吉林大学远程网络教育余志生汽车理论课件杨志华48讲
合集下载
吉林大学远程网络教育提高余志生机动车理论课程教案
➢于是,双轴汽 车的前轴或后轴可 以简化为车身、车 轮两个自由度振动 系统模型。
7
第三节 汽车振动系统的简化,单质量系统的振动
➢车轮部分的固有 频率为10~15Hz,如 果激振频率远离车轮 固有频率(即5Hz以 下),轮胎的动变形 很小,可忽略车轮质 量和轮胎的弹性,从
而得到车身单质 量系统模型。
3
四个自由度: 前轮的垂直运动 后轮的垂直运动 车身质心的垂直运动 车身绕质心的俯仰运动
四自由度平面模型
对于车身部分,可以把 随质心的平动和绕质心 的转动,简化为前轴上 方车身的垂直运动和后 轴上方车身的垂直运动。
即,将车身部分的连续质量等效为质心处、前轴上方和后 轴上方三个质点。
4
第三节 汽车振动系统的简化,单质量系统的振动
8
第三节 汽车振动系统的简化,单质量系统的振动
二、单质量系统的自由振动
对车身质量运用牛顿第二定律,得微 分方程:
m2z Cz q Kz q 0
令2n C m2
02
K m2
z 2nz 02z 0
n C 0 2 m2K
ω0—振动系统固有圆频率;
ζ—阻尼比。
9
第三节 汽车振动系统的简化,单质量系统的振动
齐次微分方程的解为 z Aent sin 02 n2t
➢有阻尼自由 振动时,质量m2 以有阻尼固有频
率 r 02 n2
振动,振幅按
ent 衰减。
10
第三节 汽车振动系统的简化,单质量系统的振动
阻尼比ζ对衰减振动的影响
1)与有阻尼固有频率ωr有关
r 02 n2 0 1 2
➢ζ增大,ωr下降。当ζ=1时,运动失去振荡特征。
应的影响;介绍悬架系统固有频率f0和阻尼比ζ的选择范围。
7
第三节 汽车振动系统的简化,单质量系统的振动
➢车轮部分的固有 频率为10~15Hz,如 果激振频率远离车轮 固有频率(即5Hz以 下),轮胎的动变形 很小,可忽略车轮质 量和轮胎的弹性,从
而得到车身单质 量系统模型。
3
四个自由度: 前轮的垂直运动 后轮的垂直运动 车身质心的垂直运动 车身绕质心的俯仰运动
四自由度平面模型
对于车身部分,可以把 随质心的平动和绕质心 的转动,简化为前轴上 方车身的垂直运动和后 轴上方车身的垂直运动。
即,将车身部分的连续质量等效为质心处、前轴上方和后 轴上方三个质点。
4
第三节 汽车振动系统的简化,单质量系统的振动
8
第三节 汽车振动系统的简化,单质量系统的振动
二、单质量系统的自由振动
对车身质量运用牛顿第二定律,得微 分方程:
m2z Cz q Kz q 0
令2n C m2
02
K m2
z 2nz 02z 0
n C 0 2 m2K
ω0—振动系统固有圆频率;
ζ—阻尼比。
9
第三节 汽车振动系统的简化,单质量系统的振动
齐次微分方程的解为 z Aent sin 02 n2t
➢有阻尼自由 振动时,质量m2 以有阻尼固有频
率 r 02 n2
振动,振幅按
ent 衰减。
10
第三节 汽车振动系统的简化,单质量系统的振动
阻尼比ζ对衰减振动的影响
1)与有阻尼固有频率ωr有关
r 02 n2 0 1 2
➢ζ增大,ωr下降。当ζ=1时,运动失去振荡特征。
应的影响;介绍悬架系统固有频率f0和阻尼比ζ的选择范围。
吉林大学汽车理论课件
➢世界上车速的最高记录是英国飞行员安迪·格林 (Andy Green)在美国内华达州西北的盐湖上,于1997 年10月驾驶一辆喷气式发动机驱动的“冲刺”号汽车创造 的,车速第一次超过了声速,达到1227.73km/h。
B
17
第一节 汽车的动力性指标
2.加速时间t
汽车的加速时间有两个含义,单位均为s。
宝马520i
(2)超车加速时间
60~100km/h (4挡/5挡) 10.8s / 13.7s 80~120km/h (4挡/5挡) 10.6 s/ 14.1s
思考:从这组数据可得到什么信息?
低挡的超车加速能力更强。
B
20
第一节 汽车的动力性指标
坡度的概念
s
3.最大爬坡度imax
h
i tan h
B
3
汽车理论研究的主要内容
汽车理论主要研究汽车的各项性能。
动力性
汽
车
燃油经济性
的
性 能
制动性
主
要 包
操纵稳定性
括
平顺性
通过性
汽车动力装置 参数的确定
汽车设计追求 的是最高性价比
B
4
学习思路
评价指标
评价指标的确定
学习过程中要注 重理论联系实际
分析影响因素
B
5
第一章 汽车的动力性
➢汽车在良好路面上直线行驶时,由汽车受到的纵向 外力决定的、所能达到的平均行驶速度。
S
可见,“坡度”指的不是坡道 的角度,而是该角度的正切值。
汽车的最大爬坡度就是满载(或某一载质量)时 汽车在良好路面上所能爬上的最大坡度。
例如,很多货车的最大爬坡度imax为30%,也就是 16.7°左右。
B
17
第一节 汽车的动力性指标
2.加速时间t
汽车的加速时间有两个含义,单位均为s。
宝马520i
(2)超车加速时间
60~100km/h (4挡/5挡) 10.8s / 13.7s 80~120km/h (4挡/5挡) 10.6 s/ 14.1s
思考:从这组数据可得到什么信息?
低挡的超车加速能力更强。
B
20
第一节 汽车的动力性指标
坡度的概念
s
3.最大爬坡度imax
h
i tan h
B
3
汽车理论研究的主要内容
汽车理论主要研究汽车的各项性能。
动力性
汽
车
燃油经济性
的
性 能
制动性
主
要 包
操纵稳定性
括
平顺性
通过性
汽车动力装置 参数的确定
汽车设计追求 的是最高性价比
B
4
学习思路
评价指标
评价指标的确定
学习过程中要注 重理论联系实际
分析影响因素
B
5
第一章 汽车的动力性
➢汽车在良好路面上直线行驶时,由汽车受到的纵向 外力决定的、所能达到的平均行驶速度。
S
可见,“坡度”指的不是坡道 的角度,而是该角度的正切值。
汽车的最大爬坡度就是满载(或某一载质量)时 汽车在良好路面上所能爬上的最大坡度。
例如,很多货车的最大爬坡度imax为30%,也就是 16.7°左右。
48吉林大学远程网络教育余志生汽车理论课件杨志华48讲
主动与半主动悬架 8
第四节 车身与车轮双质量系统的振动
本节内容结束
下一节
9
汽车的平顺性总结
人体对振动的感受、人体坐姿受振模型
路面不平度、路面不平度系数空间频率和时间频率 的功率谱密度、路面不平度速度谱是常数
振动系统简化为单质量系统模型、微分方程和频率 响应特性、振动响应量、响应量的功率谱密度和均 方根、固有频率和阻尼比对振动响应量的影响(固 有频率和阻尼比的选取)
双质量系统模型、传递特性、固有频率、阻尼比、 质量比和刚度比对振动响应量的影响
车身部分,就是上一节介绍的单质量系统。所以我们在这里需要 研究的就是 : 1.车轮部分单质量系统的特性。
定义: Kt / K —刚度比 μ m2 / m1— 质量比
幅频特性
1
z1 2
2
q
2
2
其中,Δ
1
ω/
ω0 2
1
γ
1 μ
ω/
ω0 2
1
4
ζ
2
ω/
ω0
2
γ
1 μ
汽车理论
第四十八讲
主讲教师:杨志华
学时:48
回顾:平顺性分析的思路
平顺性分析的振动响应量:车身加速度、悬架动挠度、车轮-地面间的动载
由路面不平度系数和车速确定路面位移输入
由悬架系统参数求出频率响应
(或者速度输入)的功率谱密度 Gq f
函数H(f)x~q
Gx f
Hf
G 2 x~q q
f
σ
2 x
0
Gx
f
df
单质量和双质量的 区别,就在于系统 模型不同。
振动响应量的定量评价,既可以采用功率谱密度函数,也可以采用均方根。 2
第四节 车身与车轮双质量系统的振动
本节内容结束
下一节
9
汽车的平顺性总结
人体对振动的感受、人体坐姿受振模型
路面不平度、路面不平度系数空间频率和时间频率 的功率谱密度、路面不平度速度谱是常数
振动系统简化为单质量系统模型、微分方程和频率 响应特性、振动响应量、响应量的功率谱密度和均 方根、固有频率和阻尼比对振动响应量的影响(固 有频率和阻尼比的选取)
双质量系统模型、传递特性、固有频率、阻尼比、 质量比和刚度比对振动响应量的影响
车身部分,就是上一节介绍的单质量系统。所以我们在这里需要 研究的就是 : 1.车轮部分单质量系统的特性。
定义: Kt / K —刚度比 μ m2 / m1— 质量比
幅频特性
1
z1 2
2
q
2
2
其中,Δ
1
ω/
ω0 2
1
γ
1 μ
ω/
ω0 2
1
4
ζ
2
ω/
ω0
2
γ
1 μ
汽车理论
第四十八讲
主讲教师:杨志华
学时:48
回顾:平顺性分析的思路
平顺性分析的振动响应量:车身加速度、悬架动挠度、车轮-地面间的动载
由路面不平度系数和车速确定路面位移输入
由悬架系统参数求出频率响应
(或者速度输入)的功率谱密度 Gq f
函数H(f)x~q
Gx f
Hf
G 2 x~q q
f
σ
2 x
0
Gx
f
df
单质量和双质量的 区别,就在于系统 模型不同。
振动响应量的定量评价,既可以采用功率谱密度函数,也可以采用均方根。 2
02吉林大学远程网络教育余志生汽车理论课件杨志华48讲
Tt
r
Ft F0
3
第二节 汽车的驱动力与行驶阻力
一、驱动力Ft
Tt Ft r
Tt—驱动力矩;
Tt Ttq ig i 0T
ua
Ttq —发动机转矩; ig—变速器传动F0
4
ηT—传动系的机械效率。
Ft Ttq ig i 0T r
第二节 汽车的驱动力与行驶阻力
第二节 汽车的驱动力与行驶阻力
3)具体影响因素
(1)车速 ua ua高 f 大 货车 f=0.0076+0.000056ua 轿车
4
ua ua f f 0 f1 f4 100 100
24
第二节 汽车的驱动力与行驶阻力
(2)轮胎结构
子午线轮胎比斜交轮胎的滚动阻力小20%~30%; 滚动阻力与轮胎的帘线(棉、人造丝、尼龙、钢丝)
17
第二节 汽车的驱动力与行驶阻力
1.滚动阻力Ff
轮胎变形
硬路面上
产生滚动阻力的主要原因
思考
软路面上
轮胎变形和路面变形 轮胎变形为什么会产生滚动阻力?
轮胎的迟滞损失:轮胎在加载变形时所消耗的能量在卸 载恢复时不能完全收回,一部分能量消耗在轮胎内部摩擦 损失上,产生热量,这种损失称为轮胎的迟滞损失。
Ttq大 损失大 损失的比重小
ηT高
机械损失
齿轮对数
齿轮对数少 损失小 ηT高 直接挡ηT最高
PT
润滑油品质 温度 液力损失 油面高度
过低,热容量小 过高,搅油损失大
转速
12
第二节 汽车的驱动力与行驶阻力
表1-1 传动系各部件的传动效率 部件名称 4~6 挡变速器 辅助变速器(副变速器或分动器) 8 挡以上变速器 单级减速主减速器 双级减速主减速器 传动轴的万向节 ηT 95% 95% 90% 96% 92% 98%
吉林大学远程网络教育余志生汽车理论杨志华讲解析PPT学习教案
8
第四节 汽车操纵稳定性与悬架的关系
车厢侧倾时不同形式悬架所引起的车轮外倾角的γ变化
➢双横臂悬架前轮外倾角与地面侧向力方向相 反,有增大侧偏角(绝对值)的作用。
第8页/共23页
9
第四节 汽车操纵稳定性与悬架的关系
车厢侧倾时不同形式悬架所引起的车轮外倾角的γ变化
➢单纵臂悬架前轮外倾角与地面侧向力方向相反。
第4页/共23页
5
第四节 汽车操纵稳定性与悬架的关系
三、侧倾外倾——侧倾时车轮外倾角的变化
+
γ
不变
侧倾时γ的变 化有三种可能
沿FY侧倾
沿FY相反 方向侧倾
减小
FY
γ-
增大
FY-
FY FYα FYγ
1 k
FY FYγ
FY k
kγ
k
第5页/共23页
6
第四节 汽车操纵稳定性与悬架的关系
第13页/共23页
14
第四节 汽车操纵稳定性与悬架的关系
第14页/共23页
15
第四节 汽车操纵稳定性与悬架的关系
五、变形转向—悬架导向装置变形引起的 车轮转向角
➢悬架导向杆系各元件在各种力、力矩作用下发生的 变形,引起车轮绕主销或垂直于地面轴线的转动,称为 变形转向,其转角叫做变形转向角。
➢变形转向可以使汽车具有恰当的不足转向。
增大三侧倾外倾侧倾时车轮外倾角的变化化有三种可能第四节汽车操纵稳定性与悬架的关系相反方向侧倾确定车轮相对于车厢外倾角地面回到水平位置确定车厢相对于地面产生侧倾角时轮胎外倾角车轮外倾角的确定第四节汽车操纵稳定性与悬架的关系车厢侧倾时不同形式悬架所引起的车轮外倾角的变化非独立悬架车身侧倾时前轮外倾角不变
估算侧向力变形转向角
第四节 汽车操纵稳定性与悬架的关系
车厢侧倾时不同形式悬架所引起的车轮外倾角的γ变化
➢双横臂悬架前轮外倾角与地面侧向力方向相 反,有增大侧偏角(绝对值)的作用。
第8页/共23页
9
第四节 汽车操纵稳定性与悬架的关系
车厢侧倾时不同形式悬架所引起的车轮外倾角的γ变化
➢单纵臂悬架前轮外倾角与地面侧向力方向相反。
第4页/共23页
5
第四节 汽车操纵稳定性与悬架的关系
三、侧倾外倾——侧倾时车轮外倾角的变化
+
γ
不变
侧倾时γ的变 化有三种可能
沿FY侧倾
沿FY相反 方向侧倾
减小
FY
γ-
增大
FY-
FY FYα FYγ
1 k
FY FYγ
FY k
kγ
k
第5页/共23页
6
第四节 汽车操纵稳定性与悬架的关系
第13页/共23页
14
第四节 汽车操纵稳定性与悬架的关系
第14页/共23页
15
第四节 汽车操纵稳定性与悬架的关系
五、变形转向—悬架导向装置变形引起的 车轮转向角
➢悬架导向杆系各元件在各种力、力矩作用下发生的 变形,引起车轮绕主销或垂直于地面轴线的转动,称为 变形转向,其转角叫做变形转向角。
➢变形转向可以使汽车具有恰当的不足转向。
增大三侧倾外倾侧倾时车轮外倾角的变化化有三种可能第四节汽车操纵稳定性与悬架的关系相反方向侧倾确定车轮相对于车厢外倾角地面回到水平位置确定车厢相对于地面产生侧倾角时轮胎外倾角车轮外倾角的确定第四节汽车操纵稳定性与悬架的关系车厢侧倾时不同形式悬架所引起的车轮外倾角的变化非独立悬架车身侧倾时前轮外倾角不变
估算侧向力变形转向角
42吉林大学远程网络教育余志生汽车理论课件杨志华48讲资料
z m2ω jCω K q jC K
2
H j z ~ q
K jC z q m2 2 K jC
即,可以由微分方程写出频率响应函数。
6
第三节 汽车振动系统的简化,单质量系统的振动
2.幅频特性 H j z ~ q
频率比 / 0
-1:1
-2:1 0.1 0.1 1 频率比λ=ω /ω 0
12
lg 0
得交点的 1
10
-1
lg|z/q|
|z/q|
第三节 汽车振动系统的简化,单质量系统的振动
2.幅频特性曲线
2 z 1 2 2 2 2 q 1 2
1 2
2时
-1 10
lgλ 0
1
1
z/q 1
与ζ 无关,即无 论阻尼比取何值, 幅频特性曲线都要 经过 ( 2 ,1 )点
0.1 0.1 -2:1 1 2 频率比λ=ω /ω 0
13
1
0
-1:1
10
-1
lg|z/q|
|z/q|
第三节 汽车振动系统的简化,单质量系统的振动
2.幅频特性曲线
两者统称为频率响应特性。
对于平顺性而言,相频特性不是非常重要。
4
第三节 汽车振动系统的简化,单质量系统的振动
1.频率响应特性的确定
由输出、输入谐量复振幅 z 与 q 的比值或 z t 与 q t 的傅里叶变换 Z(ω)与Q(ω) 的比值,可以确定频率响应函数 H jω 。
共振时,
2 z 1 2 2 2 2 q 1 2
2
H j z ~ q
K jC z q m2 2 K jC
即,可以由微分方程写出频率响应函数。
6
第三节 汽车振动系统的简化,单质量系统的振动
2.幅频特性 H j z ~ q
频率比 / 0
-1:1
-2:1 0.1 0.1 1 频率比λ=ω /ω 0
12
lg 0
得交点的 1
10
-1
lg|z/q|
|z/q|
第三节 汽车振动系统的简化,单质量系统的振动
2.幅频特性曲线
2 z 1 2 2 2 2 q 1 2
1 2
2时
-1 10
lgλ 0
1
1
z/q 1
与ζ 无关,即无 论阻尼比取何值, 幅频特性曲线都要 经过 ( 2 ,1 )点
0.1 0.1 -2:1 1 2 频率比λ=ω /ω 0
13
1
0
-1:1
10
-1
lg|z/q|
|z/q|
第三节 汽车振动系统的简化,单质量系统的振动
2.幅频特性曲线
两者统称为频率响应特性。
对于平顺性而言,相频特性不是非常重要。
4
第三节 汽车振动系统的简化,单质量系统的振动
1.频率响应特性的确定
由输出、输入谐量复振幅 z 与 q 的比值或 z t 与 q t 的傅里叶变换 Z(ω)与Q(ω) 的比值,可以确定频率响应函数 H jω 。
共振时,
2 z 1 2 2 2 2 q 1 2
《汽车理论教学》PPT课件
7
•第五节 前、后制动器制动力的比例关系
•1.解析法确定 I 曲线
•由理想的条件可得
Fμ1 Fμ1
Fμ 2
Fμ2 FZ1
FZ 2
G
Fμ1 Fμ1
Fμ 2
Fμ2 G b hg
a hg
FZ1
将
FZ 2
G L
G L
b hg a hg
代入
•消去变量
Fμ 2
1 2
Fμ2 1
•β
线
Fμ2 B Fμ1 为一直线
直线斜率tan 1
•θ
•0
•Fμ1
•β线:实际前、后制动器制动力分配线。
18
•第五节 前、后制动器制动力的比例关系
•同步附着系数
•Fμ1、Fμ2具有固定比值 的汽车,使前、后车轮同
时抱死的路面附着系数称
为同步附着系数。
• ➢从图中看,同步附 着系数是β线和 I 曲线交 点处对应的附着系数。
同时抱死时的制
动器制动力。
34
•第五节 前、后制动器制动力的比例关系
2) 0 (设 0.7)
•结论
0
•后轮先抱死
•后轮抱死
时z 0.6
•前后轮 同时抱死
z时 0.7
35
•第五节 前、后制动器制动力的比例关系
•3)制动过程分析得到的结论
• 1)当 0 时,β线位于I曲线下方,前轮先抱死;
15
•第五节 前、后制动器制动力的比例关系
•同步附着系数的计算
•满足固定 比值的条件
由 β b hg 得 1 a hg
Fμ1 Fμ1
Fμ 2
Fμ2 G b hg
a hg
•满足同时 抱死的条件
•第五节 前、后制动器制动力的比例关系
•1.解析法确定 I 曲线
•由理想的条件可得
Fμ1 Fμ1
Fμ 2
Fμ2 FZ1
FZ 2
G
Fμ1 Fμ1
Fμ 2
Fμ2 G b hg
a hg
FZ1
将
FZ 2
G L
G L
b hg a hg
代入
•消去变量
Fμ 2
1 2
Fμ2 1
•β
线
Fμ2 B Fμ1 为一直线
直线斜率tan 1
•θ
•0
•Fμ1
•β线:实际前、后制动器制动力分配线。
18
•第五节 前、后制动器制动力的比例关系
•同步附着系数
•Fμ1、Fμ2具有固定比值 的汽车,使前、后车轮同
时抱死的路面附着系数称
为同步附着系数。
• ➢从图中看,同步附 着系数是β线和 I 曲线交 点处对应的附着系数。
同时抱死时的制
动器制动力。
34
•第五节 前、后制动器制动力的比例关系
2) 0 (设 0.7)
•结论
0
•后轮先抱死
•后轮抱死
时z 0.6
•前后轮 同时抱死
z时 0.7
35
•第五节 前、后制动器制动力的比例关系
•3)制动过程分析得到的结论
• 1)当 0 时,β线位于I曲线下方,前轮先抱死;
15
•第五节 前、后制动器制动力的比例关系
•同步附着系数的计算
•满足固定 比值的条件
由 β b hg 得 1 a hg
Fμ1 Fμ1
Fμ 2
Fμ2 G b hg
a hg
•满足同时 抱死的条件
25吉林大学远程网络教育余志生汽车理论--杨志华48讲ppt课件
9
第一节 操纵稳定性概述 本节内容结束 下一节
10
5
第一节 操纵稳定性概述
瞬态响应的评价指标
1)时间上的滞后
2)执行上的误差 (ωr1/ωr0)×100%
称为超调量
3)横摆角速度的波动 波动的ω =2π/T , 取
决于汽车的结构参数
4)进入稳态所经历 的时间σ
6
第一节 操纵稳定性概述
三、操纵稳定性的研究方法
将汽车作为开路控制系统 人—汽车系统作为闭路系统
汽车理论
第二十五讲
主讲教师:杨志华
学时:48
1
第一节 操纵稳定性概述
二、车辆坐标系与转向盘角阶跃 输入下的时域响应
1.车辆坐标系
右手系
2
第一节 操纵稳定性概述
2.稳态响应特性
➢汽车直线行驶时,急速转动转向盘至某一转角时,停止转 动转向盘并维持此转角不变,即给汽车以转向盘角阶跃输入。
➢转向盘角阶跃输入经短暂时间后,汽车进入等速圆周行驶, 称为转向盘角阶跃输入下进入的稳态响应。
在其他性能的研究中, 反馈可能不重要。
显然,对于操稳 性,闭路系统模 型是更符合实际 的;但研究起来 更稳定性的两种试验评价方法
开路系统
人—汽车闭路系统
客观评价法
主观评价法
通过仪器测出横摆角 速度、侧向加速度、侧 倾角及转向力。
让试验评价人员根 据试验时自己的感觉 进行评价。
转
向
盘 转
sw0
角
时间 t
3
第一节 操纵稳定性概述
稳态响应特性有三种类型 不足转向ua R ;中性转向 ua R 不变; 过多转向 ua R 。
4
第一节 操纵稳定性概述
第一节 操纵稳定性概述 本节内容结束 下一节
10
5
第一节 操纵稳定性概述
瞬态响应的评价指标
1)时间上的滞后
2)执行上的误差 (ωr1/ωr0)×100%
称为超调量
3)横摆角速度的波动 波动的ω =2π/T , 取
决于汽车的结构参数
4)进入稳态所经历 的时间σ
6
第一节 操纵稳定性概述
三、操纵稳定性的研究方法
将汽车作为开路控制系统 人—汽车系统作为闭路系统
汽车理论
第二十五讲
主讲教师:杨志华
学时:48
1
第一节 操纵稳定性概述
二、车辆坐标系与转向盘角阶跃 输入下的时域响应
1.车辆坐标系
右手系
2
第一节 操纵稳定性概述
2.稳态响应特性
➢汽车直线行驶时,急速转动转向盘至某一转角时,停止转 动转向盘并维持此转角不变,即给汽车以转向盘角阶跃输入。
➢转向盘角阶跃输入经短暂时间后,汽车进入等速圆周行驶, 称为转向盘角阶跃输入下进入的稳态响应。
在其他性能的研究中, 反馈可能不重要。
显然,对于操稳 性,闭路系统模 型是更符合实际 的;但研究起来 更稳定性的两种试验评价方法
开路系统
人—汽车闭路系统
客观评价法
主观评价法
通过仪器测出横摆角 速度、侧向加速度、侧 倾角及转向力。
让试验评价人员根 据试验时自己的感觉 进行评价。
转
向
盘 转
sw0
角
时间 t
3
第一节 操纵稳定性概述
稳态响应特性有三种类型 不足转向ua R ;中性转向 ua R 不变; 过多转向 ua R 。
4
第一节 操纵稳定性概述
汽车理论教程3.pptx
负荷率= 使用负荷 最大负荷
在给定发动机的前提下,一般 来说,负荷率越高,燃油消耗 率越低。这一点从万有特性图 上可以看出来。
A’ B’ ua=150km/h B A
可以看出,相同的输出功率下: B点的负荷率比A点高,燃油消 耗率比A点低。
汽车理论 吉林大学远程教育学院
还可以从后备功率的 角度分析负荷率
从发动机功率平衡图上, 则可以看出:相同的车速 下,后备功率越大,负荷 率越低。
a-Ⅴ挡行驶,后备功率小、负荷率高; d-Ⅳ挡行驶,后备功率大、负荷率低。
d
也就是说,动力性和燃油经济 性存在一定的矛盾:发动机后 备功率大时,动力性好,但此 时负荷率低,燃油消耗率高; 如果追求低燃油消耗率,则要 求负荷率高,也就是后备功率 低,动力性相应下降。
汽车理论
第十讲
主讲教师:杨志华
学时:48
第二章 汽车的燃油经济性
第油经济性的 各个因素。
➢从而进一步寻求在使用和设计两方 面提高汽车燃油经济性的途径。
返回目录 2
第三节 影响汽车燃油经济性的因素
等速百公里油耗
Qs
Peb
1.02ua g
Pe
下面,我们从使用和结构两个方面,来讨论 提高汽车燃油经济性的一些途径。
所谓“使用方面”,是指车辆已经设计、制造出来,结 构不能再改变;而“结构方面”指的就是设计环节。
第三节 影响汽车燃油经济性的因素
一、使用方面
1.车速 ua
中等车速经济 性相对较好
➢低速时FW↓ ,Ff↓ ➢但负荷率↓ ,b ↑
➢高速时负荷率↑ , b ↓ ➢但 FW ↑ ,Ff↑ ,∑F↑
1
T
ua 3600
F
Qs
b
在给定发动机的前提下,一般 来说,负荷率越高,燃油消耗 率越低。这一点从万有特性图 上可以看出来。
A’ B’ ua=150km/h B A
可以看出,相同的输出功率下: B点的负荷率比A点高,燃油消 耗率比A点低。
汽车理论 吉林大学远程教育学院
还可以从后备功率的 角度分析负荷率
从发动机功率平衡图上, 则可以看出:相同的车速 下,后备功率越大,负荷 率越低。
a-Ⅴ挡行驶,后备功率小、负荷率高; d-Ⅳ挡行驶,后备功率大、负荷率低。
d
也就是说,动力性和燃油经济 性存在一定的矛盾:发动机后 备功率大时,动力性好,但此 时负荷率低,燃油消耗率高; 如果追求低燃油消耗率,则要 求负荷率高,也就是后备功率 低,动力性相应下降。
汽车理论
第十讲
主讲教师:杨志华
学时:48
第二章 汽车的燃油经济性
第油经济性的 各个因素。
➢从而进一步寻求在使用和设计两方 面提高汽车燃油经济性的途径。
返回目录 2
第三节 影响汽车燃油经济性的因素
等速百公里油耗
Qs
Peb
1.02ua g
Pe
下面,我们从使用和结构两个方面,来讨论 提高汽车燃油经济性的一些途径。
所谓“使用方面”,是指车辆已经设计、制造出来,结 构不能再改变;而“结构方面”指的就是设计环节。
第三节 影响汽车燃油经济性的因素
一、使用方面
1.车速 ua
中等车速经济 性相对较好
➢低速时FW↓ ,Ff↓ ➢但负荷率↓ ,b ↑
➢高速时负荷率↑ , b ↓ ➢但 FW ↑ ,Ff↑ ,∑F↑
1
T
ua 3600
F
Qs
b
吉林大学车辆工程汽车理论课件1.1
15
第一节 汽车的动力性指标
思 考
通过以上数据的对比分析,能得到一些什么结论?
对最高车速的总结
发动机排量越大,汽车最高车速越高;
配置相同发动机的前提下,手动挡比自动挡车速更高;
发动机排量相同的前提下,车身越小,最高车速越高; SUV配备的发动机排量普遍较大,但与配备相同发动机排 量的轿车相比,最高车速要低。
当加速时间不易定量计算时,有时可以用加速度来代替。在给 定起始和终止速度的条件下,加速度越大,加速时间就越短。
汽车理论 吉林大学远程教育学院
第一节 汽车的动力性指标 2.加速时间t (1)原地起步加速时间
1) 0~100km/h的加速时间
飞度1.5L 红旗CA7460 捍马H2 宝马523Li 奥迪A8 宝马750 奔驰S600 12.0s 10.5s 10.0s 9.6s 7.0s 6.6s 6.5s 宝来1.8 M(手动挡)/A(自动挡) 11.1s/12.7s 宝来1.8T M (手动挡)/A(自动挡)
分析影响因素
重理论联系实际
汽车理论 吉林大学远程教育学院
第一章
汽车的动力性
汽车在良好路面上直线行驶时,由汽车受到的纵向 外力决定的、所能达到的平均行驶速度。
本章将介绍汽车动力性的评价指标,汽车的驱动力、 行驶阻力以及动力因数的概念;介绍动力性指标的确定 方法;功率平衡;附着率等。
汽车理论 吉林大学远程教育学院
第一节 汽车的动力性指标
1.最高车速uamax 重型货车(总质量>14t) 90km/h 中型货车(总质量6~14t) 100km/h
微型和轻型货车(总质量<6t) 80 ~ 130km/h
城市铰接客车 60 ~ 90km/h 客车 125km/h 商用车的速度相对较低,其主要技术 参数是载质量或载客量。 9
汽车理论说课讲课课件
试验路面 载重 制动初速度 制动时的稳 定性
≥0.7
任何载荷 50km/h 不许偏出 2.5m通道
制动距离或 制动减速度
踏板力
≤50.7m
≤500N
≤50.7m, ≥5.8m/s2
<490N
≤20m ≥5.9m/s2
≤500N
≤65.8m(216ft)
66.7~667N (15~150 lbf)
抗热衰退性
汽车制动性评价指标
• 制动时汽车的方向稳定性
制动时汽车按给定路径行驶的能力
前轮抱
死:失去转 向能力
汽车制动性评价指标
• 制动时汽车的方向稳定性Fra bibliotek后轮抱
死:容易侧
滑甩尾
汽车制动性评价指标
• 制动时汽车的方向稳定性
F1 F2
左右制动力不一致:容易产生制动跑偏
乘用车制动规范对行车制动器制动性的部分要求
课程教学设计
课程总体目标
通过本课程的学习,对汽车性能如何评价及其性能如
何提高有规范性的了解
能将相关理论应用于汽车设计及解释汽车实际应用中
的问题
为今后从事汽车行业工作打下理论知识基础
课程知识目标
能掌握汽车六大重要性能,以及各个性能的评价指标。 能掌握汽车评价性能指标如何确定,以及如何提高汽
• 制动效能
在良好的路面上,汽车以一定初速度制动到停车的制 动距离或制动的减速度
制动距离、制动减速度
思考 相同的初始速度,如何评价制动效能好坏?
制动距离有时也用在良好路面条件下,汽车以 100km/h 的初速度制动到停车的最短距离来表示。 几种车型100km/h→ 0的制动距离 车型
捷达
别克GL8 桑塔纳2000 帕萨特 奥迪A6 1.8T 宝来1.8T 宝马745i
06吉林大学远程网络教育余志生汽车理论课件杨志华48讲
同样,也可以求出前轮驱动的附着率。
10
第四节 汽车行驶的附着条件与汽车的附着率
思考:如果路面附着系数 0.7 ,两种轿车1挡的动
力性可否得到充分发挥?
11
第四节 汽车行驶的附着条件与汽车的附着率
随着车速的增加,后轮的法向反作用力下降,而切向反作用力则
按车速的平方关系增大。因此,附着率 C 2 随车速的提高而急剧增大,
附着条件不易满足。
思考:高速轿车该如何解决附着率过大的问题?
12
按“附着率不超过附着系数”,可以精确定量求解
附着问题;但计算较繁琐,而且需要较多的车辆结 构参数。
在某些允许粗略估算的场合,可以采用简化的模型:
“驱动力不超过驱动轮的附着力”。以后驱动为例:
Ft
Ttqig i 0 T r
a ≤ G =Fφ2。 L
q
a L hg L
8
第四节 汽车行驶的附着条件与汽车的附着率
如果前、后轮驱动力可以根据运动状况自动调节,同时达到 附着力极限 G du 即 q G cos G sin g dt
注意,“锁定的
四轮驱动”就是
“前、后轮驱动 力可以根据运动
状况自动调节”。
(轴间差速问题)
C 2—后轮驱动汽车驱动
轮的附着率;
后轮驱动汽车的附着条件 也可以表达为
C 2
C1
附着率是完成规定工况对路面提出的最低要求,其大小取 决于“规定工况”,与实际路面条件无关。
2
地面法向反力
G hg du FZ 1 FZs1 FZw1 g L dt hg du G FZ 2 FZs 2 FZw 2 g L dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本节内容结束
下一节
2020/2/21
9
2020/2/21
10
2020/2/21
11
1
γ
1 μ
ω/
ω0 2
1
4ζ Nhomakorabea2
ω/
ω0
2
γ
1 μ
1ω/
ω0
2
2020/2/21
3
第四节 车身与车轮双质量系统的振动
1.车身固有频率f0的影响
2020/2/21
可见,降低车 身部分固有频 率,有利于降 低车身加速度 和动载,但动 挠度会增大。
振动系统简化为单质量系统模型、微分方程和频率 响应特性、振动响应量、响应量的功率谱密度和均 方根、固有频率和阻尼比对振动响应量的影响(固 有频率和阻尼比的选取)
双质量系统模型、传递特性、固有频率、阻尼比、 质量比和刚度比对振动响应量的影响
主动与半主动悬架
2020/2/21
8
第四节 车身与车轮双质量系统的振动
Hf
G 2 x~q q
f
σ
2 x
0
Gx
f
df
单质量和双质量的
区别,就在于系统 模型不同。
20振20/动2/2响1 应量的定量评价,既可以采用功率谱密度函数,也可以采用均方根。 2
二、双质量系统的传递特性
车身-车轮双质量系统,可以视作车轮部分单质量系统和车身部分单 质量系统的串联。即,地面输入通过车轮“传递”到车身。两者的 频率响应特性相乘,就是整个双质量系统的频率响应特性。
车身部分,就是上一节介绍的单质量系统。所以我们在这里需要 研究的就是 : 1.车轮部分单质量系统的特性。
定义: Kt / K —刚度比 μ m2 / m1— 质量比
幅频特性
1
z1
1 2
2
4
2 2
2
q
2
2
其中,Δ
1
ω/
ω0 2
6
第四节 车身与车轮双质量系统的振动
4.悬架与轮胎的刚度比γ的影响
2020/2/21
可见,降低刚 度比(采用软 的轮胎)有利 于降低车身加 速度、尤其是 动载;而动挠 度基本不变。7
汽车的平顺性总结
人体对振动的感受、人体坐姿受振模型
路面不平度、路面不平度系数空间频率和时间频率 的功率谱密度、路面不平度速度谱是常数
汽车理论
第四十八讲
主讲教师:杨志华
2020/2/21
学时:48
1
回顾:平顺性分析的思路
平顺性分析的振动响应量:车身加速度、悬架动挠度、车轮-地面间的动载
由路面不平度系数和车速确定路面位移输入
(或者速度输入)的功率谱密度 Gq f
由悬架系统参数求出频率响应函 数H(f)x~q
Gx f
4
第四节 车身与车轮双质量系统的振动
2.车身部分阻尼比ζ的影响
2020/2/21
可见,增大阻尼 比,车身加速度 变大,舒适性略 有降低;但动载 会下降,尤其是 动挠度降低的更 多。
5
第四节 车身与车轮双质量系统的振动
3.车身与车轮部分质量比μ的影响
2020/2/21
可见,质量比 提高(减轻非 簧载质量), 加速度和动挠 度基本不变; 但动载会降低。
下一节
2020/2/21
9
2020/2/21
10
2020/2/21
11
1
γ
1 μ
ω/
ω0 2
1
4ζ Nhomakorabea2
ω/
ω0
2
γ
1 μ
1ω/
ω0
2
2020/2/21
3
第四节 车身与车轮双质量系统的振动
1.车身固有频率f0的影响
2020/2/21
可见,降低车 身部分固有频 率,有利于降 低车身加速度 和动载,但动 挠度会增大。
振动系统简化为单质量系统模型、微分方程和频率 响应特性、振动响应量、响应量的功率谱密度和均 方根、固有频率和阻尼比对振动响应量的影响(固 有频率和阻尼比的选取)
双质量系统模型、传递特性、固有频率、阻尼比、 质量比和刚度比对振动响应量的影响
主动与半主动悬架
2020/2/21
8
第四节 车身与车轮双质量系统的振动
Hf
G 2 x~q q
f
σ
2 x
0
Gx
f
df
单质量和双质量的
区别,就在于系统 模型不同。
20振20/动2/2响1 应量的定量评价,既可以采用功率谱密度函数,也可以采用均方根。 2
二、双质量系统的传递特性
车身-车轮双质量系统,可以视作车轮部分单质量系统和车身部分单 质量系统的串联。即,地面输入通过车轮“传递”到车身。两者的 频率响应特性相乘,就是整个双质量系统的频率响应特性。
车身部分,就是上一节介绍的单质量系统。所以我们在这里需要 研究的就是 : 1.车轮部分单质量系统的特性。
定义: Kt / K —刚度比 μ m2 / m1— 质量比
幅频特性
1
z1
1 2
2
4
2 2
2
q
2
2
其中,Δ
1
ω/
ω0 2
6
第四节 车身与车轮双质量系统的振动
4.悬架与轮胎的刚度比γ的影响
2020/2/21
可见,降低刚 度比(采用软 的轮胎)有利 于降低车身加 速度、尤其是 动载;而动挠 度基本不变。7
汽车的平顺性总结
人体对振动的感受、人体坐姿受振模型
路面不平度、路面不平度系数空间频率和时间频率 的功率谱密度、路面不平度速度谱是常数
汽车理论
第四十八讲
主讲教师:杨志华
2020/2/21
学时:48
1
回顾:平顺性分析的思路
平顺性分析的振动响应量:车身加速度、悬架动挠度、车轮-地面间的动载
由路面不平度系数和车速确定路面位移输入
(或者速度输入)的功率谱密度 Gq f
由悬架系统参数求出频率响应函 数H(f)x~q
Gx f
4
第四节 车身与车轮双质量系统的振动
2.车身部分阻尼比ζ的影响
2020/2/21
可见,增大阻尼 比,车身加速度 变大,舒适性略 有降低;但动载 会下降,尤其是 动挠度降低的更 多。
5
第四节 车身与车轮双质量系统的振动
3.车身与车轮部分质量比μ的影响
2020/2/21
可见,质量比 提高(减轻非 簧载质量), 加速度和动挠 度基本不变; 但动载会降低。