导数习题课

合集下载

导数的基本公式及运算法则习题课

导数的基本公式及运算法则习题课

;
(4)
y
1 cos2
x
;
(5) y 6x3 x ; 1 x2
(6)
y
4 x5
;
(7) y 3 x; 2
练习: 求下列函数的导数:
(3)y=xx-+11;
(4)y=x·tan x.
解:(3)法一:y′=(xx-+11)′ = =xx+-11x+-′1xx2-+11x+-1x=2-1x+2x1+21. ′
f (x) f (x)g(x) f (x)g(x)
g(x)
g ( x)2
(g(x) 0)
推论 1 (cu(x)) = cu(x) (c 为常数).
例 1 设 f (x) = 3x4 – ex + 5cos x - 1,求 f (x) 及 f (0).
解 根据推论 1 可得 (3x4) = 3(x4), (5cos x) = 5(cos x),又(x4) = 4x3, (cos x) = - sin x,(ex) = ex,(1) = 0, 故f (x) = (3x4 ex + 5cos x 1)
(1)y=x(x2+1x+x13);
(2)y=exsin x;
(3)y=xx2++33.
解:(1)∵y=x(x2+1x+x13)=x3+1+x12,∴y′=3x2-x23.
解:(2)y′=(exsin x)′=(ex)′sin x+ex(sin x)′
=exsin x+excos x =ex(sin x+cos x).
x2 ) ' 1 x2 x(2x) (1 x2 )2
1 x2 (1 x 2 ) 2
(4) y ' (2x3 ) ' (3x sin x) ' (e2 ) ' 2(x 3 )'3(x sin x)'0

(完整版)导数公式运算习题课

(完整版)导数公式运算习题课

1 xlna

1 x
⑨f′(x)±g′(x)
⑩f′(x)g(x)+f(x)g′(x) ⑪f′(x)g(xg)-2(xf)(x)g′(x)
第一章 导数及其应用
1.下列结论正确的个数为
()
①y=ln2,则y′=12 ②y=x12,则y′|x=3=-227 ③y
=2x,则y′=2xln2 ④y=log2x,则y′=xl1n2
第一章 导数及其应用
2.对导数的运算法则的理解: (1)两个函数和(或差)的函数的求导法则 设 函 数 f(x) , g(x) 是 可 导 的 , 则 [f(x)±g(x)]′ = f′(x)±g′(x),即两个函数的和(或差)的导数,等于这两个 函数的导数的和(或差). (2)两个函数积的函数的求导法则 设函数f(x),g(x)是可导的,则[f(x)·g(x)]′=f′(x)g(x) +f(x)g′(x).即两个函数积的导数,等于第一个函数的导 数乘上第二个函数,加上第一个函数乘上第二个函数的 导数.
第一章 导数及其应用
5.已知f(x)=x2+ax+b,g(x)=x2+cx+d,又f(2x+ 1)=4g(x),且f′(x)=g′(x),f(5)=30,求g(4).
解:由f(2x+1)=4g(x),得 4x2+2(a+2)x+(a+b+1)=4x2+4cx+4d,
于是有aa++2b=+21c=,4d.
① ②
由f′(x)=g′(x),得2x+a=2x+c,
∴a=c.③
由f(5)=30,得25+5a+b=30.④
∴由①③可得a=c=2.
第一章 导数及其应用
又由④,得b=-5.再由②,得d=-12. ∴g(x)=x2+2x-12.故g(4)=16+8-12=427.

导数的概念习题课

导数的概念习题课

丝罕见,那种粗俗的墨蓝色鸵鸟模样的神态好像绝无仅有的病态但又露出一种隐约的猜疑。…………那个身穿狼狈的灵冰衫的大叔是
娜哥瓜乌
保镖。他出生在D.勒西日世界的钢条湖,绰号:八腿病鬼!年龄看上去大约十岁左右,但实际年龄足有一千多岁,身高两米左右,体重足有一百五十
多公斤。此人最善使用的兵器是『紫风摇精牛肝矛』,有一身奇特的武功『蓝雨蚌圣剃须刀爪』,看家的魔法是『黄影缸魔钢筋语录』,另外身上还带
★ 点导数是因变量在点 x0处的变化率 ,它 反映了 因变量随自变量的变化 而变化的快
慢程度.

y x
是y在以
x0和x0
x为端点的区间上的
平均变化率
四、导函数
如果函数y f (x)在区间(a ,b)內每一点都可导,就说 函数y f (x)在区间(a,b)內可导。这时,对于(a,b)內每一
个x值,都有唯一确定的导数值与之对应,这就构成了x的
y
f ( x0 )表示曲线 y f ( x)
在点M ( x0 , f ( x0 ))处的
切线的斜率 ,即
f ( x0 ) tan , (为倾角) o
x
若f (x0)存在, 过( x0 , f ( x0 ))的切线方程为
关于导数的说明:
★ 导数概念是概括了各种各样的变化率而得出 的一个更一般、更抽象的概念,它撇开了变量所 代表的特殊意义,而纯粹从数量方面来刻画变化 率的本质
2. f
'(x0 )
lim y x0 x
lim
x0
f
( x0
x) x
f
(x0 )
3. 导数的几何意义: 切线的斜率;
4. 函数可导一定连续,但连续不一定可导;
5. 求导数最基本的方法: 由定义求导数.

导数计算习题课

导数计算习题课
法则可以推广到两个以上的中间变量.
求复合函数的导数,关键在于分清函数的复合关系,合 理选定中间变量,明确求导过程中每次是哪个变量对哪个 变量求导,一般地,如果所设中间变量可直接求导,就不必再 选中间变量.
例题选讲
例1:求下列函数的导数:
(1) y (2x 1)5
1 (2) y (1 3x)4
回顾与总结
3.复合函数的求导法则: 复合函数 对于两个函数 y f (u) 和 u g(x) ,如果
通过变量 u, y 可以表示成 x 的函数,那么称这个函 数 y f (u) 和 u g(x) 的复合函数,记作 y f (g(x))
复合函数 y f (g(x)) 的导数为 yx ' yu 'ux ' , 即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的积.
(3) y (1 sin2 x)4
解:(1)设y=u5,u=2x+1,则:
yx yu ux (u5 )u (2x 1)x 5u4 2 5(2x 1)4 2 10(2x 1)4 .
解: (2)设y=u-4,u=1-3x,则:
yx
yu
ux
(u4 )u
(1 3x)x
4u5
证:由于曲线的图形关于坐标轴对称,故只需证明其中一 个交点处的切线互相垂直即可.
联立两曲线方程解得第一象限的交点为P(3,2),不妨
证明过P点的两条切线互相垂直.
由于点P在第一象限,故由x2-y2=5得 y x2 5, y x ,
k1
y
|x3
3; 2
同理由4x2+9y2=72得
y
x2 5
8 4 x2 , y 4x ;
1 x2

1.2导数的计算(4课时)

1.2导数的计算(4课时)

作业: P18习题1.2A组:1.
1.2
导数的计算
1.2.2 基本初等函数的导数 公式及导数的运算法则 第一课时
问题提出 1.如何求函数f(x)的导数?
y= 2.函数y=c,y=x,y=x2,

f (x + Vx ) - f (x ) f¢ (x ) = lim Vx ® 0 Vx 1
x 的导数分别是什么?.
思考3:若y=c表示路程关于时间的函数, 则y′=0的物理意义如何解释?
物体的瞬时速度始终为0,即物体处于静 止状态.
探究(二):函数y=f(x)=x的导数 思考1:函数f(x)=x的图象是什么?相 对于x的函数值增量△y等于什么? y y =x
v= h(0.5) - h(0) = 4.05(m / s ) 0.5 - 0
f¢ (x ) = k
思考5:函数f(x)=kx(k≠0)的图象是什 么?其导数表示什么? y=kx的图象是过原点的一条直线
f¢ (x ) = k 表示直线y=kx的斜率.
思考6:函数f(x)=kx(k≠0)增(减)的快 慢与k的取值有什么关系? k>0时,k越大,f(x)增加得越快; k<0时,k越大,f(x)减少得越慢.
= ln x 的
导数是什么?
1 (loga x )¢= x ln a
1 (ln x )¢= x
探究(二):导数的四则运算法则
[f (x ) + g(x )]¢ (x ) + g (x ) 相等吗? 思考1: 与 fⅱ 为什么?
[f (x ) + g(x )]ⅱ = f (x ) + g (x )
(x ), g (x ) 有什么关 [f (x ) - g(x )]¢与 f ⅱ 思考2: 系? [f (x ) - g(x )]ⅱ = f (x ) - g (x )

1.2导数计算习题课

1.2导数计算习题课

第一章 1.2
导数及其应用 导数的计算 习题课
回顾与总结
1.常见函数的导数公式 常见函数的导数公式. 常见函数的导数公式
为常数) (C )′ = 0 (C 为常数) 为有理数) ( x n )′ = nx n−1 ( n 为有理数) (sin x )′ = cos x (cos x )′ = -sin x (a x )′ = a x ln a (a > 0,a ≠ 1) 特殊地 (e x )′ = e x 1 1 (log a x )′ = log a e = (a > 0, a ≠ 1) 且 x x ln a 1 特殊地 (ln x )′ = x
2 ∴k2 = y′ |x=3 = − . 3 因为k 所以两条切线互相垂直.从而命题成立 因为 1k2=-1,所以两条切线互相垂直 从而命题成立 所以两条切线互相垂直 从而命题成立.
9 8 − x2 9
利用上述方法可得圆锥曲线的切线方程如下: 利用上述方法可得圆锥曲线的切线方程如下 圆锥曲线的切线方程如下 (1)过圆 过圆(x-a)2+(y-b)2=r2上一点 0(x0,y0)的切线方程是 上一点P 的切线方程是: 过圆 的切线方程是 (x0-a)(x-a)+(y0-b)(y-b)=r2.
2 3 2 3
说明:在对法则的运用熟练后 就不必再写中间步骤 说明 在对法则的运用熟练后,就不必再写中间步骤 在对法则的运用熟练后 就不必再写中间步骤.
y′ = 4(1 + sin x) (1+ sin x) ⋅ x
2 3 2 ’
= 4(1 + sin2 x)3 ⋅ 2sin x ⋅ cos x = 4sin 2x ⋅ (1 + sin2 x)3 .

习题课(导数与微分)

习题课(导数与微分)

利用 f ( x) 在 x = 1 处可导,则必定连续,从而有 − + a + b = 1 = 1 (a + b + 1) f (1 ) = f (1 ) = f (1) 2 即 a=2 ′ ′ f − (1) = f + (1)
机动 目录 上页 下页 返回 结束
ax + b ,
f (x) =
1 ( a+ b + 1) , 2
解y = − ln( 1 −源自x ), 令 u = 1 − x .
y = – lnu .
.
u′ −1 1 dy dy du = . =− = − = ⋅ ∴ y′ = 1− x u 1− x dx du dx
.
(4)复合函数求导练习 题 复合函数求导练习23题 复合函数求导练习
1
o o
( sin 2 x ) ′ = 2 cos 2 x (e
1 14 (ln(1 − x ))′ = − 1− x 3 o 3 15 (ln 2 x )′ = x
o o
.
21 (arcsin3 x )′ = 22 (e )′ = 2 xe
o x2 o
x2
3 1 − 9x2
16 (e 17
o o
o
3 x +1
)′ = 3e
3 x +1
2 (arctan2 x )′ = 1 + 4 x 2
0

).
( (
× ). √ √
).
(
).
(2)判断是非(是: √ 非: × ): 判断是非( 判断是非
.
已知 y = f ( x )在点 x 0 可导 :
f ( x 0 + h) − f ( x 0 ) e . f ′( x 0 ) = lim h→ 0 h f ( x 0 − h) − f ( x 0 ) f . f ′( x 0 ) = lim h→ 0 h f ( x 0 + 3h) − f ( x 0 ) 1 g . f ′( x 0 ) = lim h 3 h→ 0

北师版高中数学选择性必修第二册精品课件 第二章 习题课——导数的概念及运算法则

北师版高中数学选择性必修第二册精品课件 第二章 习题课——导数的概念及运算法则
( + Δ)-()
f'(x)= lim
,那么f'(x)是关于x的函数,称f'(x)为y=f(x)的导函数,
Δ→0
Δ
也简称导数,有时也将导数记作y'.
2.用定义法求函数f(x)=2x2的导数f'(x),并利用f'(x)求f'(0),f'(-1)的值.
2
2(x+x) -2x2
解:f'(x)= lim
又由题图知y=f'(x)与y=g'(x)的图象在x=x0处相交,说明y=f(x)与y=g(x)的图
象在x=x0处的切线的斜率相等,故可排除B.故选D.
答案:D
f(1-2x)-f(1)
3.已知函数 f(x)=2ln 3x+8x,则 lim
的值为(xຫໍສະໝຸດ Δ→0A.10B.-10
C.-20
).
D.20
6
2
解析:∵f(x)=2ln 3x+8x,∴f'(x)=3x+8=8+x .根据导数定义,知
(1-2Δ)-(1)
(1-2Δ)-(1)

=-2 lim
=-2f'(1)=-20.故选 C.
Δ
x→0
-2Δ
-2Δ→0
答案:C
1
4.已知函数f(x)=
3
sin3x+3xf'(0),则f'(0)=
y'=αxα-1
y'=axln a 特别地(ex)'=ex
1
1
y'=x a 特别地(ln x)'=x
1
(2)导数的运算法则

人教A版高中数学选择性必修第二册习题课导数的几何意义及其应用课件

人教A版高中数学选择性必修第二册习题课导数的几何意义及其应用课件
所以 f′(1)=ln 1+a+1=a+1=2,a=1.
[方法技巧]
一般已知曲线上一点P(x0,y0)的切线与已知直线的关系(平行或垂直),确定 该切线的斜率k,再求出函数的导函数,然后利用导数的几何意义得到k=f′(x0) =tan α,其中倾斜角α∈[0,π),根据范围进一步求得角α或有关参数的值.
数 f(x)的图象在点(0,1)处的切线斜率为-1,∴函数 f(x)的图象在点(0,f(0))处的
切线方程为 y=-x+1,即 x+y-1=0.故选 B.
答案:B
2.(2022·新课标Ⅱ卷)曲线 y=ln|x|过坐标原点的两条切线的方程为________, ________.
解析:先求当 x>0 时,曲线 y=ln x 过原点的切线方程,设切点为(x0,y0), 则由 y′=1x,得切线斜率为x10,又切线的斜率为xy00,所以x10=xy00,解得 y0=1, 代入 y=ln x,得 x0=e,所以切线斜率为1e,切线方程为 y=1ex.同理可求得当 x<0 时的切线方程为 y=-1ex.综上可知,两条切线方程为 y=1ex,y=-1ex.
答案:y=1ex y=-1ex
高频考点二|求切点坐标
[例2] 已知函数f(x)=xln x在点P(x0,f(x0))处的切线与直线x+y=0垂直, 则切点P(x0,f(x0))的坐标为________.
[解析] ∵f(x)=xln x,∴f′(x)=ln x+1,由题意得f′(x0)·(-1)=-1,即 f′(x0)=1,∴ln x0+1=1,ln x0=0,∴x0=1,∴f(x0)=0,即P(1,0).
2.若函数f(x)=ln x+ax存在与直线2x-y=0平行的切线,则实数a的取值范围是
()

基本初等函数的导数公式及导数的运算法则习题课 PPT

基本初等函数的导数公式及导数的运算法则习题课  PPT
第一章 导数及其应用
2.对导数的运算法则的理解: (1)两个函数和(或差)的函数的求导法则 设 函 数 f(x) , g(x) 是 可 导 的 , 则 [f(x)±g(x)]′ = f′(x)±g′(x),即两个函数的和(或差)的导数,等于这两个 函数的导数的和(或差). (2)两个函数积的函数的求导法则 设函数f(x),g(x)是可导的,则[f(x)·g(x)]′=f′(x)g(x) +f(x)g′(x).即两个函数积的导数,等于第一个函数的导 数乘上第二个函数,加上第一个函数乘上第二个函数的 导数.
第一章 导数及其应用
5.已知f(x)=x2+ax+b,g(x)=x2+cx+d,又f(2x+ 1)=4g(x),且f′(x)=g′(x),f(5)=30,求g(4).
解:由f(2x+1)=4g(x),得 4x2+2(a+2)x+(a+b+1)=4x2+4cx+4d,
于是有aa++2b=+21c=,4d.
第一章 导数及其应用
A.0
B.1
C.2
D.3
解析:①y=ln2为常数,所以y′=0,①错;②③④
均正确,直接利用公式即可验证.
答案:D
第一章 导数及其应用
2.曲线y=xn在x=2处的导数为12,则n等于( )
A.1
B.2
C.3
D.4
解析:y′|x=2=n·2n-1=12,解得n=3. 答案:C
第一章 导数及其应用
第一章 导数及其应用
练 3 在曲线y=x3+3x2+6x-10的切线中,求斜率 最小的切线方程.
[解] y′=3x2+6x+6=3(x+1)2+3,∴当x=-1时, 切 线 的 斜 率 最 小 , 最 小 斜 率 为 3 , 此 时 , y = ( - 1)3 + 3×( - 1)2 + 6×( - 1) - 10 = - 14 , 切 点 为 ( - 1 , - 14).∴切线方程为y+14=3(x+1),即3x-y-11=0.

导数习题课例题(带详解)

导数习题课例题(带详解)

1:已知函数f (x )=ln 2(1+x)-21x x+. (1) 求函数()f x 的单调区间;(2)若不等式1(1)a a e n++≤对任意的N*n ∈都成立(其中e 是自然对数的底数).求α的最大值.解: (1)函数()f x 的定义域是(1,)-+∞,22222ln(1)22(1)ln(1)2().1(1)(1)x x x x x x x f x x x x ++++--'=-=+++ 设2()2(1)ln(1)2,g x x x x x =++--则()2ln(1)2.g x x x '=+- 令()2ln(1)2,h x x x =+-则22()2.11x h x x x-'=-=++ 当10x -<<时, ()0,h x '> ()h x 在(-1,0)上为增函数, 当x >0时,()0,h x '<()h x 在(0,)+∞上为减函数.所以h (x )在x =0处取得极大值,而h (0)=0,所以()0(0)g x x '<≠,函数g (x )在(1,)-+∞上为减函数. 于是当10x -<<时,()(0)0,g x g >= 当x >0时,()(0)0.g x g <=所以,当10x -<<时,()0,f x '>()f x 在(-1,0)上为增函数. 当x >0时,()0,f x '<()f x 在(0,)+∞上为减函数.故函数()f x 的单调递增区间为(-1,0),单调递减区间为(0,)+∞.(2)不等式1(1)n a e n ++≤等价于不等式1()ln(1) 1.n a n ++≤由111n+>知,1.1ln(1)a n n≤-+ 设(]11(),0,1,ln(1)G x x x x=-∈+则 22222211(1)ln (1)().(1)ln (1)(1)ln (1)x x x G x x x x x x x ++-'=-+=++++ 由(Ⅰ)知,22ln (1)0,1x x x+-≤+即22(1)ln (1)0.x x x ++-≤ 所以()0,G x '<(]0,1,x ∈于是G (x )在(]0,1上为减函数. 故函数G (x )在(]0,1上的最小值为1(1) 1.ln 2G =- 所以a 的最大值为11.ln 2- 2. 设 f (x ) = px -q x -2 ln x ,且 f (e ) = qe -pe-2(e 为自然对数的底数)(I) 求 p 与 q 的关系;(II) 若 f (x ) 在其定义域内为单调函数,求 p 的取值范围; (III) 设 g (x ) = 2ex,若在 [1,e ] 上至少存在一点x 0,使得 f (x 0) >g (x 0) 成立, 求实数 p 的取值范围.解:(I) 由题意得 f (e ) = pe -q e -2ln e = qe -pe-2⇒ (p -q ) (e + 1e ) = 0 而 e + 1e≠0∴ p = q(II) 由 (I) 知 f (x ) = px -px -2ln xf’(x ) = p + p x 2 -2x = px 2-2x + px 2令 h (x ) = px 2-2x + p ,要使 f (x ) 在其定义域 (0,+∞) 内为单调函数,只需 h (x ) 在 (0,+∞) 内满足:h (x )≥0 或 h (x )≤0 恒成立. ………… 5分① 当 p = 0时, h (x ) = -2x ,∵ x > 0,∴ h (x ) < 0,∴ f’(x ) = -2xx2 < 0,∴ f (x ) 在 (0,+∞) 内为单调递减,故 p = 0适合题意. ② 当 p > 0时,h (x ) = px 2-2x + p ,其图象为开口向上的抛物线,对称轴为 x = 1p ∈(0,+∞),∴ h (x )min = p -1p只需 p -1p≥1,即 p ≥1 时 h (x )≥0,f’(x )≥0∴ f (x ) 在 (0,+∞) 内为单调递增, 故 p ≥1适合题意.③ 当 p < 0时,h (x ) = px 2-2x + p ,其图象为开口向下的抛物线,对称轴为 x = 1p∉ (0,+∞)只需 h (0)≤0,即 p ≤0时 h (x )≤0在 (0,+∞) 恒成立. 故 p < 0适合题意. 综上可得,p ≥1或 p ≤0另解:(II) 由 (I) 知 f (x ) = px -px -2ln xf’(x ) = p + p x 2 -2x = p (1 + 1x 2 )-2x要使 f (x ) 在其定义域 (0,+∞) 内为单调函数,只需 f’(x ) 在 (0,+∞) 内满足:f’(x )≥0 或 f’(x )≤0 恒成立.由 f’(x )≥0 ⇔ p (1 +1x 2)-2x≥0 ⇔ p ≥2x +1x⇔ p ≥(2x +1x)max ,x > 0 ∵2x + 1x≤ 22x ·1x= 1,且 x = 1 时等号成立,故 (2x +1x)max= 1 ∴ p ≥1由 f’(x )≤0 ⇔ p (1 + 1x 2 )-2x ≤0 ⇔ p ≤ 2x x 2 + 1⇔ p ≤(2xx 2 + 1)min ,x > 0 而 2x x 2 + 1 > 0 且 x → 0 时,2x x 2 + 1 → 0,故 p ≤0 综上可得,p ≥1或 p ≤0(III) ∵ g (x ) = 2ex在 [1,e ] 上是减函数∴ x = e 时,g (x )min = 2,x = 1 时,g (x )max = 2e 即 g (x ) ∈ [2,2e ]① p ≤0 时,由 (II) 知 f (x ) 在 [1,e ] 递减 ⇒ f (x )max = f (1) = 0 < 2,不合题意。

导数与微分习题课

导数与微分习题课
.
dx
− xy 2( 2 + 2 )
2
;


3 .
arctan
xy


(

)
,求
4. 2 + 2 =
.
dx2
1. = (
11
四、计算n阶导数
1. =
1+
; 2. = sin2 .
1−
2 ⋅ !

−1
;
−2
cos(2
+

).
(1 − )+1
2
五、
1
导数与微分
习题课
一、主要内容
dy
= ′ ⇔ dy = ′ dx ⇔ = dy + ()
dx





lim
→0
基本公式
高阶导数
微 分
dy = ′
高阶微分
求 导 法 则
2
二、典型例题
例1

设 () = ( − 1)( − 2) ⋯ ( − 100),
∵ (
) =
,
−1
( − 1)+1
∴ () =
3 1
1
=4+ (

)
2 −1 +1
1 ()
(−1) !
(
) =
,
+1
( + 1)+1
3
1
1
(−1) ! [

].
2
( − 1)+1 ( + 1)+1
9
课堂练习

《导数习题课》课件

《导数习题课》课件
详细描述
复合函数的导数是通过对中间变量求导,然后将结果代入到外层函数中求导得 到的。掌握复合函数的导数可以帮助我们解决一些复杂的函数问题,如求极值 、判断单调性等。
隐函数的导数
总结词
掌握隐函数的导数是解决隐函数问题 的关键。
详细描述
隐函数的导数是通过对等式两边同时 求导,然后解出对x的导数得到的。掌 握隐函数的导数可以帮助我们解决一 些涉及多个变量的问题,如求最值、 判断曲线的形状等。
THANKS
感谢观看
总结词
导数具有连续性、可加性、可乘性和链式法则等性质 。
详细描述
导数具有一系列重要的性质,包括连续性、可加性、可 乘性和链式法则等。连续性是指函数在某一点的导数等 于该点附近的极限值;可加性是指函数在两点之间的导 数等于两端点导数的和;可乘性是指函数与常数的乘积 的导数等于该常数与函数导数的乘积;链式法则是指复 合函数的导数等于复合函数内部函数的导数与外部函数 的导数的乘积。这些性质在研究函数的单调性、极值和 曲线的拐点等方面具有广泛应用。
导数与函数的最值的综合题
总结词
这类题目通常涉及到利用导 数研究函数的极值和最值,
解决最优化问题。
详细描述
这类题目要求熟练掌握导数 的计算方法和函数的极值判 定,能够利用导数研究函数 的极值和最值,解决最优化
问题。
示例
设函数$f(x) = x^{3} ax^{2} + bx$,若$f(x)$在$( - infty,0)$和$(2, + infty)$上 单调递增,在$(0,2)$上单调 递减,且$f(x)$在$x = 2$处 取得极小值,求$a,b$的值及 $f(x)$的最小值。
导数与函数的零点的综合题
总结词

高等数学课件第二章导数的计算 习题课ppt

高等数学课件第二章导数的计算 习题课ppt

lim
3a
x1 x 1
f (1)
lim
x1
f ( x) f (1)
3 x 1 1
lim
Hale Waihona Puke x1x1 x 1 3
3a 1 , 3
f (1) 1
3
a 1, b 8.
9
9
当x 1时,
f
( x)
1 (
x3
8 )
1
x2;
9 93
当x 1时, f ( x) (3 x ) 1 .
33 x2
又 f 0 e ,证明 f x在 , 内处处可导.
解: 取 x y 0 代入恒等式,得 f 0 2 f 0 ,
因此 f 0 0 .
f x lim f x x f x
x 0
x
lim e x f x ex f x f x
x0
x
ex f
lim
0
x
f
0
f
x ex
1
x0
例3.
解:
1
x
2 3
3
所以 y x0 , 即在原点处有垂直切线.
令 1 1 1, 3 3 x2 3
得 x 1, 对应 y 1,
则在点(1,1) , (–1,–1) 处与已知直线平行. 平行的切线方程分别为
y
x 31y
20 y3
x
1
x
3
y
2
0O 1
y
1 1
x
x 1
3
例4.
f



导, 求
u v
uv uv v2
(v
0) .
复合函数的导数: 设函数 y f (u),均u 可导( ,x)

导数的基本公式及运算法则习题课

导数的基本公式及运算法则习题课

(3)令 u=lnx,则 y=lnu, ∴y′x=y′u·u′x =1u·1x=xl1nx. (4)令 u=2x2+1,则 y=eu, ∴y′x=y′u·u′x=eu·4x =4x·e2x2+1.
例2 求下列函数的导数. (1)y=(x2-4)2; (2)y=log2(2x2+3x+1); (3)y=esin(ax+b) 分析 先将复合函数分解,找出中间变量,然后按复合 函数求导公式y′=y′u·u′x进行求导.
gf((xx))f(x)g(xg)(x)f2(x)g(x)(g(x)0)
解 根据推论 1 可得 (3x4) = 3(x4) , (5cos x) = 5(cos x) ,又(x4) = 4x3,
(cos x) = - sin x,(ex) = ex,(1) = 0,
故f (x) = (3x4 - ex + 5cos x - 1) = (3x4) -(ex ) + (5cos x) - (1) = 12x3 - ex - 5sin x . f (0) = (12x3 - ex - 5sin x)|x=0 = - 1
公 式 6 : (e x ) ' e x ;
公 式 7 : (lo g a x ) '
1
(a 0 , 且 a 1);
x ln a
公 式 8 : (ln x ) ' 1 ; x
需要使用导数的运算法则求导:
f(x)g(x)f(x)g(x)
f(x)•g(x)f(x)g(x)f(x)g(x)
推论 1 (cu(x)) = cu (x) (c 为常数).
20XX
感谢观赏 求简单复合函数f(ax+b)的导数
求简单复合函数的导数,实质是运用整体思想,先把简单复

1.1-1.4导数及其应用习题课

1.1-1.4导数及其应用习题课
1 由于直线 x 2 y 3 0 的斜率为 ,且过点 (1,1) , 2
f (1) 1, 故 1 即 f '(1) 2 , b 1, a 1 2 b 2 ,
解得 a 1 , b 1 .
例题讲解
ln x 1 , 所以 (Ⅱ)由(Ⅰ)知 f(x)= x 1 x
当 a 2 时, x1 a,x2 a ,从而 f ( x ) 在 f ( x ) 的定义域内没有零点, 故 f ( x ) 无极值. 当a
2 时, x1 a , x2 a , f ( x ) 在 f ( x) 的定义域内有两个不同的零点,
由极值判别方法知 f ( x ) 在 x x1,x x2 取得极值. 综上, f ( x ) 存在极值时, a 的取值范围为 ( 2, ) .
在该区间上的最大值.
【思路点拨】 (1)要使 f ( x ) 在 ( 2 , ) 上存在单调递增区间,需 f ' (x) 在 ( 2 , )
3
3
上恒大于零,即得 a 的取值范围.(2)首先求出 f ( x ) 在 [1, 4] 上的最小值为 f(4), 从而求出 a 的值,进一步易求 f ( x ) 在该区间上的最大值为 f(2).
2 x 2 2ax 1 (Ⅱ) f ( x ) 的定义域为 (a, ) , f ( x) . xa
方程 2 x 2ax 1 0 的判别式 4a 8 .
2 2
(ⅰ)若 0 ,即 2 a (ⅱ)若 0 ,则 a
2 ,在 f ( x) 的定义域内 f ( x) 0 ,故 f ( x) 无极值.
a b 2 1 . (2)由f(α)=-1和f(β)=1可得: 2 a b 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
y
(1 ln y) y ln x 1, y ln x 1, 1 ln y
1 (ln y 1) (ln x 1) 1 y
y x
y (1 ln y)2
y(ln
y 1)2 x(ln x 1)2 xy(ln y 1)3
例5 设f ( x) x x( x 2),求 f ( x).
(A)n![ f ( x)]n1;
(B) n[ f ( x)]n1 ;
(C) [ f ( x)]2n;
(D)n![ f ( x)]2n .
7、若函数 x x(t ), y y(t ) 对t 可导且x(t ) 0 ,又
x x(t )的反函数存在且可导,则dy =( )
dx
(A) y(t) ; x(t)
当x 2时,
f ( 2)
lim
x2
f ( x) f (2) x2
lim x2 ( x 2) 4. x2 x 2
f ( 2)
lim
x2
f ( x) f (2) x2
x2 ( x 2)
lim
4.
x2 x 2
f(2) f(2), f ( x)在x 2处不可导.
3x2 4x, x 2,或x 0 f ( x) 0, x 0,
(A) f ( x0 x) f ( x0 ) ;
x
(B) lim f ( x0 x) f ( x0 ) ;
x x0
x
(C) lim f ( x) f ( x0 );
x x0
x
(D) lim f ( x) f ( x0 );
x x0
x x0
2、若函数 y f ( x)在点x0 处的导数 f ( x0 ) 0 ,则
f ( x),
y,
d3 dx
y
3
.
一般地,函数f ( x)的n 1阶导数的导数称为
函数f ( x)的n阶导数,记作
f
(n) ( x),
y(n) ,
dny dx n
或d
n f( dx n
x
)
.
5、微分的定义
定义 设函数y f ( x)在某区间内有定义, x0及x0 x 在这区间内, 如果
y f ( x0 x) f ( x0 ) A x o(x) 成立(其中A是与x无关的常数),则称函数y f ( x)
dt dx
(t); (t )
dt
d2y dx2
(t )
(t) (t 3(t)
)(t) .
4、高阶导数 (二阶和二阶以上的导数统称为高阶导数)
二阶导数 ( f ( x)) lim f ( x x) f ( x) ,
x0
x
记作
f
( x),
y,
d2y dx 2

d
2 f (x) dx2 .
二阶导数的导数称为三阶导数,
一、主要内容
关 系
dy dx
y
dy
ydx
y
dy
o(x)
导数
y lim x0 x
基本公式 高阶导数 高阶微分
微分
dy yx
求导法则
1、导数的定义
定义 设函数y f ( x)在点x0的某个邻域内有定义, 当自变量x在x0处取得增量x(点x0 x仍在该邻域 内)时, 相应地函数y取得增量y f ( x0 x) f ( x0 ); 如果y与x之比当x 0时的极限存在,则称函数
(B) y(t) ; x (t )
(C) y(t) ; x (t )
(D) y(t) . x (t )
8、若函数 f ( x)为可微函数,则dy ( ) (A)与x 无关; (B)为x 的线性函数; (C)当x 0 时为x 的高阶无穷小; (D)与x 为等价无穷小.
9、设函数 y f ( x)在点x0 处可导,当自变量x 由x0 增
曲线 y f ( x)在点(x0 , f ( x0 ) )处的法线( )
(A)与x 轴相平行;(B)与x 轴垂直; (C)与y 轴相垂直;(D)与x 轴即不平行也不垂直:
3、若函数 f ( x) 在点x0 不连续,则f ( x) 在x0 ( ) (A)必不可导; (B)必定可导;
(C)不一定可导; (D)必无定义.
解 f (0) lim f ( x) f (0) x0 x 0
lim( x 1)( x 2) ( x 100) x0
100!
例2 设 y 1 arctan
1 x2 1 ln
1 x2 1 ,
2
4 1 x2 1
求 y.
解 设 u 1 x2 , 则 y 1 arctanyu
1 2(1
u2 )
1( 1 4 u
1
1) u1
1
1 u4
1 2x2
x4
,
ux ( 1 x2 )
x ,
1 x2
yx
(2x
1 x3)
. 1 x2
例3

x y
2t t ,求
5t 2 4t t
dy dx
. t 0
解 分析: 当t 0时, t 导数不存在,
当t 0时, dx , dy 不存在, 不能用公式求导. dt dt
定的;
6、设 x
y2
y ,u
(x2
x
)
3 2
,求dy
.
du
三、证明 x e t sin t , y e t cos t 满足方程
(x
y)2
d2y dx 2
2( x
dy dx
y)
.
四、已知
f
(
x
)
g(
x
)
x
cos
x
,
x
0
其中g(
x)
有二阶连
a, x 0
续导数,且g(0) 1,
在点x0可微,并且称A x为函数y
f
(
x
)在点x
相应
0
于自变量增量x的微分, 记作dy x x0 或df ( x0 ),即
dy x x0 A x.
微分dy叫做函数增量y的线性主部. (微分的实质)
6、导数与微分的关系
定理 函数f ( x)在点x0可微的充要条件是函数f ( x) 在点x0处可导,且 A f ( x0 ).
3 x2 4 x,0 x 2,
例6 设y x(sin x)cos x ,求 y.
解 y y(ln y)
y(ln x cos x ln sin x)
x(sin x)cosx ( 1 sin x ln sin x cos2 x)
x
sin x
例7
设y
4x2 x2
1 1
,

y(n) .
4、如果 f ( x) =( ),那么 f ( x) 0 .
(A) arcsin 2 x arccos x ;
(B) sec2 x tan2 x ; (C) sin 2 x cos 2 (1 x);
(D) arctan x arc cot x .
e ax , x 0
5、如果
f
(x)
b(1
(4) 对数求导法 先在方程两边取对数,然后利用隐函数的求导方法 求出导数. 适用范围: 多个函数相乘和幂指函数u( x)v( x)的情形.
(5) 隐函数求导法则
用复合函数求导法则直接对方程两边求导.
(6) 参变量函数的求导法则
若参数方程
x y
(t )确定y与x间的函数关系, (t)
dy
dy dx
x2
),
x
处处可导,那末( 0

(A)a b 1;
(B)a 2, b 1;
(C)a 1, b 0 ; (D)a 0, b 1 .
6、已知函数 f ( x)具有任意阶导数,且
f ( x) f ( x)2 ,则当n为大于 2 的正整数时,
f ( x)的 n 阶导数 f (n) ( x) 是( )
(1)(u v) u v, (2)(cu) cu (c 是常数),
(3)(uv) uv uv,
(4)( u )
v
uv v2
uv
(v
0) .
(2) 反函数的求导法则
如果函数x ( y)的反函数为y f ( x),则有
f
(
x)
1 ( x)
.
(3) 复合函数的求导法则
设y f (u),而u ( x)则复合函数y f [( x)]的导数为 dy dy du 或 y( x) f (u) ( x). dx du dx
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
2.右导数:
f( x0 )
lim
x x0 0
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
函数 f ( x)在点x0 处可导 左导数 f( x0 ) 和右 导数 f( x0 )都存在且相等.
d(a x ) a x ln adx
d(e x ) e xdx
d (loga
x)
1 dx x lna
d(arcsin x) 1 dx 1 x2
d(ln x) 1 dx x
d(arccos x) 1 dx 1 x2
d
(arctan
x
)
1
1 x
2
dx
d
(arc
cot
x)
1
1 x2
dx
8、 微分的基本法则
2、基本导数公式(常数和基本初等函数的导数公式)
相关文档
最新文档