【精品】初中数学中考专题《统计》真题汇编

合集下载

统计中考数学试题及答案

统计中考数学试题及答案

统计中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是正多边形?A. 正方形B. 正五边形C. 正六边形D. 任意三角形答案:D2. 以下哪个函数是一次函数?A. \(y = x^2\)B. \(y = 2x + 3\)C. \(y = \frac{1}{x}\)D. \(y = x^3\)答案:B3. 计算下列哪个表达式的结果为正数?A. \(-3 + 2\)B. \(-5 \times -2\)C. \(-4 - 6\)D. \(\frac{1}{-2}\)答案:B4. 以下哪个选项表示的是样本而不是总体?A. 某班所有学生的身高B. 某班一个学生的身高C. 所有学生的身高D. 某校所有学生的身高答案:B5. 以下哪个选项是中位数的定义?A. 一组数据中最大的数B. 一组数据中最小的数C. 将一组数据从小到大排列后位于中间位置的数D. 一组数据的平均数答案:C6. 以下哪个选项是众数的定义?A. 一组数据中出现次数最多的数B. 一组数据中最小的数C. 一组数据中最大的数D. 一组数据的平均数答案:A7. 以下哪个选项是方差的定义?A. 一组数据中各数据与平均数的差的平方的平均数B. 一组数据中各数据与平均数的差的绝对值的平均数C. 一组数据中各数据与平均数的差的平方的最大值D. 一组数据中各数据与平均数的差的绝对值的最小值答案:A8. 以下哪个选项是标准差的定义?A. 一组数据中各数据与平均数的差的平方的平均数B. 一组数据中各数据与平均数的差的绝对值的平均数C. 方差的平方根D. 一组数据中各数据与平均数的差的绝对值的最小值答案:C9. 以下哪个选项是相关系数的定义?A. 描述两个变量之间线性关系的强度和方向的统计量B. 描述两个变量之间线性关系的强度但不描述方向的统计量C. 描述两个变量之间非线性关系的统计量D. 描述两个变量之间关系的统计量,但不区分线性或非线性答案:A10. 以下哪个选项是概率的定义?A. 事件发生的可能性B. 事件发生的必然性C. 事件不发生的可能性D. 事件不发生的必然性答案:A二、填空题(每题4分,共20分)11. 一个正三角形的内角和是______度。

中考数学专题19 统计-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

中考数学专题19 统计-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题19 统计一、单选题1.(2021·山东聊城市·中考真题)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:请根据学生收集到的废旧电池数,判断下列说法正确的是()A.样本为40名学生B.众数是11节C.中位数是6节D.平均数是5.6节2.(2021·湖北随州市·中考真题)如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是()A.测得的最高体温为37.1℃B.前3次测得的体温在下降C.这组数据的众数是36.8 D.这组数据的中位数是36.63.(2021·湖南常德市·中考真题)舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①4.(2021·四川广安市·中考真题)下列说法正确的是()A.为了了解全国中学生的心理健康情况,选择全面调查B .在一组数据7,6,5,6,6,4,8中,众数和中位数都是6C .“若a 是实数,则0a >”是必然事件D .若甲组数据的方差20.02S =甲,乙组数据的方差20.12S =乙,则乙组数据比甲组数据稳定5.(2021·云南中考真题)2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援,某公司在疫情期间为疫区生产A 、B 、C 、D 四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是( )A .单独生产B 型帐篷的天数是单独生产C 型帐篷天数的3倍 B .单独生产B 型帐篷的天数是单独生产A 型帐篷天数的1.5倍 C .单独生产A 型帐篷与单独生产D 型帐篷的天数相等 D .每天单独生产C 型帐篷的数量最多6.(2021·山东泰安市·中考真题)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为( )A .7 h ;7 hB .8 h ;7.5 hC .7 h ;7.5 hD .8 h ;8 h7.(2021·广西玉林市·中考真题)甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙的第三次成绩x是()A.6环B.7环C.8环D.9环8.(2021·四川广元市·中考真题)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是()A.平均数B.中位数C.众数D.方差9.(2021·江苏宿迁市·中考真题)已知一组数据:4,3,4,5,6,则这组数据的中位数是()A.3B.3.5C.4D.4.510.(2021·山西中考真题)每天登录“学习强国”App进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如下表,则这组数据的中位数和众数分别是()A.27点,21点B.21点,27点C.21点,21点D.24点,21点11.(2021·山东菏泽市·中考真题)在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是()A.中位数是10.5B.平均数是10.3C.众数是10D.方差是0.8112.(2021·湖南长沙市·中考真题)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是()A.24,25B.23,23C.23,24D.24,2413.(2021·湖北十堰市·中考真题)某校男子足球队的年龄分布如下表则这些队员年龄的众数和中位数分别是( ) A .8,15B .8,14C .15,14D .15,1514.(2021·四川眉山市·中考真题)全民反诈,刻不容缓!陈科同学参加学校举行的“防诈骗”主题演讲比赛,五位评委给出的分数分别为90,80,86,90,94,则这组数据的中位数和众数分别是( ) A .80,90B .90,90C .86,90D .90,9415.(2021·江苏苏州市·中考真题)为增强学生的环保意识,共建绿色文明校园.某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表;则每个班级回收废纸的平均重量为( ) A .5kgB .4.8kgC .4.6kgD .4.5kg16.(2021·浙江台州市·中考真题)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g )平均数和方差分别为x ,s 2,该顾客选购的鸡蛋的质量平均数和方差x 1,21s ,则下列结论一定成立的是( ) A . x x <1B . x x >1C .s 2>21s D .s 221<s17.(2021·浙江嘉兴市·中考真题)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是( )A.中位数是33C︒B.众数是33C︒C.平均数是197C7︒D.4日至5日最高气温下降幅度较大18.(2021·四川成都市·中考真题)菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34B.35C.36D.4019.(2021·浙江宁波市·中考真题)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x(单位:环)及方差2S(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁20.(2021·四川资阳市·中考真题)15名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前8名,则他不仅要知道自己的成绩,还应知道这15名学生成绩的()A.平均数B.众数C.方差D.中位数21.(2020·辽宁盘锦市·中考真题)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁22.(2020·山东烟台市·中考真题)如果将一组数据中的每个数都减去5,那么所得的一组新数据()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变23.(2020·四川成都市·中考真题)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是()A.5人,7人B.5人,11人C.5人,12人D.7人,11人二、填空题目A B C D E F六省60岁及以上人口24.(2021·浙江丽水市·中考真题)根据第七次全国人口普查,华东,,,,,占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.25.(2021·四川乐山市·中考真题)如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)26.(2020·辽宁大连市·中考真题)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.这个公司平均每人所创年利润是_____万元.27.(2020·辽宁铁岭市·中考真题)甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为226.67, 2.50==甲乙s s ,则这6次比赛成绩比较稳定的是__________.(填“甲”或“乙”)28.(2020·内蒙古赤峰市·中考真题)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表: 某校60名学生体育测试成绩频数分布表如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为__________人.29.(2020·湖北中考真题)某校即将举行30周年校庆,拟定了,,,A B C D 四种活动方案,为了解学生对方案的意见,学校随机抽取了部分学生进行问卷调查(每人只能赞成一种方案),将调查结果进行统计并绘制成如下两幅不完整的统计图.若该校有学生3000人,请根据以上统计结果估计该校学生赞成方案B 的人数为______.30.(2020·湖北孝感市·中考真题)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A 类:总时长5≤分钟;B 类:5分钟<总时长10≤分钟;C 类:10分钟<总时长15≤分钟;D 类:总时长>15分钟),将调查所得数据整理并绘制成如下两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有______人.31.(2020·湖南株洲市·中考真题)王老师对本班40个学生所穿校服尺码的数据统计如下:则该班学生所穿校服尺码为“L”的人数有________个.32.(2020·江苏泰州市·中考真题)今年6月6日是第25个全国爱眼日,某校从八年级随机抽取50名学生进行了视力调查,并根据视力值绘制成统计图(如图),这50名学生视力的中位数所在范围是______.43.(2020·四川达州市·中考真题)2019年是中华人民共和国成立70周年,天安门广场举行了盛大的国庆阅兵式和群众游行活动.其中,群众游行队伍以“同心共筑中国梦”为主题,包含有“建国创业”“改革开放”“伟大复兴”三个部分,某同学要统计本班学生最喜欢哪个部分,制作扇形统计图.以下是打乱了的统计步骤:①绘制扇形统计图②收集三个部分本班学生喜欢的人数③计算扇形统计图中三个部分所占的百分比其中正确的统计顺序是____________.34.(2020·四川攀枝花市·中考真题)如图是某校参加各兴趣小组的学生人数分布扇形统计图,已知参加STEAM课程兴趣小组的人数为120人,则该校参加各兴趣小组的学生共有________人.35.(2020·湖南中考真题)4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如表:若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为_____.36.(2020·四川自贡市·中考真题)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计,以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号)_________________.①.绘制扇形图;②.收集最受学生欢迎菜品的数据;③.利用扇形图分析出受欢迎的统计图;④.整理所收集的数据.37.(2019·湖南永州市·中考真题)下表是甲、乙两名同学近五次数学测试(满分均为100分)的成绩统计表:根据上表数据,成绩较好且比较稳定的同学是_____.38.(2019·内蒙古巴彦淖尔市·中考真题)甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:某同学分析上表后得到如下结论:≥分为优秀);①甲、乙两班学生的平均成绩相同;②乙班优秀的人数少于甲班优秀的人数(竞赛得分85③甲班成绩的波动性比乙班小.上述结论中正确的是_____.(填写所有正确结论的序号)39.(2019·内蒙古包头市·)甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:某同学分析上表后得到如下结论:①甲、乙两班学生的平均成绩相同;≥分为优秀);③甲班成绩的波动性比乙班小.②乙班优秀的人数少于甲班优秀的人数(竞赛得分85上述结论中正确的是_____.(填写所有正确结论的序号)40.(2019·四川遂宁市·中考真题)某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为_______分.三、解答题41.(2021·北京中考真题)为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:≤<≤<≤<≤<≤≤):x x x x x68,810,1012,1214,1416b.甲城市邮政企业4月份收入的数据在1012x≤<这一组的是:10.0,10.0,10.1,10.9,11.4,11.5,11.6,11.8c.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:根据以上信息,回答下列问题:(1)写出表中m的值;(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为1p.在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收,p p的大小,并说明理由;(3)若乙城市共有200家邮政企业,估计乙入的邮政企业的个数为2p.比较12城市的邮政企业4月份的总收入(直接写出结果).42.(2021·江苏南京市·中考真题)某市在实施居民用水定额管理前,对居民生活用水情况进行了调查,通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据如下表:(1)求这组数据的中位数.已知这组数据的平均数为9.2t,你对它与中位数的差异有什么看法?(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?43.(2021·山东临沂市·中考真题)实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):0.69;0.73;0.74;0.80;0.81;0.98;0.93;0.81;0.89;0.69;0.74;0.99;0.98;0.78;0.80;0.89;0.83;0.89;0.94;0.89研究小组的同学对以上数据进行了整理分析,得到下表:(1)表格中:a=,b=,c=,d=;(2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.44.(2021·安徽中考真题)为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位:kW•h)调查,按月用电量50~100,100~150,150~200,200~250,250~300,300~350进行分组,绘制频数分布直方图如下:(1)求频数分布直方图中x的值;(2)判断这100户居民用户月用电量数据的中位数在哪一组(直接写出结果);(3)设各组居民用户月平均用电量如表:根据上述信息,估计该市居民用户月用电量的平均数.45.(2021·重庆中考真题)2021年是中国共产党建党100周年,某校开展了全校教师学习党史活动并进行了党史知识竞赛,从七、八年级中各随机抽取了20名教师,统计这部分教师的竞赛成绩(竞赛成绩均为整数,满分为10分,9分及以上为优秀).相关数据统计、整理如下:抽取七年级教师的竞赛成绩(单位:分)6,7,7,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10.八年级教师竞赛成绩扇形统计图七、八年级教师竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:a=__________,b=_________;(2)估计该校七年级120名教师中竞赛成绩达到8分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级教师学习党史的竞赛成绩谁更优异.46.(2021·云南中考真题)垃圾的分类回收不仅能够减少环境污染,美化家园,甚至能够变废为宝,节约能源,为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分),该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.(1)以下三种抽样调查方案:方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本,其中抽取的样最具有代表性和广泛性的一种抽样调查方案是_______(填写“方案一”、“方案二”或“方案三”);(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表(90分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为x分)结合上述信息解答下列问题:①样本数据的中位数所在分数段为__________;②全校1565名学生,估计竞赛分数达到“优秀”的学生有________人.47.(2021·浙江温州市·中考真题)某校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.(1)以下是两位同学关于抽样方案的对话:小红:“我想随机柚取七年级男、女生各60人的成绩.”小明:“我想随机柚取七、八、九年级男生各40人的成绩.”根据右侧学校信息,请你简要评价小红、小明的抽样方案.如果你来抽取120名学生的测试成绩,请给出抽样方案.(2)现将随机抽取的测试成绩整理并绘制成如下统计图,请求出这组数据的平均数、中位数和众数.某校部分学生体质健康测试成绩统计图48.(2021·重庆中考真题)“惜餐为荣,殄物为耻”,为了解落实“光盘行动”的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位:kg ),进行整理和分析(餐厨垃圾质量用x 表示,共分为四个等级:A .1x <,B . 1 1.5x ≤<,C . 1.52x ≤<,D . 2x ≥),下面给出了部分信息.七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3. 八年级10个班的餐厨垃圾质量中B 等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2. 七八年级抽取的班级餐厨垃圾质量统计表根据以上信息,解答下列问题:(1)直接写出上述表中a ,b ,m 的值;(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合A 等级的班级数;(3)根据以上数据,你认为该校七、八年级的“光盘行动”,哪个年级落实得更好?请说明理由(写出一条理由即可).49.(2021·四川泸州市·中考真题)某合作社为帮助农民增收致富,利用网络平台销售当地的一种农副产品.为了解该农副产品在一个季度内每天的销售额,从中随机抽取了20天的销售额(单位:万元)作为样本,数据如下:16,14,13,17,15,14,16,17,14,14,15,14,15,15,14,16,12,13,13,16(1)根据上述样本数据,补全条形统计图;(2)上述样本数据的众数是_____,中位数是_____;(3)根据样本数据,估计这种农副产品在该季度内平均每天的销售额.50.(2020·河南中考真题)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 512 499 499 501[整理数据]整理以上数据,得到每袋质量()x g的频数分布表.[分析数据]根据以上数据,得到以下统计量.根据以上信息,回答下列问题:()1表格中的a=b=()2综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.51.(2020·广西中考真题)阅读下列材料,完成解答:材料1:国家统计局2月28日发布了2019年国民经济和社会发展统计公报,该公报中的如图发布的是全国“2015﹣2019年快递业务量及其增长速度”统计图(如图1).材料2:6月28日,国家邮政局发布的数据显示:受新冠疫情影响,快递业务量快速增长,5月份快递业务量同比增长41%(如图2).某快递业务部门负责人据此估计,2020年全国快递业务量将比2019年增长50%.(1)2018年,全国快递业务量是亿件,比2017年增长了%;(2)2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)统计公报发布后,有人认为,图1中表示2016﹣2019年增长速度的折线逐年下降,说明2016﹣2019年全国快递业务量增长速度逐年放缓,所以快递业务量也逐年减少.你赞同这种说法吗?为什么?(4)若2020年全国快递业务量比2019年增长50%,请列式计算2020年的快递业务量.52.(2020·辽宁盘锦市·中考真题)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每A B C D四个组别,并绘制了如下不完整的频数分布表和扇形统计图.天课外阅读时间的长短,将他们分为,,,频数分布表请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.53.(2020·内蒙古呼伦贝尔市·中考真题)某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如下统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________人,扇形统计图中的m= ________,条形统计图中的n=_____;(2)所调查的初中学生每天睡眠时间的众数是_______,方差是______;(3)该校共有1600名初中学生,根据样本数据,估计该校初中学生每天睡眠时间不足8小时的人数.54.(2020·四川绵阳市·中考真题)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?55.(2020·云南昆明市·中考真题)某鞋店在一周内销售某款女鞋,尺码(单位:cm)数据收集如下:24 23.5 21.5 23.5 24.5 23 22 23.5 23.5 23 22.5 23.5 23.5 22.5 24 24 22.5 25 23 23 23.5 23 22.5 23 23.5 23.5 23 24 22 22.5绘制如图不完整的频数分布表及频数分布直方图:(1)请补全频数分布表和频数分布直方图;(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为;(3)若店主下周对该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约多少双?56.(2020·四川眉山市·中考真题)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.57.(2020·湖北荆州市·中考真题)6月26日是“国际禁毒日”某中学组织七、八年级全体学生开展了“禁毒知。

2025年中考数学总复习专题23 统计(附答案解析)

2025年中考数学总复习专题23 统计(附答案解析)

2025年中考数学总复习专题23
统计
一、全面调查与抽样调查
1.有关概念
1)全面调查:为一特定目的而对所有考察对象进行的全面调查叫做全面调查.
2)抽样调查:为一特定目的而对部分考察对象进行的调查叫做抽样调查.
2.调查的选取:当受客观条件限制,无法对所有个体进行全面调查时,往往采用抽样调查.
3.抽样调查样本的选取:1)抽样调查的样本要有代表性;2)抽样调查的样本数目要足够大.
二、总体、个体、样本及样本容量
总体:所要考察对象的全体叫做总体.个体:总体中的每一个考察对象叫做个体.
样本:从总体中抽取的部分个体叫做样本.样本容量:样本中个体的数目叫做样本容量.
三、几种常见的统计图表
1.条形统计图:条形统计图就是用长方形的高来表示数据的图形.
特点:(1)能够显示每组中的具体数据;(2)易于比较数据之间的差别.
2.折线统计图:用几条线段连成的折线来表示数据的图形.
特点:易于显示数据的变化趋势.
3.扇形统计图:用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比的大小,这样的统计图叫扇形统计图.
百分比的意义:在扇形统计图中,每部分占总体的百分比等于该部分所对扇形的圆心角的度数与360°的比.扇形的圆心角=360°×百分比.
4.频数分布直方图
1)每个对象出现的次数叫频数.2)每个对象出现的次数与总次数的比(或者百分比)叫频率,频数和频率都能够反映每个对象出现的频繁程度.
3)频数分布表、频数分布直方图和频数折线图都能直观、清楚地反映数据在各个小范围内的分布情况.
第1页(共22页)。

中考数学专题训练:统计(附参考答案)

中考数学专题训练:统计(附参考答案)

中考数学专题训练:统计(附参考答案)1.以下调查中,最适合用全面调查的是( )A.调查柳江流域水质情况B.了解全国中学生的心理健康状况C.了解全班学生的身高情况D.调查春节联欢晚会收视率2.乡村医生李医生在对本村老年人进行年度免费体检时,发现张奶奶血压偏高,为了准确诊断,随后7天,李医生每天定时为张奶奶测量血压,测得数据如下表:..A.收缩压的中位数为139B.舒张压的众数为88C.收缩压的平均数为142D.舒张压的方差为8873.小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形统计图1及条形统计图2(柱的高度从高到低排列).条形图不小心被撕了两块,图2中“( )”内应填的颜色是( )图1 图2A.蓝B.粉C.黄D.红4.“科学用眼,保护视力”是青少年珍爱生命的具体表现.某校随机抽查了50名八年级学生的视力情况,得到的数据如表:A.4.9和4.8 B.4.9和4.9C.4.8和4.8 D.4.8和4.95.某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是( )A.最高成绩是9.4环B.平均成绩是9环C.这组成绩的众数是9环D.这组成绩的方差是8.76.五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是( )图1 图2A.本次抽样调查的样本容量是5 000B.扇形统计图中的m为10%C.若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人D.样本中选择公共交通出行的有2 400人7.长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是( )A.甲班视力值的平均数大于乙班视力值的平均数B.甲班视力值的中位数大于乙班视力值的中位数C.甲班视力值的极差小于乙班视力值的极差D.甲班视力值的方差小于乙班视力值的方差8.如果将一组数据中的每个数都减去5,那么所得的一组新数据( )A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变9.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁10.在某次射击训练过程中,小明打靶10次的成绩(环)如表所示,则小明射击成绩的众数和方差分别为( )C.10和1 D.9和111.五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是( )A.只有平均数B.只有中位数C.只有众数D.中位数和众数12.小红在“养成阅读习惯,快乐阅读,健康成长”读书大赛活动中,随机调查了本校初二年级20名同学,在近5个月内每人阅读课外书的数量,数据如下表所示:A.13,15 B.14,15C.13,18 D.15,1513.某射击爱好者的10次射击成绩(单位:环)依次为:7,9,10,8,9,8,10,10,9,10,则下列结论正确的是( )A.众数是9 B.中位数是8.5C.平均数是9 D.方差是1.214.“俭以养德”是中华民族的优秀传统,某中学为了对全校学生零花钱的使用进行正确引导,随机抽取50名学生,对他们一周的零花钱数额进行了统计,并根据调查结果绘制了不完整的频数分布表和扇形统计图,如图所示:关于这次调查,下列说法正确的是( ) A .总体为50名学生一周的零花钱数额 B .五组对应扇形的圆心角度数为36° C .在这次调查中,四组的频数为6D .若该校共有学生1 500人,则估计该校零花钱数额不超过20元的人数约为1 200人15.下列说法正确的是( )A .扇形统计图能够清楚地反映事物的变化趋势B .对某型号电子产品的使用寿命采用全面调查的方式C .有一种游戏的中奖概率是15,则做5次这样的游戏一定会有一次中奖D .甲、乙两组数据的平均数相等,它们的方差分别是s 甲2=0.2,s 乙2=0.03,则乙比甲稳定16.若一组数据x 1,x 2,x 3,…,x n 的方差为2,则数据x 1+3,x 2+3,x 3+3,…,x n +3的方差是( ) A .2 B .5 C .6D .1117.如表是小红参加一次“阳光体育”活动比赛的得分情况:评总分时,按跑步占50%,花样跳绳占30%,跳绳占20%考评,则小红的最终得分为.18.为了加强心理健康教育,某校组织七年级(1)(2)两班学生进行了心理健康常识测试(分数为整数,满分为10分).已知两班学生人数相同,根据测试成绩绘制了如下所示的统计图.(1)求(2)班学生中测试成绩为10分的人数;(2)请确定下表中a,b,c的值;(3)19.为激励青少年争做事业接班人,某市史馆组织了以“红心永系国”为主题的知识竞赛,依据得分情况将获奖结果分为四个等级:A级为特等奖,B级为一等奖,C级为二等奖,D级为优秀奖.并将统计结果绘制成了如图所示的两幅不完整的统计图.根据相关信息,解答下列问题.(1)本次竞赛共有_______名选手获奖,扇形统计图中扇形C的圆心角度数是_________;(2)补全条形统计图;(3)若该史馆有一个入口,三个出口,请用树状图或列表法,求参赛选手小丽和小颖由馆内恰好从同一出口走出的概率.参考答案1.C 2.A 3.D 4.B 5.D 6.D 7.D 8.C 9.D 10.C11.D 12.D 13.C 14.B 15.D 16.A17.83分18.(1)(2)班学生中测试成绩为10分的有6人(2)a=8,b=9,c=8(3)(1)班成绩更均匀,理由略19.(1)200 108°(2)补全条形统计图略(3)13。

中考数学复习《统计》练习题真题含答案

中考数学复习《统计》练习题真题含答案

第八单元统计与概率第30课时统计基础过关训练1. (2017重庆A卷)下列调查中,最适合采用全面调查(普查)方式的是()A. 对重庆市初中学生每天阅读时间的调查B. 对端午节期间市场上粽子质量情况的调查C. 对某批次手机的防水功能的调查D. 对某校九年级3班学生肺活量情况的调查2. 下列调查方式中,合适的是()A. 调查你所在班级同学的身高,采用抽样调查的方式B. 调查湘江的水质情况,采用抽样调查的方式C. 调查CCTV5《NBA总决赛》栏目在我市的收视率,采用普查的方式D. 要了解全市初中学生的业余爱好,采用普查的方式3. (2017广州)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15.这组数据中的众数,平均数分别为()A. 12,14B. 12,15C. 15,14D. 15,134. (2017黄冈)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A. 12B. 13C. 13.5D. 145. (2017雅礼实验中学一模)有19位同学参加歌咏比赛,所得的分数互不相同,取前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()A. 平均数B. 中位数C. 众数D. 方差6. (2017枣庄)下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm) 185 180 185 180方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A. 甲B. 乙C. 丙D. 丁7. (2017武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为()A. 1.65,1.70B. 1.65,1.75C. 1.70,1.75D. 1.70,1.808. (2017宜宾)某单位组织职工开展植树活动,植树量与人数之间的关系如图,下列说法不正确的是()第8题图A. 参加本次植树活动共有30人B. 每人植树量的众数是4棵C. 每人植树量的中位数是5棵D. 每人植树量的平均数是5棵9. (2017温州)某校学生到校方式情况的统计图如图所示.若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A. 75人B. 100人C. 125人D. 200人第9题图第10题图10. (2017安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A. 280B. 240C. 300D. 26011. (2017张家界)某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数 3 4 5 6人数20 15 10 5那么这50名学生平均每人植树________棵.12.(2017重庆A卷)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是________小时.第12题图13. (8分)(2017江西)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车第13题图根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有______人,其中选择B类的人数有______人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.14. (8分)(2017连云港)某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.“文明在我身边”摄 影比赛成绩统计表“文明在我身边”摄影比 赛成绩频数分布直方图第14题图根据以上信息解答下列问题:(1)统计表中c 的值为________;样本成绩的中位数落在分数段________中; (2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?15. (8分)(2017桂林)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题.分数段 频数 频率 60≤x <70 18 0.36 70≤x <80 17 c 80≤x <90 a 0.24 90≤x ≤100 b 0.06 合计1组别阅读时间t(单位:小时)频数 (人数)第15题图(1)图表中m =________,n =________;(2)扇形统计图中F 组所对应的圆心角为_______度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?16. (8分)(2017娄底)为给研究制定《中考改革实施方案》提出合理化建议,教研人员对九年级学生进行了随机抽样调查,要求被抽查的学生从物理、化学、政治、历史、生物和地理这六个选考科目中,挑选出一科作为自己的首选科目,将调查数据汇总整理后,绘制出了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:A 0≤t <1 8B 1≤t <2 20C 2≤t <3 24D 3≤t <4 mE 4≤t <5 8 Ft ≥54第16题图(1)被抽查的学生共有多少人?(2)将折线统计图补充完整;(3)我市现有九年级学生约40000人,请你估计首选科目是物理的人数.17. (8分)(2017邵阳)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)第17题图(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.能力提升训练1. (2017眉山)下列说法错误..的是( ) A. 给定一组数据,那么这组数据的平均数一定只有一个 B. 给定一组数据,那么这组数据的中位数一定只有一个 C. 给定一组数据,那么这组数据的众数一定只有一个D. 如果一组数据存在众数,那么该众数一定是这组数据中的某一个2. (2017宁波)若一组数据2,3,x ,5,7的众数为7,则这组数据的中位数为( ) A. 2 B. 3 C. 5 D. 73. (2017百色)九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是( )第3题图A. 45°B. 60°C. 72°D. 120°4. (2017河北)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表.甲组12户家庭用水量统计表 乙组12户家庭用水量统计图第4题图比较5月份两组家庭用水量的中位数,下列说法正确的是( ) A. 甲组比乙组大 B. 甲、乙两组相同 C. 乙组比甲组大 D. 无法判断用水量(吨) 4 5 6 9 户数45215. (2017潍坊)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次.甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选()A. 甲B. 乙C. 丙D. 丁6. (2017江西)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是_______.答案1. D2. B3. C4. B5. B6. A7. C【解析】将这15名运动员的成绩从小到大(或从大到小)排列,第8名的成绩为1.70 ,∴这些运动员成绩的中位数为1.70;一组数据中出现次数最多的那个数是这组数据的众数,1.75 出现的次数最多,∴这些运动员成绩的众数为1.75.8. D【解析】本次参加植树活动的人共有:4+10+8+6+2=30(人),其中植树量为4棵的人数最多为10人,∴每人植树量的众数为4棵;将每人植树量从小到大排列,第15、16人植树均为5棵,其平均数为5棵,∴其中位数为5棵;所有人植树量的平均数为:3×4+4×10+5×8+6×6+7×230=7115(棵).9. D【解析】∵步行到校的学生有100人,∴该校共有学生人数为100÷20%=500人,∴乘公共汽车到校的学生人数为500×40%=200人.10. A【解析】由条形统计图可知,参加社团活动在8~10小时之间的学生数是:100-8-24-30-10=28,∴在所抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的比例为28100=0.28,由样本估计总体可得全校1000名学生参加社团活动时间在8~10小时之间的学生数大约是1000×0.28=280.11. 4【解析】根据题意知,平均每人植树为20×3+15×4+10×5+5×650=4(棵).12. 11【解析】由折线统计图可知锻炼9小时的有6人,锻炼10小时的有9人,锻炼11小时的有10人,锻炼12小时的有8人,锻炼13小时的有7人,可得这组数据中共有40个数,将这40个数从小到大(或从大到小)排列,第20、21个数的平均数为中位数,∴中位数为(11+11)÷2=11.13. 解:(1)800;240;(2)360°×(1-30%-25%-14%-6%)=360°×25%=90°,∴α=90°,补全条形统计图如解图所示:(3)12×(25%+30%+25%)=12×80%=9.6(万人),∴估计该市“绿色出行”方式的人数为9.6万人.14. 解:(1)0.34,70≤x<80;(2)补全频数分布直方图如解图所示:“文明在我身边”摄影比赛成绩频数分布直方图(3)600×(0.24+0.06)=180(幅),答:估计全校被展评的作品数量是180幅.15. 解:(1)16,30;【解法提示】抽查学生人数是8÷10%=80,∴m=80×20%=16,n%=24÷80×100%=30%.(2)18;【解法提示】扇形统计图中F组所对的圆心角度数是480×360°=18°. (3)∵样本中平均课外阅读时间不少于3小时的学生人数是16+8+4=28(人),∴估计该校学生每周课外阅读时间不低于3小时的学生人数是28÷80×1500=525(人),答:估计该校学生每周课外阅读时间不低于3小时的学生人数是525人.16. 解:(1)被抽查的学生总人数为162÷18%=900(人),答:被抽查的学生共有900人;(2)补全折线统计图如解图所示:【解法提示】抽查的900人中,选历史作为首选科目的学生人数为:900×6%=54(人).(3)∵我市现有九年级学生40000人,∴40000×180900=8000(人), 答:估计首选科目是物理的人数为8000人.17. 解:(1)(815+780+800+785+790+825+805)÷7=800,将7天的数据按从小到大排列为:780,785,790,800,805,815,825, ∴中位数是800,答:这7天内小申家每天用水量的平均数是800,中位数是800;(2)100800×100%=12.5%, 答:第3天小申家洗衣服的水占这一天总用水量的12.5%;(3)可以把洗衣服的水用来冲厕所(答案不唯一);采用以上建议,每天大约可以节约用水100升,∴100×30=3000(升),答:一个月估计可以节约用水3000升.能力提升训练1. C【解析】根据中位数、平均数的定义可知,给定一组数据,那么这组数据的中位数、平均数只有一个,故A、B正确;根据众数的定义可知,一组数据的众数可能不只一个,如数据2,2,3,3,4,5的众数为2和3,故C错误;根据众数的定义,众数是一组数据中出现次数最多的数,可知一组数据中的众数一定是这组数据中的一个,故D正确.2. C【解析】依题意可得,由众数定义可知x=7,把这组数据按从小到大排列为2、3、5、7、7,∴中位数为5.3. C【解析】第一小组所占百分比1212+20+13+5+10=20%,其相应圆心角度数为360°×20%=72°.4. B【解析】分别对两组数据进行从小到大排列,12个数据的中位数是第6和第7个数的平均数,由统计表可以看出甲组中第6和第7个数据均为5,∴甲组家庭用水量的中位数为5;由统计图的角度可以看出乙组中第6和第7个数均为5,∴乙组家庭用水量的中位数也为5.5. C【解析】根据折线统计图得,丙的平均数为9,方差为0.4;丁的平均数为8.2,方差为0.76;∴丙的平均数更高,方差更小,∴应选丙.6. 5【解析】由题意得:平均数=2+5+x+y+2x+116=7,得出3x+y=24 ①,中位数=x+y2=7,得出x+y=14 ②,∴⎩⎨⎧3x+y=24 ①x+y=14 ②,解得⎩⎨⎧x=5y=9,∴将这组数据从小到大排列为2,5,5,9,10,11,∴众数为5.。

2022年中考数学真题分类汇编:统计解答题专题(含答案)

2022年中考数学真题分类汇编:统计解答题专题(含答案)

2022年中考数学真题汇编统计解答题专题11.(2022·湖南省衡阳市)为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:参与此次抽样调查的学生人数是______人,补全统计图要求在条形图上方注明人数;图中扇形的圆心角度数为______度;若参加成果展示活动的学生共有人,估计其中最喜爱“测量”项目的学生人数是多少;计划在,,,,五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中,这两项活动的概率.2.(2022·湖南省邵阳市)年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团假设该校要求人人参与社团,每人只能选择一个为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图、图所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.求抽取参加调查的学生人数.将以上两幅不完整的统计图补充完整.若该校有人参加社团活动,试估计该校报兴趣类社团的学生人数.3.(2022·四川省乐山市)为落实中央“双减”精神,某校拟开设四门校本课程供学生选择:文学鉴赏,趣味数学,川行历史,航模科技.为了解该校八年级名学生对四门校本课程的选择意向,张老师做了以下工作:抽取名学生作为调查对象;整理数据并绘制统计图;收集名学生对四门课程的选择意向的相关数据;结合统计图分析数据并得出结论.请对张老师的工作步骤正确排序______.以上步骤中抽取名学生最合适的方式是______.A.随机抽取八年级三班的名学生B.随机抽取八年级名男生C.随机抽取八年级名女生D.随机抽取八年级名学生如图是张老师绘制的名学生所选课后服务类型的条形统计图.假设全年级每位学生都做出了选择,且只选择了一门课程.若学校规定每个班级不超过人,请你根据图表信息,估计该校八年级至少应该开设几个趣味数学班.4.(2022·浙江省湖州市)为落实“双减”政策,切实减轻学生学业负担,丰富学生课余生活,某校积极开展“五育并举”课外兴趣小组活动,计划成立“爱心传递”、“音乐舞蹈”、“体育运动”、“美工制作”和“劳动体验”五个兴趣小组,要求每位学生都只选其中一个小组.为此,随机抽查了本校各年级部分学生选择兴趣小组的意向,并将抽查结果绘制成如下统计图不完整.根据统计图中的信息,解答下列问题:求本次被抽查学生的总人数和扇形统计图中表示“美工制作”的扇形的圆心角度数;将条形统计图补充完整;该校共有名学生,根据抽查结果,试估计全校选择“爱心传递”兴趣小组的学生人数.5.(2022·浙江省宁波市)小聪、小明参加了米跑的期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:这期的集训共有多少天?哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.6.(2022·湖南省怀化市)电视剧一代洪商在中央电视台第八套播出后,怀化市各旅游景点知名度得到显著提高.为全面提高旅游服务质量,旅游管理部门随机抽取了名游客进行满意度调查,并绘制成如下不完整的频数分布表和扇形统计图.频数分布表满意程度频数人频率非常满意满意一般不满意合计根据统计图表提供的信息,解答下列问题:______,______,______;求扇形统计图中表示“一般”的扇形圆心角的度数;根据调查情况,请你对各景点的服务提一至两条合理建议.7.(2022·浙江省温州市)为了解某校名学生在校午餐所需的时间,抽查了名学生在校午餐所花的时间,由图示分组信息得:,,,,,,,,,,,,,,,,,,,.分组信息组:组:组:组:组:注:分钟为午餐时间某校被抽查的名学生在校午餐所花时间的频数表组别划记频数____________ ____________合计(1)请填写频数表,并估计这名学生午餐所花时间在组的人数.在既考虑学生午餐用时需求,又考虑食堂运行效率的情况下,校方准备在分钟,分钟,分钟,分钟中选择一个作为午餐时间,你认为应选择几分钟为宜?说明理由.8.(2022·甘肃省武威市)受疫情影响,某初中学校进行在线教学的同时,要求学生积极参与“增强免疫力、丰富学习生活”为主题的居家体育锻炼活动,并实施锻炼时间目标管理.为确定一个合理的学生居家锻炼时间的完成目标,学校随机抽取了名学生周累计居家锻炼时间单位:的数据作为一个样本,并对这些数据进行了收集、整理和分析,过程如下:【数据收集】【数据整理】将收集的个数据按,,,,五组进行整理统计,并绘制了如图所示的不完整的频数分布直方图说明:,,,,,其中表示锻炼时间;【数据分析】统计量平均数众数中位数锻炼时间请根据以上信息解答下列问题:填空:______;补全频数分布直方图;如果学校将管理目标确定为每周不少于,该校有名学生,那么估计有多少名学生能完成目标?你认为这个目标合理吗?说明理由.9.(2022·云南省)临近端午节,某学校数学兴趣小组到社区参加社会实践活动,帮助有关部门了解某小区居民对去年销量较好的鲜花粽、火腿粽、豆沙粽、蛋黄粽四种粽子的喜爱情况.在对该小区居民进行抽样调查后,根据统计结果绘制如下统计图:说明:参与本次抽样调查的每一位居民在上述四种粽子中选择且只选择了一种喜爱的粽子.请根据以上信息,解答下列问题:补全条形统计图;若该小区有人,估计喜爱火腿粽的有多少人?10.(2022·浙江省绍兴市)双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长单位:小时的情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息解答下列问题.八年级学生每日完成书面作业所需时长情况的统计表组别所需时长小时学生人数人求统计表中,的值.已知该校八年级学生有人,试估计该校八年级学生中每日完成书面作业所需时长满足的共有多少人.11.(2022·四川省凉山彝族自治州)为丰富校园文化生活,发展学生的兴趣与特长,促进学生全面发展.某中学团委组建了各种兴趣社团,为鼓励每个学生都参与到社团活动中,学生可以根据自己的爱好从美术、演讲、声乐、舞蹈、书法中选择其中个社团.某班班主任对该班学生参加社团的情况进行调查统计,并绘制成如下两幅不完整的统计图.请根据统计图提供的信息完成下列各题:该班的总人数为______人,并补全条形图注:在所补小矩形上方标出人数;在该班团支部人中,有人参加美术社团,人参加演讲社团,人参加声乐社团.如果该班班主任要从他们人中任选人作为学生会候选人,请利用树状图或列表法求选出的两人中恰好有人参加美术社团、人参加演讲社团的概率.12.(2022·山东省滨州市)某校为满足学生课外活动的需求,准备开设五类运动项目,分别为:篮球,:足球,:乒乓球,:羽毛球,:跳绳.为了解学生的报名情况,现随机抽取八年级部分学生进行调查,并根据调查结果绘制了如下两幅不完整的统计图.请根据以上图文信息回答下列问题:此次调查共抽取了多少名学生?请将此条形统计图补充完整;在此扇形统计图中,项目所对应的扇形圆心角的大小为______;学生小聪和小明各自从以上五类运动项目中任选一项参加活动,请利用画树状图或列表的方法求他俩选择相同项目的概率.13.(2022·四川省德阳市)据德阳县志记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于年月日破土动工,年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:设本次问卷调查共抽取了名市民,图中“不太了解”所对应扇形的圆心角是度,分别写出,的值;根据以上调查结果,在名市民中,估计“非常了解”的人数有多少?为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的名男士和名女士中随机抽取人进行调查,请用列举法树状图或列表求恰好抽到一男一女的概率.14.(2022·四川省泸州市)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:劳动时间单位:小时频数(1)______,______;若该校学生有人,试估计劳动时间在范围的学生有多少人?劳动时间在范围的名学生中有男生名,女生名,学校准备从中任意抽取名交流劳动感受,求抽取的名学生恰好是一名男生和一名女生的概率.15.(2022·四川省成都市)年月日,教育部印发义务教育课程方案和课程标准年版,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长单位:分钟人数所占百分比根据图表信息,解答下列问题:本次调查的学生总人数为______,表中的值为______;该校共有名学生,请你估计等级为的学生人数;本次调查中,等级为的人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.16.(2022·浙江省丽水市)某校为了解学生在“五一”小长假期间参与家务劳动的时间小时,随机抽取了本校部分学生进行问卷调查.要求抽取的学生在,,,,五个选项中选且只选一项,并将抽查结果绘制成如下两幅不完整的统计图,请根据图中信息回答问题:求所抽取的学生总人数;若该校共有学生人,请估算该校学生参与家务劳动的时间满足的人数;请你根据调查结果,对该校学生参与家务劳动时间的现状作简短评述.17.(2022·四川省南充市)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:阅读数学名著;讲述数学故事;制作数学模型;挑战数学游戏.要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图如图,请根据图表信息解答下列问题:项目人数人(1)______,______.扇形统计图中“”项目所对应的扇形圆心角为______度.在月末的展示活动中,“”项目中七班有人获得一等奖,七班有人获得一等奖,现从这名学生中随机抽取人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的名学生来自不同班级的概率.18.(2022·四川省自贡市)为了解学生每周参加课外兴趣小组活动的累计时间单位:小时,学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按,,,分为四个等级,分别用、、、表示.如图是受损的调查统计图,请根据图上残存信息解决以下问题:求参与问卷调查的学生人数,并将条形统计图补充完整;全校共有学生人,试估计学校每周参加课外兴趣小组活动累计时间不少于小时的学生人数;某小组有名同学,、等级各人,从中任选人向老师汇报兴趣活动情况.请用画树状图法或列表法求这人均属等级的概率.19.(2022·黑龙江省齐齐哈尔市)“双减”政策实施后,某校为了解本校学生每天课后进行体育锻炼的时间情况,在月份某天随机抽取了若干名学生进行调查,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,回答下列问题:表中______,______,______;将条形图补充完整;若制成扇形图,则组所对应的圆心角为______;若该校学生有人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过分钟的学生约有多少人?组别锻炼时间分钟频数人百分比20.(2022·四川省)我市某校在推进新课改的过程中,开设的体育选修课有::篮球,:足球,:排球,:羽毛球,:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班学生的选课情况进行调查统计,制成了两幅不完整的统计图如图.该班的总人数为人,并补全频数分布直方图;表示“足球”所在扇形的圆心角是该班班委人中,人选修篮球,人选修足球,人选修排球,李老师要从这人中任选人了解他们对体育选修课的看法,则选出的人恰好人选修篮球,人选修足球的概率是21.(2022·江苏省无锡市)育人中学初二年级共有名学生,年秋学期学校组织初二年级学生参加秒跳绳训练,开学初和学期末分别对初二年级全体学生进行了摸底测试和最终测试,两次测试数据如下:育人中学初二学生秒跳绳测试成绩的频数分布表跳绳个数频数摸底测试频数最终测试表格中______;请把下面的扇形统计图补充完整;(只需标注相应的数据)请问经过一个学期的训练,该校初二年级学生最终测试30秒跳绳超过80个的人数有多少?参考答案1.2.解:人,答:此次共调查了人;体育类有人,文艺类社团的人数所占百分比:,阅读类社团的人数所占百分比:,将条形统计图补充完整如下:人,答:估计喜欢兴趣类社团的学生有人.3.4.解:本次被抽查学生的总人数是人,扇形统计图中表示“美工制作”的扇形的圆心角度数是;“音乐舞蹈”的人数为人,补全条形统计图如下:估计全校选择“爱心传递”兴趣小组的学生人数为人.5.解:十十天.答:这期的集训共有天.秒.答:第期小聪的成绩比他上一期的成绩进步最多,进步了秒.个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为天或天时成绩最好.6.7.8.9.解:抽样调查的总人数:人,喜欢火腿粽的人数为:人,补全条形统计图如图所示:根据题意得:人,答:喜爱火腿粽的有人,故答案为:.10.解:被调查总人数:人,人,人,答:为,为;当时,在被调查的人中有人,在该校八年级学生人中,每日完成书面作业所需时长满足的共有人,答:估计共有人.11.12.13.解:由图可知:“基本了解”的人数为人,由图可知:“基本了解”的人数占总数的,人;由图可知:“比较了解”有人,“比较了解”所对应扇形的圆心角是,由图知:“不太了解”所对应扇形的圆心角是度;由图知:“非常了解”的人数占总人数的,于是估计在名市民中,“非常了解”的人数有人.答:在名市民中,估计“非常了解”的人数有人.从名男士和名女士中随机抽取人进行调查,抽查情况列表如下:由上表可知,一共有种等可能,其中恰好抽到一男一女的情况有中,恰好抽到一男一女的概率为.14.15.16.解:人,故所抽取的学生总人数为人;人,答:估算该校学生参与家务劳动的时间满足的人数为人;由题意可知,该校学生在“五一”小长假期间参与家务劳动时间在占最多数,中位数位于这一组答案不唯一.17.18.解:,等级的人数人,条形统计图补充如下:学校每周参加课外兴趣小组活动累计时间不少于小时的学生人数人,每周参加课外兴趣小组活动累计时间不少于小时的学生为人;设等级人分别用,表示,等级人分别用,表示,随机选出人向老师汇报兴趣活动情况的树状图如下:共有种等可能结果,而选出人中人均属等级有种,所求概率.19.20.解:该班的总人数为人,科目人数为人,科目人数为人,补全图形如下:故答案为:;表示“足球”所在扇形的圆心角是,故答案为:;画树状图为:共有种等可能的结果数,其中选出的人恰好人选修篮球,人选修足球占种,所以选出的人恰好人选修篮球,人选修足球的概率,故答案为:.21.。

中考复习数学真题汇编15:统计图表(含答案)

中考复习数学真题汇编15:统计图表(含答案)

一、选择题1. (2015福建省福州市,5,3分)下列选项中,显示部分在总体中所占百分比的统计图是( ) A.扇形图 B.条形图 C.折线图 D.直方图 【答案】A2. (2015浙江省温州市,3,4分)某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有( )A.25人B.35人C.40人D.100人【答案】C3. (2015内蒙古呼和浩特,8,3分)以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )A. 4月份三星手机销售额为65万元B. 4月份三星手机销售额比3月份有所上升C. 4月份三星手机销售额比3月份有所下降D. 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额 【答案】B4. (2015年江苏扬州市)如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是 ( )各月手机销售总额统计图三星手机销售额占该手机店 当月手机销售总额的百分比统计图A 、音乐组B 、美术组C 、体育组D 、科技组二、填空题 1.2. (2015四川省凉山州市,15,4分)小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A 型血的有20人,则O 型血的有 人 【答案】10. 【解析】总人数为20÷40%=50人,O 型血的有50×(1﹣40%﹣30%﹣10%)=10人,故答案是10.3. (2015广东省广州市,12,3分)根据环保局公布的广州市2013年至2014年PM 2.5的主要来源的数据,制成扇形统计图(如图4),其中所占百分比最大的主要来源是 .(填主要来源的名称)【答案】机动车尾气【解析】用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比的大小,这样的统计图叫做扇形统计图.所以一看数据就知道是机动车尾气.4. (2015四川资阳,13,3分)某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成右图统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.每周课外阅读时间(小时)0~11~2(不含1) 2~3(不含2)超过3 人 数 7 10 14 19【答案】240.21.7%11.5%20.6%19%8.2%8.6%10.4% 机动车尾气 工业工艺源 燃煤 其他 生物质燃烧 生活面源扬尘图41296301518181312b 3课时数 组)与 不等式(组)A一次方程 B 一次方程组C 不等式与不等式组 D二次方程 E分式方程图数与代数(内容) 课时数数与式 67 方程(组)与 不等式(组) a图实践与综合应用统计与概率空间与图形 数与代数 40%45%5%图5. (2014江苏省苏州市,13,3分)某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名.【答案】60【解析】最喜欢羽毛球的人数所占百分率比最喜欢乒乓球的人数所占百分率少10%,故被调查总人数为6÷105=60(人).6. (2015年湖南衡阳,22,6分)为了进一步了解义务教育阶段学生体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分别为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为 ;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有 人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有 人. 【答案】(1)40%;(2)16;(3)128【解析】解:(1)总人数=8÷16%=50人,合格百分比:20100%50=40%; (2)不合格的人数=50×32%=16人; (3)九年级不合格为数=400×32%=128人.三、解答题1. (2015浙江省丽水市,20,8分)某运动品牌店对第一季度A ,B 两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(第13题)20%30%40%乒乓球篮球羽毛球50606552销售量(双)A ,B 两款运动鞋销售量统计图6总销售额(万元)5A ,B 两款运动鞋总销售额统计图A B(1)一月份B款运动鞋的销售量是A款的45,则一月份B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.【答案】解:(1)50×45=40(双).∴一月份B款运动鞋销售了40双.(2)设A,B两款运动鞋的销售单价分别为x元,y元.由题意可得504040000 605250000x yx y+⎧⎨+⎩==.解方程组得400500xy⎧⎨⎩==.∴三月份的总销售额为400×65+500×26=39000=3.9(万元).(3)答案不唯一,只要学生结合数据分析,言之有理即可.例如:从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销售量大,建议多进A款运动鞋,少进或不进B款鞋.从总销售额来看,由于B款运动鞋销售量减少,导致总销售额减少,建议店里采取一些促销手段,增加B 款运动鞋的销售量.2.(2015四川省巴中市,26,10分)“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦·我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出2名去参加市中学生演讲比赛.已知A等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.【答案】解:(1)根据统计图,可知A等级的有3人,占15%,∴参加比赛的共有3÷15%=20(人).∴C等级所占百分比为8=40%20,D等级所占百分比为4=20%20.∴m=40,D等级所占百分比为360°×20%=72°.(2)由题意,B等级所占百分比为1-15%-40%-20%=25%,∴B等级人数为20×25%=5(人),补全统计图如下所示.3.(2015山东省青岛市,17,6分)某中学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?【答案】解:(1)∵10÷25%=40,∴B的人数为40-10-14-3-1=12.补全条形统计图如下:(2)∵1-25%-30%-35%-2.5%=7.5%,∴360°×7.5%=27°.∴扇形统计图中扇形D 的圆心角的度数为27°. (3)∵2000×35%=700,∴该中学有2000名学生中有700名学生能在1.5小时内完成家庭作业.4. (2015重庆B 卷,22,10分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A )、音乐类(记为B )、球类(记为C )、其他类(记为D ).根据调查结果发现该班每个学生都进行了登记且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为_______人,扇形统计图中D 类所对应扇形的圆心角为_____度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A 类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A 类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.类别人数22题图”我最喜欢的课外活动“各类别人数占全班总人数的百分比的扇形统计图DCB25%A“我最喜欢的课外活动”各类别人数条形统计图141242018161412108642【答案】(1)48,105;(2)23【解析】解:(1)总人数=12÷25%=48人;D 类对应的圆心角的度数=360°×1448=105°. 类别人数18“我最喜欢的课外活动”各类别人数条形统计图141242018161412108642,则可列下表: A 1 A 1 A 2 A 2A 1 √ √ A 1 √ √ A 2 √ √ A 2√√∴由上表可得:82(123P =一名擅长书法一名擅长绘画)=5. 小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方图(如图). 月均用水量(单位:t )频数 百分比23x ≤<2 4% 34x ≤< 12 24% 45x ≤< 56x ≤< 10 20% 67x ≤< 12% 78x ≤<3 6% 89x ≤<24%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t ”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在23x ≤<,89x ≤<这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率。

概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文

概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)全文

概率与统计(40题)一、单选题1.(2023·上海·统考中考真题)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.【答案】B【分析】根据折线统计图逐项判断即可得.【详解】解:A、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B、小车的车流量的平均数较大,则此项正确,符合题意;C、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B.【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.2.(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm,大圆半径为20cm,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可【详解】解:由题意得,大圆面积为2220400cm ππ⨯=,免一次作业对应区域的面积为2226020601050cm 360360πππ⨯⨯⨯⨯−=,∴投中“免一次作业”的概率是5014008ππ=,故选:B .【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.A .58B 【答案】B【分析】设小正方形的边长为1,则大正方形的边长为32,根据题意,分别求得阴影部分面积和总面积,根据概率公式即可求解.【详解】解:设小正方形的边长为1,则大正方形的边长为32,∴总面积为2231614169252⎛⎫⨯+⨯=+= ⎪⎝⎭,阴影部分的面积为2239132122222⎛⎫⨯+⨯=+=⎪⎝⎭,∴点P 落在阴影部分的概率为131322550=, 故选:B .【点睛】本题考查了几何概率,分别求得阴影部分的面积是解题的关键.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲 B .乙 C .丙 D .丁【答案】D【分析】根据10次射击成绩的平均数x 可知淘汰乙;再由10次射击成绩的方差2S 可知1.8 1.20.4>>,也就是丁的射击成绩比较稳定,从而得到答案. 【详解】解:98>,∴由四人的10次射击成绩的平均数x 可知淘汰乙;1.8 1.20.4>>,∴由四人的10次射击成绩的方差2S 可知丁的射击成绩比较稳定;故选:D .【点睛】本题考查通过统计数据做决策,熟记平均数与方差的定义与作用是解决问题的关键.5.(2023·湖南怀化·统考中考真题)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A .众数是9.6B .中位数是9.5C .平均数是9.4D .方差是0.3【答案】A【分析】先把5个数据按从小到大的顺序排列,而后用中位数,众数,平均数和方差的定义及计算方法逐一判断.【详解】解:5个数按从小到大的顺序排列9.2,9.4,9.6,9.6,9.7,A、9.6出现次数最多,众数是9.6,故正确,符合题意;B、中位数是9.6,故不正确,不符合题意;C、平均数是()19.2+9.4+9.62+9.7=9.55⨯,故不正确,不符合题意;D、方差是()()()()222219.29.5+9.49.5+29.69.5+9.79.5=0.0325⎡⎤⨯−−−−⎣⎦,故不正确,不符合题意.故选:A.【点睛】本题考查了中位数,众数,平均数和方差,熟练掌握这些定义及计算方法是解决此类问题的关键.A.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在9293−岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有110人【答案】D【分析】利用年龄范围为9899−的人数为10人,对应的百分比为10%,即可判断A 选项;由A 选项可知该小组共统计了100名数学家的年龄,根据1005%5m =⨯=即可判断B 选项;由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即可判断C 选项;用2200乘以小组共统计了100名数学家的年龄中在9697−岁的百分比,即可判断D 选项.【详解】解:A .年龄范围为9899−的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B .由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C .由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即长寿数学家年龄在9293−岁的人数最多,故选项正确,不符合题意;D .《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有112200242100⨯=人,故选项错误,符合题意. 故选:D .【点睛】此题考查了扇形统计图和统计表,从扇形统计图和统计表中获取正确信息,进行正确计算是解题的关键.二、填空题这种绿豆发芽的概率的估计值为________(精确到0.01). 【答案】0.93【分析】根据题意,用频率估计概率即可.【详解】解:由图表可知,绿豆发芽的概率的估计值0.93, 故答案为:0.93.【点睛】本题考查了利用频率估计概率.解题的关键在于明确:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】10【分析】根据概率公式计算即可得出结果. 【详解】解:该生体重“标准”的概率是350750010=, 故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.【答案】1500吨【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解. 【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷−−−=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨); 故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.10.(2023·浙江宁波·统考中考真题)一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为_____________.【答案】1 4【分析】从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,根据简单概率公式代值求解即可得到答案.【详解】解:由题意可知,从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,P∴(任意摸出一个球为绿球)31 124==,故答案为:1 4.【点睛】本题考查概率问题,弄清总的结果数及符合要求的结果数,熟记简单概率公式求解是解决问题的关键.三、解答题(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数.(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.【答案】(1)平均里程:200km ;中位数:200km ,众数:205km ;(2)见解析 【分析】(1)观察统计图,根据平均数、中位数和众数的计算方法求解即可; (2)根据各型号汽车的平均里程、中位数、众数和租金方面进行分析. 【详解】(1)解:由统计图可知: A 型号汽车的平均里程:31904195520062052210200(km)34562A x ⨯+⨯+⨯+⨯+⨯==++++,A 型号汽车的里程由小到大排序:最中间的两个数(第10、11个数据)是200、200,故中位数200200200(km)2+==,出现充满电后的里程最多的是205公里,共六次,故众数为205km .(2)选择B 型号汽车.理由:A 型号汽车的平均里程、中位数、众数均低于210km ,且只有10%的车辆能达到行程要求,故不建议选择;B ,C 型号汽车的平均里程、中位数、众数都超过210km ,其中B 型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B 型号汽车比C 型号汽车更经济实惠,故建议选择B 型号汽车.【点睛】本题考查了统计量的选择,平均数、中位数和众数,熟练掌握平均数、方差、中位数的定义和意义是解题的关键.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是___________;(3)如果测试成绩达到80分及以上为优秀,试估计该校800名学生中对安全知识掌握程度为优秀的学生约有多少人?【答案】(1)见解析;(2)82;(3)估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人 【分析】(1)根据总人数减去其他组的人数求得7080x ≤<的人数,即可补全直方图; (2)根据中位数为第20、21个数据的平均数,结合直方图或分布表可得; (3)用样本估计总体即可得.【详解】(1)解:404612108−−−−=(人), 补全的频数分布直方图如下图所示,;(2)解:∵46818++=, ∴第20、21个数为81、83;∴抽取的40名学生成绩的中位数是()18183822+=;故答案为:82; (3)解:由题意可得:121080044040+⨯=(人),答:估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人.【点睛】本题考查频数分布直方图、中位数,用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.(2023·浙江·统考中考真题)为全面提升中小学生体质健康水平,我市开展了儿童青少年“正脊行动”.人民医院专家组随机抽取某校各年级部分学生进行了脊柱健康状况筛查.根据筛查情况,李老师绘制了两幅不完整的统计图表,请根据图表信息解答下列问题: 抽取的学生脊柱健康情况统计表(1)求所抽取的学生总人数;(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.【答案】(1)200人;(2)80人;(3)【分析】(1)利用抽取的学生中正常的人数除以对应的百分比即可得到所抽取的学生总人数;(2)用该校学生总数乘以抽取学生中脊柱侧弯程度为中度和重度的百分比即可得到答案;(3)利用图表中的数据提出合理建议即可.【详解】(1)解:17085%200÷=(人).∴所抽取的学生总人数为200人.(2)() 1600185%10%80⨯−−=(人).∴估算该校学生中脊柱侧弯程度为中度和重度的总人数有80人.(3)该校学生脊柱侧弯人数占比为15%,说明该校学生脊柱侧弯情况较为严重,建议学校要每天组织学生做护脊操等.【点睛】此题考查了统计表和扇形统计图,熟练掌握用部分除以对应的百分比求总数、用样本估计总体是解题的关键.【答案】(1)1,8;(2)23,;(3)优秀率高的年级不是平均成绩也高,理由见解析【分析】(1)根据扇形统计图得出七年级活动成绩为7分的学生数的占比为10%,即可得出七年级活动成绩为7分的学生数,根据扇形统计图结合众数的定义,即可求解;(2)根据中位数的定义,得出第5名学生为8分,第6名学生为9分,进而求得a,b的值,即可求解;(3)分别求得七年级与八年级的优秀率与平均成绩,即可求解.−−−【详解】(1)解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%´,∴样本中,七年级活动成绩为7分的学生数是1010%=1根据扇形统计图,七年级活动成绩的众数为8分, 故答案为:1,8.(2)∵八年级10名学生活动成绩的中位数为8.5分,∴第5名学生为8分,第6名学生为9分,∴5122a =−−=, 1012223b =−−−−=,故答案为:23,. (3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5⨯+⨯+⨯+⨯,八年级优秀率为32100%50%10+⨯=40%>,平均成绩为:()167228392108.310⨯+⨯+⨯+⨯+⨯=8.5<, ∴优秀率高的年级为八年级,但平均成绩七年级更高, ∴优秀率高的年级不是平均成绩也高【点睛】本题考查了扇形统计图,统计表,中位数,众数,求一组数据的平均数,从统计图表获取信息是解题的关键.②若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A 款新能原汽车四项评分数据的平均数. (2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.【答案】(1)①3015辆,②68.3分;(2)选B 款,理由见解析 【分析】(1)①根据中位数的概念求解即可; ②根据加权平均数的计算方法求解即可; (2)根据加权平均数的意义求解即可. 【详解】(1)①由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆; ②172270367364268.32332x ⨯+⨯+⨯+⨯==+++分.∴A 款新能原汽车四项评分数据的平均数为68.3分; (2)给出1:2:1:2的权重时, 72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分),70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分),75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分),结合2023年3月的销售量, ∴可以选B 款.【点睛】此题考查了中位数和加权平均数,以及利用加权平均数做决策,解题的关键是熟练掌握以上知识点.16.(2023·江苏连云港·统考中考真题)如图,有4张分别印有Q 版西游图案的卡片:A 唐僧、B 孙悟空、C 猪八戒、D 沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率: (1)第一次取出的卡片图案为“B 孙悟空”的概率为__________;(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A 唐僧”的概率.【答案】(1)14;(2)716【分析】(1)根据概率公式即可求解;(2)根据题意,画出树状图, 进而根据概率公式即可求解. 【详解】(1)解:共有4张卡片,第一次取出的卡片图案为“B 孙悟空”的概率为14 故答案为:14.(2)树状图如图所示:由图可以看出一共有16种等可能结果,其中至少一张卡片图案为“A 唐僧”的结果有7种. ∴P (至少一张卡片图案为“A 唐僧”)716=.答:两次取出的2张卡片中至少有一张图案为“A 唐僧”的概率为716.【点睛】本题考查了概率公式求概率,画树状图法求概率,熟练掌握求概率的方法是解题的关键.【答案】(1)100人;(2)270人【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.÷(人),【详解】(1)本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;⨯(人),(2)90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.18.(2023·新疆·统考中考真题)跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:请根据以上信息解答下列问题: (1)填空:=a ______,b =______;(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀? (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由. 【答案】(1)165,150;(2)84;(3)见解析【分析】(1)根据众数与中位数的定义进行计算即可求解;(2)根据样本估计总体,用跳绳165次及以上人数的占比乘以总人数,即可求解; (3)根据中位数的定义即可求解;【详解】(1)解:这组数据中,165出现了4次,出现次数最多 ∴165a =,这组数据从小到大排列,第1011个数据分别为148,152, ∴1481521502b +==,故答案为:165,150.(2)解:∵跳绳165次及以上人数有7个, ∴估计七年级240名学生中,有72408420⨯=个优秀,(3)解:∵中位数为150,∴某同学1分钟跳绳152次,可推测该同学的1分钟跳绳次数超过年级一半的学生.【点睛】本题考查了求中位数,众数,样本估计总体,熟练掌握中位数、众数的定义是解题的关键. 19.(2023·甘肃武威·统考中考真题)某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x 表示,分成6个等级:A .10x <;B .10 1.5x ≤<;C .1520x ≤<;D .2025x ≤<;E .2530x ≤<;F .3035x ≤≤).下面给出了部分信息:b .八年级学生上学期期末地理成绩在C .1520x ≤<这一组的成绩是: 15,15,15,15,15,16,16,16,18,18c .八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期 平均数 众数 中位数八年级上学期 17.715 m【答案】(1)16;(2)35;(3)八年级,理由见解析【分析】(1)由中位数的概念,可知40人成绩的中位数是第20、21位的成绩; (2)根据样本估计总体即可求解; (3)根据平均成绩或中位数即可判断.【详解】(1)解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,由统计图知A 组4人,B 组10人,C 组10人,则中位数在C 组,第20、21位的成绩分别是16,16, 则中位数是1616162+=;故答案为:16; (2)解:612003540+⨯=(人),这200名学生八年级下学期期末地理成绩达到优秀的约有35人,故答案为:35;(3)解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.【点睛】本题考查了条形统计图,中位数,众数等知识,熟练掌握知识点并灵活运用是解题的关键. 平均数 众数 中位数七年级参赛学生成绩 85.5 m 87 八年级参赛学生成绩 85.5 85n根据以上信息,回答下列问题:(1)填空:m =________,n =________;(2)七、八年级参赛学生成绩的方差分别记为21S 、22S ,请判断21S ___________22S (填“>”“<”或“=”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好. 【答案】(1)80,86;(2)>;(3)见解析【分析】(1)找到七年级学生的10个数据中出现次数最多的即为m 的值,将八年级的10个数据进行排序,第5和第6个数据的平均数即为n 的值;(2)根据折线统计图得到七年级的数据波动较大,根据方差的意义,进行判断即可; (3)利用平均数和中位数作决策即可.【详解】(1)解:七年级的10个数据中,出现次数最多的是:80,∴80m=;将八年级的10个数据进行排序:76,77,85,85,85,87,87,88,88,97;∴()18587862n=+=;故答案为:80,86;(2)由折线统计图可知:七年级的成绩波动程度较大,∵方差越小,数据越稳定,∴2212S S>;故答案为:>.(3)七年级和八年级的平均成绩相同,但是七年级的中位数比八年级的大,所以七年级参赛学生的成绩较好.【点睛】本题考查数据的分析.熟练掌握众数,中位数的确定方法,利用中位数作决策,是解题的关键.(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.【答案】(1)A ,B 两班的学生人数分别是50人,46人;(2)见解析;(3)见解析 【分析】(1)由统计表中的数据个数之和可得两个班的总人数;(2)先求解两个班成绩的平均数,再判断中位数落在哪个范围,以及15分以上的百分率,再比较即可; (3)先求解前测数据的平均数,判断前测数据两个班的中位数落在哪个组,计算15人数的增长百分率,再从这三个分面比较即可.【详解】(1)解: A 班的人数:28993150++++=(人) B 班的人数:251082146++++=(人) 答:A ,B 两班的学生人数分别是50人,46人. (2)14 2.5167.51212.5617.5222.59.150A x ⨯+⨯+⨯+⨯+⨯==,6 2.587.51112.51817.5322.512.946B x ⨯+⨯+⨯+⨯+⨯=≈, 从平均数看,B 班成绩好于A 班成绩.从中位数看,A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,B 班成绩好于A 班成绩. 从百分率看,A 班15分以上的人数占16%,B 班15分以上的人数约占46%,B 班成绩好于A 班成绩. (3)前测结果中: A 28 2.597.5912.5317.5122.56.550x ⨯+⨯+⨯+⨯+⨯'==B6.4x '=≈从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好. 从中位数看,两班前测中位数均在05x <≤这一范围,后测A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A 班15分以上的人数增加了100%,B 班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.【点睛】本题考查的是从统计表中获取信息,平均数,中位数的含义,增长率的含义,选择合适的统计量作分析,熟练掌握基础的统计知识是解本题的关键.……结合调查信息,回答下列问题:本次调查共抽查了多少名学生?900名初中生中最喜爱篮球项目的人数.假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100;(2)360;(3)见解析【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.÷=,【详解】(1)被抽查学生数:3030%100答:本次调查共抽查了100名学生.⨯=,(2)被抽查的100人中最喜爱羽毛球的人数为:1005%5−−−−=,∴被抽查的100人中最喜爱篮球的人数为:100301015540∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.【答案】(1)8;(2)108︒;(3)5 6【分析】(1)用做饭的人数除以做饭点的百分比25%,得抽取的总人数,再减去“洗衣”、“拖地”、“刷碗”的人数即可求得到m值;(2)用360︒乘以“拖地”人数所占的百分比,即可求解;(3)画树状图或列表分析出所有可能的结果数和有男生的结果数,再用概率公式计算即可.【详解】(1)解:1025%1012108m=÷−−−=,故荅案为:8;(2)解:() 360121025%108︒⨯÷÷=︒,故荅案为:108°;(3)解:方法一:画树状图如下:由图可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.方法二:列表如下:由表可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.【点睛】本题考查统计表,扇形统计图,用画树状图或列表的方法求概率.熟练掌握从统计图表中获取有用信息和用画树状图或列表的方法求概率是解题的关键.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于【答案】(1)补全学生课外读书数量条形统计图见解析;(2)4,72,103;(3)450人【分析】(1)根据已知条件可知,课外读书数量为2本的有2人,4本的有4人,据此可以补全条形统计图;(2)根据众数,中位数和平均数的定义求解即可;(3)用该校学生总数乘以抽样调查的数据中外读书数量不少于3本的学生人数所占的比例即可.【详解】(1)补全学生课外读书数量条形统计图,如图:(2)∵本次所抽取学生课外读书数量的数据中出现次数最多的是4,∴众数是4.将本次所抽取的12名学生课外读书数量的数据,按照从小到大的顺序排列为:1,2,2,3,3,3,4,4,4,4,5,5.∵中间两位数据是3,4,∴中位数是:347 22+=.平均数为:112233445210123x⨯+⨯+⨯+⨯+⨯==.(3)3429 6006004501212++⨯=⨯=,∴该校有600名学生,估计本学期开学以来课外读书数量不少于3本的学生人数为450人.【点睛】本题主要考查了条形统计图,众数,中位数,平均数,以及用样本所占百分比估计总体的数量,熟练掌握众数,中位数,平均数的定义是解题的关键.25.(2023·四川达州·统考中考真题)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人,并把条形统计图补充完整;(2)扇形统计图中,m =___________,n =___________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.【答案】(1)见解析;(2)20,10,144;(3)110【分析】(1)利用C 类人数除以所占百分比可得调查的学生人数;用总人数减去其它四项的人数可得到D 的人数,然后补图即可;(2)根据总数与各项人数比值可求出m ,n 的值,A 项目的人数与总人数比值乘360︒即可得出圆心角的度数;(3)画树状图展示所有20求解.【详解】(1)本次调查的学生总数:510%50÷=(人),D 、书法社团的人数为:5020105105−−−−=(人),如图所示故答案为:50;(2)由图知,105020%5010%2050360144÷=÷=÷⨯︒=︒,5,,。

中考数学试题分类汇编:统计((有答案))

中考数学试题分类汇编:统计((有答案))

中考数学试题分类汇编:统计((有答案))一.选择题1.(2015..A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分2.(2015广东)3. 一组数据2,6,5,2,4,则这组数据的中位数是 A.2 B.4 C.5 D.6 【答案】B.【解析】由小到大排列,得:2,2,4,5,6,所以,中位数为4,选B 。

3.(孝感)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为20 18 17 10 15 10,,,,,.对于这组数据,下列说法错误..的是 A .平均数是15 B .众数是10C .中位数是17D .方差是3444.(湖南常德)某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为2141.7S 甲=,2433.3S 乙=,则产量稳定,适合推广的品种为:A 、甲、乙均可B 、甲C 、乙D 、无法确定【解答与分析】这是数据统计与分析中的方差意义的理解,平均数相同时,方差越小越稳定: 答案为B5.(衡阳)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( C ).A .50元,30元B .50元,40元C .50元,50元D .55元,50元 6. )(2015•益阳)某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数平均数为:=3.8况四个同学得出的以下四个结论,其中正确的为A . 4月份三星手机销售额为65万元B . 4月份三星手机销售额比3月份有所上升C . 4月份三星手机销售额比3月份有所下降D . 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额8.(野西南州)已知一组数据:-3,6,2,-1,0,4,则这组数据的中位数是A .1B .34C .0D .2 9.二.填空题1.(2015•厦门)已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s = nk (用只含有k 的代数式表示).2.(2015•梅州)在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图.请根据相关信息,解答下列问题:(直接填写结果) (1)这次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.考点:条形统计图;用样本估计总体;中位数;众数../元各月手机销售总额统计图三星手机销售额占该手机店 当月手机销售总额的百分比统计图分析:(1)众数就是出现次数最多的数,据此即可判断; (2)中位数就是大小处于中间位置的数,根据定义判断; (3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解. 解答:解:(1)众数是:30元,故答案是:30元; (2)中位数是:50元,故答案是:50元; (3)调查的总人数是:6+12+10+8+4=40(人), 则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3.(汕尾)在“全民读书月活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图。

专题20 统计-2023年中考数学真题分项汇编(全国通用)(第1期)(原卷版)

专题20 统计-2023年中考数学真题分项汇编(全国通用)(第1期)(原卷版)

专题20 统计一.选择题1.(2022·浙江温州)某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有()A.75人B.90人C.108人D.150人2.(2022·甘肃武威)2022年4月16日,神州十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神州十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是()A.完成航天医学领域实验项数最多B.完成空间应用领域实验有5项C.完成人因工程技术实验项数比空间应用领域实验项数多D.完成人因工程技术实验项数占空间科学实验总项数的24.3%3.(2022·浙江金华)观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数为()A.5B.6C.7D.8 4.(2022·四川乐山)李老师参加本校青年数学教师优质课比赛,笔试得90分、微型课得92分、教学反思得88分.按照图所显示的笔试、微型课、教学反思的权重,李老师的综合成绩为()A.88B.90C.91D.92 5.(2022·湖南株洲)某路段的一台机动车雷达测速仪记录了一段时间内通过的机动车的车速数据如下:67、63、69、55、65,则该组数据的中位数为()A.63B.65C.66D.69 6.(2022·浙江湖州)统计一名射击运动员在某次训练中10次射击的中靶环数,获得如下数据:7,8,10,9,9,8,10,9,9,10.这组数据的众数是()A.7B.8C.9D.10 7.(2022·浙江宁波)开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(℃)36.236.336.536.636.8天数(天)33422100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况: 评委1评委2 评委3 评委4 评委5 9.9 9.7 9.6 10 9.8数据9.9,9.7,9.6,10,9.8的中位数是( )A .9.6B .9.7C .9.8D .9.9 10.(2022·浙江嘉兴)A ,B 两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A 成绩较好且更稳定的是( )A .AB x x >且22A B S S >. B .A B x x >且22B A S S <.C .A B x x <且22A B S S >D .A B x x <且22B A S S <.11.(2022·四川南充)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是( )A .平均数B .中位数C .众数D .方差12.(2022·山东滨州)今年我国小麦大丰收,农业专家在某种植片区随机抽取了10株小麦,测得其麦穗长(单位:cm )分别为8,8,6,7,9,9,7,8,10,8,那么这一组数据的方差为( )A .1.5B .1.4C .1.3D .1.213.(2022·四川凉山)一组数据4、5、6、a 、b 的平均数为5,则a 、b 的平均数为( ) A .4 B .5 C .8 D .10 14.(2022·山东泰安)某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A.15.5,15.5B.15.5,15C.15,15.5D.15,15 15.(2022·浙江台州)从A,B两个品种的西瓜中随机各取7个,它们的质量分布折线图如图.下列统计量中,最能反映出这两组数据之间差异的是()A.平均数B.中位数C.众数D.方差16.(2022·四川广元)如图是根据南街米粉店今年6月1日至5日每天的用水量(单位:吨)绘制成的折线统计图.下列结论正确的是()A.平均数是6B.众数是7C.中位数是11D.方差是817.(2022·湖北黄冈)下列调查中,适宜采用全面调查方式的是( )A .检测“神舟十四号”载人飞船零件的质量B .检测一批LED 灯的使用寿命C .检测黄冈、孝感、咸宁三市的空气质量D .检测一批家用汽车的抗撞击能力 18.(2022·湖南常德)下列说法正确的是( )A .为了解近十年全国初中生的肥胖人数变化趋势,采用扇形统计图最合适B .“煮熟的鸭子飞了”是一个随机事件C .一组数据的中位数可能有两个D .为了解我省中学生的睡眠情况,应采用抽样调查的方式19.(2022·湖南湘潭)依据“双减”政策要求,初中学生书面作业每天完成时间不超过90分钟.某中学为了解学生作业管理情况,抽查了七年级(一)班全体同学某天完成作业时长情况,绘制出如图所示的频数直方图:(数据分成3组:030x <≤,3060x <≤,6090x <≤).则下列说法正确的是( )(多选题)A .该班有40名学生B .该班学生当天完成作业时长在3060x <≤分钟的人数最多C .该班学生当天完成作业时长在030x <≤分钟的频数是5D .该班学生当天完成作业时长在060x <≤分钟的人数占全班人数的80%二、填空题20.(2022·四川遂宁)遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是______.21.(2022·浙江丽水)在植树节当天,某班的四个绿化小组植树的棵数如下:10,8,9,9,则这组数据的平均数是___________.22.(2022·湖南常德)今年4月23日是第27个世界读书日,某校举行了演讲大赛,演讲得分按“演讲内容”占40%、“语言表达”占40%、“形象风度”占10%、“整体效果”占10%进行计算,小芳这四项的得分依次为85,88,92,90,则她的最后得分是________分.23.(2022·江苏宿迁)已知一组数据:4,5,5,6,5,4,7,8,则这组数据的众数是___. 24.(2022·浙江温州)某校5个小组在一次植树活动中植树株数的统计图如图所示,则平均每组植树___________株.25.(2022·江苏扬州)某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为22S S 乙甲、,则2S 甲________2S 乙.(填“>”“<”或“=”)26.(2022·湖北武汉)某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是_________.三、解答题27.(2022·湖北武汉)为庆祝中国共青团成立100周年,某校开展四项活动:A 项参观学习,B 项团史宣讲,C 项经典诵读,D 项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图.(1)本次调查的样本容量是__________,B 项活动所在扇形的圆心角的大小是_________,条形统计图中C 项活动的人数是_________;(2)若该校约有2000名学生,请估计其中意向参加“参观学习”活动的人数.28.(2022·浙江台州)某中学为加强学生的劳动教育,需要制定学生每周劳动时间(单位:小时)的合格标准,为此随机调查了100名学生目前每周劳动时间,获得数据并整理成表格. 学生目前每周劳动时间统计表 每周劳动时间x(小时)0.5 1.5x ≤< 1.5 2.5x ≤< 2.5 3.5x ≤< 3.5 4.5x ≤< 4.5 5.5x ≤< 组中值1 2 3 4 5 人数(人)21 30 19 18 12(1)画扇形图描述数据时,1.5 2.5x ≤<这组数据对应的扇形圆心角是多少度?(2)估计该校学生目前每周劳动时间的平均数;(3)请你为该校制定一个学生每周劳动时间的合格标准(时间取整数小时),并用统计量说明其合理性.29.(2022·湖北黄冈)为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t (单位:分钟).按照完成时间分成五组:A 组“t ≤45”,B 组“45<t ≤60”,C 组“60<t ≤75”,D 组“75<t ≤90”,E 组“t >90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是,请补全条形统计图;(2)在扇形统计图中,B组的圆心角是度,本次调查数据的中位数落在组内;(3)若该校有1800名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.30.(2022·湖南常德)2020年7月,教育部印发的《大中小学劳动教育指导纲要(试行)》中明确要求中小学劳动教育课平均每周不少于1课时,初中生平均每周劳动时间不少于3小时.某初级中学为了解学生劳动教育的情况,从本校学生中随机抽取了500名进行问卷调查.下图是根据此次调查结果得到的统计图.请根据统计图回答下列问题:(1)本次调查中,平均每周劳动时间符合教育部要求的人数占被调查人数的百分比为多少?(2)若该校有2000名学生,请估计最喜欢的劳动课程为木工的有多少人.(3)请你根据本次问卷调查的结果给同学和学校各提一条合理化建议.31.(2022·湖南娄底)按国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》要求,各中小学校积极行动,取得了良好的成绩.某中学随机抽取了部分学生对他们一周的课外阅读时间(A :10h 以上,B :8h ~10h ,C :6h ~8h ,D :6h 以下)进行问卷调查,将所得数据进行分类,统计了绘制了如下不完整的统计图.请根据图中的信息,解答下列问题:(1)本次调查的学生共_______名;(2)=a ________,b =________;(3)补全条形统计图.32.(2022·湖南湘潭)百年青春百年梦,初心献党向未来.为热烈庆祝中国共产主义青年团成立100周年,继承先烈遗志,传承“五四”精神.某中学在“做新时代好少年,强国有我”的系列活动中,开展了“好书伴我成长”的读书活动.为了解5月份八年级学生的读书情况,随机调查了八年级20名学生读书数量(单位:本),并进行了以下数据的整理与分析: 数据收集:2 53 54 6 15 3 4 367 58 3 4 7 3 4数据整理: 本数02x <≤ 24x <≤ 46x <≤ 68x <≤ 组别A B C D 频数 2 m6 3依据统计信息回答问题(1)在统计表中,m _________;(2)在扇形统计图中,C部分对应的圆心角的度数为_________;(3)若该校八年级学生人数为200人,请根据上述调查结果,估计该校八年级学生读书在4本以上的人数.33.(2022·江苏苏州)某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如下表格:培训前成绩(分)678910划记正正正正人数(人)124754培训后成绩(分)678910划记一正正正正人数(人)413915是n,则m______n;(填“>”、“<”或“=”)(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?(3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?34.(2022·天津)在读书节活动中,某校为了解学生参加活动的情况,随机调查了部分学生每人参加活动的项数.根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为___________,图①中m 的值为___________;(2)求统计的这组项数数据的平均数、众数和中位数.35.(2022·江苏宿迁)为了解某校九年级学生开展“综合与实践”活动的情况,抽样调查了该校m名九年级学生上学期参加“综合与实践”活动的天数,并根据调查所得的数据绘制了如下尚不完整的两幅统计图.根据图表信息,解答下列问题:(1)m=,n=;(2)补全条形统计图;(3)根据抽样调查的结果,请你估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数.36.(2022·浙江丽水)某校为了解学生在“五·一”小长假期间参与家务劳动的时间t(小时),随机抽取了本校部分学生进行问卷调查.要求抽取的学生在A ,B ,C ,D ,E 五个选项中选且只选一项,并将抽查结果绘制成如下两幅不完整的统计图,请根据图中信息回答问题: (1)求所抽取的学生总人数;(2)若该校共有学生1200人,请估算该校学生参与家务劳动的时间满足34t ≤<的人数;(3)请你根据调查结果,对该校学生参与家务劳动时间的现状作简短评述.37.(2022·浙江金华)学校举办演讲比赛,总评成绩由“内容、表达、风度、印象”四部分组成.九(1)班组织选拔赛,制定的各部分所占比例如图,三位同学的成绩如表.请解答下列问题:演讲总评成绩各部分所占比例的统计图:三位同学的成绩统计表: 内容 表达 风度 印象 总评成绩 小明 8 7 8 8 m 小亮 7 8 8 9 7.85 小田 79777.8(1)求图中表示“内容”的扇形的圆心角度数.(2)求表中m 的值,并根据总评成绩确定三人的排名顺序.(3)学校要求“内容”比“表达”重要,该统计图中各部分所占比例是否合理?如果不合理,如何调整?38.(2022·四川达州)“防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x 表示,共分成四组:A .8085x <,B .8590x <,C .9095x <,D .95100x ),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96. 八年级10名学生的竞赛成绩在C 组中的数据是:92,92,94,94. 七、八年级抽取的学生竞赛成绩统计表 年级 七年级 八年级 平均数 92 92 中位数 96 m 众数 b 98 方差28.628根据以上信息,解答下列问题:(1)上述图表中=a __________,b =__________,m =__________;(2) 根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(95x )的学生人数是多少?39.(2022·湖南邵阳)2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图(1)、图(2)所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.(1)求抽取参加调查的学生人数.(2)将以上两幅不完整的统计图补充完整.(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.40.(2022·江西)在“双减”政策实施两个月后,某市“双减办”面向本市城区学生,就“‘双减’前后参加校外学科补习班的情况”进行了一次随机问卷调查(以下将“参加校外学科补习班”简称“报班”),根据问卷提交时间的不同,把收集到的数据分两组进行整理,分别得到统计表1和统计图1:整理描述表1:“双减”前后报班情况统计表(第一组)报班数人数01234及以上合计类别“双减”前10248755124m“双减”后2551524n0m(1)根据表1,m的值为__________,nm的值为__________;(2)分析处理:请你汇总表1和图1中的数据,求出“双减”后报班数为3的学生人数所占的百分比;(3)“双减办”汇总数据后,制作了“双减”前后报班情况的折线统计图(如图2).请依据以上图表中的信息回答以下问题:①本次调查中,“双减”前学生报班个数的中位数为__________,“双减”后学生报班个数的众数为__________;②请对该市城区学生“双减”前后报班个数变化情况作出对比分析(用一句话来概括).41.(2022·浙江湖州)为落实“双减”政策,切实减轻学生学业负担,丰富学生课余生活,某校积极开展“五育并举”课外兴趣小组活动,计划成立“爱心传递”、“音乐舞蹈”、“体育运动”、“美工制作”和“劳动体验”五个兴趣小组,要求每位学生都只选其中一个小组.为此,随机抽查了本校各年级部分学生选择兴趣小组的意向,并将抽查结果绘制成如下统计图(不完整).根据统计图中的信息,解答下列问题:(1)求本次被抽查学生的总人数和扇形统计图中表示“美工制作”的扇形的圆心角度数;(2)将条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)该校共有1600名学生,根据抽查结果,试估计全校选择“爱心传递”兴趣小组的学生人数.42.(2022·新疆)某校依据教育部印发的《大中小学劳动教育指导纲要(试行)》指导学生积极参加劳动教.该校七年级数学兴趣小组利用课后托管服务时间,对七年级学生一周参加家庭劳动次数情况.开展了一次调查研究.请将下面过程补全.①收集数据:通过问卷调查,兴趣小组获得了这20名学生每人一周参加家庭劳动的次数,数据如下:31224332343405526463②整理、描述数据:整理数据,结果如下:分组频数≤<202x≤<1024x≤<6x46x≤<268③分析数据平均数中位数众数3.25a3(1)兴趣小组计划抽取该校七年级20名学生进行问卷调查,下面的抽取方法中,合理的是()A.从该校七年级1班中随机抽取20名学生B.从该校七年级女生中随机抽取20名学生C.从该校七年级学生中随机抽取男、女各10名学生a___________;(4)该校七年级现有400名学生,请估(2)补全频数分布直方图;(3)填空:计该校七年级学生每周参加家庭劳动的次数达到平均水平及以上的学生人数;(5)根据以上数据分析,写出一条你能得到的结论.43.(2022·四川乐山)为落实中央“双减”精神,某校拟开设四门校本课程供学生选择:A.文学鉴赏,B.越味数学,C.川行历史,D.航模科技.为了解该校八年级1000名学生对四门校本课程的选择意向,张老师做了以下工作:①抽取40名学生作为调查对象;②整理数据并绘制统计图;③收集40名学生对四门课程的选择意向的相关数据:④结合统计图分析数据并得出结论.(1)请对张老师的工作步骤正确排序______.(2)以上步骤中抽取40名学生最合适的方式是______.A.随机抽取八年级三班的40名学生B.随机抽取八年级40名男生C.随机抽取八年级40名女生D.随机抽取八年级40名学生(3)如图是张老师绘制的40名学生所选课后服务类型的条形统计图,假设全年级每位学生都做出了选择,且只选择了一门课程.若学校规定每个班级不超过40人,请你根据图表信息,估计该校八年级至少应该开设几个趣味数学班.44.(2022·浙江嘉兴)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:中小学生每周参加家庭劳动时间x(h)分为5组:第一组(0≤x<0.5),第二组(0.5≤x<1),第三组(1≤x<1.5),第四组(1.5≤x<2),第五组(x≥2).根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h,请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.45.(2022·湖南株洲)某校组织了一次“校徽设计”竞赛活动,邀请5名老师作为专业评委,50名学生代表参与民主测评,且民主测评的结果无弃权票.某作品的评比数据统计如下:专业评委给分(单位:分)①88② 87 ③ 94 ④ 91 ⑤90记“专业评委给分”的平均数为x .(1)求该作品在民主测评中得到“不赞成”的票数; (2)对于该作品,问x 的值是多少?(3)记“民主测评得分”为y ,“综合得分”为S ,若规定:①=y “赞成”的票数3⨯分+“不赞成”的票数()1⨯-分;②0.70.3S x y =+.求该作品的“综合得分”S 的值.46.(2022·陕西)某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表: 组别 “劳动时间”t /分钟 频数 组内学生的平均“劳动时间”/分钟 A 60t <8 50 B 6090t ≤< 16 75 C 90120t ≤<40 105 D 120t ≥36150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在__________组; (2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.47.(2022·云南)临近端午节,某学校数学兴趣小组到社区参加社会实践活动,帮助有关部门了解某小区居民对去年销量较好的鲜花粽、火腿粽、豆沙粽、蛋黄粽四种粽子的喜爱情况.在对该小区居民进行抽样调查后,根据统计结果绘制如下统计图:说明:参与本次抽样调查的每一位居民在上述四种粽子中选择且只选择了一种喜爱的粽子.请根据以上信息,解答下列问题:(1)补全条形统计图;(2)若该小区有1820人,估计喜爱火腿粽的有多少人?48.(2022·重庆)在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x ,67x ≤<,记为6;78x ≤<,记为7;89x ≤<,记为8;…以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息, 七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11, 七、八年级抽取的学生课外阅读时长统计表 年级 七年级 八年级 平均数8.38.3众数a9中位数8b8小时及以上所占百分比75%c根据以上信息,解答下列问题:a______________,b=______________,c=______________.(1)填空:=(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上的学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由,(写出一条理由即可)49.(2022·浙江宁波)小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.50.(2022·江苏扬州)某校初一年级有600名男生,为增强体质,拟在初一男生中开展引体向上达标测试活动.为制定合格标准,开展如下调查统计活动.(1)A调查组从初一体育社团中随机抽取20名男生进行引体向上测试,B调查组从初一所有男生中随机抽取20名男生进行引体向上测试,其中_________(填“A”或“B”),调查组收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况;(2)根据合理的调查方式收集到的测试成绩数据记录如下:成绩/个23457131415人数/人11185121__________个;(3)若以(2)中测试成绩的中位数作为该校初一男生引体向上的合格标准,请估计该校初一有多少名男生不能达到合格标准.。

中考数学总复习《统计》专项测试卷带答案

中考数学总复习《统计》专项测试卷带答案

中考数学总复习《统计》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·济宁微山县一模)下列调查中,适宜抽样调查的是( )A.了解某班级学生的身高情况B.选拔出某校跑最快的学生参加全省比赛C.调查某批次汽车的抗撞击能力D.调查某校九年级一班学生课外体育锻炼时间2.(2024·赤峰中考)某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16 000名初中学生中,视力不低于4.8的人数是( )视力4.7以下4.74.84.94.9以上人数3941334047A.120B.200C.6 960D.9 6003.(2024·盐城中考)甲、乙两家公司2024~2023年的利润统计图如下,比较这两家公司的利润增长情况( )A.甲始终比乙快B.甲先比乙慢,后比乙快C.甲始终比乙慢D.甲先比乙快,后比乙慢4.(2024·上海中考)科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的是( )种类甲种类乙种类丙种类丁种类平均数2.32.32.83.1方差1.050.781.050.78A.甲种类B.乙种类C.丙种类D.丁种类5.(2024·德阳中考)为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:投中次数(个)012345人数(人)1●1017●6表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是( )A.平均数B.中位数C.众数D.方差6.(2024·福建中考)学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是.(单位:分)7.(2024·德阳中考)某校拟招聘一名优秀的数学教师,设置了笔试、面试、试讲三项水平测试,综合成绩按照笔试占30%,面试占30%,试讲占40%进行计算,小徐的三项测试成绩如图所示,则她的综合成绩为分..8.(2024·北京中考)某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由10名教师评委和45名学生评委给每位选手打分(百分制).对评委给某位选手的打分进行整理、描述和分析.下面给出了部分信息.a.教师评委打分:86889091919191929298b.学生评委打分的频数分布直方图如图(数据分6组:第1组82≤x<85,第2组85≤x<88,第3组88≤x<91,第4组91≤x<94,第5组94≤x<97,第6组97≤x≤100).c.评委打分的平均数、中位数、众数如下:平均数中位数众数教师评委9191m学生评委90.8n93根据以上信息,回答下列问题:①m的值为,n的值位于学生评委打分数据分组的第组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x则x91(填“>”“=”或“<”);(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前.5名专业评委给进入决赛的甲、乙、丙三位选手的打分如下:评委1评委2评委3评委4评委5甲9390929392乙9192929292丙90949094k若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是,表中k(k为整数)的值为.B层·能力提升9.(2024·宜宾中考)某校为了解九年级学生在校的锻炼情况,随机抽取10名学生,记录他们某一天在校的锻炼时间(单位:分钟):65,67,75,65,75,80,75,88,78,80.对这组数据判断正确的是( )A.方差为0B.众数为75C.中位数为77.5D.平均数为7510.(2024·苏州中考)某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择( )A.甲、丁B.乙、戊C.丙、丁D.丙、戊11.(2024·天津中考)为了解某校八年级学生每周参加科学教育的时间(单位:h),随机调查了该校八年级a名学生,根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为_________,图①中m的值为_________,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为_________和_________;(2)求统计的这组学生每周参加科学教育的时间数据的平均数;(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9 h的人数为多少?C层·素养挑战12.(2024·河南中考)为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________ (填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为_________ 分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误×(-1),且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.参考答案A层·基础过关1.(2024·济宁微山县一模)下列调查中,适宜抽样调查的是(C)A.了解某班级学生的身高情况B.选拔出某校跑最快的学生参加全省比赛C.调查某批次汽车的抗撞击能力D.调查某校九年级一班学生课外体育锻炼时间2.(2024·赤峰中考)某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16 000名初中学生中,视力不低于4.8的人数是(D)视力4.7以下4.74.84.94.9以上人数3941334047A.120B.200C.6 960D.9 6003.(2024·盐城中考)甲、乙两家公司2024~2023年的利润统计图如下,比较这两家公司的利润增长情况(A)A.甲始终比乙快B.甲先比乙慢,后比乙快C.甲始终比乙慢D.甲先比乙快,后比乙慢4.(2024·上海中考)科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的是(B)种类甲种类乙种类丙种类丁种类平均数2.32.32.83.1方差1.050.781.050.78A.甲种类B.乙种类C.丙种类D.丁种类5.(2024·德阳中考)为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:投中次数(个)012345人数(人)1●1017●6表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是(C)A.平均数B.中位数C.众数D.方差6.(2024·福建中考)学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是90.(单位:分)7.(2024·德阳中考)某校拟招聘一名优秀的数学教师,设置了笔试、面试、试讲三项水平测试,综合成绩按照笔试占30%,面试占30%,试讲占40%进行计算,小徐的三项测试成绩如图所示,则她的综合成绩为85.8分..8.(2024·北京中考)某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由10名教师评委和45名学生评委给每位选手打分(百分制).对评委给某位选手的打分进行整理、描述和分析.下面给出了部分信息.a.教师评委打分:86889091919191929298b.学生评委打分的频数分布直方图如图(数据分6组:第1组82≤x<85,第2组85≤x<88,第3组88≤x<91,第4组91≤x<94,第5组94≤x<97,第6组97≤x≤100).c.评委打分的平均数、中位数、众数如下:平均数中位数众数教师评委9191m学生评委90.8n93根据以上信息,回答下列问题:①m的值为91,n的值位于学生评委打分数据分组的第4组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x则x<91(填“>”“=”或“<”);(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前.5名专业评委给进入决赛的甲、乙、丙三位选手的打分如下:评委1评委2评委3评委4评委5甲9390929392乙9192929292丙90949094k若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是甲,表中k(k为整数)的值为92.B层·能力提升9.(2024·宜宾中考)某校为了解九年级学生在校的锻炼情况,随机抽取10名学生,记录他们某一天在校的锻炼时间(单位:分钟):65,67,75,65,75,80,75,88,78,80.对这组数据判断正确的是(B)A.方差为0B.众数为75C.中位数为77.5D.平均数为7510.(2024·苏州中考)某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择(C)A.甲、丁B.乙、戊C.丙、丁D.丙、戊11.(2024·天津中考)为了解某校八年级学生每周参加科学教育的时间(单位:h),随机调查了该校八年级a名学生,根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为_________,图①中m的值为_________,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为_________和_________;【解析】(1)a=3+7+17+15+8=50(人);=34%;m%=17503+7+17=27(人),中位数位于8 h这组;众数是8 h;答案:503488(2)求统计的这组学生每周参加科学教育的时间数据的平均数;【解析】(2)观察题中条形统计图∵6×3+7×7+17×8+15×9+8×1050=8.36(h)∴这组数据的平均数是8.36.(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9 h的人数为多少?【解析】(3)∵在所抽取的样本中,每周参加科学教育的时间是9 h的学生占30%∴根据样本数据,估计该校八年级学生500人中,每周参加科学教育的时间是9 h 的学生占30%,有500×30%=150(人)∴估计该校八年级学生每周参加科学教育的时间是9 h的人数为150.C层·素养挑战12.(2024·河南中考)为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为_________分.【解析】(1)由题中折线图可得甲得分更稳定把乙的六次成绩按从小到大的顺序排序,第三次、第四次的成绩分别为28和30故中位数=28+30=29.2答案:甲29(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.【解析】(2)因为甲的平均每场得分大于乙的平均每场得分,且甲的得分更稳定,所以甲队员表现更好.(答案不唯一,合理即可)(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误×(-1),且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.【解析】(3)甲的综合得分为26.5×1+8×1.5+2×(-1)=36.5.乙的综合得分为26×1+10×1.5+3×(-1)=38.因为38>36.5,所以乙队员表现更好.。

九年级数学专题复习《统计》

九年级数学专题复习《统计》

九年级数学中考训练专题-------- 统计测试题一.基础部分1.(2019·济宁)以下调查中,适宜全面调查的是( )A.调查某批汽车的抗撞击能力B.调查某班学生的身高情况C.调查春节联欢晚会的收视率D.调查济宁市居民日平均用水量2.(2019·郴州)下列采用的调查方式中,合适的是( )A.为了解东江湖的水质情况,采用抽样调查的方式B.我市某企业为了解所生产的产品的合格率,采用全面调查的方式C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式D.某市教育部门为了解该市中小学生的视力情况,采用全面调查的方式3.为了解全校学生的上学方式,在全校1 000名学生中随机抽取了150名学生进行调查.下列说法中正确的是( )A.总体是全校学生B.样本容量是1 000C.个体是每名学生的上学时间D.样本是随机抽取的150名学生的上学方式4.(2019·福建)某校征集校运会会徽,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案.若该校共有2 000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有人.5.(2019·泰安)某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( )A.众数是8 B.中位数是8C.平均数是8.2 D.方差是1.26.(2019·长沙)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )A.平均数 B.中位数 C.众数 D.方差7.(2019·随州)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如下表:投中次数 3 5 6 7 8人数 1 3 2 2 2则这些队员投中次数的众数、中位数和平均数分别为( )A.5,6,6 B.2,6,6C.5,5,6 D.5,6,58.(2019·遂宁)某校拟招聘一批优秀教师,其中某位老师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为分.9.(2019·达州)一组数据1,2,1,4的方差为( )A.1 B.1.5 C.2 D.2.510.(2019·齐齐哈尔)小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是( )A.平均数 B.中位数 C.方差 D.众数11.(2019·郴州)如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作s2甲,s2乙,则s2甲s2乙.(填“>”“=”或“<”)12.(2019·江西)根据《居民家庭亲子阅读消费调查报表》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°13.(2019·黄石)根据下列统计图,回答问题:某超市去年8~11月水果销售额占该超市当月销售某超市去年8~11月各月销售总额统计图总额的百分比统计图该超市10月份的水果类销售额 11月份的水果类销售额.(请从“>”“=”“<”中选一个填空)14.(2019·贵港)为了增强学生的安全意识,某校组织了一次全校2 500名学生都参加的“安全知识”考试.阅读后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.分数段(分) 频数(人) 频率51≤x<61 a 0.161≤x<71 18 0.1871≤x<81 b n81≤x<9135 0.3591≤x<10112 0.12总计100 1 请根据图表提供的信息,解答下列问题:(1)填空:a=,b=,n=;(2)将频数分布直方图补充完整;(3)该校对考试成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1∶3∶6,请你估算全校获得二等奖的学生人数.二.能力部分15.(2019·鄂州)已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为( ) A.3 B.4.5 C.5.2 D.616.(2019·龙东)某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现一处错误,将最低成绩写得更低了,则计算结果不受影响的是( )A.平均数 B.中位数 C.方差 D.极差17.(2019·安顺)已知一组数据x1,x2,x3,…,xn的方差为2,则另一组数据3x1,3x2,3x3,…,3xn的方差为.18.(2019·荆门)高尔基说:“书籍是人类进步的阶梯.”阅读具有丰富知识、拓展视野、充实生活等诸多益处.为了解学生的课外阅读情况,某校随机抽查了部分学生阅读课外书册数的情况,并绘制出如下统计图,其中条形统计图因为破损丢失了阅读5册书数的数据.(1)求条形图中丢失的数据,并写出阅读书册数的众数和中位数;(2)根据随机抽查的这个结果,请估计该校1 200名学生中课外阅读5册书的学生人数;(3)若学校又补查了部分同学的课外阅读情况,得知这部分同学中课外阅读最少的是6册,将补查的情况与之前的数据合并后发现中位数并没有改变,试求最多补查了多少人?三.拓展部分19.【关注社会热点】(2019·嘉兴)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是( ) A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%答案:一.基础部分:1.B2.A3. D4. 12005.D6.B7.A8. 88.89.B 10. C 11. <12.C 13. > 14. 解:(1) a=10,b=25,n=0.25(2)如图所示.(3)2 500×12100×310=90(人).答:全校获得二等奖的学生约有90人.二.能力部分15. C 16. B 17. 1818. 解:(1)设阅读5册书的人数为x,由统计图可知:12x+6+8+12=30%,∴x=14.∴阅读书册数的众数是5,中位数是5.(2)该校阅读5册书的学生人数约为1 200×1412÷30%=420(人).(3)设补查人数为y,依题意,得12+6+y<8+14,解得y<4.答:最多补查了3人.19. C。

中考数学专题复习42统计专题(全国通用原卷版)

中考数学专题复习42统计专题(全国通用原卷版)

统计考点1:统计初步知识1.(2021·广西柳州市·中考真题)以下调查中,最适合用来全面调查的是( ) A .调查柳江流域水质情况 B .了解全国中学生的心理健康状况 C .了解全班学生的身高情况D .调查春节联欢晚会收视率2.(2021·黑龙江绥化市·中考真题)近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月,A B 两种移动支付方式的使用情况,从企业2000名员工中随机抽取了200人,发现样本中A B 、两种支付方式都不使用的有10人,样本中仅使用A 种支付方式和仅使用B 种支付方式的员工支付金额a (元)分布情况如下表: 支付金额a (元)01000a <≤10002000a <≤2000a >仅使用A 36人 18人 6人 仅使用B20人28人2人①根据样本数据估计,企业2000名员工中,同时使用,A B 两种支付方式的为800人; ①本次调查抽取的样本容量为200人;①样本中仅使用A 种支付方式的员工,该月支付金额的中位数一定不超过1000元; ①样本中仅使用B 种支付方式的员工,该月支付金额的众数一定为1500元. 其中正确的是( ) A .①①B .①①C .①①D .①①3.(2021·湖南衡阳市·中考真题)下列说法正确的是( ) A .为了解我国中学生课外阅读情况,应采取全面调查方式 B .某彩票的中奖机会是1%,买100张一定会中奖C .从装有3个红球和4个黑球的袋子里摸出1个球是红球的概率是34D .某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人考点2:平均数、中位数、众数4.(2021·山东泰安市·中考真题)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7 h;7 h B.8 h;7.5 h C.7 h ;7.5 h D.8 h;8 h 5.(2021·上海中考真题)商店准备一种包装袋来包装大米,经市场调查以后,做出如下统计图,请问选择什么样的包装最合适()A.2kg/包B.3kg/包C.4kg/包D.5kg/包6.(2020•深圳)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253B.255,253C.253,247D.255,247 7.(2020•徐州)小红连续5天的体温数据如下(单位:①):36.6,36.2,36.5,36.2,36.3.关于这组数据,下列说法正确的是()A.中位数是36.5①B.众数是36.2°CC.平均数是36.2①D.极差是0.3①A B C D E F六省8.(2021·浙江丽水市·中考真题)根据第七次全国人口普查,华东,,,,,60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.9.(2020•长沙)长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了100名市民,得到如下统计表:次数7次及以上654321次及以下人数81231241564这次调查中的众数和中位数分别是,.考点3:方差10.(2020•辽阳)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是()A.甲B.乙C.丙D.丁11.(2020•黄冈)甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛.那么应选()去.甲乙丙丁平均分85909085方差50425042A.甲B.乙C.丙D.丁12.(2020春•温岭市期末)某鸡腿生产公司的质检人员从两批鸡腿中各随机抽取了6个,记录相应的质量(g)如表,若甲、乙两个样本数据的方差分别为S甲2、S乙2,则S甲2S乙2(填“>“、“=”、“<”)质量70717273甲1410乙3201考点4:频数、频率、用样本估计总体13.(2021·浙江嘉兴市·中考真题)某市为了解八年级学生视力健康状况,在全市随机抽查了400名八年级学生2021年初的视力数据,并调取该批学生2020年初的视力数据(不完整):青少年视力健康标准类别视力健康状况≥视力正常A视力 5.0B 4.9轻度视力不良≤中度视力不良C 4.6≤视力 4.8≤重度视力不良D视力 4.5(1)分别求出被抽查的400名学生2021年初轻度视力不良(类别B)的扇形圆心角度数和2020年初视力正常(类别A)的人数.(2)若2021年初该市有八年级学生2万人,请估计这些学生2021年初视力正常的人数比2020年初增加了多少人?(3)国家卫健委要求,全国初中生视力不良率控制在69%以内.请估计该市八年级学生2021年初视力不良率是否符合要求?并说明理由.14.(2021·江苏扬州市·中考真题)为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数分布扇形统计图A.非常喜欢B.比较喜欢C.无所谓D.不喜欢抽样调查各类喜欢程度人数统计表喜欢程度人数A.非常喜欢50人B.比较喜欢m人C.无所谓n人D.不喜欢16人(1)本次调查的样本容量是______;(2)扇形统计图中表示A程度的扇形圆心角为_____︒,统计表中m=______;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).考点5:常见统计图表的综合应用15.(2021·湖南常德市·中考真题)舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;①从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;①按统计表的数据绘制折线统计图;①整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是()A.①→①→①→①B.①→①→①→①C.①→①→①→①D.①→①→①→①16.(2021·云南中考真题)2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援,某公司在疫情期间为疫区生产A、B、C、D四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是()A.单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍B.单独生产B型帐篷的天数是单独生产A型帐篷天数的1.5倍C.单独生产A型帐篷与单独生产D型帐篷的天数相等D.每天单独生产C型帐篷的数量最多17.(2021·湖北黄冈市·中考真题)高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A.科普,B.文学,C.体育,D.其他)数据后,绘制出两幅不完整的统计图,则下列说法错误..的是()A.样本容量为400B.类型D所对应的扇形的圆心角为36 C.类型C所占百分比为30%D.类型B的人数为120人18.(2021·湖南株洲市·中考真题)某月1日—10日,甲、乙两人的手机“微信运动”的步数统计图如图所示,则下列错误的结论是()A.1日—10日,甲的步数逐天增加B.1日—6日,乙的步数逐天减少C.第9日,甲、乙两人的步数正好相等D.第11日,甲的步数不一定比乙的步数多19.(2021·河北中考真题)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“()”应填的颜色是()A.蓝B.粉C.黄D.红。

中考数学真题分类汇编 14 统计

中考数学真题分类汇编 14 统计

统计考点一、统计学中的几个基本概念(4分)1、总体所有考察对象的全体叫做总体。

2、个体总体中每一个考察对象叫做个体。

3、样本从总体中所抽取的一部分个体叫做总体的一个样本。

4、样本容量样本中个体的数目叫做样本容量。

5、样本平均数样本中所有个体的平均数叫做样本平均数。

6、总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。

考点二、众数、中位数(3~5分)1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数。

2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

考点三、方差(3分)1、方差的概念在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差。

通常用“”表示,即2、方差的计算(1)基本公式:(2)简化计算公式(Ⅰ):也可写成此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。

(3)简化计算公式(Ⅱ):当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组新数据,,…,,那么,此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。

(4)新数据法:原数据的方差与新数据,,…,的方差相等,也就是说,根据方差的基本公式,求得的方差就等于原数据的方差。

3、标准差方差的算数平方根叫做这组数据的标准差,用“s”表示,即一、选择题1. (2017广西南宁3分)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分 B.82分 C.84分 D.86分2.(2017贵州毕节3分)为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54 B.52 C.53 D.543.(2017海南3分)某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A.74 B.44 C.42 D.404.(2017河南)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:A.甲 B.乙 C.丙 D.丁5.(2017·福建龙岩·4分)在2017年龙岩市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A.平均数为160 B.中位数为158 C.众数为158 D.方差为20.36.(2017·广西百色·3分)为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()A.中位数是 27.(2017·广西桂林·3分)一组数据7,8,10,12,13的平均数是()A.7 B.9 C.10 D.128.(2017·贵州安顺·3分)某校九年级(1)班全体学生2017年初中毕业体育考试的成绩统计如表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6。

中考必备中考数学汇编-29-统计

中考必备中考数学汇编-29-统计

中考试题专题之29-统计试题及答案一、选择题1、(齐齐哈尔市)一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7 B.7,6.5 C.5.5,7 D.6.5,7【关键词】中位数、众数【答案】D2、(吉林省)某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.中位数B.众数C.平均数D.极差【关键词】中位数【答案】A3、(深圳市)某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为()A.1万件B.19万件C.15万件D.20万件【关键词】抽样调查估计总体【答案】B4、(泸州)在一次青年歌手大奖赛上,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,去掉一个最高分和一个最低分后,所剩数据的平均数是A.9.2 B.9.3 C.9.4 D.9.5【关键词】平均数的求法。

【答案】D5、(四川省内江市)今年我国发现的首例甲型H1N1流感确诊病例在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解这位病人7天体温的()A.众数B.方差C.平均数D.频数【关键词】方差和标准差是反映数据稳定程度的统计量【答案】B6、(仙桃)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为().A、25.6 26B、26 25.5C、26 26D、25.5 25.5【关键词】众数和中位数.【答案】D7、(杭州市)要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各100名学生【关键词】全面调查与抽样调查【答案】D8、(台州市)数据1,2,2,3,5的众数是()A.1 B.2 C.3 D.5【关键词】众数【答案】B9、(宁波市)下列调查适合作普查的是()A.了解在校大学生的主要娱乐方式B.了解宁波市居民对废电池的处理情况C.日光灯管厂要检测一批灯管的使用寿命D.对甲型H1N1流感患者的同一车厢的乘客进行医学检查【关键词】全面调查与抽样调查【答案】D10、(义乌)下列调查适合作抽样调查的是A.了解义乌电视台“同年哥讲新闻”栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查【关键词】抽样调查【答案】A11、(柳州)某学习小组7个男同学的身高(单位:米)为:1.66、1.65、1.72、1.58、1.64、1.66、1.70,那么这组数据的众数为()A.1.65 B.1.66 C.1.67 D.1.70【关键词】众数【答案】B12、(娄底)我市统计局发布的统计公报显示,到,我市GDP增长率分别为9.6%、10.2%、10.4%、10.6%、10.3%. 经济学家评论说,这5年的年度GDP增长率相当平稳,从统计学的角度看,“增长率相当平稳”说明这组数据的比较小.A.中位数B.平均数C.众数D.方差【关键词】方差【答案】D13、(烟台市)某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【关键词】平均数、中位数【答案】A14、(甘肃白银)有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的()A.平均数B.中位数C.众数D.方差【关键词】平均数;中位数;众数;方差【答案】B15、(鄂州)有一组数据如下:3、a、4、6、7,它们的平均数是5,那么这组数据的方差是( ) A 、10B 、10C 、2D 、2【关键词】方差的计算【答案】C16、(河南)下列调查适合普查的是 【 】 (A )调查6月份市场上某品牌饮料的质量(B )了解中央电视台直播北京奥运会开幕式的全国收视率情况 (C) 环保部门调查5月份黄河某段水域的水质量情况 (D)了解全班同学本周末参加社区活动的时间 【关键词】普查 【答案】D17、(孝感)某一段时间,小芳测得连续五天的日最低气温后,整理得出下表(有两个数据被遮盖的两个数据依次是 A .3℃,2B .3℃,C .2℃,2D .2℃,【关键词】平均数与方差 【答案】A18、(泰安)某校为了了解七年级学生的身高情况(单位:cm ,精确到1cm ),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下列两个图表(部分):分组一 二 三 四 五 六 七104-145 145-150 150-155 155-160 160-165 165-170 170-175人数 6 12 26 46585根据以上信息可知,样本的中位数落在 (A )第二组 (B )第三组 (C )第四组 (D )第五组 【关键词】中位数 【答案】C19、(江西)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数1 4 32 2则这个队队员年龄的众数和中位数分别是( ) A .1516, B .1515, C .1515.5, D .1615, 【关键词】众数和中位数 【答案】A 20、(烟台市)某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩D .这六个平均成绩的众数不可能是全年级学生的平均成绩 【关键词】平均数、中位数、众数. 【答案】A21、(嘉兴市)已知数据:2,,3,5,6,5,则这组数据的众数和极差分别是( ▲ )A .5和7B .6和7C .5和3D .6和3 【关键词】众数、极差. 【答案】A22、(新疆)要反映乌鲁木齐市一天内气温的变化情况宜采用( ) A .条形统计图 B .扇形统计图 C .频数分布直方图 D .折线统计图 【关键词】折线统计图 【答案】D23、(天津市)为参加“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m )为:8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是( )A .8.5,8.5B .8.5,9C .8.5,8.75D .8.64,9 【关键词】数据的代表(众数,中位数) 【答案】A24、(湘西自治州)要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是( ) A .个体B .总体C .样本容量D .总体的一个样本【关键词】总体、个体、样本容量 【答案】:C1 六10%七五24%四三18%二12%一A25、(白银市)在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A.4个B.6个C.34个D.36个【关键词】频率的意义【答案】B26、(白银市)有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的()A.平均数B.中位数C.众数D.方差【关键词】平均数、中位数、众数、方差的意义【答案】B27、(清远)小明记录某社区七次参加“防甲型H1N1流感活动”的人数分别如下:33,32,32,31,32,28,26.这组数据的众数是()A.28 B.31 C.32 D.33【关键词】众数【答案】C27、(衢州)某班体育委员调查了本班46名同学一周的平均每天体育活动时间,并制作了如图所示的频数分布直方图,从直方图中可以看出,该班同学这一周平均每天体育活动时间的中位数和众数依次是A.40分,40 分B.50分,40分C.50分,50 分D.40分,50分【关键词】中位数和众数【答案】B28、(舟山)某班体育委员调查了本班46名同学一周的平均每天体育活动时间,并制作了如图所示的频数分布直方图,从直方图中可以看出,该班同学这一周平均每天体育活动时间的中位数和众数依次是A.40分,40 分B.50分,40分C.50分,50 分D.40分,50分【关键词】中位数和众数【答案】B29、(广州市如图是广州市某一天内的气温变化图,根据图4,下列说法中错误..的是()(A)这一天中最高气温是24℃(B)这一天中最高气温与最低气温的差为16℃(C)这一天中2时至14时之间的气温在逐渐升高(D)这一天中只有14时至24时之间的气温在逐渐降低【关键词】统计图 【答案】D30、(益阳市)益阳市某年6月上旬日最高气温如下表所示:日 期 1 2 3 4 5 6 7 8 9 10 最高气温(℃) 30 28 30 32 34 32 26 30 33 35那么这10天的日最高气温的平均数和众数分别是 A.32,30 B.31,30 C.32,32 D.30,30 【关键词】平均数和众数 【答案】B31、(重庆)下列调查中,适宜采用全面调查(普查)方式的是( ) A .调查一批新型节能灯泡的使用寿命 B .调查长江流域的水污染情况 C .调查重庆市初中学生的视力情况D .为保证“神舟7号”的成功发射,对其零部件进行检查 【关键词】普查与抽样调查 【答案】D .32、(宜宾)已知数据:23231-,,,,π.其中无理数出现的频率为( )A. 20%B. 40%C. 60%D. 80% 【关键词】无理数,频率 【答案】C. 33、(年长春)在一次“爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为:6, 3,6,5,5,6,9.这组数据的中位数和众数分别是( ) A .5,5 B .6,5 C .6,6 D .5,6 【关键词】中位数、众数 【答案】C34、(2009年锦州)小亮练习射击,第一轮10枪打完后他的成绩如图5,他10次成绩的方差是___________.【关键词】折线统计图、方差 【答案】5.6 35、(2009年莆田)某班5位同学参加“改革开放30周年”系列活动的次数依次为12333、、、、,则这组数据的众数和中位数分别是( ) 【关键词】统计、平均数、众数、中位数 答案:D A .22、 B . 2.43、 C . 32、 D .33、36、(2009年包头)某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是( A )A .0.1B .0.17C .0.33D .0.4 【关键词】统计、直方图37、(2009年长沙)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是( )答案:DA .甲B .乙C .丙D .丁 【关键词】方差、统计38、(2009年本溪)某男子排球队20名队员的身高如下表: 身高(cm ) 180 186 188 192 208 人数(个) 4 6 5 3 2 则此男子排球队20名队员的身高的众数和中位数分别是( )B A .186cm ,186cm B .186cm ,187cm C .208cm ,188cm D .188cm ,187cm 【关键词】众数与中位数 【答案】B39、(2009宁夏)4.某班抽取6名同学参加体能测试,成绩如下:85,95,85,80,80,85.下列表述错误..的是( ) A .众数是85 B .平均数是85 C .中位数是80 D .极差是15 【关键词】众数与中位数,平均数,极差 【答案】C40、(2009肇庆)如图1是1998年参加国际教育评估的15个国家学生的数学平均成绩的统计图,则平均成绩大于或等于60的国家个数是( )DA .4B .8C .10D .12人数 12 10 50 15 20 25 30 35 次数8 6【关键词】平均数【答案】D41、(2009年南充)已知一组数据2,1,x,7,3,5,3,2的众数是2,则这组数据的中位数是()A.2 B.2.5 C.3 D.5【关键词】众数及中位数的概念【答案】B42、(2009年湖州)某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为()A.11元/千克B.11.5元/千克C.12元/千克D.12.5元/千克【关键词】平均数的定义【答案】B43、(2009年温州)九年级(1)班共50名同学,右图是该班体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于29分的成绩评为优秀,则该班此次成绩优秀的同学人数占全班人数的百分比是( )A.20% B.44%C.58%D.72%【关键词】直方图的应用【答案】B44、(2009年温州)某次器乐比赛设置了6个获奖名额,共有ll名选手参加,他们的比赛得分均不相同.若知道某位选手的得分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《统计》真题汇编一、单选题(共6题;共18分)1.(2017•孝感)下列说法正确的是()A. 调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B. 一组数据85,95,90,95,95,90,90,80,95,90的众数为95C. “打开电视,正在播放乒乓球比赛”是必然事件D. 同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为2.(2017•乐山)下列说法正确的是()A. 打开电视,它正在播广告是必然事件B. 要考察一个班级中的学生对建立生物角的看法适合用抽样调查C. 在抽样调查过程中,样本容量越大,对总体的估计就越准确D. 甲、乙两人射中环数的方差分别为S甲2=2,S乙2=4,说明乙的射击成绩比甲稳定3.(2017•内江)为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最合适的是()A. 随机抽取100位女性老人B. 随机抽取100位男性老人C. 随机抽取公园内100位老人D. 在城市和乡镇各选10个点,每个点任选5位老人4.(2017•苏州)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有名学生中随机征求了名学生的意见,其中持“反对”和“无所谓”意见的共有名学生,估计全校持“赞成”意见的学生人数约为()A. B. C. D.5.(2017•毕节市)为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A. 1250条B. 1750条C. 2500条D. 5000条6.(2017•德州)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:尺码39 40 41 42 43平均每天销售数量/件 10 12 20 12 12该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A. 平均数B. 方差C. 众数D. 中位数二、填空题(共6题;共7分)7.(2017•河池)在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是________.8.(2017•东营)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派________去.9.(2017•绥化)在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9,则这位选手五次射击环数的方差为________.10.(2017•郴州)为从甲、乙两名射击运动员中选出一人参加市锦标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩都为8.9环,方差分别是S甲2=0.8,S乙2=1.3,从稳定性的角度来看________的成绩更稳定.(填“甲”或“乙”)11.(2017•包头)某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为________cm.12.(2017•南京)如图是某市2013﹣2016年私人汽车拥有量和年增长率的统计量,该市私人汽车拥有量年净增量最多的是________年,私人汽车拥有量年增长率最大的是________年.三、解答题(共6题;共75分)13.(2017·嘉兴)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.根据统计表,回答问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.14.(2017•湖州)为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第天,这一路口的行人交通违章次数是多少次?这天中,行人交通违章次的有多少天?(2)请把图2中的频数直方图补充完整;(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?15.(2017•北京)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100成绩x人数部门甲0 0 1 11 7 1乙________ ________ ________ ________ ________ ________(说明:成绩80分及以上为生产技能优秀,70﹣﹣79分为生产技能良好,60﹣﹣69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.3 77.5 75乙78 80.5 81得出结论:a.估计乙部门生产技能优秀的员工人数为________;b.可以推断出________部门员工的生产技能水平较高,理由为________.(至少从两个不同的角度说明推断的合理性)16.(2017•深圳)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A 30B 18 0.15C 0.40D(1)学生共________人,________,________;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有________人.17.(2014•朝阳)“安全教育,警钟长鸣”,为此,某中学组织全校1200名学生参加安全知识测试,为了解本次测试成绩的分布情况,从中随机抽取了部分学生的成绩,绘制出如下不完整的统计图表:分段数频数频率60≤x<70 30 0.1570≤x<80 60 n80≤x<9090≤x<100 20 0.1合计m 1请根据以上图表提供的信息,解答下列问题:(1)表中m的值为,n的值为;(2)补全频数分布直方图;(3)测试成绩的中位数在哪个分数段?(4)规定测试成绩80分以上(含80分)为合格,请估计全校学生中合格人数约为多少人?18.(2014•大连)某地为了解气温变化情况,对某月中午12时的气温(单位:℃)进行了统计.如表是根据有关数据制作的统计图表的一部分.分组气温x 天数A 4≤x<8 aB 8≤x<12 6C 12≤x<16 9D 16≤x<20 8E 20≤x<24 4根据以上信息解答下列问题:(1)这个月中午12时的气温在8℃至12℃(不含12℃)的天数为天,占这个月总天数的百分比为 %,这个月共有天;(2)统计表中的a= ,这个月中行12时的气温在范围内的天数最多;(3)求这个月中午12时的气温不低于16℃的天数占该月总天数的百分比.答案解析部分一、单选题1.【答案】A【解析】【解:A、调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.2.【答案】C【解析】【A、打开电视,它正在播广告是随机事件,A不符合题意;B、要考察一个班级中的学生对建立生物角的看法适合用全面调查,B不符合题意;C、在抽样调查过程中,样本容量越大,对总体的估计就越准确,C符合题意;D、甲、乙两人射中环数的方差分别为S甲2=2,S乙2=4,说明甲的射击成绩比乙稳定,D不符合题意;故答案为:C.【分析】根据随机事件的概念、全面调查和除以调查的关系、方差的性质判断即可.3.【答案】D【解析】【解:为了解某市老人的身体健康状况,需要抽取部分老人进行调查,在城市和乡镇各选10个点,每个点任选5位老人,这种抽取老人的方法最合适.故选D.【分析】利用抽取的样本得当,能很好地反映总体的情况可对各选项进行判断.4.【答案】C【解析】【解:样本中的全校持“赞成”意见的学生所占百分比约:=70%,则估计全校持“赞成”意见的学生人数约为2400×70%=1680(人)故选C。

【分析】已知总人数为2400名学生,要求出全校持“赞成”意见的学生所占百分比;通常用样本中所占的百分比来估计,可以根据已知条件求出样本中的全校持“赞成”意见的学生所占百分比。

5.【答案】A【解析】【解:由题意可得:50÷ =1250(条).故选A.【分析】首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.6.【答案】C【解析】【解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.二、填空题7.【答案】90【解析】【解:这位参赛选手在这次比赛中获得的平均分为:(92+93+88+87+90)÷5=90(分);故答案为:90.【分析】根据算术平均数的计算公式,把这5个分数加起来,再除以5,即可得出答案.8.【答案】乙【解析】【解:∵>>= ,∴从乙和丙中选择一人参加比赛,∵S <S ,∴选择乙参赛,故答案为:乙.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.9.【答案】2【解析】【解:五次射击的平均成绩为= (5+7+8+6+9)=7,方差S2= [(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(9﹣7)2]=2.故答案为:2.【分析】运用方差公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],代入数据求出即可.10.【答案】甲【解析】【解:∵S甲2=0.8,S乙2=1.3,∴S甲2<S乙2,∴成绩最稳定的运动员是甲,故答案是:甲.【分析】根据方差的意义即可得.11.【答案】168【解析】【解:设男生的平均身高为x,根据题意有:=166,解可得x=168(cm).故答案为168.【分析】根据平均数的公式求解即可.用50名身高的总和减去20名女生身高的和除以30即可.12.【答案】2016;2015【解析】【解:由条形统计图可得:该市私人汽车拥有量年净增量最多的是2016年,净增183﹣150=33(万辆),由折线统计图可得,私人汽车拥有量年增长率最大的是:2015年.故答案为:2016,2015.【分析】直接利用条形统计图以及折线统计图分别分析得出答案.三、解答题13.【答案】(1)解:月平均气温的最高值为30.6℃,月平均气温的最低值为5.8℃;相应月份的用电量分别为124千瓦时和110千瓦时.(2)解:当气温较高或较低时,用电量较多;当气温适宜时,用电量较少.(3)解:能,中位数刻画了中间水平。

相关文档
最新文档