的概率为0.1, 至少有85个部件是完好时系统才能正常工作。

概率测试题及答案

概率测试题及答案

概率测试题及答案一、选择题1. 一个骰子掷出6点的概率是:A. 1/3B. 1/6C. 1/2D. 1答案:B2. 抛一枚硬币,正面朝上和反面朝上的概率相等,这个概率是:A. 1/2B. 1/3C. 1/4D. 2/3答案:A3. 如果一个事件的发生不影响另一个事件的发生,这两个事件被称为:A. 互斥事件B. 独立事件C. 必然事件D. 不可能事件答案:B二、填空题1. 概率的基本性质是:概率的值介于________和1之间。

答案:02. 如果事件A和事件B是互斥的,那么P(A∪B) = P(A) + P(B) -P(A∩B),其中P(A∩B) = ________。

答案:0三、简答题1. 什么是条件概率?请给出条件概率的公式。

答案:条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率的公式为P(A|B) = P(A∩B) / P(B),其中P(B)≠ 0。

四、计算题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。

答案:抽到红球的概率为P(红球) = 5/(5+3) = 5/8。

2. 有3个独立事件A、B、C,它们各自发生的概率分别为P(A) = 0.3,P(B) = 0.4,P(C) = 0.5。

求事件A和事件B同时发生的概率。

答案:事件A和事件B同时发生的概率为P(A∩B) = P(A) × P(B) = 0.3 × 0.4 = 0.12。

五、论述题1. 论述什么是大数定律,并给出一个实际生活中的例子。

答案:大数定律是概率论中的一个概念,它指出随着试验次数的增加,事件发生的相对频率趋近于其概率。

例如,在抛硬币的实验中,随着抛硬币次数的增加,正面朝上的频率会趋近于1/2,即硬币正面朝上的概率。

概率论与数理统计自测题

概率论与数理统计自测题

概率论与数理统计自测题(第一章)一、选择题(毎小题3分,共15分):1. 在某学校学生中任选一名学生,设事件A 表示“选出的学生是男生”,B 表示“选出的学生是三年级学生”,C 表示“选出的学生是篮球运动员”,则ABC 的含义是( ).(A )选出的学生是三年级男生;(B )选出的学生是三年级男子篮球运动员; (C )选出的学生是男子篮球运动员; (D )选出的学生是三年级篮球运动员;2. 在随机事件C B A ,,中,A 和B 两事件至少有一个发生而C 事件不发生的随机事件可表示为( ).(A )C B C A(B )C AB (C )BC A C B A C AB(D )C B A3.甲乙两人下棋,甲胜的概率为0.6,乙胜的概率为0.4,设A 为甲胜,B 为乙胜,则甲胜乙输的概率为( ).(A )6.06.0⨯ (B )4.06.06.0⨯- (C )4.06.0- (D )0.6 4.下列正确的是( ).(A )若)()(B P A P ≥,则A B ⊆ (B )若B A ⊂,则)()(B P A P ≥(C )若)()(AB P A P =,则B A ⊆ (D )若10次试验中A 发生了2次,则2.0)(=A P 5.设A 、B 互为对立事件,且0)(,0)(>>B P A P ,则下列各式中错误的是( ).(A )0)|(=A B P (B )0)|(=B A P (C )0)(=AB P(D )1)(=B A P二、填空题(毎小题3分, 共15分):1.A 、B 、C 代表三件事,事件“A 、B 、C 至少有二个发生”可表示为 . 2.已知)()(),()()(,161)(B A P B A P B P A P AB P B A P ===,则)(A P = . 3.A 、B 二个事件互不相容,1.0)(,8.0)(==B P A P ,则=-)(B A P . 4.对同一目标进行三次独立地射击,第一、二、三次射击的命中率分别为7.0,5.0,4.0,则在三次射击中恰有一次击中目标的概率为 .5.设A 、B 、C 两两相互独立,满足21)()()(,<==Φ=C P B P A P ABC ,且已知169)(=++C B A P ,则=)(A P . 三、判断题(正确的打“√”,错误的打“⨯”,毎小题2分,共10分):1. 设A 、B 为任意两个互不相容事件,则对任何事件AC C ,和BC 也互不相容. [ ]2.概率为零的事件是不可能事件.[ ]3. 设A 、B 为任意两个事件,则)()()(AB P A P AB A P -=- . [ ]4. 设A 表示事件“男足球运动员”,则对立事件A 表示“女足球运动员” .[ ]5. 设0)(=A P ,且B 为任一事件,则A 与B 互不相容,且相互独立 .[ ] 四、(6分)从1,1,2,3,3,3,4,4,5,6这10个数中随机取6个数,求取到的最大数是4的概率.五、(6分)3人独立地去破译一个密码,他们能破译的概率分别为41,31,51若让他们共同破译的概率是多少?六、(10分)已知一批产品的次品率为4%,今有一种简化的检验方法,检验时正品被误认为是次品的概率为0.02,而次品被误认为是正品的概率为0.05,求通过这种检验认为是正品的一个产品确实是正品的概率.七、(10分)假设有3箱同种型号零件,里面分别装有50件,30件和40件,而一等品分别有20件,12件及24件.现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回),试求先取出的零件是一等品的概率;并计算两次都取出一等品的概率. 八、(10分)设21)(,31)(==B P A P . 1. 若Φ=AB ,求)(A B P ;2. 若B A ⊂,求)(A B P ;3. 若81)(=AB P ,求)(A B P . 九、(10分)一批产品10件,出厂时经两道检验,第一道检验质量,随机取2件进行测试,若合格,则进入第二道检验,否则认为这批产品不合格,不准出厂;第二道检验包装,随机取1件,若合格,则认为包装合格,准予出厂.两道检验中,1件合格品被认为不合格的概率为0.05,一件不合格品被认为合格的概率为0.01,已知这批产品中质量和包装均有2件不合格,求这批产品能出厂的概率.十、(8分)设1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P ,试证事件A 与B 相互独立.概率论与数理统计自测题 (第二章)一、选择题(每小题3分, 共15分):1.设随机变量X 的分布律为),2,1(}{ ===k b k X P k λ,则().(A )10<<λ,且11--=λb (B )10<<λ,且1-=λb (C )10<<λ,且11-=-λb(D )10<<λ,且11-+=λb2.设随机变量X 的密度函数为xx Ae x f 22)(+-=,则( ).(A )πe(B )πe 1 (C )πe 1(D )πe 23.设随机变量X 的概率密度和分布函数分别是)(x f 和)(x F ,且)()(x f x f -=,则对任意实数a ,有=-)(a F ().(A ))(21a F - (B ))(21a F + (C )1)(2-a F (D ))(1a F -4.设相互独立的随机变量Y X ,具有同一分布,且都服从区间[0,1]上的均匀分布,则在区间或区域上服从均匀分布的随机变量是().(A )(Y X ,)(B )Y X +(C )Y X -(D )2X5.设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某随机变量的分布函数,在下列给定的各组数值中应取( ).(A )52,53-==b a (B )32,32==b a (C )23,21=-=b a(D )23,21-==b a二、填空题(每小题3分, 共15分): 1.二维随机变量(Y X ,)的联合分布律为:则α与β应满足的条件是 ,当Y X ,相互独立时,α= .2.二维随机变量(Y X ,)的联合密度为:])()[(212122221121),(σμσμσπσ-+--=y x ey x f ,则X的边缘概率密度为 .3.连续型随机变量X 的概率密度为其它10,0,)(2<<⎩⎨⎧=x kx x f ,则常数=k .4.设)02.0,10(~2N X ,已知Φ(2.5)=0.9938,则=<≤}05.1095.9{X P . 5.设Y X ,是相互独立的随机变量,),3(~),,2(~22σσ-N Y N X ,且95.0}7654.8|12{|=≤-+Y X P ,则σ= .三、(12分)随机变量X 的概率密度为⎪⎩⎪⎨⎧>≤=4||,04||,cos )(ππx x x A x f ,试求(1)系数A ;(2)X 的分布函数;(3)X 落在⎪⎭⎫⎝⎛6,0π内的概率. 四、(12分)假设一设备开机后无故障工作的时间X 服从参数为5=θ的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2h 便关机,试求设备每次开机无故障工作的时间Y 的分布函数.五、(10分)随机变量X 的概率密度为⎩⎨⎧≤>=-0,00)(,x x e x f x ;求2X Y =的概率密度.六、(12分)随机变量X 和Y 均服从区间[0,1]上的均匀分布且相互独立.七、(12分)已知随机变量Y X 与的分布律为:且已知1}0{==XY P .(1)求(Y X ,)的联合分布律;(2)Y X 与是否相互独立?为什么?八、(12分)设Y X ,是两个相互独立的随机变量,其概率密度分别为:⎩⎨⎧≤≤=其它,010,1)(x x f x ⎩⎨⎧≤>=-0,00,)(y y e y f y Y求随机变量Y X Z +=的概率密度函数.概率论与数理统计自测题(第三章)一、选择题(毎小题3分, 共6分):1. 对目标进行3次独立射击,每次射击的命中率相同,如果击中次数的方差为0.72,则每次射击的命中率等于( ).(A )0.1 ( B ) 0.2 ( C ) 0.3 ( D ) 0.42.若)()(Y X D Y X D +=-,则( ).(A )X 与Y 独立(B ))()(Y D X D = (C )0)(=+Y X D(D )X 与Y 不相关二、判断题(每小题3分, 共12分): 1.设随机变量X 的概率密度为+∞<<-∞+=x x x f ,)1(1)(2π,则)(X E =0.( ) 2.设),0(~2σN X ,则对任何实数a 均有:),(~22a a N a X ++σ.()3.设),(~2σμN X ,Y 从参数为λ的指数分布,则2222)(σμ+=+Y X E .( ) 4.设)()()(Y E X E XY E =,则X 与Y 独立.( )三、填空题(每空2分, 共22分):1则)(X E = ,)(X D = ,)(Y E = ,)(Y D = ,),cov(Y X = ,=XY ρ .2.设连续型随机变量X 概率密度为⎩⎨⎧≤≤+=其它,010,2)(x ax x f ,且31)(=X E ,则常数=a .3.设随机变量X 的数学期望5)(,.75)(==X D X E ,且05.0}|75{|≤≥-k X P ,则≥k .4.对圆的直径作近似测量,测量近似值X 均匀分布于区间],0[a 内,则圆面积的数学期望是 .5.设随机变量X 与Y 相互独立,且)1,0(~),,2,1(~N Y N X .令32++-=X Y Z ,则=)(Z D .6.设随机变量(Y X ,)在区域}||,10|),{(x y x y x D <<<=内服从均匀分布,则=++)253(Y X E .四、(10分)设随机变量(Y X ,)的概率密度为:⎪⎩⎪⎨⎧≤≤≤≤+=其它,010,20),(31),(y x y x y x f求数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X 及相关系数XY ρ.五、(10分)设有甲、乙两种投资证券,其收益分别为随机变量21,X X ,已知均值分别为21,μμ,风险分别为21,σσ,相关系数为ρ,现有资金总额为C (设为1个单位).怎样组合资金才可使风险最小?六、(10分)设随机变量X 的分布密度为⎩⎨⎧≤≤-=其它,010),1()(x x ax x f ,求)(),(,X D X E a 和})(2|)({|X D X E X P <-.七、(10分)设随机变量X 与Y 相互独立,且均服从密度为⎩⎨⎧≤>=-0)(x x e x f x,的分布,求(1)X +Y 的分布密度;(2)求)(XY E .八、(10分)设随机变量X 服从泊松分布,6)(=X E ,证明:31}93{≥<<X P .九、(10分)X 为连续型随机变量,概率密度满足:当],[b a x ∉时,0)(=x f ,证明:2)2()(,)(a b X D b X E a -≤≤≤.《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。

2023-2024学年第一学期概率统计期中测试卷

2023-2024学年第一学期概率统计期中测试卷

2023-2024第一学期概率论与数理统计期中测试题班级:学号:姓名:第一部分:选择题,每小题3分,共10小题,共30分.1.设B A ⊂,且0)(>A P ,则以下错误的是().A.)()(B P B A P =⋃B.)()(A P AB P =C.1)|(=A B PD.)()()(B P A P B A P -=-2.设)2,1(~-N X ,则X 的密度函数为().A.4)1(221--x eπB.2)1(221+-x eπC.2)1(2221+-x e πD.4)1(221+-x eπ3.设连续型随机变量的概率密度函数与分布函数为,与)()(x F x f 则正确的是().A.1)(0≤≤x f B.)(}{x F x X P == C.)(}{x F x X P =≤ D.)(}{x f x X P ==4.设X 是一随机变量,则下列各式中正确的是().A.)(4)25(X D X D =-B.)(25)25(X D X D -=-C.)(25)25(X D X D +=- D.)(4)25(X D X D -=-5.已知(X,Y)的概率密度为),(y x f ,则关于Y 的边缘密度为().A.⎰+∞∞-dyy x f ),( B.⎰+∞∞-dxy x f ),( C.⎰+∞∞-dxy x xf ),( D.⎰+∞∞-dyy x yf ),(6.已知随机变量X 与Y 相互独立,且),2,0(~),1,0(~U Y U X 则=<}{Y X P ().A.41B.83 C.43 D.857.下列式子中成立的是().A.)()()(Y E X E Y X E +=+B.)()()(Y D X D Y X D +=+C.)()()(Y D X D XY D = D.)()()(Y E X E XY E =8.设随机变量X 的概率密度)(x f 满足)1()1(x f x f -=+,且⎰=206.0)(dx x f ,则}0{<X P 为().A.53 B.32 C.51 D.549.)1,1(~N X ,概率密度函数为)(x f ,分布函数为)(x F ,则().A.5.0)0()0(=≥=≤X P X PB.),(),()(+∞-∞∈-=x x F x FC.5.0)2()2(=>=<X P X P D.5.0)1()1(=>=≤X P X P 10.设随机变量12200,,,X X X 相互独立且服从同一分布,()3,()5E X D X ==,令12200Y X X X =+++ ,由中心极限定理知Y 近似服从()(A )(600,25)N (B )(3,5)N (C )(600,1000)N (D )(1000,600)N 第二部分:填空题,每小题6分,共3小题,共18分.1.甲乙两人独立射击,击中目标的概率分别为0.8,0.7,现在两人同时射击同一个目标,则目标被击中的概率为.2.随机变量X 服从参数为1的泊松分布,则==))((X D X P .3.设随机变量X 的分布律为,...2,1,0,!)(2===-k e k c k X P 则=c .4.已知随机变量X 只取-1,0,1,2四个数值,对应的概率为cc c c 162,85,43,21,则c=.5.设二维随机变量) , (Y X 的联合分布律为则(2)E X Y +=6.设随机变量~(0.5)X b 10,,则2(2)E X =第三部分:计算题,每小题7分,共4小题,共28分.1.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他, ,0.10 )(x x A x f 试求:(1)A 的值;(2)X 的分布函数;(3))41161(<<X P .YX -10100.10.20.110.30.10.22.已知二维随机变量(X,Y)的联合概率密度为⎩⎨⎧≤≤≤≤+=其他,0,0,10),(2),(y x y y x y x f 试求:(1)X 与Y 的边缘概率密度,并判定X 与Y 是否独立;(2)}1{≥+Y X P .3.设随机变量X 在区间(1,2)上服从均匀分布,(1)写出X 的概率密度函数;(2)求XeY 3=的概率密度函数)(y f Y .4.设二维随机变量(,)X Y 的概率密度为,0,(,)0,,y xe x y f x y -⎧<<=⎨⎩其它求随机变量Z X Y =+的概率密度.四、综合应用题(共3个小题,每个小题8分,共24分)1.某地区居民的肝癌发病率为0.0004,先用甲胎蛋白法进行普查.医学研究表明,化验结果是存有错误的.已知患有肝癌的人其化验结果99%呈阳性(有病),而没患肝癌的人其化验结果99.9%呈阴性(无病).现某人的检查结果呈阳性,问他真的患肝癌的概率是多少?2.对于一名学生来说,来参加家长会的家长人数是一个随机变量.设一名学生无家长、1名家长、2名家长来参加会议的概率分别为0.05、0.8、0.15.若学校共有400名学生,设各学生参加会议的家长数相互独立,且服从同一分布.求有一名家长来参加会议的学生数不多于336的概率.(已知9772.0)2(=Φ)3.一工厂生产的某种设备的寿命X (以年计)服从以14为参数的指数分布,工厂规定,出售的设备若在一年之内损坏可予以调换,若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元,求该厂出售一台设备净赢利的数学期望。

概率论综合测试题a卷

概率论综合测试题a卷

综合测试题A 卷一、填空题(每小题4分,共20分)1、设A,B,C 为随机事件,1()()(),()()0,4P A P B P C P AB P BC ===== 1(),8P AC =则A,B,C 至少出现一个的概率为 . 2、袋中有7 只红球,5只白球,不放回地陆续取3只,则顺序为红、白、红的概率p = .3、在n 阶行列式的展开式中任取一项,此项不含第一行、第一列元素11a 的概率为8,9则此行列式的阶数n = .4、设一批产品中一、二、三等品各占60%,30%,10%,现从中任取一件,结果不是三等品,则取到的是一等品的概率为 .5、设两个相互独立的事件A B 和都不发生的概率为1,9A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()P A = .二、选择题(每小题4分,共20分)1、设,A B 是样本空间S 中的随机事件,则()()A B A B 表示 [ ]. (A) 不可能事件 (B) ,A B 恰有一个发生(C) 必然事件 (D) ,A B 不同时发生2、对于任意二事件A 和B ,与A B B =不等价的是[ ] . (A) A B ⊂ (B) B A ⊂ (C) AB =∅ (D) AB =∅3、设,A B 为任意两个事件,且,()0,A B P B ⊂>,则下列选项必然成立的是 [ ].(A) ()()P A P A B < (B) ()()P A P A B ≤(C) ()()P A P A B > (D) ()()P A P A B ≥4、设n 张奖券中含m 张有奖奖券,k 个人购买,每人一张,其中至少有1个人中奖的概率是[ ].(A) k n m C (B) 1k n m k n C C -- (C) 11k m n m k n C C C -- (D) 1i k m k i nC C =∑ 5、设,,A B C 三个事件两两相互独立,则,,A B C 相互独立的充要条件是 [ ].(A) A BC 与独立 (B) AB A C 与独立 (C) AC BC 与独立 (D) AB AC 与独立 三、解答题(60分)1、(6分)有n 个人,每个人都以同样的概率1N被分配在N (n N ≤)个房间,试求“某个指定房间中恰有()m m N ≤个人”这一事件A 的概率.2、(12分)某国经济可能面临三个问题:1A =“高通胀”, 2A =“高失业”, 2A =“低增长”,假设123P()0.12,P()0.07,P()0.05A A A ===12P()0.13,A A =13P()A A =0.14,23P()0.10A A =,123()0.01,P A A A =求:(1)该国不出现高通胀的概率;(2)该国同时面临高通胀、高失业的概率;(3)该国出现滞涨(即低增长且高通胀)的概率;(4)该国出现高通胀、高失业但却高增长的概率;(5)该国至少出现两个问题的概率;(6)该国最多出现两个问题的概率.3、(8分)一个家庭中有两个小孩,(1)已知其中有一个是女孩,求另一个也是女孩的概率;(2)已知第一胎是女孩,求第二胎也是女孩的概率.4、(12分)玻璃杯成箱出售,每箱20只,设各箱含0,1,2只次品的概率分别为0.8,0.1和0.1,一顾客欲买一箱玻璃杯,而顾客开箱随机地查看4只;若无次品则买下,否则退回.试求:(1)顾客买此箱玻璃杯的概率;(2)在顾客买的这箱玻璃杯中,确实没有次品的概率.5、(14分) 设有来自三个地区的各10名,15名,和25名考生的报名表,其中女生的报名表分别为3份,7份,5份,随机地取一个地区的报名表,从中先后抽出两份.(1) 求先抽到的一份是女生表的概率;(2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率.四、(8分)设,A B 使任意二事件,其中A 的概率不等于0和1,证明:()()P B A P B A =是事件,A B 独立的充分必要条件.综合测试题B 卷一、填空题(20分)1、设事件,,A B C 都是某个随机试验中的随机事件,事件E 表示,,A B C 至少有一个发生,则对E 的构造正确的有 个.(A) AB C (B) ABC Ω- (C) ()[()]A B C C A B -- (D) ABC ABC ABC2、设A,B 为随机事件, ()0.7,()0.3,P A P A B =-=则P()=AB .3、一间宿舍内住有6位同学,求他们之中恰好有4个人的生日在同一月份的概率为.4、在区间(0, 1)中随机地取两个数, 则两数之差的绝对值小于21的概率为__________. 5、事件,A B 相互独立,已知()0.4,()0.7,P A P A B ==则()P B A = .二、选择题(20分) 1、以A 表示事件 “甲种产品畅销,乙种产品滞销”,则其对立事件A 为[ ] .(A) “甲种产品滞销,乙种产品畅销” (B) “甲、乙两种产品均畅销”(C) “甲种产品滞销” (D) “甲种产品滞销或乙种产品畅销”2、假设,B A ⊂则下列命题正确的是 [ ].(A )()1()P AB P A =- (B ) ()()()P A B P A P B -=-(C ) ()()P B A P B = (D )()()P A B P A =3、设,A B 为随机事件,且()0,()1,P B P A B >=则必有 [ ].(A) ()()P AB P A > (B) ()()P A B P B > (C) ()()P A B P A = (D) ()()P A B P B =4、从数1,2,3,4中任取一个数,记为X ,再从1,,X 中任取一个数,记为Y ,则 {2}P Y == [ ].(A )14 (B )1348 (C )38 (D )35485、将一枚硬币独立地掷两次:1{}A =掷第一次出现正面,2{A =掷第二次出现 }正面,3{}A =正、反面各出现一次,4{}A =正面出现两次,则事件 [ ]. (A) 123A A A ,,相互独立 (B) 234A A A ,,相互独立(C) 123A A A ,,两两独立 (D) 234A A A ,,两两独立三、计算题(60分)1、(10分)设,A B 是两个事件,且()()0.9,()0.5,P A P B P A B +=+=求:()().P AB P AB +2、(10分)口袋中有两个5角,三个2角,五个1角的硬币共10枚,从中任取5枚,求总值超过1元的概率.3、(10分)甲、乙两人独自地向同一目标射击一次,其命中率分别为0.60.5和,现已知目标被击中,求它是甲射中的概率.4、(10分)无线电通讯中,由于随机干扰,当发出信号“A ”时,收到“A ”、“不清”和“B ”的概率分别是0.7,0.20.1和;当发出信号“B ”时,收到“B ”、“不清”和“A ”的概率分别是0.9,0.10.和 假设发报台发出信号A 与B 的频繁程度是3:2,问收到“不清”时,求原发信号是“A ”的概率5、(12分)在n 只袋中有4个白球,6个黑球,而另一袋中有5个白球5个黑球,今从这1n +只袋中任选一袋,从中随即取出两球,都是白球,在这种情况下,有5个黑球和3个白球留在选出的袋中的概率是17,求.n 四、(8分)设,,A B C 三事件相互独立,证明:,,AB AB A B 分别与C 相互独立.。

概率论模拟卷1~6及答案

概率论模拟卷1~6及答案

[模拟试卷1]一、(15分)玻璃杯成箱出售,每箱20只。

已知任取一箱,箱中0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回。

试求:(1)顾客买下该箱的概率 ;(2)在顾客买下的该箱中,没有残次品的概率 。

二、(12分)设随机变量X 的分布列为 .求:(1)参数 ;(2) ;(3) 的分布列。

三、(10分)设二维随机变量 在矩形 上服从均匀分布,(1)求 的联合概率密度(2)求 关于 、 的边缘概率密度(3)判断 与 的独立性。

四、(12分)设 , ,且 与 相互独立,试求 和 的相关系数(其中a 、b 是不全为零的常数)。

五、(12分)设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率。

六、(12分)设总体 的概率密度为是取自总体 的简单随机样本。

求:(1) 的矩估计量 ;(2) 的方差 。

七、(12分)设 服从 , 是来自总体 的样本, + 。

试求常数 ,使得 服从 分布。

八、(15分)从一批木材中抽取100根,测量其小头直径,得到样本平均数为 ,已知这批木材小头直径的标准差 ,问该批木材的平均小头直径能否认为是在 以上(取显著性水平 =) 附表一: , , , ,[模拟试卷2]一、(14分)已知50只铆钉中有3只是次品,将这50只铆钉随机地用在10个部件上。

若每个部件用3只铆钉,问3只次品铆钉恰好用在同一部件上的概率是多少 二、(14分)已知随机变量X 的概率密度为()⎩⎨⎧<<=其他,010,2x Ax x f ,求:(1)参数A ;(2)}35.0{<<X P ;(3)}{x X P <。

三、(14分)设随机变量X 和Y 的联合分布以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量Y X U +=的方差。

《概率论与数理统计》检测题

《概率论与数理统计》检测题

《概率论与数理统计》检测题(考试时间:90分钟)姓名 班级 分数一、填空题(每小题3分,共30分)1、设C B A ,,为三事件,则事件“C B A ,,同时发生”应表示为: 。

2、若B A ,互斥,则=AB 。

3、在n 重贝努利概型中,设每次实验中事件A 发生的概率为p ,则A 恰好发生k 次的概率为 。

4、某时间段内光顾某商店的顾客数ξ应服从 分布。

5、设某地区人群的身高服从正态分布)5,173(2N ,则该地区人群的平均身高为 。

6、设连续型随机变量ξ的分布密度为:⎪⎩⎪⎨⎧≥<-=1|| , 0 1|| , 1)(2x x x A x f ,则=A。

7、设随机变量X 的密度为)(x f ,则)(b X a P <<= 。

8、设),,,(21n x x x Λ是取自总体X 的样本,则总体期望的矩估计量为 。

9、若)1,0(~N ξ,)(~2n χη,且相互独立,则统计量nf /ηξ=服从 分布。

10、设总体X 服从正态分布),(2σμN ,2σ未知,随机抽样得到样本方差为2S ,若要对μ进行检验,则采用 检验法。

二、计算题(每小题7分,共42分)1、设有两个事件A ,B 的概率)(A P =0.5,)(B P =0.6,)(AB P =0.3,求A ,B 至少有一个发生的概率。

2、甲乙两射手各自对目标进行一次射击,已知甲的命中率为0.6,乙的命中率为0.5,求“两人都命中目标”的概率。

3、设随机变量X 服从=λ10的普阿松分布,求“1≥X ”的概率。

4、设连续型随机变量X 的密度为⎪⎩⎪⎨⎧-∈-=其他,0]1 , 1[,11)(2x x x πφ,求EX 。

5、设总体X 的分布密度为⎩⎨⎧<≥=-0,00,)(x x e x x θθφ,(0>θ),今从X 中抽取10个样本,得数据如下:1050,1250,1080,1200,1300,1250,1340,1060,1150,1150,求参数θ的极大似然估计。

概率论考试题及答案

概率论考试题及答案

概率论考试题及答案一、选择题(每题2分,共10分)1. 某校有100名学生,其中60名男生和40名女生。

随机抽取1名学生,该学生是女生的概率是多少?A. 0.4B. 0.6C. 0.8D. 1.0答案:A2. 抛一枚均匀的硬币,正面朝上和反面朝上的概率相等,那么连续抛掷3次硬币,得到至少两次正面朝上的概率是多少?A. 0.5B. 0.75C. 0.875D. 0.625答案:D3. 一个袋子里有5个红球和3个蓝球,随机抽取2个球,那么两个球都是红球的概率是多少?A. 1/6B. 1/3C. 1/2D. 2/5答案:D4. 如果事件A的概率是0.3,事件B的概率是0.4,且A和B互斥,那么A和B至少有一个发生的概率是多少?A. 0.7B. 0.5C. 0.6D. 0.4答案:A5. 一个骰子被抛掷,那么得到的点数是偶数的概率是多少?A. 0.5B. 0.33C. 0.25D. 0.16答案:A二、填空题(每题3分,共15分)6. 概率论中的_______定义了事件发生的可能性大小。

答案:概率7. 如果事件A和事件B是独立的,那么P(A∩B) = _______。

答案:P(A) * P(B)8. 随机变量X服从参数为λ的泊松分布,那么X的概率质量函数为:P(X=k) = _______。

答案:(λ^k / k!) * e^(-λ)9. 在连续概率分布中,随机变量X的取值范围是无限的,其概率密度函数f(x)满足________。

答案:∫f(x)dx = 110. 两个事件A和B互斥的充分必要条件是P(A∩B) = _______。

答案:0三、解答题(共25分)11. 一个工厂有3台机器生产同一种零件,每台机器在一小时内正常运转的概率分别为1/2、2/3和3/4。

假设这些机器相互独立,求至少有两台机器在一小时内正常运转的概率。

答案:首先,我们可以计算出每台机器不正常运转的概率,然后找出至少两台机器正常运转的组合情况。

数学概率论测试题

数学概率论测试题

数学概率论测试题1. 在一个标准扑克牌(52张牌)的游戏中,小明抽取了三张牌,请计算以下情况的概率:a) 三张牌都是红心的概率。

b) 三张牌都是同一个数字的概率。

c) 三张牌都是黑桃的概率。

d) 三张牌都不是红心的概率。

2. 一个骰子有六个面,分别标有1-6的数字。

小红和小明轮流掷骰子,每个人轮流掷两次。

请计算以下情况的概率:a) 小红得到的两个数字之和为7的概率。

b) 小明得到的两个数字之和大于8的概率。

c) 小红得到的两个数字之和小于4的概率。

d) 小明和小红得到的两个数字之和相同的概率。

3. 在一个盒子里有10个红色球和20个绿色球。

小王从盒子中随机抽取了3个球,请计算以下情况的概率:a) 三个球都是红色的概率。

b) 三个球都是绿色的概率。

c) 三个球中至少有一个红色球的概率。

d) 三个球中最多有两个绿色球的概率。

4. 有一个罐子里面有100个彩色小球,其中70个小球是红色的,30个小球是蓝色的。

小明根据以下规则随机抽取小球:a) 先抽一个小球,记录颜色,然后将该小球放回罐子中。

b) 再抽取一个小球,记录颜色,然后将该小球放回罐子中。

c) 重复进行10次上述操作。

请计算以下情况的概率:a) 两次抽取的小球都是红色的概率。

b) 连续三次抽取的小球都是红色的概率。

c) 10次抽取中至少有一次是蓝色小球的概率。

5. 在一个班级里,有20个男生和15个女生。

老师要求随机选择3个学生进行抽奖,请计算以下情况的概率:a) 三个学生都是男生的概率。

b) 三个学生都是女生的概率。

c) 三个学生中至少有一个女生的概率。

d) 三个学生中最多有一个男生的概率。

6. 在一家饭店里,顾客可以选择汉堡包和薯条。

根据之前数据统计,70%的顾客点汉堡包,60%的顾客点薯条,40%的顾客既点汉堡包又点薯条。

请回答以下问题:a) 一个随机选择的顾客点薯条的概率是多少?b) 一个随机选择的顾客既点汉堡包又点薯条的概率是多少?c) 一个随机选择的顾客点汉堡包或薯条的概率是多少?以上是数学概率论测试题,请根据题目内容计算出每个情况的概率。

概率论数理统计复习测验题

概率论数理统计复习测验题

模拟试卷一、单项选择题:(每题2分,共14分)1.同时掷两颗骰子,消失的点数之和为10的概率为( )a 1 n 1 「5 c 7A. -B.—C∙— D.—4 12 12 122,设A,3为相互独立的随机大事,则下列正确的是( )A.P(B | A)=尸(A | B) B, P(B∣ A)=尸(A)C. P(A∖ B) = P(B)D. P(AS) = P(A)P(B)3.一个随机变量的数学期望和方差都是2,那么这个随机变量不行能听从()A.二项分布B.泊松分布C.指数分布D.正态分布4.设X听从正态分布N(2,4),Y听从参数为2的泊松分布,且X与丫相互独立,则D(2X-Y) =.A.14B.16C.18D.205.设x与y是任意两个连续型随机变量,它们的概率密度分别为力和心(χ),则.A.∕1 (x) + f2(x)必为某一随机变量的概率密度B.3(/。

) +力。

))必为某一随机变量的概率密度C./;(工)-力*)必为某一随机变量的概率密度D.力。

)力(幻必为某一随机变量的概率密度6.设X,,X2√-,Xπ是总体X的简洁随机样本,O(X) = ,,记1 n 1 //x=-Yx if s2 =——y(X,.-X)2,则下列正确的是建 /=1 "1 /=1A. S是。

的无偏估量量B. S是。

的极大似然估量量c.S2是,的无偏估量量 D.S与又独立7.假设检验时,当样本容量肯定时,若缩小犯第一类错误的概率,则犯其次类错误的概率( ).A.变小B.变大C.不变D.不确定1O2,在三次独立试验中,大事A消失的概率相等,若已知A至少消失一次的概率等于则27大事A在一次试验中消失的概率为3,若X〜N(l,4), y~N(L3)且X与y独立,则X — y〜4.设x和y是两个相互独立且听从同一分布的连续型随机变量,则P{X>Y}=.5.设随机变量X的分布未知,E(X) = μ , D(X) = σ29则采用切比雪夫不等式可估量P(∖X~μ∖< 2。

概率论与数理统计第一单元随机事件与概率测试

概率论与数理统计第一单元随机事件与概率测试

概率论与数理统计第⼀单元随机事件与概率测试概率论与数理统计第⼀单元测试学号______班级______姓名________成绩______⼀、选择题(每⼩题3分,共30分)1.某⼈连续抛掷⼀枚均匀的硬币240000次,则正⾯向上的次数在下列数据中最可能是( ) A.120120 B.110120 C.130000D.140000 2.对于事件 A,B, 下列命题正确的是() A .如果A,B 互斥,那么A ,B 也互斥; B .如果A,B 不互斥,那么A ,B 也不互斥;C .如果A,B 互斥,且P(A),P(B) 均⼤于0,则A,B 互相独⽴;D .如果A,B 互相独⽴, 那么A ,B 也互相独⽴.3.⼀批零件共100个,其中有95件合格品,5件次品,每次任取1个零件装配机器,若2次取到合格品的概率是2p ,第3次取到合格品的概率是3p ,则()A .2p >3pB .2p =3pC .2p <3pD .不能确定4.商场开展促销抽奖活动,摇奖器摇出的⼀组中奖号码是6,5,2,9,0,4.参抽奖的每位顾客从0,1…,9这⼗个号码中抽出六个组成⼀组.如果顾客抽出的六个号码中⾄少有5个与摇奖器摇出的号码相同(不计顺序)就可以得奖,某位顾客可能获奖的概率为()A .421B .301C .354D .4255.进⼊世界前8名的乒乓球⼥⼦单打选⼿中有4名中国选⼿,抽签后平均分成甲、⼄两组进⾏⽐赛,则四名中国选⼿不都分在同⼀组的概率为()A .3533B .1817 C .3534 D .986.⼀个⼝袋有10张⼤⼩相同的票,其号数分别为9,,2,1,0 ,从中任取2张,其号数⾄少有⼀个为偶数的概率是()A .185 B .187 C .95 D .97 7.⼀个袋中有5个红球,2个⽩球,从中任意摸出3个,下列事件中是不可能事件的是( ). A.3个都是红球 B.⾄少1个是红球 C.3个都是⽩球 D.⾄多1个是⽩球8.从⼀副混合后的扑克牌(52张,去掉⼤、⼩王)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得为⿊桃”,则概率P(A ∪B)的值是()5.27A 6B.27 7.52C 5.52D 9.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第⼀次抽出的是次品,则第2次抽出正品的概率为________. 19.20A 95.99B 5.99C 5.100D 10.某⼈提出⼀个问题,甲先答,答对的概率为0.4,如果甲答错,由⼄答,答对的概率为0.5,则问题由⼄答对的概率为________.A.0.1B.0.2C.0.3D.0.4 ⼆、填空题(本⼤题共5⼩题,每⼩题5分,共25分)11.从装有两个⽩球、两个⿊球的袋中任意取出两个球,取出⼀个⽩球⼀个⿊球的概率为 .12.某国际科研合作项⽬成员由11个美国⼈、4个法国⼈和5个中国⼈组成.现从中随机选出两位作为成果发布⼈,则此两⼈不属于同⼀个国家的概率为 .(结果⽤分数表⽰)13.⼀个家庭中有两个⼩孩.假定⽣男、⽣⼥是等可能的,已知这个家庭有⼀个是⼥孩,则这时另⼀个⼩孩是男孩的概率是________.14.从1~100这100个整数中,任取⼀数,已知取出的⼀数是不⼤于50的数,则它是2或3的倍数的概率为________.15.从⼀筐苹果中任取⼀个,质量⼩于250g 概率为0 .25, 质量不⼩于350g 的概率为0.22, 则质量位于[)g 350,g 250范围内的概率是 .三、解答题(共计45分) 16.(10分)盒中有25个球,其中10个⽩的、5个黄的、10个⿊的,从盒⼦中任意取出⼀个球,已知它不是⿊球,试求它是黄球的概率.17(10分)袋中有红、⽩两种颜⾊的球,作⽆放回的抽样试验,连抽3次,每次抽⼀球。

概率论第二章测试

概率论第二章测试

西南财经大学《 概率论与数理统计》第二章单元测试 满分100分 考试时间 120分钟 一、选择题(每题2分,共20分)1.设F(x) 是随机变量X 的分布函数,则下列结论不正确的是 (A )若F(a)=0,则对任意x ≤a 有F(x)=0 (B )若F(a)=1,则对任意x ≥a 有F(x)=1 (C )若F(a)=1/2,则 P(x ≤a)=1/2 (D )若F(a)=1/2,则 P(x ≥a)=1/22.设随机变量X 的概率密度f(x) 是偶函数,分布函数为F(x),则(A )F(x) 是偶函数 (B )F(x)是奇函数 (C )F(x)+F(-x)=1 (D )2F(x)-F(-x)=14.设随机变量X 1, X 2是任意两个独立的连续型随机变量,它们的概率密度分别为f 1 (x)和f 2 (x),分布函数分别为F 1 (x)和F 2 (x),则 (A )f 1 (x) +f 2 (x) 必为某一随机变量的概率密度 (B )f 1 (x) f 2 (x) 必为某一随机变量的概率密度 (C )F 1 (x)+F 2 (x) 必为某一随机变量的分布函数 (D )F 1 (x)F 2 (x) 必为某一随机变量的分布函数5.设随机变量X 服从正态分布),(211σμN ,Y 服从正态分布),(222σμN ,且)1|(|)1|(|21<-><-μμY P X P ,则必有(A )21σσ< (B )21σσ> (C )21μμ< (D )21μμ>6.设随机变量X 服从正态分布),(2σμN ,则随σ的增大,概率)|(|σμ<-X P (A )单调增大 (B )单调减小 (C )保持不变 (D )增减不定9.下列陈述正确的命题是(A )若),1()1(≥=≤X P X P 则21)1(=≤X P(B )若X~b(n, p), 则P(X=k)=P(X=n-k), k=0,1,2,,n(C )若X 服从正态分布,则F(x)=1-F(-x) (D )1)]()([lim =-++∞→x F x F x二、填空题(每题2分,共20分)11.一实习生用同一台机器连接独立的制造了3个同种零件,第i 个零件不合格的概率为11i p i =+()1,2,3i =,以X 表示3个零件中合格品的个数,则{}2P X ==12.设随机变量X 的概率密度函数为()2010x x f x ≤≤⎧=⎨ ⎩其他以Y 表示对X 的三次重复观察中事件12X ⎧⎫≤⎨⎬⎩⎭出现的次数,则{}2P Y ==13.设连续型随机变量X 的分布密度为()3000x axe x f x x -⎧ ≥=⎨ <⎩,则a = ,X 的分布函数为 14.设随机变量的分布函数⎪⎩⎪⎨⎧≤>++=,0,,0,)1()(2x c x x b a x F 则 a = ,b= ,c = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、某型号火炮的命中率为0.8, 现有一架敌机即将入侵, 如果欲以 99.9 % 的概率击中它,则需配备此型号火炮多少 门?
2、已知 P(A) 1 , P(B | A) 1 , P( A | B) 1 ,
4
3
2
求: P( A B)
3、从装有10个白球和6个黑球的袋中取出一球,不知是什么颜色 且没有放回,然后再次从袋中随机取两个球,结果均为白球, 问首次取出的是白球的概率是多少?
2 0.1 0.2 b
2、 已知 ( X, Y ) 服从圆域 x2 + y2 r2 上的均匀分布,
分别求出 f (x, y), f X (x), fY X ( y x).
3、已知
fY X ( y
x)

2y
1

x
2
,
0,
x y 1
4x(1 x2 ),
,f X (x)
1、在区间(-1, 2)上随机取一个数 X,试写出 X 的概率密
度函数,并求出 P( X 0) 的值。
2、设随机变量X 的分布律为
X -2 P 1/3
-1
0
1
1/3 1/4 1/12
求:随机变量 X 1 的分布函数
3、设在一次概率考试中,学生的成绩服从N(75,225), 满分为100分,共有200名学生参加考试。求这次考试中 不及格(小于60分)的人数,以及70到80的人数。
其他

0,
求 P(X Y 1), P Y 0.5, P(Y 2 | X 1)
32
0 x1 其他
1、已知 X 的 概率密度为
Ax2 Bx, f (x)
0,
0 x 1, 其它
其中 A ,B 是常数,且 E (X ) = 0.5.
求(1) A ,B的值 (2)设 Y = X 2, 求 E (Y ),D (Y )
2、X~N (0 , 2), Y~U (0, 2), Z~b(10, 0.4),
其中X 与Y相互独立
求:E( X 3Y ), D( X 3Y ),
E[( X Y )2 ], E(Z 2 2Z 4)
3、设( X , Y )~N (1, 1, 4, 4, 0.5), Z X Y , 求: XZ
4、写出切比雪夫不等式的定理内容
常工作相互独立, 求在使用的最初 1500 小时只有一个 损坏的概率.
1、(X,Y)的联合分布律为
已知:P(Y 1 | X 1) 0.5
求:(1)a,b 的值
XY
1
-1 0.1
0 a
1 0.2
(2)X, Y 的边缘分布律
(3) P( X 1 | Y 1)
(4)判断X,Y是否相互独立
4.某学生寝室有6名学生,问: (1)6人的生日都在星期天的概率为多少? (2)6人的生日都不在星期天的概率为多少? (3)6人的生日不都在星期天的概率为多少?
5、如图所示电路中,开关 a、b、c、d 打开或关闭的 概率均为1/2,且相互独立 求(1)灯亮的概率。
(2)已见灯亮,开关a与b 同时关闭的概率。
4、某1升溶液中平均含有1000个颗粒。问:1毫升该溶液中 有3个颗粒的概率?
5、已知某型号电子管的使用寿命 X 的概率密度为
(1) 求常数 c
f
(x)

c

x
2
,
0,
x 1000 其他

(2) 计算 P( X 1700 1500 X 2000) (3) 已知一设备装有 3 个这样的电子管, 每个电子管能否正
相关文档
最新文档