高三数学-2019届高三上学期期中考试数学试题

合集下载

河南省南阳市2019届高三上学期期中考试数学理试题(解析版)

河南省南阳市2019届高三上学期期中考试数学理试题(解析版)

河南省南阳市2019届高三上学期期中考试数学理试卷一、选择题(本大题共12小题每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的)1.设集合,集合,则()A. B. C. D.【答案】D【解析】由题意得,∴.选D.2.若是虚数单位,复数的共轭复数是,且,则复数的模等于()A. 5B. 25C.D.【答案】A【解析】分析:由复数的运算,求得,进而得,再根据复数模的计算公式,即可求解复数的模.详解:由题意,复数的共轭复数满足,所以,所以复数,所以,故选A.点睛:本题主要考查了复数模的运算及复数的运算,其中熟记复数的运算公式和复数的基本概念是解答的关键,着重考查了推理与运算能力.3.下列四种说法中,①命题“存在x∈R,x2﹣x>0”的否定是“对于任意x∈R,x2﹣x<0”;②命题“p且q为真”是“p或q为真”的必要不充分条件;③已知幂函数f(x)=xα的图象经过点(2,),则f(4)的值等于;④已知向量a=(3,4),b=(2,1),b =(2,1),则向量a在向量b方向上的投影是,其中说法正确的个数是()A. 1B. 2C. 3D. 4【答案】A【解析】【分析】本题①根据命题否定的规律判断命题是否为真;②化简研究命题中的条件和结论,从而判断条件间的关系;③根据函数图象上的点坐标,得到参数a的值,再利用解析式求出函数的值;④利用平面向量的数量积与投影的关系,判断命题是否正确,得到本题结论.【详解】①命题“存在x∈R,x2-x>0”的否定是“对于任意x∈R,x2-x≤0”,故命题①不正确;②命题“p且q为真”,则命题p、q均为真,∴“p或q为真”.反之“p或q为真”,则p、q不一定都真,∴不一定有“p且q为真”,∴命题“p且q为真”是“p或q为真”的充分不必要条件,故命题②不正确;③由幂函数f(x)=xα的图象经过点(2,)∴2α=,∴α=−∴幂函数为f(x)=,故f(4)的值等于∴命题③正确;④向量在向量方向上的投影是||cosθ=.其中θ是和的夹角,故④错误.∴正确的命题有一个.故选:A.【点睛】本题考查了命题真假的判断,还考查了命题的否定、充要条件、幂函数解析式和向量的投影等知识,属于基础题.4.已知,则()A. B. C. D.【答案】D【解析】试题分析:,选D.考点:同角三角函数关系【方法点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数。

2019届高三上学期期中考试数学(理)试题答案

2019届高三上学期期中考试数学(理)试题答案

理科数学高三年级期中考试试题参考答案1-4、BDAD ;5-8、CBAC ;9-12、DCBC ;13、10-;14、3;15、1+=ex y ;16、]22[,-; 17.⑴ 易知:0,a ≠由题设可知()31,1,1122 1.2 2.1.n d a aa n n d d a ⎧+=⎪=⎧⎪∴∴=+-⋅=-⎨⎨=⎩⎪⋅=⎪⎩………6分⑵ 由(I )知2232-+=n b nn ,∴)22420()333(242-++++++++=n T nnn n n n n n -+-=⨯-++--=2)19(89222091)91(9 ………12分 18.⑴)62sin(2cos 2cos 212sin 231cos 2)62sin()(2ππ+=+-=-+-=x x x x x x f ; ∴)(x f 的最小正周期ππ==22T ; 由)(2236222z k k x k ∈+≤+≤+πππππ;解得)(326z k k x k ∈+≤≤+ππππ∴)(x f 的单调递减区间为)](32,6[z k k k ∈++ππππ。

………6分⑵由21)62sin()(=+=πx A f ,),0(π∈A ,得3π=A又9cos ||||=⋅=⋅A AC AB AC AB ,∴18=bc 又c a b ,,成等差数列,∴c b a +=2由余弦定理得bc c b A bc c b a 3)(cos 22222-+=-+=,解得23=aABC ∆周长为29=++c b a ………12分 19.⑴由列联表可知,22200(70406030) 2.19813070100100K ⨯⨯-⨯=≈⨯⨯⨯.∵2.198 2.072>,∴能在犯错误的概率不超过0.15的前提下认为A 市使用共享单车情况与年龄有关. …………4分 ⑵①依题意,可知所抽取的10名30岁以上网民中,经常使用共享单车的有60106100⨯=(人), 偶尔或不用共享单车的有40104100⨯=(人). 则选出的3人中至少2人经常使用共享单车的概率为21364633101023C C C P C C =+=. …………8分②由22⨯列联表,可知抽到经常使用共享单位的频率为1301320020=, 将频率视为概率,即从A 市市民中任意抽取1人,恰好抽到经常使用共享单车的市民的概率为1320. 由题意得)2013,10(~B X ,∴1313()10202E X =⨯=;13791()10202040D X =⨯⨯=. …………12分 20.⑴在直三棱柱中1CC AB ⊥,又1C F AB ⊥,11,C F C C ⊂平面11BCC B ,111CC C F C =,∴AB ⊥平面11BCC B ,又∵AB ⊂平面EBA ,∴平面ABE ⊥平面11B BCC .· ……………………5分 ⑵由(1)可知AB BC ⊥,以B 点为坐标原点,BC 为X 轴正方向,BA 为Y 轴正方向,1BB 为Z 轴正方向,建立坐标系.设 1AA a =,()000B ,,,()200C ,,,()020A ,,,()100B a ,,,()120C a ,,,()102A a ,,, ()11E a ,,,()100F ,,,· ……………………6分 直线1FC 的方向向量()10a =,,a ,平面1ACC A 的法向量()110=,,m ,2a =,· ……………………·8分 ()020BA =,,,()112BE =,,,()200BC =,,, 设平面ABE 的法向量()1x y z =,,n ,∴2020y x y z =⎧⎨++=⎩,∴()1201=-,,n ,· ……………………10分 设平面CBE 的法向量()2x y z =,,n , ∴2020x x y z =⎧⎨++=⎩,∴()2021=-,,n , ……………………11分 记二面角A BE C --的平面角为θ,1cos 5θ=,∴sin 5θ=∴二面角A BE C --的平面角的正弦值为5. ……………………12分21.⑴函数()f x 的定义域为()-∞+∞,,()()()e 1e e e x x x xf x x kx x kx x k '=+--=-=-, ·········1分 ①当0k ≤时,令()0f x '>,解得0x >.∴()f x 的单调递减区间是()0-∞,,单调递增区间是[)0+∞,; ·········2分 ②当01k <<时,令()0f x '>,解得lnk x <或0x >.∴()f x 在()ln k -∞,和()0+∞,上单调递增,在[]ln 0k ,上单调递减; ·········3分 ③当1k =时,()0f x '≥,()f x 在()-∞+∞,上单调递增;· ········4分④当1k >时,令()0f x '>,解得0x <或ln x k >,所以()f x 在()0-∞,和()ln k +∞,上单调递增,在 []0ln k ,上单调递减. ·········5分 ⑵()01f =-, ①当01k <≤时,由(1)知,当()0x ∈-∞,时, ()()()()()22max ln ln 1ln ln 11022k k f x f x f k k k k k ⎡⎤≤==--=--+<⎣⎦,此时()f x 无零点, ·········6分 当[)0x ∈+∞,时,()222e 2e 20f k =-≥->.又∵()f x 在[)0+∞,上单调递增,∴()f x 在[)0+∞,上有唯一的零点,∴函数()f x 在定义域()-∞+∞,上有唯一的零点;· ········7分 ②当1k >时,由(1)知,当()lnk x ∈-∞,时,()()()max 010f x f x f ≤==-<,此时()f x 无零点;· ········8分 当[)ln x k ∈+∞,时,()()ln 010f k f <=-<,()()()2211111e e 22k k k k k f k k k ++⎡⎤+++=-=-⎢⎥⎢⎥⎣⎦.令()21e 2tg t t =-,12t k =+>,则()e t g t t '=-,()e 1t g t ''=-,∵2t >,()0g t ''>,()g t '在()2+∞,上单调递增,()()22e 20g t g ''>=->,∴()g t 在()2+∞,上单调递增,得()()22e 20g t g >=->,即()10f k +>.∴()f x 在[)ln k +∞,上有唯一的零点,故函数()f x 在定义域()-∞+∞,上有唯一的零点.·········11分 综合①②知,当0k >时函数()f x 在定义域()-∞+∞,上有且只有一个零点. ……………·12分 22.⑴由4cos ρθ=得24cos ρρθ=,化为直角坐标方程为224x y x +=, 所以圆C 的直角坐标系方程为2240x y x +-=.由12 2x y =⎧⎪⎨=⎪⎪⎪⎩消t得102x y --=,所以直线l 的普通方程为2210x y --=.…………5分 ⑵显然直线l 过点102M ⎛⎫ ⎪⎝⎭,,将122x y ⎧=⎪⎪⎨⎪=⎪⎩代入圆C 的直角坐标方程2240x y x +-=得27024t --=, 根据直线参数方程中参数的几何意义知:47||||||21==⋅t t MB MA . ……………………10分 23.⑴若不等式()1f x m ≥-有解,只需()f x 的最大值()1max f x m ≥-即可. 因为()()12123x x x x --+≤--+=,所以13m -≤,解得24m -≤≤,所以实数m 的最大值4M =. ……………………5分 (2)根据(1)知正实数a ,b 满足2234a b +=, 由柯西不等式可知()()()2223313a ba b ++≥+,所以,()2316a b +≤,因为a ,b 均为正实数,所以34a b +≤(当且仅当1a b ==时取“=”). ……………………10分。

2019届高三数学上学期期中试题 理(含解析)新版人教 版

2019届高三数学上学期期中试题 理(含解析)新版人教 版

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……2019学年高中三年级期中考试数学试卷(理)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】C【解析】因为,,所以因为,所以,,选C.2. 设复数满足(是虚数单位),则的共轭复数()A. B. C. D.【答案】A【解析】,,,故选A.3. 下列说法中正确的个数是()①“为真命题”是“为真命题”的必要不充分条件;②命题“,”的否命题是“,”;③若一个命题的逆命题为真,则它的否命题一定为真.A. 0B. 1C. 2D. 3【答案】B【解析】对于①,若“” 为真命题,则都为真命题,“” 为真命题,若为真命题,只需为真命题或为真命题,“”不一定为真命题,所以“为真命题”是“为真命题”的充分不必要条件,故①错误;对于②,命题“,”的否定是“”,故②错误;对于③,因为逆命题与否命题互为逆否命题,所以③正确,即正确命题的个数为,故选B.4. 函数的大致图象是()A. B. C. D.【答案】B【解析】首先函数为偶函数,图象关于轴对称,排除C、D,当时,,图象就是把的图象向右平移1个单位,可见选B.5. 某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.【答案】D【解析】由三视图知,该几何体是一个一条侧棱与底面垂直,底面是边长为的正方形的四棱锥,其中两个侧面面积为,两个侧面面积为,底面积为,所以表面积为,故选D.6. 等比数列中,,,函数,则()A. B. C. D.【答案】D【解析】试题分析:因为函数,,则.故选C.考点:导数的运算.7. 将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的取值不可能是()A. B. C. D.【答案】B【解析】,将函数的图象向左平移个单位后得到,,为偶函数,,,当时,的取值分别为,,的取值不可能是,故选B.8. 向量,均为非零向量,,,则,的夹角为()A. B. C. D.【答案】A【解析】,,所以,即,设的夹角为,,又,所以的夹角为,故选A.9. 已知数列的首项,,则()A. 99B. 101C. 399D. 401【答案】C【解析】由,可得,是以为公差,以为首项的等差数列,,故选C.10. 在三棱锥中,底面是直角三角形,其斜边,平面,且,则此三棱锥的外接球的表面积为()A. B. C. D.【答案】A【解析】根据已知,可将三棱锥补成一个长方体,如下图:则三棱锥的外接球就是这个长方体的外接球,由于,且是直角三角形,平面,长方体的对角线长为,三棱锥的外接球的半径,三棱锥的外接球的表面积为,故选A.【方法点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.11. 已知函数若关于的方程有8个不等的实数根,则实数的取值范围是()A. B. C. D.【答案】C【解析】作出函数的图象如图:注意,设,当时,有4个实根,若方程在上有两个不等实根时,方程有8个不等实根,则:.....................解得:,选C.【点睛】方程的根的个数控制问题是近几年高考和模拟考试常见考题,一般先画出函数的图象,设t=f(x),化方程的根的个数问题为直线y=t与曲线y=f(x)的交点的个数问题去解决,然后观察t的范围,利用利用一元二次方程的根的分布控制t的个数t的范围,从而得出参数的范围.12. 用表示不超过的最大整数(如,).数列满足,(),若,则的所有可能值的个数为()A. 4B. 3C. 2D. 1【答案】B【解析】对两边取倒数,得,累加得,由为单调递增数列,,其中,整数部分为,,整数部分为,,整数部分为,由于,时,的整数部分都是,的所有可能值得个数为,故选B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 设变量、满足约束条件:则的最大值是__________.【答案】8【解析】作出约束条件所对应的可行域(如图),而表示可行域内的点到原点距离的平方,数形结合可得最大距离为或,的最大值为,故答案为.14. 若定义在上的函数,则__________.【答案】【解析】由定积分的几何意义可得,是以原点为圆心,以为半径的圆的面积的一半,,,故答案为.15. 设、均为正数,且,则的最小值为__________.【答案】【解析】均为正数,且,,整理可得,由基本不等式可得,整理可得,解得或(舍去),,当且仅当时取等号,故答案为.【易错点晴】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).16. 已知函数是定义在上的偶函数,其导函数为,且当时,,则不等式的解集为__________.【答案】【解析】,,当时,,,说明在上为增函数,为偶函数,则为偶函数,图象关于轴对称,所以在上是减函数,原不等式可化为,则或,即或,不等式的解集为三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知向量,(1)若,求的值;(2)令,把函数的图象上每一点的横坐标都缩小为原来的一半(纵坐标不变),再把所得图象沿轴向左平移个单位,得到函数的图象,求函数的单调增区间即图象的对称中心.【答案】(1) (2) 的单调增区间是(),函数图象的对称中心为()【解析】试题分析:先根据数量积的坐标运算公式求出数量积,由于向量垂直,所以数量级为0,得出tanx,再利用二倍角正切公式求出tan2x的值,第二步求出函数f(x)的表达式化为标准形式后,函数的图象上每一点的横坐标都缩小为原来的一半(纵坐标不变),相当于x 替换为2x, 再把所得图象沿轴向左平移个单位,相当于把x替换为,得到函数的解析式,根据解析式求出单增区间和对称中心.试题解析:(1)∵,即∴,∴.(2)由(1)得,从而.解得(),∴的单调增区间是(),由得(),即函数图象的对称中心为().【点睛】函数图像变换包括平移变换、伸缩变换、对称变换以及旋转变换,主要掌握前3种,把函数图象沿x轴向左或向右平移,我们常称之为“左加右减”,沿y轴上下平移,我们常称为“上加下减”;纵坐标不变横坐标伸长或缩短到原来的倍,对应的解析式就是把替换为,掌握基本图象变换方法,就可以方便的解题了.18. 已知数列满足,,设.(1)求证:数列为等比数列,并求的通项公式;(2)设,数列的前项和为,求证:.【答案】(1) (2)详见解析【解析】试题分析:(I)可化为即,,从而可得数列为等比数列,进而可得的通项公式;(II)由(I)可得,分组求和后,利用放缩法可得结论.试题解析:(I)由已知易得,由得即;,又,是以为首项,以为公比的等比数列.从而即,整理得即数列的通项公式为.(II),,,.19. 在中,,,分别是角,,的对边,且. (1)求的大小;(2)若为的中点,且,求面积的最大值.【答案】(1)(2)【解析】试题分析:(I)首先正切化弦,然后利用两角和的余弦公式可得,从而可得,进而可得结果;(II)由余弦定理可得,利用基本不等式可得,结合三角形面积公式可得结果.试题解析:(I)由,得,,,,又 .(II)在中,由余弦定理得.在中,由余弦定理得,二式相加得,整理得,,所以的面积,当且仅当时“”成立.的面积的最大值为.20. 已知函数,其导函数的两个零点为-3和0.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)求函数在区间上的最值.【答案】(1)(2)的单调增区间是,,单调递减区间是(-3,0).(3)函数在区间上的最大值为,最小值为-1.【解析】试题分析:对函数求导,由于导函数有两个零点,所以这两个零点值满足,解方程组求出m,n;利用导数的几何意义求切线方程,先求 f(1),求出切点,再求得出斜率,利用点斜式写出切线方程,求单调区间只需在定义域下解不等式和,求出增区间和减区间;求函数在闭区间上的最值,先研究函数在该区间的单调性、极值,求出区间两端点的函数值,比较后得出最值.试题解析:(1)∵,∴,由知,解得从而,∴.所以,∴,曲线在点处的切线方程为,即,(2)由于,当变化时,,的变化情况如下表:故的单调增区间是,,单调递减区间是(-3,0).(3)由于,,,所以函数在区间上的最大值为,最小值为-1.21. 如图,四棱锥中,底面为梯形,底面,,,,.(1)求证:平面平面;(2)设为上一点,满足,若直线与平面所成角的正切值为,求二面角的余弦值.【答案】(1)详见解析(2)【解析】试题分析:(I)由直角三角形可得,由线面垂直的性质可得,从而可得平面进而可得结论;(II)以点为坐标原点,分别轴建立空间直角坐标系,分别求出平面与平面的一个法向量,根据空间向量夹角余弦公式,可得结果.试题解析:(I)由,可得,又从而,底面,,平面所以平面平面.(II)由(I)可知为与底面所成角.所以,所以又及,可得,以点为坐标原点,分别轴建立空间直角坐标系,则.设平面的法向量.则由得取同理平面的法向量为所以又二面角为锐角.所以二面角余弦值为.【方法点晴】本题主要考查利用空间垂直关系以及空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.22. 已知函数().(1)若在其定义域内单调递增,求实数的取值范围;(2)若,且有两个极值点,(),求的取值范围. 【答案】(1)实数的取值范围是(2)的取值范围为【解析】试题分析:函数在某区间上单调递增,说明函数的导数大于或等于0在该区间上恒成立,分离参数m,利用极值原理求出参数m的取值范围;当时有两个极值点为方程的两个根,根据根与系数关系找出与系数的关系,根据m 的范围解出的范围,表示出,根据减元,利用构造函数法求出其取值范围.试题解析:(1)的定义域为,在定义域内单调递增,,即在上恒成立,由于,所以,实数的取值范围是.(2)由(1)知,当时有两个极值点,此时,,∴,因为,解得,由于,于是.令,则,∴在上单调递减,.即.故的取值范围为.。

2019届上海市高三上学期期中数学试卷【含答案及解析】

2019届上海市高三上学期期中数学试卷【含答案及解析】

2019届上海市高三上学期期中数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、填空题1. 函数f(x)=4 x ﹣1的反函数f ﹣1 (x)=___________ .2. 设集合A={5,log 2 (a+3)},B={a,b},若A∩B={2},则A ∪ B=___________ .3. 若tanα=3,则的值等于___________ .4. 函数f(x)= 的定义域为___________ .5. 已知直线l经过点且方向向量为(2,﹣1),则原点O到直线l的距离为___________ .6. 若自然数n满足C 6 n =20,则行列式 =___________ .7. 已知关于x的方程() x = 有一个正根,则实数a的取值范围是___________ .8. 已知数列,则a 1 +a 2 +a 3 +a 4 +…+a 99 +a100 =___________ .9. 已知P(x,y)是双曲线 =1上任意一点,F 1 是双曲线的左焦点,O是坐标原点,则的最小值是 ____________________ .10. 等比数列{a n }首项为sinα,公比为cosα,若(a 1 +a 2 +…+a n )=﹣,则α= ___________________________________ .11. 已知下列命题:①若<0,则与的夹角为钝角;②a,b ∈ C,则“ab ∈ R”是“a,b互为共轭复数”的必要非充分条件;③一个骰子连续投2次,点数和为4的概率为;④若n为正奇数,则6 n + + +…+ 被8除的余数是5,其中正确的序号是___________ .12. 在一个底面半径为1,高为3的圆柱形容器中放满水,再把容器倾斜倒出水,此时圆柱体的母线与水平面所成角的大小是___________ .13. 已知数列{a n }、{b n }的通项公式分布为a n =(﹣1) n﹣1 a﹣1,b n =(﹣1)n ,切对于一切的正整数n,恒有a n <b n 成立,则实数a的取值范围是_________ .14. (文)在数列{a n }中,a 1 =2,且对任意大于1的正整数n,点(,)在直线y=x﹣上,则 =___________ .15. 已知△ ABC 中,若sinA=m,sinB=n,当m、n满足条件___________ 时(只需写出满意的一个条件),cosC具有唯一确定的值.16. (文)已知△ ABC 中,cosA=a,sinB= ,当a满足条件___________ 时,cosC具有唯一确定的值.二、选择题17. 抛物线x 2 =4y的焦点坐标为()A.(1,0)________ B.(﹣1,0)________ C.(0,1)________ D.(0,﹣1)18. 已知,,若k为满足的整数,则使△ ABC 是直角三角形的k的个数为()A.7________ B.4________ C.3________ D.219. 已知a 2 +c 2 ﹣ac﹣3=0,则c+2a的最大值是()A.2 ________ B.2 ________ C.2 ________ D.320. (文)已知a 2 + c 2 ﹣3=0,则c+2a的最大值是()A.2 ________ B.2 ________ C.2 ________ D.321. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数f(x)有如下四个命题:①f(f(x))=0;②函数f(x)是偶函数;③任取一个不为零的有理数T,f(x+T)=f(x)对任意的x ∈ R恒成立;④存在三个点A(x 1 ,f(x 1 )),B(x 2 ,f(x 2 )),C(x 3 ,f(x 3 )),使得△ ABC 为等边三角形.其中真命题的个数是()A.1________ B.2________ C.3________ D.4三、解答题22. 已知四棱锥S﹣ABCD中,底面ABCD是直角梯形,∠ ABC=90° ,AD ∥ BC ,SA=AB=BC=2,AD=1,SA ⊥ 底面ABCD.(1)求四棱锥S﹣ABCD的体积;(2)(理)求SC与平面SAB所成角的大小(文)求异面直线SC与AD所成角的大小.23. 已知△ ABC 中,cosB= ,边c=12 .(1)若函数y=3cos 2 x+sin 2 x﹣2 sinxcosx,当x=C时取得最小值,求变a,b的长;(2)若sin(A﹣B)= ,求sinA的值和边a的长.24. 为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间x(单位:天)变化的函数关系式近似为y= .若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a(1≤a≤4)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a的最小值(精确到0.1,参考数据:取1.4).25. 已知数列{a n }的前n项和S n =﹣a n ﹣() n﹣1 +2(n ∈ N * ),数列{b n }满足b n =2 n •a n(1)求a 1(2)求证数列{b n }是等差数列,并求数列{a n }的通项公式;(3)设c n =log 2 ,数列{ }的前n项和为T n ,求满足T n <(n∈ N * )的n的最大值.26. 已知两个函数f 1 (x)=ln(|x﹣a|+2),f 2 (x)=ln(|x﹣2a+1|+1),a ∈ R.(1)若a=0,求使得f 1 (x)=f 2 (x)的x的值;(2)若|f 1 (x)﹣f 2 (x)|=f 1 (x)﹣f 2 (x)对于任意的实数x ∈ R恒成立,求实数a的取值范围;(3)求函数F(x)= ﹣的值域.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。

2019年高三数学上期中试题(附答案)

2019年高三数学上期中试题(附答案)

2019年高三数学上期中试题(附答案)一、选择题1.已知等差数列{}n a 中,10103a =,20172017S =,则2018S =( ) A .2018B .2018-C .4036-D .40362.数列{}n a 的前n 项和为21n S n n =++,()()1N*nn n b a n =-∈,则数列{}n b 的前50项和为( ) A .49B .50C .99D .1003.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸4.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则313233310log log log log a a a a +++⋅⋅⋅+=( )A .10B .12C .31log 5+D .32log 5+5)63a -≤≤的最大值为( )A .9B .92C .3D 6.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦7.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7B .5C .5-D .7-8.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,则ABC V 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形9.等比数列{}n a 的前三项和313S =,若123,2,a a a +成等差数列,则公比q =( ) A .3或13- B .-3或13C .3或13D .-3或13-10.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,a=4b =,则B =( ) A .30B =︒或150B =︒ B .150B =︒ C .30B =︒D .60B =︒11.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 12.已知正项数列{}n a 中,*12(1)()2n n n a a a n N ++++=∈L ,则数列{}n a 的通项公式为( )A .n a n =B .2n a n =C .2n na =D .22n n a =二、填空题13.若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a ,b 恒成立的是 (写出所有正确命题的编号).①ab≤1; ②a +b ≤2; ③a 2+b 2≥2;④a 3+b 3≥3;112a b+≥⑤. 14.在平面内,已知直线12l l P ,点A 是12,l l 之间的定点,点A 到12,l l 的距离分别为和,点是2l 上的一个动点,若AC AB ⊥,且AC 与1l 交于点C ,则ABC ∆面积的最小值为____.15.某校数学课外小组在坐标纸上为学校的一块空地设计植树方案为:第K 棵树种植在点(),k k k P x y 处,其中11x =,11y =,当2K ≥时,111215551255k k k k k k x x T T k k y y T T --⎧⎡⎤--⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩()T a 表示非负实数a 的整数部分,例如()2.62T =,()0.20T =.按此方案第2016棵树种植点的坐标应为_____________.16.设0x >,则231x x x +++的最小值为______.17.对一切实数x ,不等式2||10x a x ++≥恒成立,则实数a 的取值范围是_______ 18.已知数列{}n a 满足1133,2,n n a a a n +=-=则na n 的最小值为__________. 19.(理)设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,2()4()(1)4()xf m f x f x f m m-≤-+恒成立,则实数m 的取值范围是______. 20.已知实数x ,y 满足约束条件20x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩,若2z x y =+的最小值为3,则实数b =____三、解答题21.在ABCV中,5 cos13A=-,3cos5B=.(1)求sin C的值;(2)设5BC=,求ABCV的面积.22.已知数列{}n a是公差为2-的等差数列,若1342,,a a a+成等比数列.(1)求数列{}n a的通项公式;(2)令12nn nb a-=-,数列{}n b的前n项和为n S,求满足0nS≥成立的n的最小值. 23.如图,在平面四边形ABCD中,42AB=,22BC=,4AC=.(1)求cos BAC∠;(2)若45D∠=︒,90BAD∠=︒,求CD.24.已知数列{}n a的前n项和为n S,且1,n a,n S成等差数列.(1)求数列{}n a的通项公式;(2)若数列{}n b满足12n n na b na=+,求数列{}n b的前n项和n T.25.已知数列{}n a满足111,221nnnaa aa+==+.(1)证明数列1na⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a的通项公式;(2)若数列{}n b满足12n nnba=g,求数列{}nb的前n项和nS.26.在ΔABC中,角,,A B C所对的边分别为,,a b c,且222sin sin sin sin sinA CB A C+=-.(1)求B的大小;(2)设BAC∠的平分线AD交BC于,23,1D AD BD==,求sin BAC∠的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:由题意首先求得10091a =,然后结合等差数列前n 项和公式求解前n 项和即可求得最终结果.详解:由等差数列前n 项和公式结合等差数列的性质可得:120171009201710092201720172017201722a a aS a +=⨯=⨯==, 则10091a =,据此可得:()12018201710091010201810091009440362a a S a a +=⨯=+=⨯=. 本题选择D 选项. 点睛:本题主要考查等差数列的性质,等差数列的前n 项和公式等知识,意在考查学生的转化能力和计算求解能力.2.A解析:A 【解析】试题分析:当1n =时,113a S ==;当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦,把1n =代入上式可得123a =≠.综上可得3,1{2,2n n a n n ==≥.所以3,1{2,12,n n b n n n n n -==-≠为奇数且为偶数.数列{}n b 的前50项和为()()503235749224650S =--+++++++++L L ()()24349252503224922++=--⋅+⋅=.故A 正确.考点:1求数列的通项公式;2数列求和问题.3.B解析:B 【解析】 【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==, 所以410.5a =,所以公差541d a a =-=-, 所以1257 2.5a a d =+=尺。

江苏省扬州市2019届高三上学期期中考试数学试题

江苏省扬州市2019届高三上学期期中考试数学试题

江苏省扬州市2019届高三上学期期中考试数学试题江苏省扬州市2019届高三上学期期中考试数学试题(满分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上) 1.复数z =2+i的实部为. 1-i22.命题“∀x ∈R , x +1>0”的否定是.3.已知向量a =(1,2), b =(-2, k ) ,且a ∥b ,则实数k = .4.已知直线l 1:ax -y +2a +1=0和l 2:2x -(a -1) y +2=0(a ∈R ) ,若l 1⊥l 2,则a =.π5.已知α∈(, π) ,且tan α=-2,则cos2α=.2⎧x -y +5≥0⎧6.已知实数x ,y 满足⎧x ≤3,则目标函数z =x +2y 的最小值为.⎧x +y ≥0⎧7.已知函数f (x )=ln x -1,若函数f (x )的零点所在的区间为(k , k +1)(k ∈Z ),则 xk =.x 2y 2-=1的一个焦点与抛物线y 2=8x 的焦点相同,则m =. 8.若双曲线m m +29.若函数f (x ) =(x +a )(bx +2a ) (a , b ∈R ) 是偶函数,且它的值域为(-∞,8],则ab =1π10.f (x ) =sin(ωx +)(ω>0) 的图象与直线y =m 相切,相邻切点之间的距离为π.26若点A (x 0, y 0) 是y =f (x ) 图象的一个对称中心,且x 0∈⎧0,⎧π⎧,则x 0=.⎧⎧2⎧x 2y 211.椭圆C :2+2=1(a >b >0)的一条准线与x 轴的交点为P ,点A 为其短轴的一个a b端点,若PA 的中点在椭圆C 上,则椭圆的离心率为.2x 12+x 212.函数f (x ) =2x -4x +1(x ∈R ),若f (x 1) =f (x 2) ,且x 1>x 2,则的最小值x 1-x 22为.OB 满足|OA |=1,|OB |=2,|AB |=AC =λ(OA +OB )(λ∈R ) ,13.已知向量OA ,若|BC |=λ所有可能的值为.14.设圆x +(y -1) =1的切线l 与x 轴正半轴,y 轴正半轴分别交于点A , B ,当AB 取最小值时,切线l 在y 轴上的截距为.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本题满分14分)已知集合A =⎧x |22⎧⎧4⎧>1⎧,B ={x |(x -m -4)(x -m +1)>0}. x +1⎧(1)若m =2,求集合A B ;(2)若A B =∅,求实数m 的取值范围.16.(本题满分14分)在∆ABC 中,a , b , c 分别为角A , B , C 所对的边,已知向量m =(cos B ,sin B ),n =(sin C -2sin A ,cos C ),且m ⊥n .(1)求角B 的大小;(2)若a +c =7,b =BA ⋅BC 的值.17.(本小题满分15分)在平面直角坐标系xOy 中,已知圆M :x +y -8x +6=0,过点P (0,2)且斜率为k 的直线与圆M 相交于不同的两点A , B ,线段AB 的中点为N 。

2019届高三上学期期中考试数学(文)试题答案

2019届高三上学期期中考试数学(文)试题答案
500 0 0 180 400 1080 4 0.8 . 625 100 0 225 400 1350 5
a 90 120 0.8 6 ,
故回归方程为 y 0.8x 6 .
………5 分
(2)将 x 110 代入上述方程,得 y 0.8 110 6 82 .
………7 分
文科数学高三年级期中考试试题参考答案
1-4、BACA;5-8、BCDC;9-12、DCAB;13、
;14、
;15、
y
x
2
;16、 2

4
3
17.⑴
易知: a 0 ,
由题设可知 11dda2a3. ,
a d
1, 2.
an
1 n 1 2 2n 1.
………6 分

由(I)知 bn
1 an an 1
6
2
2
6
∴ f (x) 的最小正周期T 2 ; 2

2k
2x
3
2k (k z) ;解得
k
x
2
k (k z)
2
62
6
3

f (x) 的单调递减区间为[
k , 2
k ](k z) 。
6
3
………6 分
(2)由 f ( A) sin(2x ) 1 , A (0, ) ,得 A
根据直线参数方程中参数的几何意义知: |
MA |
|
MB
||
t1t2
|
7 4

·······10 分
23.(1)若不等式 f x m 1 有解,只需 f x 的最大值 f x m 1 即可. max
因为 x 1 x 2 x 1 x 2 3,所以 m 1 3 ,解得 2 m 4 ,

2019年高三数学上期中试卷(带答案)

2019年高三数学上期中试卷(带答案)

2019年高三数学上期中试卷(带答案)一、选择题1.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .1222.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .33.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-4.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( ) A .12B .10C.D.5.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .1406.20,{0,0x y z x y x y x y y k+≥=+-≤≤≤设其中实数、满足若z 的最大值为6,z 的最小值为( )A .0B .-1C .-2D .-37.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为( ).A .8-B .4-C .1D .28.若a ,b ,c ,d∈R,则下列说法正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a >b ,c >d ,则a+c >b+d C .若a >b >0,c >d >0,则c d a b> D .若a >b ,c >d ,则a ﹣c >b ﹣d9.已知x ,y 满足条件0{20x y xx y k ≥≤++≤(k 为常数),若目标函数z =x +3y 的最大值为8,则k =( ) A .-16B .-6C .-83D .610.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是( ) A .()8,10B .()22,10C .()22,10D .()10,811.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8B .-8C .1D .-112.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --< D .log log c b a a <二、填空题13.已知实数x ,y 满足不等式组203026x y x y x y -≤⎧⎪+-≥⎨⎪+≤⎩,则2z x y =-的最小值为__________.14.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.15.已知实数,x y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩,则目标函数2z x y =+的最大值为____.16.某校数学课外小组在坐标纸上为学校的一块空地设计植树方案为:第K 棵树种植在点(),k k k P x y 处,其中11x =,11y =,当2K ≥时,111215551255k k k k k k x x T T k k y y T T --⎧⎡⎤--⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩()T a 表示非负实数a 的整数部分,例如()2.62T =,()0.20T =.按此方案第2016棵树种植点的坐标应为_____________.17.已知三角形中,边上的高与边长相等,则的最大值是__________.18.我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢? 19.设等差数列{}na 的前n 项和为n S .若35a =,且1S ,5S ,7S 成等差数列,则数列{}n a 的通项公式n a =____.20.若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++L 等于__________.三、解答题21.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知()3cos cos 0a b C c B ++=. (1)求cos C 的值;(2)若6c =,ABC ∆的面积为32,求+a b 的值; 22.D 为ABC V 的边BC 的中点.222AB AC AD ===. (1)求BC 的长;(2)若ACB ∠的平分线交AB 于E ,求ACE S V .23.已知数列{}n a 的前n 项和()2*,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==(1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n T .24.在ΔABC 中,角,,A B C 所对的边分别为,,a b c ,且222sin sin sin sin sin A C B A C +=-.(1)求B 的大小;(2)设BAC ∠的平分线AD 交BC 于,23,1D AD BD ==,求sin BAC ∠的值.25.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?26.已知函数()[)22,1,x x af x x x++=∈+∞.(1)当12a =时,求函数()f x 的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21. 【详解】数列{a n }的首项a 1=1,数列{b n }为等比数列,且1n n na b a +=, ∴3212212a a b a b a a ==,=4312341233aa b b b a b b b a ∴=∴=,,=,, …101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=Q ,,()()() . 故选B . 【点睛】本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.2.B解析:B 【解析】 【分析】先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可. 【详解】直线20kx y -+=过定点()0,1, 作可行域如图所示,,由5218020x y x y +-=⎧⎨-=⎩,得()2,4B .当定点()0,1和B 点连接时,斜率最大,此时413202k -==-, 则k 的最大值为:32故选:B . 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.3.D解析:D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,故选D. 【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.4.A解析:A 【解析】由已知24356a a q q +=+=,∴22q =,∴25735()2612a a q a a +=+=⨯=,故选A.5.B解析:B【解析】 【分析】根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值. 【详解】设幂函数为()f x x α=,将()4,2代入得142,2αα==,所以()f x x =.所以1n a n n =++,所以11nn n a =+-,故1121n S n n n n =+-+--++-L 11n =+-,由1110n S n =+-=解得120n =,故选B. 【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.6.D解析:D 【解析】作出不等式对应的平面区域, 由z=x+y,得y=−x+z,平移直线y=−x+z ,由图象可知当直线y=−x+z 经过点A 时,直线y=−x+z 的截距最大, 此时z 最大为6.即x+y=6.经过点B 时,直线y=−x+z 的截距最小,此时z 最小. 由6{x y x y +=-=得A(3,3),∵直线y=k 过A , ∴k=3. 由3{20y k x y ==+=,解得B(−6,3).此时z 的最小值为z=−6+3=−3, 本题选择D 选项.点睛:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:b zyx a b =-+,通过求直线的截距z b的最值间接求出z 的最值.最优解在顶点或边界取得.7.D解析:D 【解析】作出不等式组20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,所表示的平面区域,如图所示,当0x ≥时,可行域为四边形OBCD 内部,目标函数可化为2z y x =-,即2y x z =+,平移直线2y x =可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,此时,max 2z =,当0x <时,可行域为三角形AOD ,目标函数可化为2z y x =+,即2y x z =-+,平移直线2y x =-可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,max 2z =, 综上,2z y x =-的最大值为2. 故选D .点睛:利用线性规划求最值的步骤: (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y b x a++型)和距离型(()()22x a y b +++型). (3)确定最优解:根据目标函数的类型,并结合可行域确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值. 注意解答本题时不要忽视斜率不存在的情形.8.B解析:B 【解析】 【分析】利用不等式的性质和通过举反例否定一个命题即可得出结果. 【详解】A 项,虽然41,12>->-,但是42->-不成立,所以不正确;B 项,利用不等式的同向可加性得知,其正确,所以成立,即B 正确;C 项,虽然320,210>>>>,但是3221>不成立,所以C 不正确; D 项,虽然41,23>>-,但是24>不成立,所以D 不正确; 故选B. 【点睛】该题考查的是有关正确命题的选择问题,涉及到的知识点有不等式的性质,对应的解题的方法是不正确的举出反例即可,属于简单题目.9.B解析:B 【解析】 【分析】 【详解】由z =x +3y 得y =-13x +3z,先作出0{x y x ≥≤的图象,如图所示,因为目标函数z =x +3y 的最大值为8,所以x +3y =8与直线y =x 的交点为C ,解得C (2,2),代入直线2x +y +k =0,得k =-6.10.B解析:B 【解析】 【分析】根据大边对大角定理知边长为1所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出a 的取值范围. 【详解】由题意知,边长为1所对的角不是最大角,则边长为3或a 所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到2222221313a a ⎧+>⎨+>⎩, 由于0a >,解得2210a <<C . 【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:A 为锐角cos 0A ⇔>;A 为直角cos 0A ⇔=;A 为钝角cos 0A ⇔<. 11.D 解析:D 【解析】 【分析】利用等差数列的通项公式,以及等比中项公式和前n 项和公式,准确运算,即可求解. 【详解】由题意,可得等差数列{}n a 的通项公式为11(1)(2)2(1)n a a n a n =+-⨯-=--, 所以112141,22,412S a S a S a ==-=-,因为1S ,2S ,4S 成等比数列,可得2111(22)(412)a a a -=-,解得11a =-.故选:D . 【点睛】本题主要考查了等差数列通项公式,以及等比中项公式与求和公式的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.12.D解析:D 【解析】 【分析】运用不等式对四个选项逐一分析 【详解】对于A ,1b c >>Q ,1b c ∴>,01a <<Q ,则1ab c ⎛⎫> ⎪⎝⎭,故错误 对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误对于C ,01a <<Q ,10a ∴-<,1b c >>Q ,则11a a c b -->,故错误 对于D ,1b c >>Q ,c b log a log a ∴<,故正确 故选D 【点睛】本题考查了不等式的性质,由未知数的范围确定结果,属于基础题.二、填空题13.-6【解析】由题得不等式组对应的平面区域为如图所示的△ABC 当直线经过点A(03)时直线的纵截距最大z 最小所以故填-6解析:-6 【解析】由题得不等式组对应的平面区域为如图所示的△ABC,当直线122zy x =-经过点A(0,3)时,直线的纵截距2z-最大,z 最小.所以min 023 6.z =-⨯=-故填-6. 14.【解析】【分析】根据命题否定为真结合二次函数图像列不等式解得结果【详解】因为命题是假命题所以为真所以【点睛】本题考查命题的否定以及一元二次不等式恒成立考查基本分析求解能力属基础题解析:1,2⎛⎫+∞ ⎪⎝⎭【解析】 【分析】根据命题否定为真,结合二次函数图像列不等式,解得结果 【详解】因为命题20001:,02p x R ax x ∃∈++≤是假命题,所以21,02x R ax x ∀∈++>为真 所以011202a a a >⎧∴>⎨-<⎩ 【点睛】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题.15.5【解析】【分析】作出不等式组对应的平面区域利用数形结合即可得到z 的最大值【详解】作出实数xy 满足对应的平面区域如图:由z =2x+y 得y =﹣2x+z 平移直线y =﹣2x+z 由图象可知当直线y =﹣2x+解析:5 【解析】 【分析】作出不等式组对应的平面区域,利用数形结合即可得到z 的最大值. 【详解】作出实数x ,y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩对应的平面区域,如图:由z =2x +y 得y =﹣2x +z ,平移直线y =﹣2x +z 由图象可知当直线y =﹣2x +z 经过点A 时,直线y =﹣2x +z 的截距最大.又x 10y --=与20x y -=联立得A (2,1) 此时z 最大,此时z 的最大值为z =2×2+1=5, 故答案为5. 【点睛】本题主要考查线性规划的应用,考查了z 的几何意义,利用数形结合是解决本题的关键.16.【解析】【分析】根据题意结合累加法求得与再代值计算即可【详解】由题意知故可得解得当时;当时故第棵树种植点的坐标应为故答案为:【点睛】本题考查数列新定义问题涉及累加法求通项公式属中档题解析:()4031,404. 【解析】 【分析】根据题意,结合累加法,求得k x 与k y ,再代值计算即可. 【详解】由题意知11x =,11y =211015555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,211055y y T T ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭322115555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,322155y y T T ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭433215555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,433255y y T T ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭L11215555k k k k x x T T ---⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,11255k k k k y y T T ---⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭故可得12121105555k k k x x x x x x k T T --⎛⎫⎛⎫+++=+++++-⎪ ⎪⎝⎭⎝⎭L L12121?10155k k k y y y y y y T T --⎛⎫⎛⎫+++=+++++- ⎪ ⎪⎝⎭⎝⎭L L解得155k k x k T -⎛⎫=+⎪⎝⎭,当2016k =时,2016201654034031x =+⨯=; 115k k y T -⎛⎫=+ ⎪⎝⎭,当2016k =时,20161403404y =+=. 故第2016棵树种植点的坐标应为()4031,404. 故答案为:()4031,404. 【点睛】本题考查数列新定义问题,涉及累加法求通项公式,属中档题.17.22【解析】试题分析:由题意得12bcsinA=12a2⇒bcsinA=a2因此ACAB+ABAC+BC2AB ⋅AC=bc+cb+a2bc=b2+c2+a2bc=a2+2bccosA+a2bc=2c 解析:【解析】试题分析:由题意得,因此,从而所求最大值是考点:正余弦定理、面积公式【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.18.9【解析】解:由题意可知:良马与驽马第天跑的路程都是等差数列设路程为由题意有:故:满足题意时数列的前n 项和为由等差数列前n 项和公式可得:解得:即二马相逢需9日相逢点睛:本题考查数列的实际应用题(1)解析:9【解析】解:由题意可知:良马与驽马第n 天跑的路程都是等差数列,设路程为{}{},n n a b , 由题意有:()()1111031131390,97197222n n a n n b n n ⎛⎫=+-⨯=+=+-⨯-=-+ ⎪⎝⎭, 故:111871222n n n c a b n =+=+ , 满足题意时,数列{}n c 的前n 项和为112522250n S =⨯= ,由等差数列前n 项和公式可得:11111871218712222222502n n ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⨯= , 解得:9n = .即二马相逢,需9日相逢 点睛:本题考查数列的实际应用题. (1)解决数列应用题的基本步骤是:①根据实际问题的要求,识别是等差数列还是等比数列,用数列表示问题的已知; ②根据等差数列和等比数列的知识以及实际问题的要求建立数学模型; ③求出数学模型,根据求解结果对实际问题作出结论. (2)数列应用题常见模型:①等差模型:如果增加(或减少)的量是一个固定量,该模型是等差数列模型,增加(或减少)的量就是公差;②等比模型:如果后一个量与前一个量的比是一个固定的数,该模型是等比数列模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n 与a n -1的递推关系,或前n 项和S n 与S n -1之间的递推关系.19.【解析】设等差数列的公差为d ∵且成等差数列∴解得 ∴ 解析:21n -【解析】设等差数列{}n a 的公差为d , ∵35a =,且1S ,5S ,7S 成等差数列,∴111125,7211020a d a a d a d +=⎧⎨++=+⎩解得11,2a d =⎧⎨=⎩ ∴21n a n =- 20.50【解析】由题意可得=填50解析:50 【解析】由题意可得51011912a a a a e ==,1220ln ln ln a a a ++⋅⋅⋅+=1050121920110ln()ln()ln 50a a a a a a e ===L ,填50.三、解答题21.(1)13-(2)3 【解析】 【分析】(1)根据()3cos cos 0a b C c B ++=,由正弦定理将边转化为角得()3sin sin cos sin cos 0++=A B C C B ,再利用两角和与差的三角函数化简得到()sin 3cos 10+=A C 求解.(2)由(1)知sin 3C =,根据ABC ∆的面积为4,得94ab =,再由余弦定理()22222cos 22cos c a b ab C a b ab ab C =+-=+--求解.【详解】(1)因为()3cos cos 0a b C c B ++=,由正弦定理得:()3sin sin cos sin cos 0++=A B C C B , 所以3sin cos sin cos sin cos 0++=A C B C C B , 所以()3sin cos sin 0++=A C B C , 所以()sin 3cos 10+=A C , 因为sin 0A ≠ , 所以1cos 3=-C .(2)由(1)知sin 3C =,因为ABC ∆的面积为4,所以1sin 24∆ABC S ab C ==,解得94ab = ,因为c =ABC ∆中,由余弦定理得:()22222cos 22cos c a b ab C a b ab ab C =+-=+--, 所以()29a b +=, 所以3a b +=. 【点睛】本题主要考查正弦定理、余弦定理及两角和与差的三角函数应用,还考查了运算求解的能力,属于中档题22.(1)=BC 2)20【解析】 【分析】(1)由题意知21AB AC AD ===,.设BD DC m ==,在ADB △与ADC V 中,由余弦定理即可解得m 的值.(2)在ACE △与BCE V 中,由正弦定理,角平分线的性质可得6AE AC BE BC ==.可求BE =,215AE =().利用余弦定理可求cos BAC ∠的值,根据同角三角函数基本关系式可求sin BAC ∠的值,利用三角形的面积公式即可计算得解. 【详解】解:(1)由题意知21AB AC AD ===,.设BD DC m ==.在ADB V 与ADC V 中,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.即:212cos 4m m ADB +-∠=,①212cos 1m m ADB ++∠=.②由①+②,得:232m =,所以m =BC = (2)在ACE V 与BCE V 中,由正弦定理得:,sin sin sin sin AE EC BE ECACE EAC BCE CBE==∠∠∠∠,由于ACE BCE ∠=∠,且sin sin BC ACBAC CBA=∠∠,所以6AE AC BE BC ==.所以BE =,所以215AE =().又222222121cos 22214AB AC BC BAC AB AC +-+-∠===-⋅⨯⨯,所以sin 4BAC ∠=,所以11211225ACE S AC AE sin BAC =⋅⋅∠=⨯⨯=V (). 【点睛】本题主要考查了余弦定理,正弦定理,角平分线的性质,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.23.(Ⅰ)21,n a n =+;(Ⅱ)8(41)3n n T -=. 【解析】 【分析】(Ⅰ)由题意可得1, 2.p q ==则22n S n n =+,利用通项公式与前n 项和的关系可得21,n a n =+(Ⅱ) 由(1)可知212n n b +=,结合等比数列前n 项和公式计算可得数列{}n b 的前n 项和()8413n n T -=.【详解】(Ⅰ)由14316424S p q S p q =+=⎧⎨=+=⎩ 得21, 2.2.n p q S n n ===+所以当1n =时,1 3.a =当2n ≥时,()()21121,n S n n -=-+-所以()()()221212121,n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦检验1 3.a =符合21,n a n =+ (Ⅱ) 由(1)可知21,n a n =+ 所以2122na n nb +==.设数列{}n b 的前n 项和为n T ,则:()()()1211212424242424444414214841.?3n nn n nnn T --=⨯+⨯++⨯+⨯=++++-=⨯--=L L所以数列{}n b 的前n 项和为()8413n n T -=.【点睛】本题主要考查数列通项公式与前n 项和公式的关系,等比数列前n 项和公式及其应用等知识,意在考查学生的转化能力和计算求解能力.24.(1)2π3B =;(2)8. 【解析】【试题分析】(1)先正弦定理将已知222sin sin sin sin sin A C B A C +=-化为边的关系,然后运用余弦定理求解;(2)先借助正弦定理求出1sin 4BAD ∠=,然后运用余弦二倍角求出7cos 8BAC ∠=,进而运用平方关系求出sin BAC ∠. 解:(1) 222sin sin sin sin sin A C B A C +=-, 222a c b ac ∴+=-,2221cos 222a cb ac B ac ac +-∴==-=-,()0,πB ∈Q , 2π3B ∴=.(2) 在ABD V 中,由正弦定理:sin sin AD BD B BAD=∠,得1sin 1sin 4BD B BAD AD ∠===, 217cos cos212sin 12168BAC BAD BAD ∴∠=∠=-∠=-⋅=,sin BAC ∴∠===. 25.(1)该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元/吨;(2)该单位每月不获利,需要国家每月至少补贴40000元才能不亏损. 【解析】 【分析】(1)根据已知得平均处理成本为yx,得到关系式后利用基本不等式求得平均处理成本的最小值,并根据基本不等式等号成立条件求得每月处理量;(2)获利()2130********10x S x y =-=---,根据二次函数图象可求得[]80000,40000S ∈--,可知不获利,同时求得国家至少补贴40000元.【详解】(1)由题意可知,二氧化碳每吨的平均处理成本为:1800002002002002y x x x =+-≥= 当且仅当1800002x x=,即400x =时取等号 ∴月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元/吨(2)不获利设该单位每月获利为S 元()222110010020080000113008000030035000222S x y x x x x x x ⎛⎫=-=--+ ⎪=-+-=---⎝⎭[]400,600x ∈Q []80000,40000S ∴∈--故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损 【点睛】本题考查构造函数模型解决实际问题,主要涉及的内容是利用基本不等式求解函数的最值、利用二次函数图象求解最值的问题. 26.(1)72(2)3a >- 【解析】 【分析】(1)由题得()122f x x x=++,再利用对勾函数的性质得到函数()f x 的最小值;(2)等价于22y x x a =++>0,再利用函数的单调性求函数的最小值即得解. 【详解】 (1)当12a =时,()122f x x x =++, ∵()f x 在区间[)1,+∞上为增函数,∴由对勾函数的性质知函数()f x 在区间[)1,+∞上的最小值为()712f =. (2)在区间[)1,+∞上,()220x x af x x++=>恒成立220x x a ⇔++>恒成立.设22y x x a =++,[)1,x ∈+∞,因为()222+a=11y x x x a =+++-在[)1,+∞上递增, ∴当1x =时,min 3y a =+,于是,当且仅当min 30y a =+>时,函数()0f x >恒成立, 故3a >-. 【点睛】本题主要考查对勾函数的性质,考查不等式的恒成立问题和二次函数的性质,意在考查学生对这些知识的理解掌握水平.。

江苏省无锡市2019届高三上学期期中考试数学试题(解析版)

江苏省无锡市2019届高三上学期期中考试数学试题(解析版)

无锡市2019届高三上学期期中考试数学试题一、填空题1.已知全集,集合则【答案】{0,2,4}【解析】【分析】根据集合补集与并集的定义求结果.【详解】.【点睛】本题考查集合补集与并集概念,考查基本求解能力,属基础题.2.函数的定义域为_______.【答案】(-∞,2)【解析】【分析】根据分母不为零以及偶次根式下被开方数非负列不等式,解得结果.【详解】由题意得,即定义域为(-∞,2).【点睛】本题考查函数定义域,考查基本求解能力,属基础题.3.已知则实数【答案】【解析】【分析】根据指数与对数运算法则求解【详解】因为所以由得【点睛】本题考查指数与对数方程,考查基本求解能力,属基础题.4.设函数若则【答案】2【解析】【分析】根据关系求结果.【详解】因为,,所以,因为则【点睛】本题考查函数解析式,考查基本求解能力,属基础题.5.已知向量的夹角为,则的值为________.【答案】7【解析】【分析】根据向量数量积定义以及向量模的定义求结果.【详解】因为向量的夹角为,所以,因此【点睛】本题考查向量数量积以及向量模,考查基本求解能力,属基础题.6.若实数满足条件则的最大值为________.【答案】4【解析】【分析】先作可行域,再根据目标函数所表示的直线,结合图象确定最大值取法,即得结果.【详解】先作可行域,如图,则直线过点A(1,2)时取最大值4.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.7.已知定义在区间上的函数的最大值为4,最小值为,则【答案】-【解析】【分析】根据正弦函数性质确定最值取法,再解方程组得a,b,即得结果.【详解】因为,,所以,,从而【点睛】本题考查正弦函数性质,考查基本求解能力,属基础题.8.已知函数在上单调递增,则实数的取值范围为________.【答案】(0,1]【解析】【分析】根据分段函数单调性列不等式,解得结果.【详解】因为函数在上单调递增,所以【点睛】分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.9.已知则的值为_________.【答案】【解析】【分析】根据诱导公式以及二倍角公式化简求值.【详解】令,则,【点睛】本题考查诱导公式以及二倍角余弦公式,考查基本求解能力,属基础题.10.《九章算术》中研究盈不足问题时,有一道题是“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”题意即为“有厚墙五尺,两只老鼠从墙的两边分别打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半,问几天后两鼠相遇?” 荆州古城墙某处厚33尺,两硕鼠按上述方式打洞,相遇时是第____天.(用整数作答)【答案】6【解析】由题意得11.在中,点是线段上任意一点,是线段的中点,且,则【答案】-【解析】【分析】根据向量表示得,再根据向量分解唯一性得,即得结果.【详解】因为是线段的中点,所以,因为点是线段上任意一点,所以可设,从而因为,所以-【点睛】本题考查向量表示,考查基本求解能力,属基础题.12.设为正实数,且,则的最小值为________.【答案】27【解析】【分析】先根据条件解得x,再化简,最后利用基本不等式求最值.【详解】因为,所以因此当且仅当时取等号,即的最小值为27.【点睛】本题考查基本不等式求最值,考查基本分析求解能力,属中档题.13.定义为个正数的“均倒数”.若已知数列的前项的“均倒数”为又,则【答案】【解析】【分析】先根据定义得数列的前项的和,再根据和项与通项关系得,即得,最后根据裂项相减法求结果.【详解】因为数列的前项的“均倒数”为,所以,当时,作差得,因为,所以,,+=【点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如或.14.已知函数在上的零点为,函数在上的零点为则的范围为_________.【答案】(1,)【解析】【分析】先求,并确定范围,进而确定,最后利用导数求单调性,根据单调性确定取值范围.【详解】由得,因为,所以,因此,因为从而,因此,令,,则,所以(1,).【点睛】求范围或值域问题,一般利用条件转化为对应一元函数问题,即通过题意将多元问题转化为一元问题,再根据函数形式,选用方法求值域,如二次型利用对称轴与定义区间位置关系,分式型可以利用基本不等式,复杂性或复合型可以利用导数先研究单调性,再根据单调性确定值域.二、解答题15.已知(1)若与垂直,求实数的值;(2)三点构成三角形,求实数的取值范围.【答案】(1) k=-7 (2) (-∞,5)U(5,+∞)【解析】【分析】(1)根据向量垂直坐标表示列式,解得结果,(2)根据与不共线,列不等式,解得结果.【详解】(1)因为与垂直,所以,•=0,即(5,-5)•(-6,k+1)=0即:-30-5(k+1)=0,解得:k=-7(2)依题意,得A,B,C三点不共线,即与不共线,即5(k+1)≠30,解得:k≠5所以,实数的取值范围(-∞,5)U(5,+∞)【点睛】本题考查向量垂直与平行,考查基本求解能力,属基础题.16.在四棱锥中,已知分别是的中点,若是平行四边形,(1)求证:平面(2)若平面,求证:【答案】(1)见解析(2)见解析【解析】【分析】(1)取PA中点E,根据平几知识可得四边形BMNE为平行四边形,再根据线面平行判定定理得结论,(2)先根据线面垂直判定定理得AC⊥平面PAB,即得AC⊥BE,再根据平行关系得结果.【详解】(1)取PA中点E,连结BE,NE因为N为PD中点,所以,EN∥AD,且EN=AD,又M为BC中点,是平行四边形,所以BM∥AD,且BM=AD,所以,BM∥EN且BM=EN所以,四边形BMNE为平行四边形,所以,MN∥BE,而MN平面PAB,BE平面PAB所以,MN∥平面PAB。

江苏省盐城市2019届高三上学期期中考试数学试题(解析版)

江苏省盐城市2019届高三上学期期中考试数学试题(解析版)

盐城市2019届高三年级第一学期期中考试数学试题(总分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.若全集U ={1,2,3},A ={1,2},则∁U A = . 考点:集合的运算。

答案:{}3解析:∁U A 就是在全集U 中找出集合A 没有的元素,所以,∁U A ={}3 2.函数ln y x =的定义域为 . 考点:二次根式的定义,对数函数的性质。

答案:[)1,+∞解析:由二次根式的定义,得:ln x ≥0,所以,x ≥1,定义域为[)1,+∞3.若钝角α的始边与x 轴的非负半轴重合,终边与单位圆交于点P(m ,32),则tan α= .考点:三角函数的概念。

答案:3-解析:点P 在单位圆上,所以,223()12m +=,因为α是钝角,所以,m =-12,tan yxα==3- 4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =7,则角C = . 考点:余弦定理。

答案:23π 解析:由余弦定理,得:cosC =2222a b c ab+-=9254912352+-=-⨯⨯,所以,C =23π5.已知向量(1m =,1)-,(cos n α=,sin )α,其中[0α∈,]π,若m ∥n ,则α= . 考点:平面数量的数量积,平行(共线)向量的性质。

答案:34π解析:因为m ∥n ,所以,sin α=-cos α即tan α=-1,故α=34π 6.设等差数列{}n a 的前n 项和为n S ,若36a =,749S =,则公差d = . 考点:等差数列的通项公式、前n 项和公式,等差数列的性质。

答案:1 解析:17747()7492a a S a +===,所以,4a =7, 公差d =7-6=1 7.在平面直角坐标系中,曲线21x y e x =++在x =0处的切线方程是 . 考点:导数及其应用,直线方程。

2019年高三数学上期中试题含答案(3)

2019年高三数学上期中试题含答案(3)

2019年高三数学上期中试题含答案(3)一、选择题1.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭2.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形3.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .1224.下列函数中,y 的最小值为4的是( )A .4y x x=+B.2y =C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 5.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .16.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5B .25CD.7.已知数列{a n } 满足a 1=1,且111()(233n n n a a n -=+≥,且n ∈N*),则数列{a n }的通项公式为( )A .32nn a n =+B .23n n n a +=C .a n =n+2D .a n =( n+2)·3n8.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )A .7B .5C .5-D .7-9.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2-B .(][),42,-∞-+∞UC .()2,4-D .(][),24,-∞-⋃+∞10.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为和,第一排和最后一排的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)A .110B .310C .12D .71011.若不等式1221m x x≤+-在()0,1x ∈时恒成立,则实数m 的最大值为( ) A .9B .92C .5D .5212.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为( ) A .134B .135C .136D .137二、填空题13.若数列{}n a 满足11a =,()()11132nn n n a a -+-+=⋅ ()*n N ∈,数列{}n b 的通项公式()()112121n n nn a b ++=-- ,则数列{}n b 的前10项和10S =___________14.在ABC V 中,角A B C ,,所对的边分别为,,a b c ,且满足222sin sin sin sin sin A B C A B +=+,若ABC V 的面积为3,则ab =__15.已知各项为正数的等比数列{}n a 满足7652a a a =+,若存在两项,m n a a 使得122m n a a a ⋅=,则14m n+的最小值为__________. 16.已知三角形中,边上的高与边长相等,则的最大值是__________.17.如图所示,位于A 处的信息中心获悉:在其正东方向40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ=______________.18.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠∠==︒,120ACB ∠=︒,则A ,B 两点的距离为________.19.数列{}n b 中,121,5b b ==且*21()n n n b b b n N ++=-∈,则2016b =___________.20.若两个正实数,x y 满足141x y +=,且不等式234y x m m +<-有解,则实数m 的取值范围是____________ .三、解答题21.在ABC V 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知()sin sin sin B C m A m +=∈R ,且240a bc -=.(1)当52,4a m ==时,求,b c 的值; (2)若角为锐角,求m 的取值范围.22.设ABC ∆的内角A B C ,,所对的边分别为a b c ,,,已知cos (2)cos a B c b A =-.(Ⅰ)求角A 的大小;(Ⅱ)若4a =,BC 边上的中线22AM =ABC ∆的面积. 23.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =. (1)求数列{}n a 的通项公式;(2)若11n n n b a a +=,求数列{}n b 的前n 项和n T . 24.ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos cos a C c A a +=. (1)求证:A B =; (2)若6A π=,ABC V,求ABC V 的周长.25.已知等差数列{}n a 中,235220a a a ++=,且前10项和10100S =. (1)求数列{}n a 的通项公式; (2)若11n n n b a a +=,求数列{}n b 的前n 项和n T . 26.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =. (1)求数列{}n a 的通项公式;(2)若6512n n S a n >--,求n 的取值范围; (3)若11n n n b a a +=,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】设等比数列{}n a 的公比为q ,则34118a q a ==,解得12q =, ∴112n n a -=, ∴1121111222n n n n n a a +--=⨯=, ∴数列1{}n n a a +是首项为12,公比为14的等比数列,∴1223111(1)21224(1)134314n n n n a a a a a a +-++⋅⋅⋅+==-<-,∴23k ≥.故k 的取值范围是2[,)3+∞.选D . 2.B解析:B 【解析】 【分析】先由ABC ∆的三个内角, , A B C 成等差数列,得出2,33B AC ππ=+=,又因为sin A 、sin B 、sin C 成等比数列,所以23sin sin sin 4B AC =⋅=,整理计算即可得出答案.【详解】因为ABC ∆的三个内角, , A B C 成等差数列,所以2,33B AC ππ=+=, 又因为sin A 、sin B 、sin C 成等比数列, 所以23sin sin sin 4B AC =⋅= 所以222sin sin sin sin cos sin cos333A A A A A πππ⎛⎫⎛⎫⋅-=⋅-⎪ ⎪⎝⎭⎝⎭21111132sin 2cos 2sin 22442344A A A A A π⎛⎫=+=-+=-+= ⎪⎝⎭ 即sin 213A π⎛⎫-= ⎪⎝⎭又因为203A π<< 所以3A π=故选B 【点睛】本题考查数列与三角函数的综合,关键在于求得2,33B AC ππ=+=,再利用三角公式转化,属于中档题.3.B解析:B 【解析】 【分析】由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21. 【详解】数列{a n }的首项a 1=1,数列{b n }为等比数列,且1n n na b a +=, ∴3212212a ab a b a a ==,=4312341233a a b b b a b b b a ∴=∴=,,=,,…101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=Q ,,()()() . 故选B . 【点睛】本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.4.C解析:C 【解析】 【分析】由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】选项A 错误,x Q 可能为负数,没有最小值; 选项B错误,化简可得2y ⎫=,=,即21x =-,显然没有实数满足21x =-;选项D 错误,由基本不等式可得取等号的条件为sin 2x =, 但由三角函数的值域可知sin 1x ≤; 选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4xxy e e -=+取最小值4,故选C.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).5.A解析:A 【解析】 【分析】根据条件可得出2x >,212y x =+-,从而33222(2)52x y x x =+-++-,再根据基本不等式可得出3123x y ≤+,则32x y +的最大值为13.【详解】0x Q >,0y >,20x y xy +-=, 2122x y x x ∴==+--,0x >, 333222212(2)522x y x x x x ∴==+++-++--,212(2)54(2)5922x x x x -++≥-⋅+=--Q , 当且仅当122x x -=-,即3x =时取等号, 31232(2)52x x ∴≤-++-,即3123x y ≤+,32x y ∴+的最大值为13. 故选:A. 【点睛】本题考查了利用基本不等式求最值的方法,注意说明等号成立的条件,考查了计算和推理能力,属于中档题.6.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得42c =. 由余弦定理可得:()222222142214252b ac accosB =+-=+-⨯⨯⨯=. 7.B解析:B 【解析】试题分析:由题可知,将111()(233n n n a a n -=+≥,两边同时除以,得出,运用累加法,解得,整理得23n nn a +=; 考点:累加法求数列通项公式8.D解析:D 【解析】 【分析】由条件可得47a a ,的值,进而由27104a a a =和2417a a a =可得解.【详解】56474747822,4a a a a a a a a ==-+=∴=-=Q 或474,2a a ==-.由等比数列性质可知2274101478,1a a a a a a ==-==或2274101471,8a a a a a a ====-1107a a ∴+=-故选D. 【点睛】本题主要考查了等比数列的下标的性质,属于中档题.9.A解析:A 【解析】 【分析】若222x y m m +>+恒成立,则2x y +的最小值大于22m m +,利用均值定理及“1”的代换求得2x y +的最小值,进而求解即可. 【详解】 由题,因为211x y+=,0x >,0y >, 所以()214422242448x y x yx y x y y x y x ⎛⎫++=+++≥+⋅=+=⎪⎝⎭,当且仅当4x y y x =,即4x =,2y =时等号成立,因为222x y m m +>+恒成立,则228m m +<,即2280m m +-<,解得42m -<<, 故选:A 【点睛】本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.10.B解析:B 【解析】试题分析: 如下图:由已知,在ABC ∆中,105,45,56ABC ACB BC ∠=∠==o o ,从而可得:30BAC ∠=o 由正弦定理,得:56sin 45AB =o 103AB ∴=那么在Rt ADB ∆中,60ABD o ∠=,3sin 60103152AD AB ∴===o , 即旗杆高度为15米,由3155010÷=,知:升旗手升旗的速度应为310(米 /秒). 故选B .考点:解三角形在实际问题中的应用.11.B解析:B 【解析】 【分析】设f (x )1221x x=+-,根据形式将其化为f (x )()1152221x x x x-=++-.利用基本不等式求最值,可得当且仅当x 13=时()11221x x x x-+-的最小值为2,得到f (x )的最小值为f(13)92=,再由题中不等式恒成立可知m ≤(1221x x+-)min ,由此可得实数m 的最大值. 【详解】解:设f (x )11222211x x x x=+=+--(0<x <1)而1221x x+=-[x +(1﹣x )](1221x x +-)()1152221x x x x -=++- ∵x ∈(0,1),得x >0且1﹣x >0∴()11221x x x x -+≥-=2, 当且仅当()112211x x x x -==-,即x 13=时()11221x x x x -+-的最小值为2 ∴f (x )1221x x =+-的最小值为f (13)92= 而不等式m 1221x x ≤+-当x ∈(0,1)时恒成立,即m ≤(1221x x+-)min 因此,可得实数m 的最大值为92故选:B . 【点睛】本题给出关于x 的不等式恒成立,求参数m 的取值范围.着重考查了利用基本不等式求函数的最值和不等式恒成立问题的处理等知识,属于中档题.12.B解析:B 【解析】 【分析】由题意得出1514n a n =-,求出15142019n a n =-≤,即可得出数列的项数. 【详解】因为能被3除余1且被5除余1的数就是能被15整除余1的数,故1514n a n =-.由15142019n a n =-≤得135n ≤,故此数列的项数为135,故答案为B.【点睛】本题主要考查阅读能力及建模能力、转化与化归思想及等差数列的通项公式及数学的转化与化归思想.属于中等题.二、填空题13.【解析】【分析】对于当n=1代入得-4依次得发现规律利用求出【详解】由当n=1代入得-4依次得发现规律利用得b=-求出故答案为【点睛】本题考查的是在数列中给了递推公式不好求通项公式时可以列举几项再发 解析:20462047-【解析】 【分析】 对于()()11132nn n n a a -+-+=⋅,当n=1,代入得2a =-4,依次得345a =10a =-22a =46...,,发现规律, 利用()()112121n n nn a b ++=--,求出10S .【详解】 由()()11132nn n n a a -+-+=⋅,当n=1,代入得2a =-4,依次得2345634567a =32-2a =-32+2a =32-2a =-32+2a =32-2...⨯⨯⨯⨯⨯,,,,发现规律, 利用()()112121n n nn a b ++=--,得b 1=-43,234510224694b =b =-b =b =-...3771515313163⨯⨯⨯⨯,,, ,求出1020462047S =-. 故答案为20462047- 【点睛】本题考查的是在数列中,给了递推公式不好求通项公式时,可以列举几项再发现规律,求出题中要求的前10项和,属于中档题.14.4【解析】【分析】由正弦定理化简已知等式可得由余弦定理可得根据同角三角函数基本关系式可得进而利用三角形面积公式即可计算得解【详解】由正弦定理可得即:由余弦定理可得可得的面积为可得解得故答案为4【点睛解析:4 【解析】 【分析】由正弦定理化简已知等式可得222a b c ab +-=,由余弦定理可得cos C ,根据同角三角函数基本关系式可得sin C ,进而利用三角形面积公式即可计算得解. 【详解】222sin sin sin sin sin A B C A B +=+Q ,∴由正弦定理可得,222ab c a b +=+,即:222a b c ab +-=,∴由余弦定理可得,2221cos 222a b c ab C ab ab +-===,可得sin C ==,ABC QV 1sin 2ab C ==,∴解得4ab =,故答案为4. 【点睛】本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的综合应用,属于中档题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.15.【解析】【分析】由求得由可得结合为正整数讨论四种情况可得的最小值【详解】设等比数列的公比为由可得到由于所以解得或因为各项全为正所以由于存在两项使得所以可得当时;当时;当时;当时;综上可得的最小值为故 解析:116【解析】 【分析】由7652a a a =+求得2q =1=可得5m n +=,结合,m n 为正整数,讨论四种情况可得14m n+的最小值. 【详解】设等比数列的公比为q ,由7652a a a =+, 可得到6662a a q a q=+, 由于0n a >,所以21q q=+,解得2q =或1q =-. 因为各项全为正,所以2q =.由于存在两项,m n a a 1=,所以,218m n a a a ⋅=,112211188m n m n a q a q a q --+-⋅=∴=,28m n q +-∴=,可得5m n +=.当1,4m n ==时,142m n+=; 当2,3m n ==时,14116m n +=; 当3,2m n ==时,1473m n +=; 当4,1m n ==时,14174m n +=; 综上可得 14m n +的最小值为116, 故答案为116.【点睛】本题主要考查等比数列的通项公式和性质,考查了分类讨论思想的应用,属于中档题. 分类讨论思想的常见类型⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的; ⑵问题中的条件是分类给出的;⑶解题过程不能统一叙述,必须分类讨论的;⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.16.22【解析】试题分析:由题意得12bcsinA=12a2⇒bcsinA=a2因此ACAB+ABAC+BC2AB ⋅AC=bc+cb+a2bc=b2+c2+a2bc=a2+2bccosA+a2bc=2c 解析:【解析】试题分析:由题意得,因此,从而所求最大值是考点:正余弦定理、面积公式【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.17.【解析】【分析】在中由余弦定理求得再由正弦定理求得最后利用两角和的余弦公式即可求解的值【详解】在中海里海里由余弦定理可得所以海里由正弦定理可得因为可知为锐角所以所以【点睛】本题主要考查了解三角形实际 解析:2114【解析】 【分析】在ABC ∆中,由余弦定理,求得BC ,再由正弦定理,求得sin ,sin ACB BAC ∠∠,最后利用两角和的余弦公式,即可求解cos θ的值. 【详解】在ABC ∆中,40AB =海里,20AC =海里,120BAC ∠=o , 由余弦定理可得2222cos1202800BC AB AC AB AC =+-⋅=o ,所以BC =,由正弦定理可得sin sin 7AB ACB BAC BC ∠=⋅∠=, 因为120BAC ∠=o ,可知ACB ∠为锐角,所以cos ACB ∠=所以cos cos(30)cos cos30sin sin 3014ACB ACB ACB θ=∠+=∠-∠=o o o . 【点睛】本题主要考查了解三角形实际问题,解答中需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,合理使用正、余弦定理是解答的关键,其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化;第三步:列方程,求结果.18.【解析】【分析】△ACD 中求出AC△ABD 中求出BC△ABC 中利用余弦定理可得结果【详解】解:由已知△A CD 中∠ACD=15°∠ADC=150°∴∠DAC=15°由正弦定理得△BCD 中∠BDC=15解析:【解析】 【分析】△ACD 中求出AC ,△ABD 中求出BC ,△ABC 中利用余弦定理可得结果. 【详解】解:由已知,△ACD 中,∠ACD =15°,∠ADC =150°,∴∠DAC=15°由正弦定理得80sin15040sin154AC ===oo,△BCD 中,∠BDC =15°,∠BCD =135°, ∴∠DBC=30°, 由正弦定理,CD BCsin CBD sin BDC=∠∠,所以BC 80sin15160154012CD sin BDC sin sin CBD⋅∠⨯︒===︒=∠;△ABC 中,由余弦定理,AB 2=AC 2+BC 2﹣2AC •BC •cos ∠ACB=((08116008160216002-+++⨯⨯⨯16001616004160020=⨯+⨯=⨯解得:AB =则两目标A ,B 间的距离为.故答案为. 【点睛】本题主要考查了正弦、余弦定理在解三角形中的应用问题,也考查了数形结合思想和转化思想,是中档题.19.-4【解析】【分析】根据已知可得即可求解【详解】且故答案为:-4【点睛】本题考查数列的递推关系以及周期数列考查计算求解能力属于中档题解析:-4 【解析】 【分析】根据已知可得6n n b b +=,即可求解. 【详解】121,5b b ==且*21()n n n b b b n N ++=-∈, 321211n n n n n n n n b b b b b b b b ++++++=-==-=--, 63,20166336n n n b b b ++=-==⨯, 201663214b b b b b ∴==-=-+=-.故答案为:-4 【点睛】本题考查数列的递推关系以及周期数列,考查计算求解能力,属于中档题.20.【解析】试题分析:因为不等式有解所以因为且所以当且仅当即时等号是成立的所以所以即解得或考点:不等式的有解问题和基本不等式的求最值【方法点晴】本题主要考查了基本不等式在最值中的应用不等式的有解问题在应 解析:()(),14,-∞-⋃+∞【解析】试题分析:因为不等式234y x m m +<-有解,所以2min ()34yx m m +<-,因为0,0x y >>,且141x y+=,所以144()()224444y y x y x x x y y x +=++=++≥=,当且仅当44x y y x =,即2,8x y ==时,等号是成立的,所以min ()44yx +=,所以234m m ->,即(1)(4)0m m +->,解得1m <-或4m >.考点:不等式的有解问题和基本不等式的求最值.【方法点晴】本题主要考查了基本不等式在最值中的应用,不等式的有解问题,在应用基本不等式求解最值时,呀注意“一正、二定、三相等”的判断,运用基本不等式解题的关键是寻找和为定值或是积为定值,难点在于如何合理正确的构造出定值,对于不等式的有解问题一般选用参数分离法,转化为函数的最值或借助数形结合法求解,属于中档试题.三、解答题21.(1)2 12b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩; (2)62m <<. 【解析】试题分析: 本题考查正弦定理和余弦定理;(1)先利用正弦定理将角角关系转化为边边关系,再通过解方程组求解;(2)利用余弦定理进行求解. 试题解析:由题意得2,40b c ma a bc +=-=. (1)当52,4a m ==时,5,12b c bc +==, 解得212b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩; (2)()222222cos 22b c bc a b c a A bc bc+--+-===()222222232a ma a m a --=-, ∵为锐角,∴()2cos 230,1A m =-∈,∴2322m <<,又由b c ma +=可得0m >,62m << 点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 22.(Ⅰ)3A π=(Ⅱ)S 23=【解析】 【分析】(Ⅰ)由正弦定理化简得到答案.(Ⅱ)1()2AM AB AC =+u u u u r u u u r u u u r,平方,代入公式利用余弦定理得到答案.【详解】(Ⅰ)因为()acos 2cos B c b A =-,由正弦定理得()sin cos cos 2sin sin A B A C B =-,即sin cos cos sin 2sin cos A B A B C A +=,所以()sin 2sinccos A B A +=, 因为()sin sin 0A B C +=≠,所以1cos 2A =, 又因为(0,)A π∈,所以3A π=.(Ⅱ)由M 是BC 中点,得1()2AM AB AC =+u u u u r u u u r u u u r,即2221(2)4AM AB AC AB AC =++⋅u u u u r u u u r u u u r u u u r u u u r,所以2232c b bc ++=,①又根据余弦定理,有2222222cos 416a b c bc A b c bc =+-=+-==,② 联立①②,得8bc =. 所以ABC ∆的面积1S bcsinA 2== 【点睛】本题考查了正弦定理,余弦定理,面积公式,向量加减,综合性强,意在考查学生的综合应用能力.23.(1)61n a n =-;(2)1116565n T n ⎛⎫=- ⎪+⎝⎭【解析】 【分析】(1)根据等差数列通项公式及前n 项和公式求得首项和公差,即可得到数列{}n a 的通项公式;(2)将n b 化简后利用列项求和法即可求得数列{}n b 的前n 项和n T . 【详解】(1)(方法一)由题意得217111721161a a d S a d =+=⎧⎨=+=⎩,解得156a d =⎧⎨=⎩,故61n a n =-.(方法二)由747161S a ==得423a =, 因为42642a a d -==-,从而15a =, 故61n a n =-.(2)因为111111(61)(65)66165n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭, 所以121111111651111176165n n T b b b n n ⎛⎫=+++=-+-++- ⎪-+⎝⎭L L 1116565n ⎛⎫=- ⎪+⎝⎭. 【点睛】本题主要考查的是数列的通项公式的基本量求法,以及等差数列通项公式、前n 项和公式的求法,同时考查的是裂项求和,是中档题. 24.(1)见解析(2)4+ 【解析】 【分析】(1)用余弦定理将条件cos cos a C c A a +=化为22222222a b c b c a a c a ab bc+-+-⋅+⋅=,然后化简即可(2)由6A π=得23C π=,由ABC Va b =可推出2a b ==,然后用余弦定理求出c 即可. 【详解】(1)因为cos cos a C c A a +=由余弦定理得22222222a b c b c a a c a ab bc+-+-⋅+⋅=,整理得222b ab =, 所以a b =, 所以A B =. (2)因为6A π=,由(1)知2()3C A B π=π-+=, 又ABC V所以1sin 2ab C = 又a b =,所以212= 所以2a b ==.由余弦定理,得22212cos 14222122c a b ab C ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以c =,所以ABC V的周长为4+. 【点睛】本题考查的是正余弦定理及三角形的面积公式,较为典型. 25.(1)a n =2n -1(2)T n =21nn + 【解析】 【分析】(1)本题首先可以对235220a a a ++=化简得到14820a d +=,再对10100S =化简得到11045100a d +=,最后两式联立,解出1d a 、的值,得出结果;(2)可通过裂项相消法化简求出结果. 【详解】(1)由已知得235111248201091010451002a a a a d a d a d ++=+=⎧⎪⎨⨯+=+=⎪⎩, 解得11d 2a ==,,所以{}n a 的通项公式为()12121n a n n =+-=-, (2)()()1111212122121n b n n n n ⎛⎫==- ⎪-⋅+-+⎝⎭,所以数列{}n b 的前n 项和11111112335212121n nT n n n ⎛⎫=-+-++-= ⎪-++⎝⎭L . 【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误. 26.(1)61n a n =-;(2)9n ≥且*n N ∈;(3)5(65)n nT n =+.【解析】 【分析】(1)首先根据题意列出方程217111721161a a d S a d =+=⎧⎨=+=⎩,解方程组再求n a 即可.(2)首先计算n S ,再解不等式6512n n S a n >--即可.(3)首先得到11166(1)65n b n n =--+,再利用裂项法即可得到前n 项和n T 的值. 【详解】(1)由题意得217111721161a a d S a d =+=⎧⎨=+=⎩,解得156a d =⎧⎨=⎩所以61n a n =-. (2)由(1)得2(1)56322n n n S n n n -=+⨯=+, 因为6512n n S a n >--,即2329180n n -+≥. 解得23n ≤或9n ≥, 因为1n ≥且*n ∈N ,所以n 的取值范围为9n ≥且*n ∈N . (3)因为11111611()()6(615)566n n n b a a n n n n +===--+-+, 所以1111111[()()()]651111176165n T n n =-+-+⋯+--+ 1116565(5)65)(n n n -==++ 【点睛】本题第一问考查等差数列通项公式的求法,第二问考查等差数列前n 项和n S 的求法,第三问考查裂项法求和,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019学年度第一学期期中模拟考试高 三 数 学 试 卷一、填空题(本大题共14小题,每小题5分,计70分) 1.已知集合A ={x |x 2<3x +4,x ∈R },则A ∩Z=. 2.若复数iia 212+-(i 是虚数单位)是纯虚数,则实数a =. 3.若cos sin z i θθ=+(i 为虚数单位),则()+22k k Z πθπ=∈是21z =-的条件.4. 在约束条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1下,则x -12+y 2的最小值为__________.5.若将函数x x f ωsin )(=的图象向右平移6π个单位得到)34sin()(πω-=x x f 的图象,则|ω|的最小值为_6.若直线kx y =是曲线x x x y +-=23的切线,则k 的值为 . 7.在ABC ∆中,7AC =60B =︒,BC 边上的高33h =BC =.8.已知圆C 的圆心在第一象限,圆C 与x 轴交于A (1,0),B (3,0)两点,且与直线x -y +1=0相切,则圆C 的半径为.9.在平面直角坐标系xOy 中,已知焦点为F 的抛物线y 2=2x 上的点P 到坐标原点O 的距离为15,则线段PF 的长为.10.在直角△ABC 中,∠C = 90°,∠A = 30°,BC =1,D 为斜边AB 的中点,则AB CD =11.已知直线x =a (0<a <π2)与函数f (x )=sin x 和函数g (x )=cos x 的图象分别交于M ,N两点,若MN =15,则线段MN 的中点纵坐标为.12.已知函数f (x )=2x 2+m 的图象与函数g (x )=ln|x |的图象有四个交点,则实数m 的取值围为. 13.如图,椭圆,椭圆C 的左、右焦点分别为12,F F 过椭圆上一点P 和原点O 作直线l 交圆O 于,M N 两点,若12||||6PF PF ⋅=,则||||PM PN ⋅的值为14.若不等式|ax 3-ln x |≥1对任意x ∈(0,1]都成立,则实数a 的取值围是.二、解答题(本大题共6小题,计90分)15、已知m R ∈,对p :1x 和2x 是方程220x ax --=的两个根,不等式125m x x -≤-对任意实数[]1,2a ∈恒成立;q :函数24()323f x x mx m =+++有两个零点,求使“p 且q ”为真命题的实数的取值围。

16.已知△ABC 的面积为S ,且AB AC S ⋅=. (1)求tan2A 的值;(2)若4B π=,3CB CA -=,求△ABC 的面积S .17.已知0a >,函数3()(f x ax bx x =-∈R)图象上相异两点,A B 处的切线分别为12,l l ,且1l ∥2l .(1)判断函数()f x 的奇偶性;并判断,A B 是否关于原点对称; (2)若直线12,l l 都与AB 垂直,数b 的取值围.18、如图,某小区有一矩形地块C OAB ,其中C 2O =,3OA =,单位:百米.已知F OE 是一个游泳池,计划在地块C OAB 修一条与池边F E 相切于点M 的直路l (宽度不计),交线段C O 于点D ,交线段OA 于点N .现以点O 为坐标原点,以线段C O 所在直线为x 轴,建立平面直角坐标系,若池边F E 满足函数22y x =-+(02x ≤≤)的图象.若点M 到y 轴距离记为t .()1当23t =时,求直路l 所在的直线方程; ()2当t 为何值时,地块C OAB 在直路l 不含泳池那侧的面积取到最大,最大值时多少?19.在平面直角坐标系xoy 中,椭圆)0(1:2222>>=+b a b y a x C 的离心率为21,右焦点)0,1(F ,点P 在椭圆C 上,且在第一象限,直线PQ 与圆222:b y x O =+相切于点M .(1)求椭圆C 的方程;(2)若43=⨯PF PM ,求点P(3)若OQ OP ⊥,求点Q 的纵坐标t 的值。

x20.已知函数()ln 1a f x x x =+-,其中a 为参数,2221()ln 2x g x e x e x e x =⋅+-, (1)若1a =,求函数()f x 的单调区间; (2)当[]1,x e ∈时,求函数()f x 的最小值;(3)函数()g x 是否存在垂直于y 轴的切线? 请证明你的结论论。

2015—2016学年度第一学期期中模拟考试高 三 数 学 答案 2015年11月1.已知集合A ={x |x 2<3x +4,x ∈R },则A ∩Z 中元素的个数为.4 2.若复数iia 212+-(i 是虚数单位)是纯虚数,则实数a =.5 3.若cos sin z i θθ=+(i 为虚数单位),则()+22k k Z πθπ=∈是21z =-的条件.充分不必要4. 在约束条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1下,则x -12+y 2的最小值为__________.2555.若将函数x x f ωsin )(=的图象向右平移6π个单位得到)34sin()(πω-=x x f 的图象,则|ω|的最小值为_46.若直线kx y =是曲线x x x y +-=23的切线,则k 的值为 .1或347.在ABC ∆中,7AC =,60B =︒,BC 边上的高332h =,则BC =.1或28.已知圆C 的圆心在第一象限,圆C 与x 轴交于A (1,0),B (3,0)两点,且与直线x -y +1=0相切,则圆C 的半径为. 29.在平面直角坐标系xOy 中,已知焦点为F 的抛物线y 2=2x 上的点P 到坐标原点O 的距离为15,则线段PF 的长为.7210.在直角△ABC 中,∠C = 90°,∠A = 30°,BC =1,D 为斜边AB 的中点,则AB CD = -111.已知直线x =a (0<a <π2)与函数f (x )=sin x 和函数g (x )=cos x 的图象分别交于M ,N两点,若MN =15,则线段MN 的中点纵坐标为.71012.已知函数f (x )=2x 2+m 的图象与函数g (x )=ln|x |的图象有四个交点,则实数m 的取值围为. .(-∞,-12-ln2)13.如图,椭圆,椭圆C 的左、右焦点分别为12,F F 过椭圆上一点P 和原点O 作 直线l 交圆O 于,M N 两点,若12||||6PF PF ⋅=, 则||||PM PN ⋅的值为14.若不等式|ax 3-ln x |≥1对任意x ∈(0,1]都成立,则实数a 的取值围是 ▲ .15、已知m R ∈,对p :1x 和2x 是方程220x ax --=的两个根,不等式125m x x -≤-对任意实数[]1,2a ∈恒成立;q :函数24()323f x x mx m =+++有两个零点,求使“p 且q ”为真命题的实数的取值围。

(]4,816.已知△ABC 的面积为S ,且AB AC S ⋅=. (1)求tan2A 的值;(2)若4B π=,3CB CA -=,求△ABC 的面积S . 解:(1)设△ABC 的角C B A ,,所对应的边分别为c b a ,,.AB AC S ⋅=,A bc A bc sin 21cos =∴,……2分A A sin 21cos =∴, 2tan =∴A .……4分34tan 1tan 22tan 2-=-=∴AA A .……5分(2)3CB CA -=,即3==c ,……6分20,2tan π<<=A A ,……7分55cos ,552sin ==∴A A .……9分 ()sin sin sin cos cos sin C A B A B A B∴=+=+22==……11分 由正弦定理知:5sin sin sin sin =⋅=⇒=B Ccb B b Cc ,……13分35523521sin 21=⋅⋅==A bc S .……14分17.已知0a >,函数3()(f x ax bx x =-∈R)图象上相异两点,A B 处的切线分别为12,l l , 且1l ∥2l .(1)判断函数()f x 的奇偶性;并判断,A B 是否关于原点对称; (2)若直线12,l l 都与AB 垂直,数b 的取值围.解:(1)()()()()()x f bx ax x b x a x f -=--=---=-33,……2分()x f ∴为奇函数.……3分设()()2211,,,y x B y x A 且21x x ≠,又()b ax x f -='23,……5分()x f 在两个相异点,A B 处的切线分别为12,l l ,且1l ∥2l ,∴()()()22111222330k f x ax b k f x ax b a ''==-===->,∴2221x x =又21x x ≠,∴21x x -=,……6分 又()f x 为奇函数,∴点B A ,关于原点对称.……7分(2)由(1)知()()1111,,,y x B y x A --, ∴b ax x y k AB -==2111,……8分 又()x f 在A 处的切线的斜率()b ax x f k -='=2113, 直线12,l l 都与AB 垂直,∴()()22111,31AB k k axb ax b ⋅=--⋅-=-,……9分令021≥=ax t ,即方程014322=++-b bt t 有非负实根,……10分∴302≥⇒≥∆b ,又212103b t t +=> , ∴0034>⇒>b b.综上3≥b .……14分17、(本小题满分14分)如图,某小区有一矩形地块C OAB ,其中C 2O =,3OA =,单位:百米.已知F OE 是一个游泳池,计划在地块C OAB 修一条与池边F E 相切于点M 的直路l (宽度不计),交线段C O 于点D ,交线段OA 于点N .现以点O 为坐标原点,以线段C O 所在直线为x 轴,建立平面直角坐标系,若池边F E 满足函数22y x =-+(02x ≤≤)的图象.若点M 到y 轴距离记为t .()1当23t =时,求直路l 所在的直线方程;()2当t 为何值时,地块C OAB 在直路l 不含泳池那侧的面积取到最大,最大值时多少?19.在平面直角坐标系xoy 中,椭圆)0(1:2222>>=+b a b y a x C 的离心率为21,右焦点)0,1(F ,点P 在椭圆C 上,且在第一象限,直线PQ 与圆222:b y x O =+相切于点M .(1)求椭圆C 的方程; (2)若43=⨯PF PM ,求点P 的横坐标的值; (3)若OQ OP ⊥,求点Q 的纵坐标t 的值。

相关文档
最新文档