高中数学必修三第三章《概率》测试卷及答案2套
(好题)高中数学必修三第三章《概率》测试卷(含答案解析)(3)
一、选择题1.已知ABCD 为正方形,其内切圆I 与各边分别切于,,,E F G H ,连接,,,EF FG GH HE ,现向正方形ABCD 内随机抛掷一枚豆子(豆子大小忽略不计),记事件A:豆子落在圆I 内;事件B:豆子落在四边形EFGH 外,则()P B A =( )A .14π-B .4π C .21π-D .2π2.从[]2,3-中任取一个实数a ,则a 的值使函数()sin f x x a x =+在R 上单调递增的概率为( ) A .45B .35C .25D .153.甲、乙两人约定某天晚上6:00~7:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是( ) A .58B .13C .18D .384.如图,过球心的平面和球面的交线称为球的大圆.球面几何中,球O 的三个大圆两两相交所得三段劣弧AB ,BC ,CA 构成的图形称为球面三角形ABC . AB 与AC 所成的角称为球面角A ,它可用二面角B OA C --的大小度量.若球面角3A π=,2B π=,2C π=,则在球面上任取一点P ,P 落在球面三角形ABC 内的概率为( )A .16B .18C .112D .1165.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如40337=+.(注:如果一个大于1的整数除1和自身外无其他正因数,则称这个整数为素数.)在不超过11的素数中,随机选取2个不同的数,其和小于等于10的概率是( )A .12B .13C .14D .156.4名同学参加4项不同的课外活动,若每名同学可自由选择参加其中一项,则每项活动至少一名同学参加的概率为( ) A .49B .427C .364D .3327.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为423,现在半球内任取一点,则该点在正四棱锥内的概率为( )A .1πB .2C .3D .2π8.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为( )A .518B .13C .718D .499.如图所示,在一个边长为2.的正方形AOBC 内,曲2y x =和曲线y x =图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A.12B.14C.13D.1610.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A.15B.625C.825D.2511.连续掷两次骰子,先后得到的点数,m n为点(,)P m n的坐标,那么点P在圆2217x y+=内部的概率是()A.13B.25C.29D.4912.在一个棱长为3cm的正方体的表面涂上颜色,将其适当分割成棱长为1cm的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是()A.49B.827C.29D.127二、填空题13.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.14.一个多面体的直观图和三视图所示,M是AB的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,由它飞入几何体F AMCD -内的概率为______.15.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.16.在正方体的12条面对角线和4条体对角线中随机地选取两条对角线,则这两条对角线所在的直线为异面直线的概率等于________.17.西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为__________.18.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.19.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.20.已知7个实数1,2,4,,,,a b c d -依次构成等比数列,若从这7个数中任取2个,则它们的和为正数的概率为___________.三、解答题21.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期 1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差()°C x101113128 6就诊人数222529261612 y(人)该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性=+;回归方程y bx a(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?22.某校某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图(已知本次测试成绩满分100分,且均为不低于50分的整数),请根据图表中的信息解答下列问题.(1)求全班的学生人数及频率分布直方图中分数在[70,80)之间的矩形的高;(2)为了帮助学生提高数学成绩,决定在班里成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[50,60)中的某一位同学,已知甲同学的成绩为53分,乙同学的成绩为96分,求甲、乙恰好被安排在同一小组的概率.23.班级新年晚会设置抽奖环节.不透明纸箱中有大小相同的红球3个,黄球2个,且这5个球外别标有数字1、2、3、4、5.有如下两种方案可供选择:方案一:一次性...抽取两球,若颜色相同,则获得奖品;方案二:依次有放回...地抽取两球,若数字之和大于5,则获得奖品.(1)写出按方案一抽奖的试验的所有基本事件;(2)哪种方案获得奖品的可能性更大?24.某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:min)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60]六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40 min的学生评价为“课外体育达标”.(1)请根据频率分布直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?课外体育不达标课外体育达标总计男60女110总计(2)现从“课外体育达标”学生中按分层抽样抽取5人,再从这5名学生中随机抽取2人参加体育知识问卷调查,求抽取的这2人课外体育锻炼时间都在[40,50)内的概率.附参考公式与数据:K2=2(-)()()()()n ad bca b c d a c b d ++++P(K2≥k0)0.100.050.0100.0050.001k02.7063.8416.6357.87910.82825.为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下功夫,在精准扶贫上见实效.根据当地气候特点大力发展中医药产业,药用昆虫的使用相应愈来愈多,每年春暖以后到寒冬前,昆虫大量活动与繁殖,易于采取各种药用昆虫.已知一只药用昆虫的产卵数y(单位:个)与一定范围内的温度x(单位:℃)有关,于是科研人员在3月份的31天中随机选取了5天进行研究,现收集了该种药物昆虫的5组观察数据如表:日期2日7日15日22日30日温度x/℃101113128产卵数y/个2224292516(1)从这5天中任选2天,记这2天药用昆虫的产卵数分别为m ,n ,求“事件m ,n 均不小于24”的概率?(2)科研人员确定的研究方案是:先从这5组数据中任选2组,用剩下的3组数据建立线性回归方程,再对被选取的2组数据进行检验.①若选取的是3月2日与3月30日这2组数据,请根据3月7日、15日和22日这三组数据,求出y 关于x 的线性回归方程?②若由线性回归方程得到的估计数据与所选出的检验数据的差的绝对值均不超过2个,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?附公式:ˆybx a =+,()()()121niii nii x x y y b x x ==--=-∑∑26.某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2019年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:(1)求出表中数据b ,c ;(2)判断是否有99%的把握认为观看2019年足球世界杯比赛与性别有关;(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2019年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,现从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:设正方形ABCD 边长为a ,分别求解圆I 和正方形EFGH 的面积,得到在圆I 内且在正方形EFGH 内的面积,即可求解()P B A . 详解:设正方形ABCD 边长为a ,则圆I 的半径为,2a r =其面积为21.4a π设正方形EFGH 边长为b ,,a b =⇒=其面积为211,2S a =则在圆I 内且在正方形EFGH 内的面积为21,S S S =- 故()121.S S P B A S π-==- 故选C .点睛:本题考查条件概率的计算,其中设正方形ABCD 边长和正方形EFGH 得到在圆I 内且在正方形EFGH 内的面积是解题的关键.2.C解析:C 【分析】先利用导数求出函数()sin f x x a x =+在R 上单调递增时a 的范围,然后再由几何概型的知识解决问题. 【详解】∵()'1cos f x a x =+,要使函数()sin f x x a x =+在R 上单调递增,则1cos 0a x +≥对任意实数x 都成立.∵1cos 1x -≤≤,∴①当0a >时,cos a a x a -≤≤,∴1a -≥-,∴01a <≤;②当0a =时适合;③当0a <时,cos a a x a ≤≤-,∴1a ≥-,∴10a -≤<,综上11a -≤≤,∴函数()sin f x x a x =+在R 上单调递增的概率为25P =.选C . 【点睛】 本题主要考查已知函数的单调性求参数的范围及几何概型问题,属中等难度题.3.D解析:D 【分析】由题意知本题是一个几何概型,试验包含的所有事件是{(,)|01x y x Ω=,01}y ,写出满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤,算出事件对应的集合表示的面积,根据几何概型概率公式得到结果. 【详解】解:由题意知本题是一个几何概型,设甲到的时间为x ,乙到的时间为y ,则试验包含的所有事件是{(,)|01x y x Ω=,01}y , 事件对应的集合表示的面积是1S =,满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤, 则()1,1B ,1,12C ⎛⎫⎪⎝⎭,10,2D ⎛⎫ ⎪⎝⎭, 则事件A 对应的集合表示的面积是111131122228⨯⨯-⨯⨯=,根据几何概型概率公式得到33818P ==; 所以甲、乙两人能见面的概率38P =. 故选:D .【点睛】本题主要考查几何概型的概率计算,要解决此问题,一般要通过把试验发生包含的事件所对应的区域求出,根据集合对应的图形面积,用面积的比值得到结果.4.C解析:C 【分析】根据球体的性质,利用面积比求出概率即可. 【详解】解:由题知,球面角3A π=,2B π=,2C π=,则得出球面三角形ABC 是112的球面,设球面三角形ABC 的面积为S , 则球面上任取一点P ,P 落在球面三角形ABC 内的概率为:1=12S P S =球. 故选:C. 【点睛】本题考查面积型几何概型,通过面积比求概率,还考查球体的性质和应用,解题时需要认真审题和理解分析题目.5.A解析:A 【分析】先列出不超过11的素数,再列举出随机选取2个不同的数的情况,进而找到和小于等于10的情况,即可求解 【详解】不超过11的素数有:2,3,5,7,11,共有5个, 随机选取2个不同的数可能为:()2,3,()2,5,()2,7,()2,11,()3,5,()3,7,()3,11,()5,7,()5,11,()7,11,共有10种情况, 其中和小于等于10的有:()2,3,()2,5,()2,7,()3,5,()3,7,共有5种情况, 则概率为51102P , 故选:A 【点睛】本题考查列举法求古典概型的概率,属于基础题6.D解析:D 【分析】先求出基本事件总数n ,再求出每项活动至少有一名同学参加,包含的基本事件个数,由此能求出每项活动至少有一名同学参加的概率. 【详解】因为4名同学参加4项不同的课外活动,若每名同学可自由选择参加其中一项,所以基本事件总数n =44,每项活动至少有一名同学参加,因此4名同学分别参加一项活动,共有44A 种不同的情况.因此:每项活动至少一名同学参加的概率为:4443432A p ==. 【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,转化与划归的能力,属于中档题.7.A解析:A 【分析】先根据四棱锥的体积求出球的半径,再根据几何概型概率公式求结果. 【详解】因为四棱锥的体积为3,设球半径为R,则1122332R R R R =⨯⨯⨯⨯∴=因此所求概率为3131423ππ=⨯,故选:A 【点睛】本题考查四棱锥体积、球体积以及几何概型概率公式,考查综合分析求解能力,属中档题.8.C解析:C 【分析】分别求出③和④的巧板的面积,根据几何概型的概率关系转化为面积比. 【详解】设巧板①的边长为1,则结合图2可知大正方形的边长为3, 其面积239S ==.其中巧板③是底边长为2的等腰直角三角形,其面积为112112S =⨯⨯=,巧板④的正方形 与腰长为1的等腰直角三角形的组合图形,其面积为22151122S ⨯⨯+==, 故所求的概率12718S S P S +==. 故选:C . 【点睛】本题考查几何概型的概率求法,转化为面积比,属于中档题 .9.C解析:C 【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解. 【详解】联立2y y x⎧=⎪⎨=⎪⎩(1,1)C .由图可知基本事件空间所对应的几何度量1OBCA S =正方形, 满足所投的点落在叶形图内部所对应的几何度量:S (A)3123120021)()|33x dx x x ==-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.10.A解析:A 【分析】阳数:1,3,5,7,9,阴数:2,4,6,8,10,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率. 【详解】因为阳数:1,3,5,7,9,阴数:2,4,6,8,10,所以从阴数和阳数中各取一数差的绝对值有:5525⨯=个,满足差的绝对值为5的有:()()()()()1,6,3,8,5,10,7,2,9,4共5个,则51255P ==. 故选A. 【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:P =目标事件的个数基本本事件的总个数.11.C解析:C 【分析】所有的点(,)P m n 共有6636⨯=个,用列举法求得其中满足2217x y +<的点(,)P m n 有8个,由此求得点P 在圆2217x y +=内部的概率.【详解】所有的点(,)P m n 共有6636⨯=个,点P 在圆2217x y +=内部,即点(,)P m n 满足2217x y +<,故满足此条件的点(,)P m n 有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个,故点P 在圆2217x y +=内部的概率是82369=, 故选C.【点睛】该题考查的是有关古典概型概率的求解问题,涉及到的知识点有古典概型概率公式,在解题的过程中,正确找出基本事件的个数以及满足条件的基本事件数是关键.12.C解析:C【分析】由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,根据古典概型及其概率的计算公式,即可求解.【详解】由题意,在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,所以所求概率为62279=.故选:C.【点睛】本题主要考查了古典概型及其概率的计算公式的应用,其中解答根据几何体的结构特征,得出基本事件的总数和所求事件所包含基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题13.【分析】基本事件总数选中的都是男医生包含的基本事件个数根据对立事件的概率能求出选中的至少有1名女医生的概率【详解】因为医疗团队从3名男医生和2名女医生志愿者所以随机选取2名医生赴湖北支援共有个基本事解析:7 10【分析】基本事件总数2510n C==,选中的都是男医生包含的基本事件个数233m C==,根据对立事件的概率能求出选中的至少有1名女医生的概率.【详解】因为医疗团队从3名男医生和2名女医生志愿者,所以随机选取2名医生赴湖北支援共有2510n C==个基本事件,又因为选中的都是男医生包含的基本事件个数233m C==,所以至少有1名女医生被选中的概率为3711010 P=-=.故答案为:7 10【点睛】本题主要考查了排列组合,古典概型,对立事件,属于中档题.14.【分析】先根据三棱锥的体积公式求出的体积与三棱锥的体积公式求出的体积最后根据几何概型的概率公式解之即可【详解】解:因为所以它飞入几何体内的概率为故答案为:【点睛】本题主要考查空间几何体的体积公式以及解析:12【分析】先根据三棱锥的体积公式求出F AMCD-的体积与三棱锥的体积公式求出ADF BCE-的体积,最后根据几何概型的概率公式解之即可.【详解】解:因为31134F AMCD AMCDV S DF a-=⨯⨯=,312ADF BCEV a-=所以它飞入几何体F AMCD-内的概率为33114122aa=,故答案为:12.【点睛】本题主要考查空间几何体的体积公式,以及几何概型的应用,同时考查了空间想象能力和计算能力,属于中档题.15.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2【分析】画出数轴,利用x满足||x m≤的概率,可以求出m的值即可.【详解】如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x,若x满足||x m≤的概率为23,则有2263m =,解得2m =, 故答案是:2. 【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.16.【分析】将异面直线分为两种情况:(1)两条面对角线是异面直线(2)一条面对角线和一条体对角线是异面直线由此分别计算出满足要求的方法数最后即可计算出相应概率【详解】由于4条体对角线都经过正方体的中心所 解析:920【分析】将异面直线分为两种情况:(1)两条面对角线是异面直线,(2)一条面对角线和一条体对角线是异面直线,由此分别计算出满足要求的方法数,最后即可计算出相应概率. 【详解】由于4条体对角线都经过正方体的中心,所选的两条对角线至少包含一条面对角线: ①两条对角线都是面对角线:任取1条面对角线,剩余的11条面对角线中,有5条与之异面,考虑重复选取,125302⨯∴=(种); ②一条面对角线一条体对角线:任取1条面对角线,有2条体对角线与之异面,∴12224⨯=(种) ∴概率为2163024920C +=. 故答案为:920. 【点睛】本题考查异面直线的理解以及用排列组合的方法计算概率,难度一般.排列组合的方法计算相应概率时,可采用古典概型的概率计算方法:先计算出基本事件的总数,然后计算出满足要求的基本事件的数量,此时P =满足要求的基本事件数量基本事件的总数.17.【分析】由组合数结合古典概型求解即可【详解】从11个数中随机抽取3个数有种不同的方法其中能构成勾股数的有共三种所以所求概率为故答案为【点睛】本题考查古典概型与数学文化考查组合问题数据处理能力和应用意识 解析:155【分析】由组合数结合古典概型求解即可 【详解】从11个数中随机抽取3个数有311C 种不同的方法,其中能构成勾股数的有共()()()3,4,5,6,8,10,5,12,13三种,所以,所求概率为3113155P C ==. 故答案为155【点睛】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.18.【解析】【分析】列出所有的基本事件并找出事件所取三条线段能构成一个三角形所包含的基本事件再利用古典概型的概率公式计算出所求事件的概率【详解】所有的基本事件有:共个其中事件所取三条线段能构成一个三角形 解析:310【解析】 【分析】列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率. 【详解】所有的基本事件有:()2,3,5、()2,3,7、()2,3,9、()2,5,7、()2,5,9、()2,7,9、()3,5,7、()3,5,9、()3,7,9、()5,7,9,共10个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:()3,5,7、()3,7,9、()5,7,9,共3个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为310, 故答案为310. 【点睛】本题考查古典概型的概率的计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.19.38【解析】【分析】根据几何槪型的概率意义即可得到结论【详解】正方形的面积S =1设阴影部分的面积为S ∵随机撒1000粒豆子有380粒落到阴影部分∴由几何槪型的概率公式进行估计得即S =038故答案为:解析:38 【解析】 【分析】根据几何槪型的概率意义,即可得到结论. 【详解】正方形的面积S =1,设阴影部分的面积为S , ∵随机撒1000粒豆子,有380粒落到阴影部分, ∴由几何槪型的概率公式进行估计得38011000S =, 即S =0.38, 故答案为:0.38. 【点睛】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础.20.【分析】根据前几项可知数列的首项为公比为由此求得的值基本事件的总数有和为正数分成两种情况一种是取出的两个数都是正数另一种是一个正数一个负数由此计算出和为正数的方法数根据古典概型概率计算公式求得概率的 解析:47【分析】根据前几项可知,数列的首项为1,公比为2-,由此求得,,,a b c d 的值.基本事件的总数有27C .和为正数分成两种情况,一种是取出的两个数都是正数,另一种是一个正数一个负数,由此计算出和为正数的方法数,根据古典概型概率计算公式求得概率的值. 【详解】由题意得,这7个实数为1,2,48,16,32,64---①所选2个数均为正数:246C =(种);②所选2个数一正一负:2,4-、2,16-、2,64-、8,16-、8,64-、32,64-,共6(种)276647P C +∴==,故填4.7【点睛】本小题主要考查古典概型的概率计算,考查了等比数列的概念.在计算古典概率的过程中,首先求得分母,也即是基本事件的总数,由于抽取时没有顺序,故用组合数来计算.然后考虑分子,分子是符合题意事件的个数,要用分类加法计数原理分成两种情况来求解.中档题.三、解答题21.(1)13(2)1830ˆ77yx =-(3)该小组所得线性回归方程是理想的 【详解】(1)设抽到相邻两个月的数据为事件.因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的, 其中抽到相邻两个月的数据的情况有5种,∴.(2)由数据求得,由公式,得,所以关于的线性回归方程为1830ˆ77yx =-. (3)当时,,有; 同样,当时,,有;所以,该小组所得线性回归方程是理想的. 22.(1)50人,0.04;(2)18【分析】(1)先根据频数计算在[50,60)上的频率,继而求得全班总人数,再根据[70,80)之间的人数求得[70,80)之间的频率与高即可.(2)根据题意求得[50,60)中的人数与[90,100)分数段内的人数,再编号利用枚举法求解即可. 【详解】(1)由茎叶图知分数在[50,60)上的频数为4, 频率为0.008×10=0.08, 故全班的学生人数为40.08=50人, ∵分数在[70,80)间的频数为:50﹣(4+14+8+4)=20, ∴频率是200.450=,∴矩形的高是0.410=0.04. (2)成绩在[50,60)分数段内的人数有4人,记为甲、A 、B 、C , 成绩在[90,100)分数段内的人数有4人,记为乙、a ,b ,c , 则“二帮一”小组有以下24种分组办法:甲乙a ,甲乙b ,甲乙c ,甲ab ,甲ac ,甲bc ,A 乙a ,A 乙b , A 乙c ,Aab ,Aac ,Abc ,B 乙a ,B 乙b ,B 乙c ,Bab , Bac ,Bbc ,C 乙a ,C 乙b ,C 乙c ,Cab ,Cac ,Cbc ,其中,甲、乙两同学被分在同一小组有3种办法:甲乙a ,甲乙b ,甲乙c , ∴甲乙两同学恰好被安排在同一小组的概率为P 31248==. 【点睛】本题主要考查了茎叶图与频率分布直方图的应用,同时也考查了枚举法解决古典概型问题,属于基础题.23.(1)见解析(2)方案二获得奖品的可能性更大. 【分析】。
高中数学必修三第三章《概率》章节练习题(含答案)
高中数学必修三第三章《概率》章节练习题(30分钟50分)一、选择题(每小题3分,共18分)1.下列试验属于古典概型的有( )①从装有大小、形状完全相同的红、黑、绿各一球的袋子中任意取出一球,观察球的颜色;②在公交车站候车不超过10分钟的概率;③同时抛掷两枚硬币,观察出现“两正”“两反”“一正一反”的次数;④从一桶水中取出100mL,观察是否含有大肠杆菌.A.1个B.2个C.3个D.4个2.任取两个不同的1位正整数,它们的和是8的概率是( )A. B.C. D.【补偿训练】一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( )A. B.C. D.3.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为( )A. B.C. D.4.任意抛掷两颗骰子,得到的点数分别为a,b,则点P(a,b)落在区域|x|+|y|≤3中的概率为( )A. B.C. D.5.在棱长为a的正方体ABCD A1B1C1D1中随机地取一点P,则点P与正方体各表面的距离都大于的概率为( )A. B.C. D.6.如图,两个正方形的边长均为2a,左边正方形内四个半径为的圆依次相切,右边正方形内有一个半径为a的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P1,P2,则P1,P2的大小关系是( )A.P1=P2B.P1>P2C.P1<P2D.无法比较二、填空题(每小题4分,共12分)7.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则a+b能被3整除的概率为.8.已知函数f(x0)=log2x,x∈,在区间上任取一点x0,使f(x0)≥0的概率为.【补偿训练】已知直线y=x+b,b∈[-2,3],则该直线在y轴上的截距大于1的概率是( )A. B.C. D.9.如图,利用随机模拟的方法可以估计图中由曲线y=与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组0~1的均匀随机数,a=RAND,b=RAND;②做变换,令x=2a,y=2b;③产生N个点(x,y),并统计满足条件y<的点(x,y)的个数N1,已知某同学用计算器做模拟试验结果,当N=1 000时,N1=332,则据此可估计S的值为.三、解答题(每小题10分,共20分)10.随意安排甲、乙、丙3人在3天假期中值班,每人值班1天,则:(1)这3人的值班顺序共有多少种不同的排列方法?(2)这3人的值班顺序中,甲在乙之前的排法有多少种?(3)甲排在乙之前的概率是多少?11.已知关于x的二次函数f(x)=ax2-4bx+1.(1)设集合A={-1,1,2,3,4,5}和B={-2,-1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(2)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.高中数学必修三第三章《概率》章节练习题(30分钟50分)一、选择题(每小题3分,共18分)1.下列试验属于古典概型的有( )①从装有大小、形状完全相同的红、黑、绿各一球的袋子中任意取出一球,观察球的颜色;②在公交车站候车不超过10分钟的概率;③同时抛掷两枚硬币,观察出现“两正”“两反”“一正一反”的次数;④从一桶水中取出100mL,观察是否含有大肠杆菌.A.1个B.2个C.3个D.4个【解析】选A.古典概型的两个基本特征是有限性和等可能性.①符合两个特征;对于②和④,基本事件的个数有无限多个;对于③,出现“两正”“两反”与“一正一反”的可能性并不相等.2.任取两个不同的1位正整数,它们的和是8的概率是( )A. B.C. D.【解析】选D.1位正整数是从1到9共9个数,其中任意两个不同的正整数求和有8+7+6+5+4+3+2+1=36种情况,和是8的共有3种情况,即(1,7),(2,6),(3,5),所以和是8的概率是.【补偿训练】一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( )A. B.C. D.【解析】选D.基本事件为(1,1),(1,2),…,(1,8),(2,1),(2,2),…,(8,8),共64种.两球编号之和不小于15的情况有三种,分别为(7,8),(8,7),(8,8),所以所求概率为.3.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为( )A. B.C. D.【解析】选A.从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),所以选出的火炬手的编号相连的概率为P=.4.任意抛掷两颗骰子,得到的点数分别为a,b,则点P(a,b)落在区域|x|+|y|≤3中的概率为( )A. B.C. D.【解析】选D.基本事件为6×6=36,P(a,b)落在区域|x|+|y|≤3中的有(1,1),(1,2),(2,1),所以P==.5.在棱长为a的正方体ABCD A1B1C1D1中随机地取一点P,则点P与正方体各表面的距离都大于的概率为( )A. B.C. D.【解析】选A.符合条件的点P落在棱长为的正方体内,根据几何概型的概率计算公式得P==.6.如图,两个正方形的边长均为2a,左边正方形内四个半径为的圆依次相切,右边正方形内有一个半径为a的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P1,P2,则P1,P2的大小关系是( )A.P1=P2B.P1>P2C.P1<P2D.无法比较【解析】选A.由题意知正方形的边长为2a.左图中圆的半径为正方形边长的,故四个圆的面积和为πa2,右图中圆的半径为正方形边长的一半,圆的面积也为πa2,故P1=P2.二、填空题(每小题4分,共12分)7.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则a+b能被3整除的概率为.【解析】把一颗骰子抛掷2次,共有36个基本事件.设“a+b能被3整除”为事件A,有(1,2),(2,1),(1,5),(2,4),(3,3),(4,2),(5,1),(3,6),(4,5),(5,4),(6,3),(6,6),共12个.P(A)==.答案:8.已知函数f(x0)=log2x,x∈,在区间上任取一点x0,使f(x0)≥0的概率为.【解题指南】由f(x0)≥0求出x0的取值范围,然后利用几何概型求解.【解析】因为f(x0)≥0,即log2x0≥0,得x0≥1,故使f(x0)≥0的x0的区域为[1,2],则P==.答案:【补偿训练】已知直线y=x+b,b∈[-2,3],则该直线在y轴上的截距大于1的概率是( )A. B.C. D.【解析】选B.区域Ω为区间[-2,3],子区域A为区间(1,3],而两个区间的长度分别为5,2.所以P=.9.(2015·嘉庆高一检测)如图,利用随机模拟的方法可以估计图中由曲线y=与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组0~1的均匀随机数,a=RAND,b=RAND;②做变换,令x=2a,y=2b;③产生N个点(x,y),并统计满足条件y<的点(x,y)的个数N1,已知某同学用计算器做模拟试验结果,当N=1 000时,N1=332,则据此可估计S的值为.【解析】根据题意:满足条件y<的点(x,y)的概率是,矩形的面积为4,则有=,所以S=1.328.答案:1.328三、解答题(每小题10分,共20分)10.随意安排甲、乙、丙3人在3天假期中值班,每人值班1天,则:(1)这3人的值班顺序共有多少种不同的排列方法?(2)这3人的值班顺序中,甲在乙之前的排法有多少种?(3)甲排在乙之前的概率是多少?【解析】(1)3个人值班的顺序所有可能的情况如图所示.由图知,所有不同的排列顺序共有6种.(2)由图知,甲排在乙之前的排法有3种.(3)记“甲排在乙之前”为事件A,则P(A)==.11.已知关于x的二次函数f(x)=ax2-4bx+1.(1)设集合A={-1,1,2,3,4,5}和B={-2,-1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(2)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.【解析】要使函数y=f(x)在区间[1,+∞)上是增函数,则a>0且-≤1,即a>0即2b≤a.(1)所有(a,b)的取法总数为6×6=36个,满足条件的(a,b)有(1,-2),(1,-1),(2,-2),(2,-1),(2,1),(3,-2),(3,-1),(3,1),(4,-2),(4,-1),(4,1),(4,2),(5,-2),(5,-1),(5,1),(5,2)共16个,所以,所求概率P==.(2)如图,求得区域的面积为×8×8=32.由求得P(,),所以区域内满足a>0且2b≤a 的面积为×8×=.所以,所求概率P==.- 11 -。
高一数学必修3第三章概率测试题及答案(K12教育文档)
高一数学必修3第三章概率测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修3第三章概率测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修3第三章概率测试题及答案(word版可编辑修改)的全部内容。
一、选择题:1.下列说法正确的是( ).A.如果一事件发生的概率为十万分之一,说明此事件不可能发生B.如果一事件不是不可能事件,说明此事件是必然事件C.概率的大小与不确定事件有关D.如果一事件发生的概率为99.999%,说明此事件必然发生2.从一个不透明的口袋中摸出红球的概率为1/5,已知袋中红球有3个,则袋中共有除颜色外完全相同的球的个数为( ).A.5个 B.8个 C.10个 D.15个3.下列事件为确定事件的有( ).(1)在一标准大气压下,20℃的纯水结冰(2)平时的百分制考试中,小白的考试成绩为105分(3)抛一枚硬币,落下后正面朝上(4)边长为a,b的长方形面积为abA.1个 B.2个 C.3个 D.4个4.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ).A.至少有1个白球,都是白球 B.至少有1个白球,至少有1个红球C.恰有1个白球,恰有2个白球 D.至少有1个白球,都是红球5.从数字1,2,3,4,5中任取三个数字,组成没有重复数字的三位数,则这个三位数大于400的概率是( ).A.2/5 B、2/3 C.2/7 D.3/46.从一副扑克牌(54张)中抽取一张牌,抽到牌“K”的概率是( ).A.1/54 B.1/27 C.1/18 D.2/277.同时掷两枚骰子,所得点数之和为5的概率为().A.1/4 B.1/9 C.1/6 D.1/128.在所有的两位数(10~99)中,任取一个数,则这个数能被2或3整除的概率是( ). A.5/6 B.4/5 C.2/3 D.1/29.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( ).A.60% B.30% C.10% D.50%10.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为().A.0.65 B.0.55 C.0。
人教版高一数学必修3第三章概率测试题(附答案)
高中数学必修3第三章 概率单元检测一、选择题1.任取两个不同的1位正整数,它们的和是8的概率是( )。
A .241 B .61C .83D .121 2.在区间⎥⎦⎤⎢⎣⎡2π2π ,-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ).A .31B .π2C .21D .32 3.从集合{1,2,3,4,5}中,选出由3个数组成子集,使得这3个数中任何两个数的和不等于6,则取出这样的子集的概率为( )。
A .103B .107C .53D .52 4.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )。
A .103B .51C .101D .121 5.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ).A .12513B .12516C .12518D .12519 6.若在圆(x -2)2+(y +1)2=16内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( )。
A .21B .31C .41D .161 7.已知直线y =x +b ,b ∈[-2,3],则该直线在y 轴上的截距大于1的概率是( ).A .51 B .52 C .53D .54 8.在正方体ABCD -A 1B 1C 1D 1中随机取点,则点落在四棱锥O -ABCD (O 为正方体体对角线的交点)内的概率是( )。
A .61B .31C .21D .32 9.抛掷一骰子,观察出现的点数,设事件A 为“出现1点”,事件B 为“出现2点”.已知P (A )=P (B )=61,则“出现1点或2点"的概率为( ). A .21 B .31C .61D .121 二、填空题10.某人午觉醒来,发觉表停了,他打开收音机想听电台报时,假定电台每小时报时一次,则他等待的时间短于10分钟的概率为___________.11.有A ,B ,C 三台机床,一个工人一分钟内可照看其中任意两台,在一分钟内A 未被照看的概率是 .12.抛掷一枚均匀的骰子(每面分别有1~6点),设事件A 为“出现1点",事件B 为“出现2点”,则“出现的点数大于2”的概率为 .13.已知函数f (x )=log 2x , x ∈⎥⎦⎤⎢⎣⎡221 ,,在区间⎥⎦⎤⎢⎣⎡221 ,上任取一点x 0,使f (x 0)≥0的概率为 .14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是 .15.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b .则a +b 能被3整除的概率为 .三、解答题16.射手张强在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0。
最新【北师大版】数学必修三:第三章-概率综合能力测试(含解析)
最新北师大版数学精品教学资料【成才之路】高中数学 第三章 概率综合能力测试 北师大版必修3本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.时间120分钟,满分150分.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.对于概率是1‰的事件,下列说法正确的是( ) A .概率太小,不可能发生 B .1 000次中一定发生1次C .1 000人中,999人说不发生,1人说发生D .1 000次中有可能发生1 000次 [答案] D[解析] 概率是1‰是说明发生的可能性是1‰,每次发生都是随机的,1 000次中也可能发生1 000次,只是发生的可能性很小,故选D.2.从装有2个红球和2个黑球的口袋中任取2个球,那么互斥而不对立的两个事件是( )A .至少有1个黑球与都是黑球B .至少有1个黑球与至少有1个红球C .恰有1个黑球与恰有2个黑球D .至少有1个黑球与都是红球 [答案] C[解析] “从装有2个红球和2个黑球的口袋内任取2个球”这一事件共包含3个基本事件,关系如图所示. 显然恰有1个黑球与恰有2个黑球互斥但不对立.3.从装有大小相同的3个红球和2个白球的口袋内任取1个球,取到白球的概率为( )A.15 B.13 C .12 D.25[答案] D[解析] 任取1球,有5种取法,取到1个白球有两种可能,所以取到白球的概率为25.4.某产品的设计长度为20 cm ,规定误差不超过0.5 cm 为合格品,今对一批产品进行测量,测得结果如下表:A.580B.780 C .1720 D.320[答案] D[解析] P =5+75+68+7=320.5.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4 C .π6D.π8[答案] B[解析] 总面积2×1=2.半圆面积12×π×12=π2.∴p =π22=π4.6.将一枚均匀的硬币先后抛掷两次,至少出现一次正面向上的概率是( ) A.12 B.14 C .34 D.1[答案] C[解析] 将一枚硬币先后抛掷两次包含的基本事件有(正,正),(正,反),(反,正),(反,反)4种可能的结果,至少出现一次正面向上包含了3个基本事件,故所求概率为34.7.(2015·福建文,8)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图像上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于()A.16 B.14 C .38 D.12[答案] B[解析] 由已知得,B (1,0),C (1,2),D (-2,2),F (0,1)(F 为f (x )与y 轴的交点),则矩形ABCD 面积为3×2=6,阴影部分面积为12×3×1=32,故该点取自阴影部分的概率等于326=14. 8.甲、乙两人随意住两间空房,则甲、乙两人各住一间房的概率是( ) A.14 B.13 C .12 D.23 [答案] C[解析] 不妨设两间空房为A 、B ,则甲、乙两人随意入住的所有可能情况为:甲、乙都住A ;甲、乙都住B ;甲住A ,乙住B ;甲住B ,乙住A 共4种情况.其中甲、乙两人各住一间的情形有2种,故所求的概率P =24=12.9.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是( )A.34 B.14 C .12D.18[答案] A[解析] 从长度分别为2、3、4、5的四条线段中任意取出三条总共有4种情况,依据四条边长可得满足条件的三角形有三种情况:2、3、4或3、4、5或2、4、5,故P =34.10.袋中有红、黄、白色球各一个,每次任取一个,有放回地抽取3次,则下列事件中概率是89的是( )A .颜色全相同 B.颜色不全相同 C .颜色全不相同 D.无红颜色球[答案] B[解析] 共有3×3×3=27种可能,而颜色全相同有三种可能,其概率为19.因此,颜色不全相同的概率为1-19=89,故选B.11.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-2πB.12-1πC.2πD.1π[答案] A[解析] 本题考查几何概型的计算方法.设图中阴影面积为S 1,S 2,令OA =R ,∴S 2-S 1=πR 24-π·(R 2)2=0,即S 2=S 1,由图形知,S 1=2(S 扇ODC -S △ODC )=2[πR224-12·(R 2)2]=πR 2-2R 28, ∴P =S 1+S 2S 扇AOB =π-R 24πR24=1-2π,充分利用图形的对称性才能求出阴影部分的面积.12.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.78[答案] D[解析] 本题主要考查古典概型概率的求法,关键是求出可能结果的种数.4名同学各自在周六、周日两天中任选一天参加公益活动的情况共有24=16种,其中仅在周六(周日)参加的各有1种,∴所求概率为1-1+116=78.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上) 13.口袋中装有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率是0.23,则摸出黑球的概率是________.[答案] 0.32[解析] 白球个数为100×0.23=23,黑球个数为100-45-23=32,所以摸出黑球的概率为32100=0.32.14.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆x 2+y 2=25外的概率是________.[答案]712[解析] 基本事件空间含有36个基本事件,而“点P 落在圆x 2+y 2=25外”含有21个基本事件,所以概率为2136=712.15.同时抛掷两个骰子,向上的点数之积为偶数的概率为________. [答案] 34[解析] 同时抛掷两个骰子,有6×6=36种不同结果,朝上一面的点数之积是奇数,当且仅当两个骰子向上一面都是奇数的有3×3=9个不同结果,∴“朝上一面点数的积为奇数”的概率P =936=14,其对立事件“朝上一面点数的积为偶数”的概率为1-14=34.16.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.[答案]1316[解析] 本题主要考查几何概型. ∵去看电影的概率P 1=π×12-π122π×12=34; ∴去打篮球的概率P 2=π142π×12=116. 小波不在家看书的概率P =34+116=1316.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较,在试制某种牙膏新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验.(1)求所选用的两种不同的添加剂的芳香度之和等于4的概率; (2)求所选用的两种不同的添加剂的芳香度之和不小于3的概率.[解析] 设“所选用的两种不同的添加剂的芳香度之和等于4”的事件为A ,“所选用的两种不同的添加剂的芳香度之和不小于3”的事件为B .六种添加剂中任选两种有15种不同选法.(1)芳香度之和等于4的取法有2种:(0,4),(1,3),故P (A )=215.(2)芳香度之和等于1的取法有1种:(0,1);芳香度之和等于2的法取有1种:(0,2),所以事件B 的对立事件B 是“所选用的两种不同的添加剂的芳香度之和小于3”,所以P (B )=215,故P (B )=1-P (B )=1315. 18.(本小题满分12分)现从A ,B ,C ,D ,E 五人中选取三人参加一个重要会议,五人被选中的机会均等.求:(1)A 被选中的概率; (2)A 和B 同时被选中的概率; (3)A 或B 被选中的概率.[解析] 基本事件有“ABC ,ABD ,ABE ,ACD ,ACE ,CDE ,BCD ,BCE ,BDE ,ADE ”共10个.(1)事件A 被选中包含6个基本事件,即ABC ,ABD ,ABE ,ACD ,ACE ,ADE . ∴P 1=610=0.6.(2)事件A 和B 同时被选中包含3个基本事件, 即ABC ,ABD ,ABE ,∴P 2=310=0.3.(3)A 、B 都不被选中只有事件CDE 一种,所以事件A 或B 被选中包含9个基本事件,∴P 3=910=0.90.19.(本小题满分12分)袋中有红、黄2种颜色的球各1只,从中每次任取1只,有放回地抽取两次.求:(1)两次全是红球的概率; (2)两次颜色相同的概率; (3)两次颜色不同的概率.[解析] 因为是有放回地抽取两次,所以每次取到的球可以都是红球,也可以都是黄球.把第一次取到红球,第二次取到红球简记为(红,红),其他情况用类似记法,则有放回地抽取2次,所有的基本事件有4个,分别是:(红,红),(红,黄),(黄,红),(黄,黄).(1)两次全是红球的概率是P 1=14.(2)“两次颜色相同”包含“两次都是红球”与“两次都是黄球”这两个事件互斥,因此两次颜色相同的概率是P 2=14+14=12.(3)“两次颜色不同”与“两次颜色相同”是对立事件,所以两次颜色不同的概率是P 3=1-12=12.点拨:可用枚举的方法把所有基本事件列举出来,解(2)、(3)可以考虑用互斥、对立事件求解.20.(本小题满分12分)(2015·北京文,17)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? [解析] (1)从统计表可以看出,在这1 000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.21.(本小题满分12分)已知关于x 的一元二次方程x 2-2(a -2)x -b 2+16=0. (1)若a ,b 是一枚骰子掷两次所得到的点数,求方程有两正根的概率; (2)若a ∈[2,6],b ∈[0,4],求方程没有实根的概率. [分析] 分别利用古典概型与几何概型的概率公式求解.[解析] (1)易知基本事件(a ,b )共有36个,方程有两正根(借助根与系数的关系)等价于a -2>0,16-b 2>0,Δ≥0,即a >2,-4<b <4,(a -2)2+b 2≥16,设“方程有两个正根”为事件A ,则事件A 包含的基本事件为(6,1),(6,2),(6,3),(5,3)共4个,故所求的概率为P (A )=436=19.(2)试验的全部结果构成区域为{(a ,b )|2≤a ≤6,0≤b ≤4,a ,b ∈N *},其面积为16.设“方程无实根”为事件B ,则构成事件B 的区域为{(a ,b )|2≤a ≤6,0≤b ≤4,(a -2)2+b 2<16},其面积为14×π×42=4π.故所求的概率为P (B )=4π16=π4.22.(本小题满分12分)某班50名学生在一次百米测试中,成绩全部介于13s 至18s 之间,将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15)……第五组[17,18].如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于14 s 且小于16 s 认为良好,求该班在这次百米测试中成绩良好的人数;(2)设m ,n 表示该班某两位同学的百米测试成绩,且已知m ,n ∈[13,14)∪[17,18].求事件“|m -n |>1”的概率.[解析] (1)由题中的直方图知,成绩在[14,16)内的人数为50×(0.16×1)+50×(0.38×1)=27,所以该班成绩良好的人数为27. (2)设事件M :“|m -n |>1”由频率分布直方图知,成绩在[13,14)的人数为50×0.06×1=3, 设这3人分别为x ,y ,z ;成绩在[17,18)的人数为50×0.08×1=4, 设这4人分别为A ,B ,C ,D .若m ,n ∈[13,14)时,则有xy ,xz ,yz 共3种情况;若m ,n ∈[17,18]时,则有AB ,AC ,AD ,BC ,BD ,CD ,共6种情况; 若m ,n 分别在[13,14)和[17,18]内时,此时有|m -n |>1.共有12种情况.所以基本事件总数为3+6+12=21种,则事件“|m -n |>1”所包含的基本事件个数有12种. 所以P (M )=1221=47.。
(好题)高中数学必修三第三章《概率》测试卷(答案解析)
一、选择题1.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与另一段GN GN 的比例中项,即满足512MG NG MN MG -==,后人把这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.在矩形ABCD 中,E ,F 是线段AB 的两个“黄金分割”点.在矩形ABCD 内任取一点M ,则该点落在DEF 内的概率为( )A .52- B .51- C .52- D .51- 2.从[]2,3-中任取一个实数a ,则a 的值使函数()sin f x x a x =+在R 上单调递增的概率为( ) A .45B .35C .25D .153.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为( )A .13B .49C .59D .234.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .655.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为( )A .46801010100C C C ⋅ B .64208001010C C C ⋅ C .46208001010C C C ⋅ D .64801010100C C C ⋅ 6.若函数()201)((1)x lnx e x f x e x e ⎧+<<=⎨≤<⎩在区间()0,e 上随机取一个实数x ,则()f x 的值小于常数2e 的概率是( ) A .1eB .11e-C .2eD .21e-7.甲乙两艘轮船都要在某个泊位停靠,甲停靠的时间为4小时,乙停靠的时间为6小时,假定他们在一昼夜的时间段中随机到达,则这两艘船停靠泊位时都不需要等待的概率为( )A .916B .58C .181288D .5128.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到如下数据:x 4 6 8 10 12 y12356由表中数据求得y 关于的回归方程为,则在这些样本点中任取一点,该点落在回归直线下方的概率为( ) A .25B .35C .34D .129.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若5AD =,3BD =,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为( )A.964B.449C.225D.2710.如图所示,在一个边长为2.的正方形AOBC内,曲2y x=和曲线y x=围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是()A.12B.14C.13D.1611.如图的折线图是某公司2018年1月至12月份的收入与支出数据,若从6月至11月这6个月中任意选2个月的数据进行分析,则这2个月的利润(利润=收入﹣支出)都不高于40万的概率为()A.15B.25C.35D.4512.在二项式42nxx的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为()A.16B.14C.512D.13二、填空题13.有一个底面半径为2,高为2的圆柱,点1O ,2O 分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点1O 或2O 的距离不大于1的概率是________.14.甲乙两艘轮船都要在某个泊位停靠8个小时,假定它们在一昼夜的时间段内随机地到达,则两船中有一艘在停靠泊位时、另一艘船必须等待的概率为______.15.某学校高三年级有A 、B 两个自习教室,甲、乙、丙3名学生各自随机选择其中一个教室自习,则甲、乙两人不在同一教室上自习的概率为________.16.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________.17.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.18.在区间[,]22ππ-上随机取一个实数x ,则事件“13sin cos 2x x -≤+≤”发生的概率是__________.19.如图,在半径为1的圆上随机地取两点,B E ,连成一条弦BE ,则弦长超过圆内接正BCD ∆边长的概率是__________.20.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________三、解答题21.改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图为体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).(Ⅰ)从2007年至2016年随机选择1年,求该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上的概率;(Ⅱ)从2007年至2016年随机选择3年,设X 是选出的三年中体育产业年增长率超过20%的年数,求X 的分布列与数学期望;(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)22.在这智能手机爆发的时代,大部分高中生都有手机,在手机面前,有些学生无法抵御手机尤其是手机游戏和短视频的诱惑,从而导致无法专心完成学习任务,成绩下滑;但是对于自制力强,能有效管理自己的学生,手机不仅不会对他们的学习造成负面影响,还能成为他们学习的有力助手,我校某研究型学习小组调查研究“中学生使用智能手机对学习的影响部分统计数据如下表:不使用手机 使用手机 合计 学习成绩优秀人数 28 12 40 学习成绩不优秀人数 14 26 40 合计423880参考数据:22()()()()()n ad bc K a c b d a b c d -=++++,其中n a b c d =+++.()20P K k ≥ 0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?(2)研究小组将该样本中不使用手机且成绩优秀的同学记为A组,使用手机且成绩优秀的同学记为B组,计划从A组推选的4人和B组推选的2人中,随机挑选两人来分享学习经验,求挑选的两人中一人来自A组、另一人来自B组的概率.23.某校某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图(已知本次测试成绩满分100分,且均为不低于50分的整数),请根据图表中的信息解答下列问题.(1)求全班的学生人数及频率分布直方图中分数在[70,80)之间的矩形的高;(2)为了帮助学生提高数学成绩,决定在班里成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[50,60)中的某一位同学,已知甲同学的成绩为53分,乙同学的成绩为96分,求甲、乙恰好被安排在同一小组的概率.24.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)求频率分布直方图中的a,b的值;(2)从阅读时间在[14,18)的学生中任选2人,求恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的概率.25.在一次跳绳活动中,某学校从高二年级抽取了100位同学一分钟内跳绳,由测量结果得到如图所示的频率分布直方图,落在区间[140,150),[150,160),[160,170]内的频率之比为4:2:1.(1)求跳绳次数落在区间[150,160)内的频率;(2)用分层抽样的方法在区间[130,160)内抽取6位同学,将该样本看成一个总体,从中任意抽取2位同学,求这2位同学跳绳次数都在区间[130,150)内的概率.26.某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的1000名群众中随机抽取n名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],其中第1组[20,30)有6人,得到的频率分布直方图如图所示.(1)求m ,n 的值,并估计抽取的n 名群众中年龄在[40,60)的人数;(2)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别求出对应的面积,进而求得结论. 【详解】解:设正方形ABCD 的边长为1,则51AF BE -==,∴2152EF AF =-=, ∴所求的概率为21522DEFABCDEF ADSP S AD ⨯⨯-===正方形 故选:C . 【点睛】本题主要考查几何概型,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A 的基本事件对应的“几何度量” ()N A ,再求出总的基本事件对应的“几何度量” N ,最后根据()N A PN求解,属于中档题. 2.C解析:C 【分析】先利用导数求出函数()sin f x x a x =+在R 上单调递增时a 的范围,然后再由几何概型的知识解决问题.【详解】∵()'1cos f x a x =+,要使函数()sin f x x a x =+在R 上单调递增,则1cos 0a x +≥对任意实数x 都成立.∵1cos 1x -≤≤,∴①当0a >时,cos a a x a -≤≤,∴1a -≥-,∴01a <≤;②当0a =时适合;③当0a <时,cos a a x a ≤≤-,∴1a ≥-,∴10a -≤<,综上11a -≤≤,∴函数()sin f x x a x =+在R 上单调递增的概率为25P =.选C . 【点睛】 本题主要考查已知函数的单调性求参数的范围及几何概型问题,属中等难度题.3.C解析:C 【分析】列举法列举出所有可能的情况,利用古典概型的计算方法计算即可. 【详解】解:依题意得所拨数字可能为610,601,511,160,151,115,106,61,16,共9个,其中有5个是奇数,则所拨数字为奇数的概率为59,故选:C. 【点睛】本题考查概率的实际应用问题,考查古典概型的计算方法,同时考查了学生的阅读能力和文化素养,属于中档题.4.D解析:D 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.5.C解析:C 【分析】根据古典概型的概率公式求解即可. 【详解】从袋中任取10个球,共有10100C 种,其中恰好有6个白球的有468020C C ⋅种即其中恰好有6个白球的概率为46208001010C C C ⋅ 故选:C 【点睛】本题主要考查了计算古典概型的概率,属于中档题.6.C解析:C 【分析】首先求出分段函数在各区间段的值域,然后利用几何概型求其概率. 【详解】 由题意得,当01x <<时,2()ln f x x e =+,则恒有2()f x e <,满足题意; 当1x e ≤<时,()xf x e =,若满足2()xf x e e =<,可得12x ≤<; 所以()f x 的值小于常数2e 的概率是2e. 故选:C. 【点睛】本题主要考查长度比值类型的几何概型,同时考查了分段函数值域的求解,属于基础题.7.C解析:C 【分析】设甲、乙到达的时间分别为,x y ,列出所有基本事件的约束条件,同时列出两艘船停靠泊位时都不需要等待的约束条件,利用线性规划做出平面区域,利用几何概型概率关系转化为面积比. 【详解】设甲、乙到达的时间分别为,x y ,则所有基本事件的构成的区域024{|}024x x y ≤≤⎧Ω=⎨≤≤⎩, 则这两艘船停靠泊位时都不需要等待包含的基本事件构成的区域024024{(,)|}46x y A x y y x x y ≤≤⎧⎪≤≤⎪=⎨≥+⎪⎪≥+⎩,做出Ω构成的区域,其面积为224=576,阴影部分为集合A 构成的区域,面积为221(2018)3622+=,这两艘船停靠泊位时都不需要等待的概率362181()576288P A ==. 故选:C.【点睛】本题考查利用线性规划做出事件对应的平面区域,再利用几何概型概率公式求出事件的概率,属于中档题.8.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x =, 3.4y =,故3.40.658ˆa=⨯+,解得: 1.8a =-, 则0.65.8ˆ1yx =-, 故5个点中落在回归直线下方的有(6,2),(8,3),共2个, 故所求概率是25p =, 故选:A . 【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.9.B解析:B 【分析】求得120ADB ∠=︒,在ABD 中,运用余弦定理,求得AB ,以及DE ,根据三角形的面积与边长之间的关系即可求解. 【详解】 解:18060120ADB ∠=︒-︒=︒,在ABD 中,可得2222cos AB AD BD AD BD ADB =+-⋅∠, 即为222153253492AB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,解得7AB =, 2DE AD BD =-=,224()749DEF ABCSS∴==. 故选:B . 【点睛】本题考查三角形的余弦定理,同时也考查了利用几何概型的概率公式计算概率,考查方程思想和运算能力,属于基础题.10.C解析:C 【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解.【详解】联立2y y x⎧=⎪⎨=⎪⎩(1,1)C . 由图可知基本事件空间所对应的几何度量1OBCA S =正方形, 满足所投的点落在叶形图内部所对应的几何度量:S(A )3123120021)()|33x dx x x ==-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.11.B解析:B 【分析】从7月至12月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)低于40万的有6月,9月,10月,由此即可得到所求. 【详解】如图的折线图是某公司2017年1月至12月份的收入与支出数据, 从6月至11月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)不高于40万的有6月,8月,9月,10月,∴这2个月的利润(利润=收入-支出)都不高于40万包含的基本事件个数246m C ==, ∴这2个月的利润(利润=收入-支出)都低于40万的概率为62155m P n ===, 故选:B 【点睛】本题主要考查了古典概型,考查了运算求解能力,属于中档题.12.C解析:C 【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果 【详解】因为n前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-= 163418118,0,1,2,82rr r r n n T C x r -+>∴=∴=⋅=,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.二、填空题13.【分析】本题利用几何概型求解先根据到点的距离等于1的点构成图象特征求出其体积最后利用体积比即可得点到点的距离不大于1的概率;【详解】解:由题意可知点P 到点或的距离都不大于1的点组成的集合分别以为球心解析:16【分析】本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点P 到点1O ,2O 的距离不大于1的概率; 【详解】解:由题意可知,点P 到点1O 或2O 的距离都不大于1的点组成的集合分别以1O 、2O 为球心,1为半径的两个半球,其体积为314421233ππ⨯⨯⨯=,又该圆柱的体积为22228V r h πππ==⨯⨯=,则所求概率为41386P ππ==.故答案为:16【点睛】本题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.14.【分析】利用几何概型的面积型概率计算作出边长为24的正方形面积求出部分的面积即可求得答案【详解】设甲乙两艘轮船到达的时间分为则记事件为两船中有一艘在停靠泊位时另一艘船必须等待则即∴故答案为:【点睛】解析:59【分析】利用几何概型的面积型概率计算,作出边长为24的正方形面积,求出||8x y -≤部分的面积,即可求得答案. 【详解】设甲乙两艘轮船到达的时间分为,x y ,则024,024x y ≤≤≤≤,记事件A 为两船中有一艘在停靠泊位时、另一艘船必须等待,则||8x y -≤, 即8,8,y x y x ≥-⎧⎨≤+⎩∴2222241625()1()2439S P A S -===-=阴影正方形. 故答案为:59.【点睛】本题考查几何概型,考查转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意对概率模型的抽象成面积型.15.【分析】利用乘法计数原理可计算出甲乙丙名学生各自随机选择其中一个教室自习共有种利用分步乘法计数原理计算出甲乙两人不在同一教室上自习的排法种数然后利用古典概型的概率公式可计算出所求事件的概率【详解】由解析:1 2【分析】利用乘法计数原理可计算出甲、乙、丙3名学生各自随机选择其中一个教室自习共有32种,利用分步乘法计数原理计算出甲、乙两人不在同一教室上自习的排法种数,然后利用古典概型的概率公式可计算出所求事件的概率.【详解】由题意可知,甲、乙、丙3名学生各自随机选择其中一个教室自习共有32种,甲、乙两人不在同一教室上自习,可先考虑甲在A、B两个自习教室选一间教室自习,然后乙在另一间教室自习,则丙可在A、B两个自习教室随便选一间自习教室自习,由分步计数原理可知,有224⨯=种选择.因此,甲、乙两人不在同一教室上自习的概率为41 82 =.故答案为:1 2 .【点睛】本题考查利用古典概型的概率公式计算事件的概率,同时也考查了分步计数原理的应用,考查计算能力,属于中等题.16.【分析】根据数据统计击中目标的次数再用古典概型概率公式求解【详解】由数据得射击4次至少击中3次的次数有15所以射击4次至少击中3次的概率为故答案为:【点睛】本题考查古典概型概率公式考查基本分析求解能解析:3 4【分析】根据数据统计击中目标的次数,再用古典概型概率公式求解.【详解】由数据得射击4次至少击中3次的次数有15,所以射击4次至少击中3次的概率为153 204=.故答案为:3 4【点睛】本题考查古典概型概率公式,考查基本分析求解能力,属基础题.17.【解析】【分析】列出所有的基本事件并找出事件所取三条线段能构成一个三角形所包含的基本事件再利用古典概型的概率公式计算出所求事件的概率【详解】所有的基本事件有:共个其中事件所取三条线段能构成一个三角形 解析:310【解析】 【分析】列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率. 【详解】所有的基本事件有:()2,3,5、()2,3,7、()2,3,9、()2,5,7、()2,5,9、()2,7,9、()3,5,7、()3,5,9、()3,7,9、()5,7,9,共10个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:()3,5,7、()3,7,9、()5,7,9,共3个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为310, 故答案为310. 【点睛】本题考查古典概型的概率的计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.18.【分析】用辅助角公式化简题目所给不等式解三角不等式求得点的取值范围利用几何概型的概率公式求得所求的概率【详解】由得故解得根据几何概型概率计算公式有概率为【点睛】本小题主要考查三角不等式的解法考查三角 解析:512【分析】用辅助角公式化简题目所给不等式,解三角不等式求得x 点的取值范围,利用几何概型的概率公式求得所求的概率. 【详解】由1cos x x -≤+≤π12sin 6x ⎛⎫-≤+≤ ⎪⎝⎭1πsin 262x ⎛⎫-≤+≤⎪⎝⎭,故πππ664x -≤+≤,解得ππ312x -≤≤,根据几何概型概率计算公式有概率为ππ5123ππ1222⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭.【点睛】本小题主要考查三角不等式的解法,考查三角函数辅助角公式,考查几何概型的计算,属于基础题.19.【解析】【分析】取圆内接等边三角形的顶点为弦的一个端点当另一端点在劣弧上时求出劣弧的长度运用几何概型的计算公式即可得结果【详解】记事件{弦长超过圆内接等边三角形的边长}如图取圆内接等边三角形的顶点为解析:13【解析】 【分析】取圆内接等边三角形BCD 的顶点B 为弦的一个端点,当另一端点在劣弧CD 上时,BE BC >,求出劣弧CD 的长度,运用几何概型的计算公式,即可得结果.【详解】记事件A ={弦长超过圆内接等边三角形的边长},如图,取圆内接等边三角形BCD 的顶点B 为弦的一个端点, 当另一端点在劣弧CD 上时,BE BC >, 设圆的半径为r ,劣弧CD 的长度是23rπ, 圆的周长为2r π,所以()21323rP A r ππ==,故答案为13. 【点睛】本题主要考查“长度型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.20.【分析】求出小明等车时间不超过10分钟的时间长度代入几何概型概率计算公式可得答案【详解】设小明到达时间为当在7:50至8:00或8:20至8:30时小明等车时间不超过10分钟故故答案为【点睛】本题考解析:12【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案. 【详解】设小明到达时间为y ,当y 在7:50至8:00,或8:20至8:30时, 小明等车时间不超过10分钟, 故201402P ==. 故答案为12. 【点睛】本题考查的知识点是几何概型,难度不大,属于基础题.三、解答题21.(Ⅰ)25;(Ⅱ)详见解析;(Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大.从2014年开始连续三年的体育产业年增加值方差最大. 【分析】(Ⅰ)由题意利用古典概型计算公式可得满足题意的概率值;(Ⅱ)由题意首先确定X 可能的取值,然后结合超几何概型计算公式得到分布列,然后求解其数学期望即可;(Ⅲ)由题意结合方差的性质和所给的图形确定方差的最大值即可. 【详解】(Ⅰ)设A 表示事件“从2007年至2016年随机选出1年,该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上”.由题意可知,2009年,2011年,2015年,2016年满足要求, 故42()105P A ==. (Ⅱ)由题意可知,X 的所有可能取值为0,1,2,3,且36310C 1(0)=C 6P X ==;1246310C C 1(1)=C 2P X ==;2146310C C 3(2)=C 10P X ==;34310C 1(3)=C 30P X ==.所以X 的分布列为:故X 的期望11316()01236210305E X =⨯+⨯+⨯+⨯=. (Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大.从2014年开始连续三年的体育产业年增加值方差最大. 【点睛】本题主要考查统计图表的识别,超几何概型计算公式,离散型随机变量的分布列与期望的计算,古典概型计算公式等知识,意在考查学生的转化能力和计算求解能力. 22.(1)99.5%;(2)815. 【分析】(1)根据22⨯列联表中的数据,代入卡方计算,即可求解; (2)根据古典概型,列出基本时间,根据概率公式,即可求解. 【详解】 (1)根据公式得2280(28261412)9.8257.87942384040K ⨯⨯-⨯==≥⨯⨯⨯.所以有99.5%的把握认为中学生使用手机对学习有影响.(2)记A 组推选的4人为a ,b ,c ,d ,B 组推选的2人为e ,f , 则从这6人中任取两人有15种取法:()()()()(),,,,,a b a c a d a e a f ()()()(),,,,b c b d b e b f ()()()c,,,d c e c f ()(),,d e d f(),e f其中一人来自A 组、另一人来自B 组有8种取法, 故概率为815p =. 【点睛】本题考查(1)独立性检验(2)古典概型概率计算,考查计算能力,属于中等题型. 23.(1)50人,0.04;(2)18【分析】(1)先根据频数计算在[50,60)上的频率,继而求得全班总人数,再根据[70,80)之间的人数求得[70,80)之间的频率与高即可.(2)根据题意求得[50,60)中的人数与[90,100)分数段内的人数,再编号利用枚举法求解即可. 【详解】(1)由茎叶图知分数在[50,60)上的频数为4, 频率为0.008×10=0.08, 故全班的学生人数为40.08=50人, ∵分数在[70,80)间的频数为:50﹣(4+14+8+4)=20, ∴频率是200.450=,∴矩形的高是0.410=0.04. (2)成绩在[50,60)分数段内的人数有4人,记为甲、A 、B 、C , 成绩在[90,100)分数段内的人数有4人,记为乙、a ,b ,c , 则“二帮一”小组有以下24种分组办法:甲乙a ,甲乙b ,甲乙c ,甲ab ,甲ac ,甲bc ,A 乙a ,A 乙b , A 乙c ,Aab ,Aac ,Abc ,B 乙a ,B 乙b ,B 乙c ,Bab , Bac ,Bbc ,C 乙a ,C 乙b ,C 乙c ,Cab ,Cac ,Cbc ,其中,甲、乙两同学被分在同一小组有3种办法:甲乙a ,甲乙b ,甲乙c , ∴甲乙两同学恰好被安排在同一小组的概率为P 31248==. 【点睛】本题主要考查了茎叶图与频率分布直方图的应用,同时也考查了枚举法解决古典概型问题,属于基础题.24.(1)a=0.11,b=0.04;(2)23. 【分析】(1)课外阅读时间落在[6,8)的有22人,频率为0.22,由此能求出a ,课外阅读时间落在[2,4)的有8人,频率为0.08,由此能求出b ;(2)课外阅读时间落在[14,16)的有2人,设为m ,n ;课外阅读时间落在[16,18)的有2人为x ,y ,由此利用列举法能求出从课外阅读时间落在[14,18)的学生中任选2人,其中恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的概率. 【详解】(1)课外阅读时间落在[6,8)的有22人,频率为0.22,所以0.220.112a == 课外阅读时间落在[2,4)的有8人,频率为0.08, 所以0.080.042b == (2)课外阅读时间落在[14,16)的有2人,设为m ,n ;课外阅读时间落在[16,18)的有2人为x ,y ,。
北师大版高二数学必修三第三章概率练习(含解析)
北师大版高二数学必修三第三章概率练习(含解析)数学是应用符号言语研讨数量、结构、变化以及空间模型等概念的一门学科。
查字典数学网为大家引荐了高二数学必修三第三章概率练习,请大家细心阅读,希望你喜欢。
一、选择题1.某人将一枚硬币延续抛掷了10次,正面朝上的情形出现了6次,那么()A.概率为0.6B.频率为0.6C.频率为6D.概率接近于0.6【解析】延续抛掷了10次,正面朝上的情形出现了6次,只能说明频率是0.6,只要停止少量的实验时才可估量概率.【答案】B2.以下说法错误的选项是()A.频率反映事情的频繁水平,概率反映事情发作的能够性大小B.做n次随机实验,事情A发作m次,那么事情A发作的频率mn就是事情A的概率C.频率是不能脱离n次实验的实验值,而概率是具有确定性的不依赖于实验次数的实际值D.频率是概率的近似值,概率是频率的动摇值【解析】依据频率与概率的意义可知,A正确;C、D均正确,B不正确,应选B.【答案】B3.从寄存号码区分为1,2,,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12345678910取到的次数138576131810119那么取到号码为奇数的频率是()A.0.53B.0.5C.0.47D.0.37【解析】mn=13+5+6+18+11100=0.53.【答案】A4.(2021沈阳检测)某彩票的中奖概率为11 000意味着()A.买1 000张彩票就一定能中奖B.买1 000张彩票中一次奖C.买1 000张彩票一次奖也不中D.购置彩票中奖的能够性是11 000【解析】中奖概率为11 000,并不意味着买1 000张彩票就一定中奖,中一次奖或一次也不中,因此A、B、C均不正确.【答案】D5.2021年山东省高考数学试题中,共有12道选择题,每道选择题有4个选项,其中只要1个选项是正确的,那么随机选择其中一个选项正确的概率为14,某家长说:要是都不会做,每题都随机选择其中一个选项,那么一定有3题答对这句话()A.正确B.错误C.不一定D.无法解释【解析】把解答一个选择题作为一次实验,答对的概率是14,说明做对的能够性大小是14.做12道选择题,即停止了12次实验,每个结果都是随机的,那么答对3题的能够性较大,但是并不一定答对3道,也能够都选错,或仅有2,3,4题选对,甚至12个题都选择正确.【答案】B二、填空题6.样本容量为200的频率散布直方图如图3-1-1所示.依据样本的频率散布直方图估量,样本数据落在[6,10)内的频数为________,数据落在[6,10)内的概率约为________.图3-1-1【解析】样本数据落在[6,10)内的频率为0.084=0.32,频数为2021.32=64.由频率与概率的关系知数据落在[6,10)内的概率约为0.32.【答案】64 0.327.在5张不同的彩票中有2张奖票,5团体依次从中各抽取1张,各人抽到奖票的概率________(填相等不相等).【解析】由于每人抽得奖票的概率均为25,与前后的顺序有关.【答案】相等8.假设袋中装有数量差异很大而大小相反的白球和黑球(只是颜色不同),每次从中任取一球,记下颜色后放回并搅匀,取了10次有9次白球,估量袋中数量最多的是________.【解析】取了10次有9次白球,那么取出白球的频率是910,估量其概率约是910,那么取出黑球的概率是110,那么取出白球的概率大于取出黑球的概率,所以估量袋中数量最多的是白球 .【答案】白球三、解答题9.(1)设某厂产品的次品率为2%,问从该厂产品中恣意地抽取100件,其中一定有2件次品这一说法对不对?为什么?(2)假定某次数学检验,全班50人的及格率为90%,假定从该班中恣意抽取10人,其中有5人及格是能够的吗?【解】(1)这种说法不对,由于产品的次品率为2%,是指产品是次品的能够性为2%,所以从该产品中恣意地抽取100件,其中有能够有2件次品,而不是一定有2件次品.(2)这种状况是能够的.10.(2021课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t盈余300元.依据历史资料,失掉销售季度内市场需求量的频率散布直方图,如图3-1-2所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.图3-1-2(1)将T表示为X的函数;(2)依据直方图估量利润T不少于57 000元的概率.【解】(1)当X[100,130)时,T=500X-300(130-X)=800X-39 000.当X[130,150]时,T=500130=65 000.所以T=800X-39 000,100130,?65 000,130150.(2)由(1)知利润T不少于57 000元当且仅当120210.由直方图知需求量X[120, 150]的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估量值为0.7.11.在消费进程中,测得纤维产品的纤度(表示纤维粗细的一种量,单位:mm)共有100个数据,将数据分组如下表:分组频数[1.30,1.34)4[1.34,1.38)25[1.38,1.42)30[1.42,1.46)29[1.46,1.50)10[1.50,1.54)2总计100(1)画出频率散布直方图;(2)估量纤度落在[1.38,1.50)mm中的概率及纤度小于1.42的概率是多少.【解】(1)频率散布直方图,如图:(2)纤度落在[1.38,1.50)mm中的频数是30+29+10=69,那么纤度落在[1.38,1.50)mm中的频率是69100=0.69,所以估量纤度落在[1.38,1.50)mm中的概率为0.69.纤度小于1.42 mm的频数是4+25+30=59,那么纤度小于1.42 mm的频率是59100=0.59,所以估量纤度小于1.42 mm的概率为0.59.小编为大家提供的高二数学必修三第三章概率练习,大家细心阅读了吗?最后祝同窗们学习提高。
高二数学必修3第三章概率测试题卷(附解析)
高二数学必修 3 第三章概率测试题卷(附分析)数学,作为人类思想的表达形式,反应了人们踊跃进步的意志、周密周详的逻辑推理及对完满境地的追求。
小编准备了高二数学必修 3 第三章概率测试题卷,希望你喜爱。
一、选择题:在每题给出的四个选项中,只有一项为哪一项切合题目要求的,请把正确答案的代号填在题后的括号内(每题5 分,共 50 分).1.以下事件:①假如a,b 是实数,那么b+a=a+b;②某地 1 月1 日刮西寒风 ;③当 x 是实数时, x2④一个电影院某天的上座率超出 50%.此中是随机事件的有()A.1 个B.2 个C.3 个D.4 个2.以下试验是古典概型的是()A. 从装有大小完整同样的红、绿、黑各一球的袋子中随意拿出一球,察看球的颜色B.在适合条件下,种下一粒种子,察看它能否抽芽C.连续扔掷两枚质地平均的硬币,察看出现正面、反面、一正面一反面的次数D.从一组直径为 (1200.3)mm 的部件中拿出一个,丈量它的直径3.红、黑、蓝、白 4 张牌随机地散发给甲、乙、丙、丁 4 个人,每人分得 1 张,事件甲分得红牌与事件乙分得红牌是()A. 对峙事件B.不行能事件C.互斥事件但不是对峙事件D. 以上答案都不对4.从一箱产品中随机地抽取一件,设事件A={ 抽到一等品 } ,事件 B={ 抽到二等品 } ,事件 C={ 抽到三等品 } ,且已知P(A)=0.65 , P(B)=0.2 , P(C)=0.1.则事件抽到的是二等品或三等品的概率为 ()5.甲乙两人下棋,和棋的概率是12,乙获胜的概率是13,则甲不输的概率是( )A.16B.13C.12D.236.某人向一个半径为 6 的圆形标靶射击,假定他每次射击必定会中靶,且射中靶内各点是随机的,则这人射击中靶点与靶心的距离小于 2 的概率为()A.113B. 19 C .14 D.127.某人睡午觉悟来,发现表停了,他翻开收音机,想听电台报时,则他等候时间不多于15 分钟的概率为 ()A.12B.14C.23D.348.在区间 (0,1)内任取两个实数,则这两个实数的和大于13 的概率为()A.1718B.79C.29D.1189.下课后教室里最后科学实验剩下 2 位男同学和 2 位女同学,四位同学先后走开,则第二位走的是男同学的概率是()A.12B.13C.14 D .1510.为了检查某厂 2 000 名工人生产某种产品的能力,随机抽查了 20 位工人某天生产该产品的数目,产品数目的分组区间为 [10,15) , [15,20) , [20,25) ,[25,30) , [30, 35] ,频次散布直方图以下图 .工厂规定从生产低于 20 件产品的工人中随机地选用 2 位工人进行培训,则这 2 位工人不在同一组的概率是 ()A.110B.715C.815D.1315二、填空题 (每题 6 分,合计 24 分 ).11.在区间 [-2,2] 上随机取一个数x ,则 x[0,1] 的概率为 ______ __.12.从 1,2,3,4 这四个数中一次随机取两个数,则此中一个数是另一个的两倍的概率是________.13.为了测算如图的暗影部分的面积,作一个边长为 6 的正方形将其包括在内,并向正方形内随机扔掷800 个点 .已知恰有200个点落在暗影部分,据此,可预计暗影部分的面积是________.14.有五根细木棒,长度分别为1,3,5,7,9(cm).从中任取三根,能搭成三角形的概率是三、解答题 ( 共 76 分 ).15.(此题满分 12 分)某种日用品上市此后求过于供,为知足更多的花费者,某商场在销售的过程中要求购置这类产品的顾客一定参加以下活动:摇动如右图所示的游戏转盘(上边扇形的圆心角都相等),依据指针所指地区的数字购置商品的件数,每人只好参加一次这个活动.(1)某顾客参加活动,求购置到许多于 5 件该产品的概率;(2)甲、乙两位顾客参加活动,求购置该产品件数之和为10的概率 .16.(此题满分 12 分) 甲、乙两人玩一种游戏,每次由甲、乙各出 1 到 5 根手指头,若和为偶数则算甲赢,不然算乙赢.(1)若以 A 表示和为 6 的事件,求P(A);(2)现连玩三次,以 B 表示甲起码赢一次的事件, C 表示乙起码赢两次的事件,则 B 与 C 能否为互斥事件?试说明原因 ;(3)这类游戏规则公正吗?试说明原因 .17.(此题满分 12 分)某××局对 1 000 株树木的生长状况进行检查,此中槐树 600 株,银杏树 400 株 .现用分层抽样方法从这1 000 株树中随机抽取100 株,此中银杏树树干周长(单位:cm)的抽查结果以下表:树干周长 [30,40)[40,50)[50,60)[60,70)株数 418x6(1)求 x 的值 ;(2)若已知树干周长在30~ 40 cm 之间的 4 株银杏树中有 1 株患有虫害,现要对这 4 株树逐个进行排查直至找出患虫害的树木为止 .求排查的树木恰巧为 2 株的概率 .18.(此题满分 12 分)将一枚骰子先后扔掷两次,察看向上的点数,(1)求点数之和是 5 的概率 ;(2)设 a, b 分别是将一枚骰子先后扔掷两次向上的点数,求等式 2a-b=1 成立的概率 .19.(此题满分 14 分)已知甲袋中有 1 只白球、 2 一只红球,乙袋中有 2 只白球、 2 只红球,现从两袋中各取一球.(1)两球颜色同样的概率;(2)起码有一个白球的概率,20.(此题满分 14 分)PM2.5 是指大气中直径小于或等于 2.5 微米的颗粒物,也称为可人肺颗粒物,我国 PM2.5 标准采纳世卫组织设定的最宽容值,PM2.5 日均值在 35 微克 /立方米以下空气质量为一级;在 35 微克 /立方米~ 75 微克 /立方米之间空气质量为二级;在 75 微克 /立方米及其以上空气质量为超标.某试点城市××局从该市市里 2019 年整年每日的 PM2.5 监测数据中随机抽取6 天的数据作为样本,监测值茎叶图如图(十位为茎,个位为叶 ),若从这 6 天的数据中随机抽出 2 天,(1)求恰有一天空气质量超标的概率;(2)求至多有一天空气质量超标的概率.参照答案一、选择题1. [答案] B[ 分析 ] 由随机事件的观点得:①③是必定事件,②④是随机事件 .2. [答案] A[ 分析 ] 依据古典概型拥有有限性和等可能性进行判断.3. [答案] C[ 分析 ] 记事件 A= 甲分得红牌,记事件B=乙分得红牌,它们不会同时发生,因此是互斥事件,但事件 A 和事件 B 也可能都不发生,因此他们不是对峙事件,应选 C.4. [答案] D[ 分析 ] 由题意知事件 A 、 B、 C 互为互斥事件,记事件D=抽到的是二等品或三等品,则P(D)=P(BC)=P(B)+P(C)=0.2+0.1=0.3 ,应选 D.5. [答案] D[ 分析 ] 记事件 A= 乙获胜,记事件B=甲不输,由题意知:事件 A 与事件 B 为对峙事件, P(A)=13 ,因此 P(B)=1-13=23 ,应选 D.6. [答案] B[ 分析 ] 这人射击击中靶点与靶心的距离小于 2 的概率为2262=19.7. [答案] B[ 分析 ] 该人在 0~60 分钟内随意时辰醒来是等可能的,且电台是整点报时,记事件 A= 等候时间不多于15 分钟,则满足事件 A 的地区为: [45,60] ,因此 P(A)=1560=14 ,应选 B.8. [答案] A[ 分析 ] 在区间 (0, 1) 内任取两个实数分别为x ,y,则 013,则其所表示地区为图中暗影响部分.因此 P(A)=S 暗影 SM=1-12131311=1718.9. [答案] A[ 分析 ] 设 2 位男同学分别用a,b 表示,2 位女同学分别用c,d表示,则可用树状图将四位同学先后走开教室的全部可能结果表示为以下图的形式 .共 24 种.记事件 A= 第二位走的是男同学,则事件 A 所含基本领件个数为12 个,因此 P(A)=1224=12 ,应选 A.10. [答案 ] C[ 分析 ] 依据频次散布直方图可知产品件数在[10,15) ,[15,20)内的人数分别为50.0220=2,50.0420=4 ,设生产产品件数在[10,15) 内的 2 人分别是 A , B,设生产产品件数在[15,20) 内的 4 人分别为 C,D , E, F,则从生产低于 20 件产品的工人中随机地选用 2 位工人的结果有 (A ,B) ,(A ,C),(A ,D) ,(A , E), (A , F), (B , C), (B , D), (B , E), (B , F), (C,D),(C,E),(C, F),(D,E),(D, F), (E, F),共 15 种 . 2位工人不在同一组的结果有(A ,C),(A ,D),(A ,E),(A ,F),(B,C),(B ,D) ,(B ,E),(B ,F),共 8 种. 则选用这2人不在同一组的概率为815.二、填空题11. [答案 ] 14[ 分析 ] x[0,1] 的概率为 1-02--2=14.12. [答案 ] 13[ 分析 ] 1,2,3,4 这四个数中一次随机取两个数,全部可能的取法有 6 种,知足此中一个数是另一个的两倍的全部可能的结果有 (1,2), (2,4) 共 2 种取法,因此此中一个数是另一个的两倍的概率是26=13.13. [答案 ] 9[ 分析 ] 设暗影部分的面积为S,向正方形内随机扔掷 1 个点,落在暗影部分的概率的预计值是201900=14,则 SS 正方形=14,又正方形的面积是36,则 S=1436=9.14. [ 答案 ] 310[ 分析 ] 该试验全部可能结果为: (1,3,5) ,(1,3,7) , (1,3,9) ,(1,5,7),(1,5,9), (1,7,9) ,(3,5,7) , (3,5,9) ,(3,7,9), (5,7,9)共10 种,记事件A= 三根细木棒能搭成三角形,则事件A所含的基本领件为:(3,5,7) , (3,7,9) , (5,7,9) 共 3 种,因此P( A)=310.三、解答题15.[ 分析 ] (1) 设购置到许多于 5 件该产品为事件 A ,则P(A)=812=23.(2)设甲、乙两位顾客参加活动,购置该产品数之和为10 为事件 B,甲、乙购置产品数的状况共有1212=144 种,则事件 B 包括 (1,9) ,(2,8),(3,7) ,(4,6) ,(5,5) ,(6,4) ,(7,3) ,(8,2),(9,1) ,共 9 种状况,故P(B)=9144=116.16.[ 分析 ] (1) 令 x ,y 分别表示甲、乙出的手指数,则基本领件空间可表示为 S={(x , y)|xN* , yN*,15,15}.由于 S 中点的总数为55=25,因此基本领件总数n=25.事件 A 包括的基本领件为(1,5), (2,4), (3,3), (4,2) ,(5,1) ,共 5 个,因此 P(A)=525=15.(2)B 与 C 不是互斥事件,如甲赢一次,乙赢两次的事件中,事件 B 与 C 是同时发生的 .(3)由 (1)知,和为偶数的基本领件数为13,即甲赢的概率为1325,乙赢的概率为1225,因此这类游戏规则不公正.17. [ 分析 ] (1) 由于用分层抽样方法从这 1 000 株树木中随机抽取 100 株,因此应当抽取银杏树1004001 000=40( 株 ),故4+18+x+6=40 ,因此 x=12.(2)记这 4 株树为树1,树 2,树 3,树 4,不如设树 4 就是那株患虫害的树 .设恰幸亏排查到第二株时发现树 4 为事件 A.基本领件空间为 ={( 树 1,树 2), (树 1,树 3), (树 1,树 4),(树2,树 1), (树 2,树 3), (树 2,树 4), (树 3,树 1),(树3,树2),( 树 3,树 4),(树 4,树 1),(树 4,树 2), (树 4,树 3), } 共 12 个基本领件,此中事件 A 中包括的基本领件有 (树 1,树 4),(树 2,树 4),(树 3,树 4),共 3 个,因此恰幸亏排查到第二株时发现患虫害树的概率为P(A)=312=14.18. [ 解] (1) 该试验全部可能的结果为:(1,1),(1,2),(1,3),(1,4) ,(1,5),(1,6) ,(2,1) , (2,2) ,(2,3) ,(2,4) ,(2,5) ,(2,6) ,(3,1) ,(3,2),(3,3) ,(3,4) ,(3,5) ,(3,6), (4,1), (4,2), (4,3), (4,4),(4,5),(4,6) ,(5,1) ,(5,2) ,(5,3) ,(5,4) ,(5,5) ,(5,6) ,(6,1) ,(6,2),(6,3) ,(6,4),(6,5) ,(6,6),基本领件总数为 36,记事件 A= 点数之和是5,则事件 A ,所含的基本领件为: (1,4),(2,3),(3,2) ,(4,1),基本领件总数为 4,因此 P(A)=436=19. (2)要使等式 2a-b=1 成立,则须 a-b=0,即先后扔掷两次向上的点数相等,记事件 B= 向上的点数相等,则事件 B 所含的基本领件为: (1,1), (2,2), (3, 3), (4,4),(5,5) ,(6,6) ,基本领件总数为 6,因此 P(B)=636=16.19.[ 分析 ] 设甲袋中 1 只白球记为 a1,2 只红球记为 b1,b2;乙袋中 2 只白球记为 a 2,a3,2 只红球记为b3,b4.因此从两袋中各取一球包括基本领件(a1, a2), (a1, a3), (a1, b3),(a1,b4),(b1,a2),(b1,a3),(b1,b3),(b1,b4),(b2,a2),(b2,a3),(b2,b3),(b2, b4),共有 12 种 .(1)设 A 表示从两袋中各取一球,两球颜色同样,因此事件A包括基本领件 (a1,a2),(a1,a3),(b1,b3),(b1,b4),(b2,b3),(b2,b4) ,共有 6 种.因此 P(A)=612=12.(2)设 B 表示从两袋中各取一袋,起码有一个白球,因此事件B 包括基本事件(a1,a2),(a1,a3),(a1,b3),(a1,b4),(b1,a2),(b1,a3),(b2,a2),(b2 , a3),共有 8 种.因此P(B)=812=23.20. [ 解] 由茎叶图知: 6 天中有 4 天空气质量未超标,有2天空气质量超标.记未超标:的 4 天为 a, b,c,d,超标的两天为e,f,则从6天中抽取 2 天的全部状况为: ab,ac,ad,ae,af,bc,bd,be, bf, cd,ce, cf, de, df ,ef,基本领件数为 15.(1)记 6 天中抽取 2 天,恰有 1 天空气质量超标为事件 A ,可能结果为: ae,af,be, bf, ce,cf ,de, df,基本领件数为8, P(A)=815.察看内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与少儿生活靠近的,能理解的察看内容。
(好题)高中数学必修三第三章《概率》检测题(包含答案解析)
一、选择题1.将曲线22x y x y +=+围成的区域记为Ⅰ,曲线1x y +=围成的区域记为Ⅱ,在区域Ⅰ中随机取一点,此点取自区域Ⅱ的概率为( ) A .12π+ B .11π+ C .22π+ D .21π+ 2.福建省第十六届运动会将于2018年在宁德召开,组委会预备在会议期间从3女2男共5名志愿者中任选2名志愿者参考接待工作,则选到的都是女性志愿者的概率为( )A .110B .310C .12D .353.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个区间[]0,1上的均匀随机数()*,110i y i N i ∈≤≤,其数据如下表的前两行.由此可得这个曲边三角形面积的一个近似值是 A .()215e + B .()215e - C .()315e + D .()315e - 4.已知sin y x =,在区间[],ππ-上任取一个实数x ,则y ≥12-的概率为( ) A .712B .23C .34D .565.甲、乙两人约定某天晚上6:00~7:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是( ) A .58B .13C .18D .386.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为( )A .13B .49C .59D .237.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4138.如图所示,在一个边长为2.的正方形AOBC 内,曲2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A .12B .14C .13D .169.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为() A .mm n+ B .nm n+ C .4mm n+ D .4nm n+ 10.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为26,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为20,现从1、2、3、4、5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A .310B .15C .110D .32011.从2017年到2019年的3年高考中,针对地区差异,理科数学全国卷每年都命了3套卷,即:全国I 卷,全国II 卷,全国III 卷.小明同学马上进入高三了,打算从这9套题中选出3套体验一下,则选出的3套题年份和编号都各不相同的概率为( ) A .184B .142C .128D .11412.某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,则他等待的时间不多于15分钟的概率为( ) A .13B .14C .15D .16二、填空题13.一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,由它飞入几何体F AMCD -内的概率为______.14.如图所示,分别以,,A B C 为圆心,在ABC 内作半径为2的三个扇形,在ABC 内任取一点P ,如果点P 落在这三个扇形内的概率为13,那么图中阴影部分的面积是____________.15.在区间[]0,2上分别任取两个数m ,n ,若向量(),a m n =,()1,1b =,则满足1a b -≤的概率是______ .16.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.17.若正方体1111ABCD A B C D -的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.18.如图,⊙O 的半径为1,六边形ABCDEF 是⊙O 的内接正六边形,从A B C 、、、D E F 、、六点中任意取两点,并连接成线段,则线段的长为3的概率是_____.19.如图,圆柱12O O 内接于球O ,且圆柱的高等于球O 的半径,则从球O 内任取一点,此点取自圆柱12O O 的概率为______;20.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为______.三、解答题21.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15︒,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?22.党的十九大报告指出,要以创新理念提升农业发展新动力,引领经济发展走向更高形态.为进一步推进农村经济结构调整,某村举办水果观光采摘节,并推出配套乡村游项目现统计了4月份200名游客购买水果的情况,得到如图所示的频率分布直方图:(1)若将购买金额不低于80元的游客称为“水果达人”,现用分层抽样的方法从样本的“水果达人”中抽取5人,求这5人中消费金额不低于100元的人数;(2)从(1)中的5人中抽取2人作为幸运客户免费参加山村旅游项目,请列出所有的基本事件,并求2人中至少有1人购买金额不低于100元的概率;(3)为吸引顾客,该村特推出两种促销方案,方案一:每满80元可立减8元;方案二:金额超过50元但又不超过80元的部分打9折,金额超过80元但又不超过100元的部分打8折,金额超过100元的部分打7折.若水果的价格为11元/千克,某游客要购买10千克,应该选择哪种方案更优惠.23.口袋里装有编号为1,2,3,4的四个小球,有放回...的抽取两次,记录两次取到小球的编号分别为x,y.奖励规则如下:xy≤,则奖励玩具一个;①若3xy≥,则奖励水杯一个;②若8③其余情况奖励饮料一瓶.小亮准备参加此项活动.(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.24.某市工会组织了一次工人综合技能比赛,一共有1000名工人参加,他们的成绩都分布52,100内,数据经过汇总整理得到如下的频率分布直方图,规定成绩在76分及76分在[]以上的为优秀.(1)求图中t 的值;(2)估计这次比赛成绩的平均数(同一组中的数据以这组数据所在区间中点的值作代表);(3)某工厂车间有25名工人参加这次比赛,他们的成绩分布和整体的成绩分布情况完全一致,若从该车间参赛的且成绩为优秀的工人中任选两人,求这两人成绩均低于92分的概率.25.某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与平均数;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.26.某舆情机构为了解人们对某事件的关注度,随机抽取了100人进行调查,其中对该事件关注的女性占23,而男性有10人表示对该事件没有关注.(1)根据以上数据补全22⨯列联表;(2)能否有90%的把握认为“对事件是否关注与性别有关”?(3)已知在被调查的女性中有10名大学生,这其中有6名对此事关注.现在从这10名女大学生中随机抽取3人,求至少有2人对此事关注的概率. 附表:()()()()()22n ad bc K a b c d a c b d -=++++【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】画出曲线22x y x y +=+与曲线1x y +=的图像,再根据几何概型的方法求解即可. 【详解】当0,0x y >>时,曲线22x y x y +=+、曲线1x y +=分别为2222111222x y x y x y ⎛⎫⎛⎫+=+⇒-+-= ⎪ ⎪⎝⎭⎝⎭,1x y +=.又22x y x y +=+、1x y +=均关于,x y 轴,原点对称.故两曲线围成的区域Ⅰ(正方形和四个半圆)、Ⅱ(正方形)如图:可知区域Ⅰ的面积为22222S ππ⎛⎫+⋅=+ ⎪ ⎪⎝⎭正方形;区域Ⅱ的面积为()222=;∴由几何概率公式得:22p π=+.故选:C. 【点睛】本题主要考查了几何概型的运用,需要根据题意去绝对值画出一象限的图像,再根据对称性补全图像.同时也考查了几何概型中面积型的问题.属于中档题.2.B解析:B 【解析】设3名女志愿者为,,A B C ,2名男志愿者为,a b ,任取2人共有,,,,,,,,,Aa Ab Ba Bb Ca Cb AB AC BC ab ,共10种情况,都是女性的情况有,,AB AC BC三种情况,故选到的都是女性志愿者的概率为310,故选B.3.D解析:D 【详解】 由题意可得ACB ABCD=10S nS ∆曲线矩形,n 为阴影部分的点的个数,即满足y<lnx,共6个点,即ACB ABCD6=101S S S e ∆=-曲线矩形,所以S=()315e -,选D.4.B解析:B 【分析】 求出满足12y ≥-的角x 的范围,由长度比,即可得到该几何概型的概率. 【详解】1sin ,[,]2y x x ππ=≥-∈-,5[,][,]66x ππππ∴∈--⋃-, 则满足12y ≥-的概率为: 5()()266()3P ππππππ---+--==--.故选:B. 【点睛】本题考查了三角不等式的求解,几何概型的计算,属于中档题.5.D解析:D 【分析】由题意知本题是一个几何概型,试验包含的所有事件是{(,)|01x y x Ω=,01}y ,写出满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤,算出事件对应的集合表示的面积,根据几何概型概率公式得到结果. 【详解】解:由题意知本题是一个几何概型,设甲到的时间为x ,乙到的时间为y ,则试验包含的所有事件是{(,)|01x y x Ω=,01}y , 事件对应的集合表示的面积是1S =,满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤, 则()1,1B ,1,12C ⎛⎫⎪⎝⎭,10,2D ⎛⎫ ⎪⎝⎭, 则事件A 对应的集合表示的面积是111131122228⨯⨯-⨯⨯=,根据几何概型概率公式得到33818P ==; 所以甲、乙两人能见面的概率38P =. 故选:D .【点睛】本题主要考查几何概型的概率计算,要解决此问题,一般要通过把试验发生包含的事件所对应的区域求出,根据集合对应的图形面积,用面积的比值得到结果.6.C解析:C 【分析】列举法列举出所有可能的情况,利用古典概型的计算方法计算即可. 【详解】解:依题意得所拨数字可能为610,601,511,160,151,115,106,61,16,共9个,其中有5个是奇数,则所拨数字为奇数的概率为59,故选:C. 【点睛】本题考查概率的实际应用问题,考查古典概型的计算方法,同时考查了学生的阅读能力和文化素养,属于中档题.7.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.8.C解析:C 【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解. 【详解】联立2y y x⎧=⎪⎨=⎪⎩(1,1)C . 由图可知基本事件空间所对应的几何度量1OBCA S =正方形, 满足所投的点落在叶形图内部所对应的几何度量:S (A )3123120021)()|33x dx x x ==-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.9.C解析:C 【分析】把每一个所写两数作为一个点的坐标,由题意可得与1不能构成一个锐角三角形是指两个数构成点的坐标在圆221x y +=内,进一步得到211411+m m nπ⨯=⨯,则答案可求。
(好题)高中数学必修三第三章《概率》检测卷(答案解析)(3)
一、选择题1.已知ABCD 为正方形,其内切圆I 与各边分别切于,,,E F G H ,连接,,,EF FG GH HE ,现向正方形ABCD 内随机抛掷一枚豆子(豆子大小忽略不计),记事件A:豆子落在圆I 内;事件B:豆子落在四边形EFGH 外,则()PB A =( )A .14π-B .4π C .21π-D .2π2.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是( )A .518B .718C .716D .5163.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为( )A .13B .49C .59D .234.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为( )A .46801010100C C C ⋅ B .64208001010C C C ⋅ C .46208001010C C C ⋅ D .64801010100C C C ⋅ 5.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4136.设向量()()1,,a x y x y R =-∈,若1a ≤,则y x ≥的概率为( ) A .14B .1142π- C .114π-D .3142π+ 7.已知三棱锥P ﹣ABC 的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为( ) A .815B .715C .45D .358.现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这个10个数中随机抽取一个数,则它小于8的概率是( ) A .710B .35C .12D .259.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是( )A .116B .18 C .38D .31610.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A .15B .625C .825D .2511.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为15,则勾与股的比为( )A .13B .12C 3D 2 12.在编号分别为(0,1,2,,1)i i n =⋅⋅⋅-的n 名同学中挑选一人参加某项活动,挑选方法如下:抛掷两枚骰子,将两枚骰子的点数之和除以n 所得的余数如果恰好为i ,则选编号为i 的同学.下列哪种情况是不公平的挑选方法( ) A .2n =B .3n =C .4n =D .6n =二、填空题13.采用简单随机抽样从含10个个体的总体中抽取一个容量为4的样本,若个体a 前两次未被抽到,则第三次被抽到的概率为_____.14.某种饮料每箱装6听,若其中有2听不合格,质检员从中随机抽出2听,则含有不合格品的概率为________.15.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______16.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.17.一个袋子里装有大小形状完全相同的5个小球,其编号分别为1,2,3,4,5,甲、乙两人进行取球,甲先从袋子中随机取出一个小球,若编号为1,则停止取球;若编号不为1,则将该球放回袋子中.由乙随机取出2个小球后甲再从袋子中剩下的3个小球随机取出一个,然后停止取球,则甲能取到1号球的概率为__________.18.连续抛掷同一颗骰子3次,则3次掷得的点数之和为9的概率是____.19.已知甲箱子里装有3个白球、2个黑球,乙箱子里装有2个白球、2个黑球,从这两个箱子里分别随机摸出1个球,则恰有一个白球的概率为__________.20.马老师从课本上抄录一个随机变量的概率分布列如表请小牛同学计算的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案_______ .三、解答题21.互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式. 某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究. 采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占23,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折. 已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.22.2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取100名学生对线上教学进行调查,其中男生与女生的人数之比为9:11,抽取的学生中男生有30人对线上教学满意,女生中有10名表示对线上教学不满意.(1)完成22列联表,并回答能否有90%的把握认为“对线上教学是否满意与性别有关”;满意不满意合计男生女生合计100中抽取2名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.附:22()()()()()n ad bcKa b c d a c b d-=++++.()2P K k≥0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.8223.党的十九大报告指出,要以创新理念提升农业发展新动力,引领经济发展走向更高形态.为进一步推进农村经济结构调整,某村举办水果观光采摘节,并推出配套乡村游项目现统计了4月份200名游客购买水果的情况,得到如图所示的频率分布直方图:(1)若将购买金额不低于80元的游客称为“水果达人”,现用分层抽样的方法从样本的“水果达人”中抽取5人,求这5人中消费金额不低于100元的人数;(2)从(1)中的5人中抽取2人作为幸运客户免费参加山村旅游项目,请列出所有的基本事件,并求2人中至少有1人购买金额不低于100元的概率;(3)为吸引顾客,该村特推出两种促销方案,方案一:每满80元可立减8元;方案二:金额超过50元但又不超过80元的部分打9折,金额超过80元但又不超过100元的部分打8折,金额超过100元的部分打7折.若水果的价格为11元/千克,某游客要购买10千克,应该选择哪种方案更优惠.24.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过10件的顾客占40%.一次购物量1至5件6至10件11至15件16至20件21件及以上顾客数(人)x3025y5结算时间(分钟/人)12345(1)确定,x y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过3分钟的概率.(将频率视为概率)25.追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI )的检测数据,结果统计如下:(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率.(2)已知某企业每天因空气质量造成的经济损失y (单位:元)与空气质量指数x 的关系式为0,0100,220,100250,1480,250300.x y x x ⎧⎪=<⎨⎪<⎩假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为16,13,16,112,112,16,9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i )记该企业9月每天因空气质量造成的经济损失为X 元,求X 的分布列;(ii )试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.26.某舆情机构为了解人们对某事件的关注度,随机抽取了100人进行调查,其中对该事件关注的女性占23,而男性有10人表示对该事件没有关注. (1)根据以上数据补全22⨯列联表;(2)能否有90%的把握认为“对事件是否关注与性别有关”?(3)已知在被调查的女性中有10名大学生,这其中有6名对此事关注.现在从这10名女大学生中随机抽取3人,求至少有2人对此事关注的概率. 附表:()()()()()22n ad bc K a b c d a c b d -=++++【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:设正方形ABCD 边长为a ,分别求解圆I 和正方形EFGH 的面积,得到在圆I 内且在正方形EFGH 内的面积,即可求解()P B A . 详解:设正方形ABCD 边长为a ,则圆I 的半径为,2a r =其面积为21.4a π设正方形EFGH 边长为b ,,2a b a =⇒=其面积为211,2S a = 则在圆I 内且在正方形EFGH 内的面积为21,S S S =- 故()121.S S P B A S π-==- 故选C .点睛:本题考查条件概率的计算,其中设正方形ABCD 边长和正方形EFGH 得到在圆I 内且在正方形EFGH 内的面积是解题的关键.2.D解析:D 【分析】根据题意把6根算筹所能表示的两位数列举出来后,计算哪些能被3整除即可得概率. 【详解】1根算筹只能表示1,2根根算筹可以表示2和6,3根算筹可以表示3和7,4根算筹可以表示4和8,5根算筹可以表示5和9,因此6根算筹表示的两位数有15,19,51,91,24,28,64,68,42,82,46,86,37,33,73,77共16个,其中15,51,24,42,33共5个可以被3整除,所以所求概率为516P =. 故选:D . 【点睛】本题考查古典概型,考查中国古代数学文化,解题关键是用列举法写出6根算筹所能表示的两位数.3.C解析:C 【分析】列举法列举出所有可能的情况,利用古典概型的计算方法计算即可. 【详解】解:依题意得所拨数字可能为610,601,511,160,151,115,106,61,16,共9个,其中有5个是奇数,则所拨数字为奇数的概率为59,故选:C. 【点睛】本题考查概率的实际应用问题,考查古典概型的计算方法,同时考查了学生的阅读能力和文化素养,属于中档题.4.C解析:C 【分析】根据古典概型的概率公式求解即可. 【详解】从袋中任取10个球,共有10100C 种,其中恰好有6个白球的有468020C C ⋅种即其中恰好有6个白球的概率为46208001010C C C ⋅ 故选:C 【点睛】本题主要考查了计算古典概型的概率,属于中档题.5.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCSP S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以7AB FD=,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.6.B解析:B 【分析】利用复数模的公式可得点(),x y 在以()1,0为圆心,以1为半径的圆上及圆的内部,结合y x ≥表示的是图中直线上方且在圆内的弓形,求出圆的面积与弓形的面积利用几何概型可得结果. 【详解】因为()()1,,a x y x y R =-∈,且1a ≤, 所以()2211x y -+≤,∴点(),x y 在以()1,0为圆心,以1为半径的圆上及圆的内部,y x ≥表示的是图中直线上方且在圆内的弓形,而圆的面积为S π=,11=42S π-弓, y x ∴≥的概率为111142=42S P S πππ-==-弓, 故选:B. 【点睛】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A 的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.7.B解析:B 【分析】从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=,由此能求出这两条棱长度相等的概率. 【详解】解:三棱锥P ABC -的6条棱中,有2条长为1,有4条长为2,从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=, ∴这两条棱长度相等的概率715m p n ==. 故选:B . 【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.8.B解析:B 【分析】先由题意写出成等比数列的10个数,然后找出小于8的项的个数,代入古典概率的计算公式即可求解 【详解】解:由题意()13n n a -=-成等比数列的10个数为:1,3-,2(3)-,39(3)(3)-⋯-其中小于8的项有:1,3-,3(3)-,5(3)-,7(3)-,9(3)-共6个数 这10个数中随机抽取一个数, 则它小于8的概率是63105P ==. 故选:B . 【点睛】本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题9.B解析:B 【分析】设阴影部分正方形的边长为a ,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率. 【详解】如图所示,设阴影部分正方形的边长为a,则七巧板所在正方形的边长为, 由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率()2218a =,故选:B.【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.10.A解析:A 【分析】阳数:1,3,5,7,9,阴数:2,4,6,8,10,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率. 【详解】因为阳数:1,3,5,7,9,阴数:2,4,6,8,10,所以从阴数和阳数中各取一数差的绝对值有:5525⨯=个,满足差的绝对值为5的有:()()()()()1,6,3,8,5,10,7,2,9,4共5个,则51255P ==. 故选A. 【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:P =目标事件的个数基本本事件的总个数.11.B解析:B 【分析】分别求解出小正方形和大正方形的面积,可知面积比为15,从而构造方程可求得结果. 【详解】由图形可知,小正方形边长为b a -∴小正方形面积为:()2b a -,又大正方形面积为:2c()()2222222221115b a b a ab a b c a b a b b a--∴==-=-=+++,即:25a b b a ⎛⎫+= ⎪⎝⎭ 解得:12a b = 本题正确选项:B 【点睛】本题考查几何概型中的面积型的应用,关键是能够利用概率构造出关于所求量的方程.12.C解析:C 【分析】首先求出两枚骰子的点数之和可能的取值对应的概率,再分别讨论四个选项中n 的取值对应的余数的概率,若每一个余数的概率都相等则是公平的,若不相等则不公平,即可得正确选项. 【详解】由题意知两枚骰子的点数之和为X ,则X 可能为2,3,4,5,6,7,8,9,10,11,12,()1236P X ==, ()2336P X ==,()3436P X ==,()4536P X ==,()5636P X ==()6736P X ==,()5836P X ==,()4936P X ==,()31036P X ==,()21136P X ==,()11236P X ==, 对于选项A :2n =时,0,1,i = ()1351023636362P i ⎛⎫==++⨯= ⎪⎝⎭,()246421136363636362P i ==++++=,所以2n =是公平的,故选项A 不正确; 对于选项B :3n =时,0,1,2i =,()254110363636363P i ==+++=,()363113636363P i ==++=, ()145212363636363P i ==+++=,所以3n =是公平的,故选项B 不正确; 对于选项C :4n =时,0,1,2,3i = ()351103636364P i ==++=,()442136369P i ==+=, ()153123636364P i ==++=,()2625336363618P i ==++= 因为概率不相等,所以4n =不公平,故选项C 正确; 对于选项D :6n =时,0,1,2,3,4,5i =()511036366P i ==+=,()611366P i ===,()151236366P i ==+=, ()241336366P i ==+=,()331436366P i ==+=,()421536366P i ==+=, 所以6n =是公平的,故选项D 不正确, 故选:C 【点睛】关键点点睛:本题解题的关键点是理解题意,对于所给n 的值的每一个余数出现的概率相等即为公平,不相等即为不公平.二、填空题13.【详解】第一-次没有抽到且第二次没有抽到第三次被抽到的概率是解析:1 10【详解】第一-次没有抽到且第二次没有抽到第三次被抽到的概率是14.【分析】含有不合格品分为两类:一件不合格和两件不合格分别利用组合公式即可得到答案【详解】质检员从中随机抽出2听共有种可能而其中含有不合格品共有种可能于是概率为:【点睛】本题主要考查超几何分布的相关计解析:3 5【分析】含有不合格品分为两类:一件不合格和两件不合格,分别利用组合公式即可得到答案.【详解】质检员从中随机抽出2听共有2615C=种可能,而其中含有不合格品共有1122429C C C+=种可能,于是概率为:93 155=.【点睛】本题主要考查超几何分布的相关计算,难度不大.15.【详解】解:从1234这四个数中一次随机取两个数有(12)(13)(14)(23)(24)(34)共6种情况;其中其中一个数是另一个的两倍的有两种即(12)(24);则其概率为;故答案为解析:1 3【详解】解:从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况;其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4);则其概率为21 63 =;故答案为13.简单考察古典概型的概率计算,容易题.16.【分析】基本事件总数五位德国游客互不相邻包含的基本事件个数为:由此能求出五位德国游客互不相邻的概率【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照基本事件总数五位德国游客互不相邻包含的解析:799【分析】 基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =,由此能求出五位德国游客互不相邻的概率. 【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照,基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =, ∴五位德国游客互不相邻的概率为75781212799A A m p n A ===.故答案为:799. 【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.17.【分析】通过分析先计算甲在第一次取得编号为1的概率再计算甲在第二次取得编号为1的概率两者相加即为所求【详解】甲在第一次取得编号为1的概率为;甲在第二次取得编号为1的概率为于是所求概率为故答案为【点睛 解析:925【分析】通过分析,先计算甲在第一次取得编号为1的概率,再计算甲在第二次取得编号为 1的概率,两者相加即为所求. 【详解】甲在第一次取得编号为1的概率为15;甲在第二次取得编号为1的概率为 24254145325C C ⨯⨯=,于是所求概率为149+52525=,故答案为925. 【点睛】本题主要考查概率的相关计算,意在考查学生的分析能力,计算能力,难度中等.18.;【分析】利用分步计数原理连续拋掷同一颗骰子3次则总共有:6×6×6=216种情况再列出满足条件的所有基本事件利用古典概型的计算公式计算可得概率【详解】每一次拋掷骰子都有123456六种情况由分步计解析:25216; 【分析】利用分步计数原理,连续拋掷同一颗骰子3次,则总共有:6×6×6=216种情况,再列出满足条件的所有基本事件,利用古典概型的计算公式计算可得概率.【详解】每一次拋掷骰子都有1,2,3,4,5,6,六种情况,由分步计数原理:连续抛掷同一颗骰子3次,则总共有:6×6×6=216种情况,则3次掷得的点数之和为9的基本事件为25种情况即:(1,2,6),(1,3,5),(1,4,4),(1,5,3),(1,6,2),(2,1,6),(2,2,5),(2,3,4),(2,4,3),(2,5,2),(2,6,1),(3,1,5),(3,2,4),(3,3,3),(3,4,2),(3,5,1),(4,1,4),(4,2,3),(4,3,2),(4,4,1),(5,1,3),(5,2,2),(5,3,1),(6,1,2),(6,2,1),共25个基本事件,所以25216 P=.【点睛】本题考查分步计数原理和古典概型概率计算,计数过程中如果前两个数固定,则第三个数也相应固定.19.【分析】通过分析恰有一个白球分为两类:甲中一白球乙中一黑球甲中一黑球乙中一白球于是分别计算概率相加即得答案【详解】恰有一个白球分为两类:甲中一白球乙中一黑球甲中一黑球乙中一白球甲中一白球乙中一黑球概解析:1 2【分析】通过分析恰有一个白球分为两类:“甲中一白球乙中一黑球”,“甲中一黑球乙中一白球”,于是分别计算概率相加即得答案.【详解】恰有一个白球分为两类:甲中一白球乙中一黑球,甲中一黑球乙中一白球.甲中一白球乙中一黑球概率为:3235410⨯=,甲中一黑球乙中一白球概率为:2225410⨯=,故所求概率为1 2 .【点睛】本题主要考查乘法原理和加法原理的相关计算,难度不大,意在考查学生的分析能力,计算能力.20.2【解析】试题分析:令?的数字是x则!的数值是1-2x所以考点:数学期望点评:数学期望就是平均值要得到随机变量的数学期望则需先写出分布列解析:2【解析】试题分析:令?的数字是x,则!的数值是1-2x,所以考点:数学期望点评:数学期望就是平均值,要得到随机变量的数学期望,则需先写出分布列.三、解答题21.(1)291494;(2)440 【分析】(1)先计算出选取的3人中,全都是高于45岁的概率,然后用1减去这个概率,求得至少有1人的年龄低于45岁的概率.(2)首先确定“销售的10件商品中以手机支付为首选支付的商品件数”满足二项分布,求得销售额的表达式,然后利用期望计算公式,计算出销售额的期望. 【详解】(1)设事件A 表示至少有1人的年龄低于45岁,则()3303402911494C P A C =-=. (2)由题意知,以手机支付作为首选支付方式的概率为6031005=. 设X 表示销售的10件商品中以手机支付为首选支付的商品件数,则3~10,5X B ⎛⎫ ⎪⎝⎭, 设Y 表示销售额,则()40501050010Y X X X =+-=-, 所以销售额Y 的数学期望35001050010104405EY EX =-=-⨯⨯=(元). 【点睛】本小题主要考查利用对立事件来计算古典概型概率问题,考查二项分布的识别和期望的计算,考查随机变量线性运算后的数学期望的计算.22.(1)填表见解析;有90%的把握认为“对线上教学是否满意与性别有关”;(2)35. 【分析】(1)结合男女学生抽样比和满意与否学生人数即可完善二联表,结合2K 公式计算即可判断;(2)先计算出男女生抽样数,再结合列举法或组合公式,由古典概型公式计算即可 【详解】(1)22⨯列联表如下:又22100(30104515) 3.03 2.70675254555K ⨯-⨯=≈>⨯⨯⨯,这说明有90%的把握认为“对线上教学是否满意与性别有关”.(2)方法一:由题可知,从被调查中对线上教学满意的学生中,利用分层抽样抽取5名学生,其中男生2名,设为A 、B ;女生3人设为,,a b c ,则从这5名学生中抽取2名学生的基本事件有:(,)A B ,(A,a),(A,b),(,)A c ,(,a)B ,(,b)B ,(,)B c ,(,)a b ,(,)a c ,(,)b c ,共10个基本事件,其中抽取一名男生与一名女生的事件有(A,a),(A,b),(,)A c ,(,a)B ,(,b)B ,(,)B c ,共6个基本事件,根据古典概型,从这5名学生中抽取一名男生与一名女生的概率为63105=. 方法二:由题可知,从被调查中对线上教学满意的学生中,利用分层抽样抽取5名学生, 其中男生2人,女生3人,根据古典概型,从这5名学生中抽取一名男生与一名女生的概率为11223563105C C C == 【点睛】本题考查二联表的填写,2K 的计算,分层抽样中具体事件概率值的求解,属于中档题 23.(1)2;(2)710;(3)应该选择方案二更优惠. 【分析】(1)由题意可求出金额在[)80,100“水果达人”的人数30人和消费金额在[]100,120“水果达人”的人数20人,然后利用分层抽样的比求出5人中消费金额不低于100元的人数为20523020⨯=+人;(2)由(1)可知抽取的5人中消费金额在[)80,100的有3人,分别记为A ,B ,C ,消费金额在[]100,120的有2人,记为a ,b ,即可列出所有的基本事件共有10种,其中满足条件的有7种,从而可求出概率;(3)由题意可得该游客要购买110元水果,分别计算两种方案所需支付金额,即可得解. 【详解】解:(1)由图可知,消费金额在[)80,100“水果达人”的人数为:200200.007530⨯⨯=人, 消费金额在[]100,120“水果达人”的人数为:200200.00520⨯⨯=人,分层抽样的方法从样本的“水果达人”中抽取5人,这5人中消费金额不低于100元的人数为:20523020⨯=+人;(2)由(1)得,消费金额在[)80,100的3个“水果达人”记为A ,B ,C , 消费金额在[]100,120的2个“水果达人”记为a ,b , 所有基本事件有:(),A B ,(),A C ,(),B C ,(),A a ,(),A b ,(),B a ,(),B b ,(),C a ,(),C b ,(),a b 共10N =种,2人中至少有1人购买金额不低于100元的有7n =种, 所求概率为710n N ==. (3)依题可知该游客要购买110元的水果, 若选择方案一,则需支付()80830102-+=元,若选择方案二,则需支付50300.9200.8100.7100+⨯+⨯+⨯=元, 所以应该选择方案二更优惠. 【点睛】此题考查了频率分布直方图,古典概型,函数等基础知识,考查了数据分析能力,运算求解能力,考查了化归与转化思想,属于中档题. 24.(1)30,10x y ==;2.3分钟;(2)1720. 【分析】(1)已知得25540,3060y x ++=+=,可求得,x y ,再运用1230325455100x y ⨯+⨯+⨯+⨯+⨯可估计顾客一次购物的结算时间的平均值;(2)利用古典概率公式可求得所求和概率. 【详解】(1)由已知得25540,3060y x ++=+=,解得30,10x y ==.该超市所以顾客一次购物的结算时间可视为一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为130230325410552.3100⨯+⨯+⨯+⨯+⨯=分钟.(2)记A 为事件“一位顾客一次购买的结算时间不超过3分钟”,12,A A 分别表示事件“该顾客一次购物的结算时间为4分钟”,“该顾客一次购物的结算时间为5分钟”,将频率视为概率得1210151(),()1001010020P A P A ====, 12()1()()P A P A P A =--11171102020=--=, 故一位顾客一次购物的结算时间不超过3分钟的概率为1720. 【点睛】。
(好题)高中数学必修三第三章《概率》检测卷(有答案解析)
一、选择题1.将曲线22x y x y +=+围成的区域记为Ⅰ,曲线1x y +=围成的区域记为Ⅱ,在区域Ⅰ中随机取一点,此点取自区域Ⅱ的概率为( ) A .12π+ B .11π+ C .22π+ D .21π+ 2.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与另一段GN GN 的比例中项,即满足512MG NG MN MG -==,后人把这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.在矩形ABCD 中,E ,F 是线段AB 的两个“黄金分割”点.在矩形ABCD 内任取一点M ,则该点落在DEF 内的概率为( )A .52- B .51- C .52- D .51- 3.从[]2,3-中任取一个实数a ,则a 的值使函数()sin f x x a x =+在R 上单调递增的概率为( ) A .45B .35C .25D .154.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A .316B .38C .14D .185.如图,在菱形ABCD 中,3AB =,60BAD ∠=,以4个顶点为圆心的扇形的半径为1,若在该菱形中任意选取一点,该点落在阴影部分的概率为0p ,则圆周率π的近似值为( )A .07.74pB .07.76pC .07.79pD .07.81p6.4名同学参加4项不同的课外活动,若每名同学可自由选择参加其中一项,则每项活动至少一名同学参加的概率为( ) A .49B .427C .364 D .332 7.从含有2件正品和1件次品的产品中任取2件,恰有1件次品的概率是( ) A .16B .13C .12D .238.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被函数2sin8y x π=的图象分割为两个对称的鱼形图案(如图),其中阴影部分小圆的周长均为4π,现从大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .118C .116D .189.现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这个10个数中随机抽取一个数,则它小于8的概率是( ) A .710B .35C .12D .2510.假设△ABC 为圆的内接正三角形,向该圆内投一点,则点落在△ABC 内的概率为( )A .4πB .2πC .4πD .411.某比赛为甲、乙两名运动员制订下列发球规则:规则一:投掷一枚硬币,出现正面向上,甲发球,否则乙发球;规则二:从装有2个红球与2个黑球的布袋中随机地取出2个球,如果同色,甲发球,否则乙发球;规则三:从装有3个红球与1个黑球的布袋中随机地取出2个球,如果同色,甲发球,否则乙发球. 其中对甲、乙公平的规则是( ) A .规则一和规则二B .规则一和规则三C .规则二和规则三D .规则二12.某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,则他等待的时间不多于15分钟的概率为( ) A .13B .14C .15D .16二、填空题13.甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5,受心理方面的影响,前一场比赛结果会对甲的下一场比赛产生影响,如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1,则甲以3:1取得胜利的概率为______________.14.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______15.某班共有4个小组,每个小组有2人报名参加志愿者活动.现从这8人中随机选出4人作为正式志愿者,则选出的4人中至少有2人来自同一小组的概率为________. 16.中国文化中有很多东西喜欢9或9的倍数.如:九连环、九阴白骨爪、降龙十八掌(1892=⨯)、三十六计(3694=⨯)、孙悟空七十二变(8972⨯=)、八十一难(9981⨯=)等.若一个三位数的各位数字之和为9,如207,126,则这样的三位数共有________.17.一个袋子里装有大小形状完全相同的5个小球,其编号分别为1,2,3,4,5,甲、乙两人进行取球,甲先从袋子中随机取出一个小球,若编号为1,则停止取球;若编号不为1,则将该球放回袋子中.由乙随机取出2个小球后甲再从袋子中剩下的3个小球随机取出一个,然后停止取球,则甲能取到1号球的概率为__________.18.从正方体六个面的对角线中任取两条作为一对,这对对角线所成的角为60︒的概率为________19.根据党中央关于“精准脱贫”的要求,石嘴山市农业经济部门派3位专家对大武口、惠农2个区进行调研,每个区至少派1位专家,则甲,乙两位专家派遣至惠农区的概率为_____.20.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.三、解答题21.高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展,据统计,在2018年这一年内从A市到B市乘坐高铁或飞机出行的成年人约为50万人次.为了解乘客出行的满意度,现从中随机抽取100人次作为样本.得到下表(单位:人次):(1)在样本中任取1个,求这个出行人恰好不是青年人的概率;(2)在2018年从A市到B市乘坐高铁的所有成年人中,随机选取2人次,记其中老年人出行的人次为X.以频率作为概率.求X的分布列和数学期望;(3)如果甲将要从A市出发到B市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机?并说明理由.22.党的十九大报告指出,要以创新理念提升农业发展新动力,引领经济发展走向更高形态.为进一步推进农村经济结构调整,某村举办水果观光采摘节,并推出配套乡村游项目现统计了4月份200名游客购买水果的情况,得到如图所示的频率分布直方图:(1)若将购买金额不低于80元的游客称为“水果达人”,现用分层抽样的方法从样本的“水果达人”中抽取5人,求这5人中消费金额不低于100元的人数;(2)从(1)中的5人中抽取2人作为幸运客户免费参加山村旅游项目,请列出所有的基本事件,并求2人中至少有1人购买金额不低于100元的概率;(3)为吸引顾客,该村特推出两种促销方案,方案一:每满80元可立减8元;方案二:金额超过50元但又不超过80元的部分打9折,金额超过80元但又不超过100元的部分打8折,金额超过100元的部分打7折.若水果的价格为11元/千克,某游客要购买10千克,应该选择哪种方案更优惠.23.一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.轿车A轿车B轿车C舒适型 100 150 z标准型300450600(1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2 把这8辆轿车的得分看作一个总体,从中任取一个得分数a , 记这8辆轿车的得分的平均数为x ,定义事件{|0.5E a a x =-≤,且函数2() 2.31f x ax ax =-+没有零点},求事件E 发生的概率.24.在一次跳绳活动中,某学校从高二年级抽取了100位同学一分钟内跳绳,由测量结果得到如图所示的频率分布直方图,落在区间[140,150),[150,160),[160,170]内的频率之比为4:2:1.(1)求跳绳次数落在区间[150,160)内的频率;(2)用分层抽样的方法在区间[130,160)内抽取6位同学,将该样本看成一个总体,从中任意抽取2位同学,求这2位同学跳绳次数都在区间[130,150)内的概率.25.某市工会组织了一次工人综合技能比赛,一共有1000名工人参加,他们的成绩都分布在[]52,100内,数据经过汇总整理得到如下的频率分布直方图,规定成绩在76分及76分以上的为优秀.(1)求图中t 的值;(2)估计这次比赛成绩的平均数(同一组中的数据以这组数据所在区间中点的值作代表);(3)某工厂车间有25名工人参加这次比赛,他们的成绩分布和整体的成绩分布情况完全一致,若从该车间参赛的且成绩为优秀的工人中任选两人,求这两人成绩均低于92分的概率.26.为了解中学生课余观看热门综艺节目“爸爸去哪儿”是否与性别有关,某中学一研究性学习小组从该校学生中随机抽取了n 人进行问卷调查.调查结果表明:女生中喜欢观看该节目的占女生总人数的34,男生喜欢看该节目的占男生总人数的13.随后,该小组采用分层抽样的方法从这n 份问卷中继续抽取了5份进行重点分析,知道其中喜欢看该节目的有3人.(1) 现从重点分析的5人中随机抽取了2人进行现场调查,求这两人都喜欢看该节目的概率;(2) 若有99%的把握认为“爱看该节目与性别有关”,则参与调查的总人数n 至少为多少? 参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】画出曲线22x y x y +=+与曲线1x y +=的图像,再根据几何概型的方法求解即可. 【详解】当0,0x y >>时,曲线22x y x y +=+、曲线1x y +=分别为2222111222x y x y x y ⎛⎫⎛⎫+=+⇒-+-= ⎪ ⎪⎝⎭⎝⎭,1x y +=.又22x y x y +=+、1x y +=均关于,x y 轴,原点对称.故两曲线围成的区域Ⅰ(正方形和四个半圆)、Ⅱ(正方形)如图:可知区域Ⅰ的面积为22 22Sππ⎛⎫+⋅=+⎪⎪⎝⎭正方形;区域Ⅱ的面积为()222=;∴由几何概率公式得:22pπ=+.故选:C.【点睛】本题主要考查了几何概型的运用,需要根据题意去绝对值画出一象限的图像,再根据对称性补全图像.同时也考查了几何概型中面积型的问题.属于中档题.2.C解析:C【分析】分别求出对应的面积,进而求得结论.【详解】解:设正方形ABCD的边长为1,则51AF BE-==,∴2152EF AF=-=,∴所求的概率为21522DEFABCDEF ADSPS AD⨯⨯-===正方形故选:C.【点睛】本题主要考查几何概型,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量” ()N A,再求出总的基本事件对应的“几何度量” N,最后根据()N APN求解,属于中档题.3.C解析:C先利用导数求出函数()sin f x x a x =+在R 上单调递增时a 的范围,然后再由几何概型的知识解决问题. 【详解】∵()'1cos f x a x =+,要使函数()sin f x x a x =+在R 上单调递增,则1cos 0a x +≥对任意实数x 都成立.∵1cos 1x -≤≤,∴①当0a >时,cos a a x a -≤≤,∴1a -≥-,∴01a <≤;②当0a =时适合;③当0a <时,cos a a x a ≤≤-,∴1a ≥-,∴10a -≤<,综上11a -≤≤,∴函数()sin f x x a x =+在R 上单调递增的概率为25P =.选C . 【点睛】 本题主要考查已知函数的单调性求参数的范围及几何概型问题,属中等难度题.4.A解析:A 【解析】设2AB =,则1BC CD DE EF ====.∴1124BCI S ∆==,112242BCI EFGHS S ∆==⨯=平行四边形 ∴所求的概率为113422216P +==⨯ 故选A. 5.C解析:C 【解析】因为菱形的内角和为360°,所以阴影部分的面积为半径为1的圆的面积,故由几何概型可知20p =,解得0004.5 1.7327.791p p p π=≈⨯=.选C . 6.D解析:D 【分析】先求出基本事件总数n ,再求出每项活动至少有一名同学参加,包含的基本事件个数,由此能求出每项活动至少有一名同学参加的概率.因为4名同学参加4项不同的课外活动,若每名同学可自由选择参加其中一项,所以基本事件总数n =44,每项活动至少有一名同学参加,因此4名同学分别参加一项活动,共有44A 种不同的情况.因此:每项活动至少一名同学参加的概率为:4443432A p ==. 【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,转化与划归的能力,属于中档题.7.D解析:D 【分析】设正品为12,a a ,次品为b ,列出所有的基本事件,根据古典概型求解即可. 【详解】设正品为12,a a ,次品为b ,任取两件所有的基本事件为12(,)a a ,1(,)a b ,2(,)a b 共3个基本事件, 其中恰有1件次品的基本事件为1(,)a b ,2(,)a b ,共2个, 所以23P =, 故选:D 【点睛】本题主要考查了古典概型,基本事件的概念,属于容易题.8.D解析:D 【分析】根据几何概型的概率公式,求出大圆的面积和小圆的面积,计算面积比即可. 【详解】由已知,可得大圆的直径为y =3sin 8πx 的周期,由T 2168ππ==,可知大圆半径为8, 则面积为S =64π,一个小圆的周长242l r r π==∴= 故小圆的面积S ′=π•22=4π, 在大圆内随机取一点,此点取自阴影部分的概率为: P 2'81648S S ππ===, 故选:D . 【点睛】本题考查了几何概型的概率计算问题,关键是明确测度比为面积比,是基础题.9.B解析:B 【分析】先由题意写出成等比数列的10个数,然后找出小于8的项的个数,代入古典概率的计算公式即可求解 【详解】解:由题意()13n n a -=-成等比数列的10个数为:1,3-,2(3)-,39(3)(3)-⋯-其中小于8的项有:1,3-,3(3)-,5(3)-,7(3)-,9(3)-共6个数 这10个数中随机抽取一个数, 则它小于8的概率是63105P ==. 故选:B . 【点睛】本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题10.A解析:A 【分析】设圆的半径为R,且由题意可得是与面积有关的几何概率构成试验的全部区域的面积及正三角形的面积代入几何概率的计算公式可求. 【详解】解:设圆的半径为R构成试验的全部区域的面积:2S R π=记“向圆O 内随机投一点,则该点落在正三角形内”为事件A , 则构成A22) 由几何概率的计算公式可得, ()224P A R π==故选:A . 【点睛】本题主要考查了与面积有关的几何概型概率的计算公式的简单运用,关键是明确满足条件的区域面积,属于基础试题.11.B解析:B 【分析】计算出三种规则下甲发球和乙发球的概率,当两人发球的概率均为12时,该规则对甲、乙公平,由此可得出正确选项.【详解】对于规则一,每人发球的机率都是12,是公平的;对于规则二,记2个红球分别为红1,红2,2个黑球分别为黑1、黑2,则随机取出2个球的所有可能的情况有(红1,红2),(红1,黑1),(红1,黑2),(红2,黑1),(红2,黑2),(黑1,黑2),共6种,其中同色的情况有2种,所以甲发球的可能性为13,不公平;对于规则三,记3个红球分别为红1、红2、红3,则随机取出2个球所有可能的情况有(红1,红2),(红1,红3),(红1,黑),(红2,红3),(红2,黑),(红3,黑),共6种,其中同色的情况有3种,所以两人发球的可能性均为12,是公平的.因此,对甲、乙公平的规则是规则一和规则三.故选B.【点睛】本题考查利用规则的公平性问题,同时也考查了利用古典概型的概率公式计算事件的概率,正确理解题意是解题的关键,考查计算能力,属于中等题.12.B解析:B【分析】由电台整点报时的时刻是任意的知这是一个几何概型,电台整点报时知事件总数包含的时间长度是60,而他等待的时间不多于15分钟的事件包含的时间长度是15,利用时间的长度比即可求出所求.【详解】解:由题意知这是一个几何概型,∵电台整点报时,∴事件总数包含的时间长度是60,∵满足他等待的时间不多于15分钟的事件包含的时间长度是15,由几何概型公式得到151604 P==,故选B.【点睛】本题主要考查了几何概型,本题先要判断该概率模型,对于几何概型,它的结果要通过长度、面积或体积之比来得到,属于中档题.二、填空题13.174【分析】设甲在第一二三四局比赛中获胜分别为事件则所求概率为:再根据概率计算公式计算即可【详解】设甲在第一二三四局比赛中获胜分别为事件由题意甲要以取胜的可能是所以=故答案为:0174【点睛】本题解析:174 【分析】设甲在第一、二、三、四局比赛中获胜分别为事件1A 、2A 、3A 、4A ,则所求概率为:123412341234()()()P P A A A A P A A A A P A A A A =++,再根据概率计算公式计算即可.【详解】设甲在第一、二、三、四局比赛中获胜分别为事件1A 、2A 、3A 、4A , 由题意,甲要以3:1取胜的可能是1234A A A A ,1234A A A A ,1234A A A A , 所以123412341234()()()P P A A A A P A A A A P A A A A =++=0.50.60.30.60.50.40.50.60.50.40.50.60.174⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=. 故答案为:0.174. 【点睛】本题考查独立事件和互斥事件的概率计算,考查逻辑思维能力和计算能力,属于常考题.14.【详解】解:从1234这四个数中一次随机取两个数有(12)(13)(14)(23)(24)(34)共6种情况;其中其中一个数是另一个的两倍的有两种即(12)(24);则其概率为;故答案为解析:13【详解】解:从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况; 其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4); 则其概率为2163=; 故答案为13. 简单考察古典概型的概率计算,容易题.15.【分析】先求出从这8人中随机选出4人的选法总数再求出选出的4人中至少有2人来自同一小组的不同选法总数再求概率【详解】从这8人中随机选出4人作为正式志愿者有种不同的选法选出的4人中至少有2人来自同一小 解析:2735【分析】先求出从这8人中随机选出4人的选法总数,再求出选出的4人中至少有2人来自同一小组的不同选法总数,再求概率. 【详解】从这8人中随机选出4人作为正式志愿者有4870C=种不同的选法.选出的4人中至少有2人来自同一小组分为下列情况:(1)恰好有2人来自同一小组,有1211432248C C C C=种(2)4个人来自2个不同的小组(每个小组2个人)有246C=所以选出的4人中至少有2人来自同一小组有48654+=种选法.则选出的4人中至少有2人来自同一小组的概率为54277035 P==故选项为:27 35.【点睛】本题考查组合问题,求古典概率的问题,属于中档题.16.【分析】根据三位数的各位数字之和为9列举出所有符合要求的三位数即可【详解】三位数的各位数字之和为9符合要求的三位数如下所示:1081171261351441531621711802072162252解析:45【分析】根据三位数的各位数字之和为9,列举出所有符合要求的三位数即可.【详解】三位数的各位数字之和为9,符合要求的三位数如下所示:108,117,126,135,144,153,162,171,180,207,216,225,234,243,252,261,270,306,315,324,333,342,351,360,405,414,423,432,441,450,504,513,522,531,540603,612,621,630702,711,720,801,810,900,由以上可知符合各位数字之和为9的三位数共有45个故答案为:45【点睛】本题考查了列举法在求数字排列中的应用,属于中档题.17.【分析】通过分析先计算甲在第一次取得编号为1的概率再计算甲在第二次取得编号为1的概率两者相加即为所求【详解】甲在第一次取得编号为1的概率为;甲在第二次取得编号为1的概率为于是所求概率为故答案为【点睛解析:9 25【分析】通过分析,先计算甲在第一次取得编号为1的概率,再计算甲在第二次取得编号为1的概率,两者相加即为所求.【详解】甲在第一次取得编号为1的概率为15;甲在第二次取得编号为1的概率为24254145325CC⨯⨯=,于是所求概率为149+52525=,故答案为925.【点睛】本题主要考查概率的相关计算,意在考查学生的分析能力,计算能力,难度中等. 18.【解析】【分析】正方体的面对角线共有12条能够数出每一条对角线和另外的8条构成8对直线所成角为60°得共有12×8对对角线所成角为60°并且容易看出有一半是重复的得正方体的所有对角线中所成角是60°解析:811【解析】【分析】正方体的面对角线共有12条,能够数出每一条对角线和另外的8条构成8对直线所成角为60°,得共有12×8对对角线所成角为60°,并且容易看出有一半是重复的,得正方体的所有对角线中,所成角是60°的有48对,根据古典概型概率公式求解即可.【详解】如图,在正方体ABCD﹣A1B1C1D1中,与上平面A1B1C1D1中一条对角线A1C1成60°的直线有:A1D,B1C,A1B,D1C,BC1,AD1,C1D,B1A共八对直线,总共12条对角线;∴共有12×8=96对面对角线所成角为60°,而有一半是重复的;∴从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有48对.而正方体的面对角线共有12条,所以概率为:212488C11=故答案为811【点睛】本题考查正方体面对角线的关系,考查了古典概型的概率问题,而对于本题知道96对直线中有一半是重复的是求解本题的关键.19.【解析】【分析】将所有的基本事件全部列举出来确定基本事件的总数并确定所求事件所包含的基本事件数然后利用古典概型的概率公式求出答案【详解】所有的基本事件有:(甲乙丙)(乙甲丙)(丙甲乙)(甲乙丙)(甲解析:16【解析】 【分析】将所有的基本事件全部列举出来,确定基本事件的总数,并确定所求事件所包含的基本事件数,然后利用古典概型的概率公式求出答案. 【详解】所有的基本事件有:(甲、乙丙)、(乙,甲丙)、(丙、甲乙)、(甲乙、丙)、(甲丙、乙)、(乙丙、甲)(其中前面的表示派往大武口区调研的专家),共6个, 因此,所求的事件的概率为16,故答案为16. 【点睛】本题考查古典概型概率的计算,解决这类问题的关键在于确定基本事件的数目,一般利用枚举法和数状图法来列举,遵循不重不漏的基本原则,考查计算能力,属于基础题.20.【解析】【分析】列举出所有的结果选出的所有的结果根据古典概型概率公式可求出函数是增函数的概率【详解】所有取值有:共12个值当时为增函数有共有6个所以函数是增函数的概率为故答案为【点睛】本题主要考查古解析:12【解析】 【分析】 列举出ab所有的结果,选出1a b >的所有的结果,根据古典概型概率公式可求出函数()log a bf x x =是增函数的概率.【详解】a b 所有取值有:135713571157,,,,,,,,,,,222244446266共12个值, 当1a b >时,()f x 为增函数,有357577,,,,,222446共有6个, 所以函数()log a bf x x =是增函数的概率为61122=,故答案为12. 【点睛】本题主要考查古典概型概率公式的应用以及对数函数的性质,属于中档题. 在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式mP n=求得概率. 三、解答题21.(1)2950(2)见解析(3)乘坐高铁,见解析 【分析】(1)根据分层抽样的特征可以得知,样本中出行的老年人、中年人、青年人人次分别为19,39,42,即可按照古典概型的概率计算公式计算得出;(2)依题意可知X 服从二项分布,先计算出随机选取1人次,此人为老年人概率是151755=,所以1~(2,)5X B ,即2211()()(1)55k kk P x k C -==-,即可求出X 的分布列和数学期望;(3)可以计算满意度均值来比较乘坐高铁还是飞机. 【详解】(1)设事件:“在样本中任取1个,这个出行人恰好不是青年人”为M , 由表可得:样本中出行的老年人、中年人、青年人人次分别为19,39,42, 所以在样本中任取1个,这个出行人恰好不是青年人的概率193929()10050P M +==; (2)由题意,X 的所有可能取值为:0,1,2,因为在2018年从A 市到B 市乘坐高铁的所有成年人中,随机选取1人次,此人 为老年人概率是151755=, 所以022116(0)(1)525P X C ==⨯-=, 12118(1)(1)5525P X C ==⨯⨯-=,22211(2)()525P X C ==⨯=,所以随机变量X 的分布列为:故()0122525255E X =⨯+⨯+⨯=; (3)从满意度的均值来分析问题如下:由表可知,乘坐高铁的人满意度均值为:521012511011652121115⨯+⨯+⨯=++,乘坐飞机的人满意度均值为:410145702241475⨯+⨯+⨯=++,因为11622155>, 所以建议甲乘坐高铁从A 市到B 市. 【点睛】本题主要考查分层抽样的应用、古典概型的概率计算、以及离散型随机变量的分布列和期望的计算,解题关键是对题意的理解,概率模型的判断,属于中档题. 22.(1)2;(2)710;(3)应该选择方案二更优惠. 【分析】(1)由题意可求出金额在[)80,100“水果达人”的人数30人和消费金额在[]100,120“水果达人”的人数20人,然后利用分层抽样的比求出5人中消费金额不低于100元的人数为20523020⨯=+人;(2)由(1)可知抽取的5人中消费金额在[)80,100的有3人,分别记为A ,B ,C ,消费金额在[]100,120的有2人,记为a ,b ,即可列出所有的基本事件共有10种,其中满足条件的有7种,从而可求出概率;(3)由题意可得该游客要购买110元水果,分别计算两种方案所需支付金额,即可得解. 【详解】解:(1)由图可知,消费金额在[)80,100“水果达人”的人数为:200200.007530⨯⨯=人, 消费金额在[]100,120“水果达人”的人数为:200200.00520⨯⨯=人,分层抽样的方法从样本的“水果达人”中抽取5人,这5人中消费金额不低于100元的人数为:20523020⨯=+人;(2)由(1)得,消费金额在[)80,100的3个“水果达人”记为A ,B ,C , 消费金额在[]100,120的2个“水果达人”记为a ,b , 所有基本事件有:(),A B ,(),A C ,(),B C ,(),A a ,(),A b ,(),B a ,(),B b ,(),C a ,(),C b ,(),a b 共10N =种,2人中至少有1人购买金额不低于100元的有7n =种, 所求概率为710n N ==.(3)依题可知该游客要购买110元的水果, 若选择方案一,则需支付()80830102-+=元,若选择方案二,则需支付50300.9200.8100.7100+⨯+⨯+⨯=元, 所以应该选择方案二更优惠. 【点睛】此题考查了频率分布直方图,古典概型,函数等基础知识,考查了数据分析能力,运算求解能力,考查了化归与转化思想,属于中档题. 23.(1)400;(2)710;(3)12【分析】(1)由分层抽样按比例可得z ;(2)把5个样本编号,用列举法列出任取2辆的所有基本事件,得出至少有1辆舒适型轿车的基本事件,计数后可得概率.(3)求出x ,确定事件E 所含x 的个数后可得概率. 【详解】 (1)由题意1050400400600600z=+++,解得400z =; (2)C 类产品中舒适型和标准型产品数量比为40026003=,因此5人样品中舒适型抽取了2辆,标准型抽取了3辆,编号为,,,,A B a b c ,任取2辆的基本事件有:,,,,,,,,,AB Aa Ab Ac Ba Ab Ac ab ac bc 共10个,其中至少有1辆舒适型轿车的基本事件有,,,,,,AB Aa Ab Ac Ba Ab Ac 共7个,所求概率为710P =. (3)由题意9.48.69.29.68.79.39.08.298x +++++++==,满足0.5a x -≤的有9.4,8.6,9.2,8.7,9.3,9.0共6个,函数2() 2.31f x ax ax =-+没有零点,则24 2.310a a ∆=-⨯<,解得09.24a <<,再去掉9.3,9.4,还有4个, ∴所求概率为4182P ==. 【点睛】本题考查分层抽样,考查古典概型,解题关键是用列举法写出所有的基本事件. 24.(1)0.10;(2)23【分析】(1)由图中小矩形的面积之和为1可得[140,170)的频率,再由频率之比即得;(2)先确定[140,150),[150,160),[160,170]三个区间的频率,再分层抽样,最后根据古典概型求出概率。
北师大版高二数学必修三第三章概率综合检测题(附答案)
北师大版高二数学必修三第三章概率综合检测题(附答案)数学是研讨理想世界空间方式和数量关系的一门迷信。
小编预备了高二数学必修三第三章概率综合检测题,详细请看以下内容。
一、选择题(本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只要一项为哪一项契合标题要求的)1.以下说法正确的选项是()A.假设一事情发作的概率为一百万分之一,说明此事情不能够发作B.假设一事情发作的概率为310,那么在10次实验中,该事情发作了3次C.假设某奖券的中奖率是10%,那么购置一张奖券中奖的能够性是10%D.假设一事情发作的概率为99.999 999 9%,说明此事情肯定发作【解析】某一事情发作的概率很小或很大,都还说明此事情是随机事情,概率描画描写了该事情发作能够性大小,所以A,D均不正确,B不正确,C正确,应选C.【答案】C2.从装有十个红球和十个白球的罐子里任取2个球,以下状况是互斥而不统一的两个事情是()A.至少有一个红球,至少有一个白球B.恰有一个红球,都是白球C.至少有一个红球,都是白球D.至少有一个红球,都是红球【解析】A中,至少有一个红球能够为一红一白,至少有一个白球,能够为一白一红,两事情能够同时发作,故不是互斥事情.B中恰有一个红球,那么另一个必是白球,与都是白球是互斥事情,而任选两球还有两球都是红球的状况,故不是统一事情.C为统一事情,D为统一事情.【答案】B3.(2021吉安检测)取一个正方形及其外接圆,随机向圆内抛一颗豆子,那么豆子落在正方形外的概率为()A.2 -2C.2 4【解析】设圆的半径为a,那么S圆=a2,S正方形=(2a)2=2a2,故豆子落在正方形外的概率为a2-2a2-2.【答案】B图14.如图1所示,在面积为S的△ABC的边AB上任取一点P,那么△PBC 的面积大于S4的概率是()A.14B.12C.34D.23【解析】作PEBC,ADBC,垂足区分为E,D.当△PBC的面积刚好等于S4时,PE=14AD,要想S△PBC14S,那么PB14AB,故概率为P=34ABAB=34.【答案】C5.设a是甲抛掷一枚骰子失掉的点数,那么方程x2+ax+2=0有两个不相等的实数根的概率为()A.23B.13C.12D.512【解析】假定方程有实根,那么a2-80.a的一切取值状况共6种,满足a2-80的有4种状况,故P=46=23.【答案】A6.在一个袋子中装有区分标注着数字1,2,3,4,5,6的六个小球,这些小球除标注的数字外,完全相反.现从中随机地一次取出两个小球,那么取出的小球标注的数字之和为5或6的概率是()A.215B.15C.415D.13【解析】用(x,y)表示取出两球上标注的数字,那么一切的基身手情是:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共有15个.数字之和为5或6包括的基身手情有:(1,4),(1,5),(2,3),(2,4),共有4个.那么所求概率为415.【答案】C7.(2021九江检测)在三棱锥的六条棱中恣意选择两条,那么这两条棱是一对异面直线的概率为()A.120B.115C.15D.16【解析】在三棱锥的六条棱中恣意选择两条直线共有15种状况,其中异面的状况有3种,那么两条棱异面的概率为P=315=15.8.甲、乙两人玩猜数字,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b{1,2,3,4,5,6},假定|a-b|1.就称甲乙心有灵犀,现恣意找两人玩这个游戏,那么他们心有灵犀的概率为()A.19B.29C.718D.49【解析】由于a,b{1,2,3,4,5,6},那么满足要求的事情能够的结果有:(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6),共16种.而依题意得基身手情的总数有36种.故P=1636=49.【答案】D9.从装有4粒相反的玻璃球的瓶中,随意倒出假定干粒玻璃球(至少1粒),记倒出奇数粒玻璃球的概率为P1,倒出偶数粒玻璃球的概率为P2,那么()A.P1P2C.P1=P2D.P1,P2大小不能确定【解析】我们将4粒玻璃球编号为1、2、3、4号,倒出1粒有4种状况,倒出2粒有6种状况,倒出3粒有4种状况,倒出4粒有1种状况,我们可以为基身手情总数为4+6+4+1=15,那么倒出奇数粒玻璃球的概率为815,倒出偶数粒玻璃球的概率为715.10.(2021安徽高考)假定某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的时机均等,那么甲或乙被录用的概率为()A.23B.25C.35D.910【解析】由题意,从五位大学毕业生中录用三人,一切不同的能够结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中甲与乙均未被录用的一切不同的能够结果只要(丙,丁,戊)这1种,故其统一事情甲或乙被录用的能够结果有9种,所求概率P=910.【答案】D二、填空题(本大题共5小题,每题5分,共25分,将答案填在题中的横线上)11.假定以延续掷两次骰子区分失掉的点数m,n作为点p的坐标,那么点p落在圆x2+y2=25外的概率是________.【解析】易知p(x,y)共有36种,其中p落在x2+y2=25外的有(1,5),(5,1),(1,6),(6,1),(2,5),(5,2),(2,6),(6,2),(3,5),(5,3),(3,6),(6,3),(4,4),(4,5),(4,6),(5,4),(6,4),(5,5),(5,6),(6,5),(6,6)共有21种,P=2136=712.【答案】71212.在正方形ABCD内任取一点P,那么使90的概率是________.【解析】如下图,以AB为直径作半圆,当点P落在AB上时,APB=90,所以使90的点落在图中的阴影局部.设正方形的边长为1,在正方形ABCD内任取一点P,那么使90为事情A,那么=1,A=1-12(12)2=1-8,P(A)=1-8.【答案】1-813.先后2次抛掷一枚骰子,所得点数区分为x,y,那么xy是整数的概率是________.【解析】先后两次抛掷一枚骰子,失掉的点数区分为x,y的状况一共有36种,其中xy是整数的状况有(1,1),(2,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,4),(5,1),(5,5),(6,1),(6,2),(6,3),(6,6)共14种.故xy是整数的概率为718.【答案】718图214.如图2,一只蚂蚁在不时角边长为1 cm的等腰直角三角形ABC(B为直角)的边长匍匐,那么蚂蚁距A点不超越1 cm的概率为________.【解析】该效果属于几何概型,蚂蚁沿△ABC的边匍匐的总长度为2+2,其中距A点不超越1 cm时的长度为1+1=2,依据几何概型概率计算公式得P=22+2=2-2.【答案】2-215.设集合A={1,2},B={1,2,3},区分从集合A和B中随机取一个数a 和b,确定平面上的一个点P(a,b),记点P(a,b)落在直线x+y=n上为事情Cn(25,nN),假定事情Cn的概率最大,那么n的一切能够值为________.【解析】点P的一切能够值为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),点P(a,b)落在直线x+y=n上(25,nN),且事情Cn的概率最大,当n=3时,P点能够是(1,2),(2,1).当n=4时,P点能够为(1,3),(2,2),即事情C3,C4的概率最大,故n=3或4.【答案】3或4高中是人生中的关键阶段,大家一定要好好掌握高中,编辑教员为大家整理的高二数学必修三第三章概率综合检测题,希望大家喜欢。
高中数学必修三第三章《概率》单元测试卷及答案
高中数学必修三第三章《概率》单元测试卷及答案高中数学必修三第三章《概率》单元测试卷及答案(2套)一、选择题1.下列说法正确的是()A。
甲、乙二人比赛,甲胜的概率为3/5,则比赛5场,甲胜3场B。
某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C。
随机试验的频率与概率相等D。
天气预报中,预报明天降水概率为90%,是指降水的可能性是90%2.某班有男生25人,其中1人为班长,女生15人,现从该班选出1人,作为该班的代表参加座谈会,下列说法中正确的是()A。
选出1人是班长的概率为1/40B。
选出1人是男生的概率是1/25C。
选出1人是女生的概率是1/15D。
在女生中选出1人是班长的概率是03.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是()A。
1/2B。
1/3C。
1/4D。
1/84.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、XXX四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A。
对立事件B。
不可能事件C。
互斥但不是对立事件D。
以上答案都不对5.在2010年广州亚运会火炬传递活动中,在编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为()A。
1/10B。
3/10C。
7/10D。
9/106.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的哪几个?()A。
①②B。
①③C。
②③D。
①②③7.矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在阴影部分内的黄豆数为204颗,以此实验数据为依据可以估计出阴影部分的面积约为()A。
16B。
16.32C。
16.34D。
15.9688.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a<20的概率是()A。
3/10B。
(好题)高中数学必修三第三章《概率》测试(有答案解析)
一、选择题1.如图,在菱形ABCD 中,3AB =,60BAD ∠=,以4个顶点为圆心的扇形的半径为1,若在该菱形中任意选取一点,该点落在阴影部分的概率为0p ,则圆周率π的近似值为( )A .07.74pB .07.76pC .07.79pD .07.81p2.2020年新型肺炎疫情期间,山东省某市派遣包含甲,乙两人的12名医护人员支援湖北省黄冈市,现将这12人平均分成两组,分别分配到黄冈市区定点医院和黄冈市英山县医院,则甲、乙不在同一组的概率为( ) A .511B .611C .12D .233.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为( )A .46801010100C C C ⋅ B .64208001010C C C ⋅ C .46208001010C C C ⋅ D .64801010100C C C ⋅ 4.已知边长为2的正方形ABCD ,在正方形ABCD 内随机取一点,则取到的点到正方形四个顶点A B C D ,,,的距离都大于1的概率为( ) A .16πB .4π C 322- D .14π-5.若函数()201)((1)x lnx e x f x e x e ⎧+<<=⎨≤<⎩在区间()0,e 上随机取一个实数x ,则()f x 的值小于常数2e 的概率是( ) A .1eB .11e-C .2eD .21e-6.从含有2件正品和1件次品的产品中任取2件,恰有1件次品的概率是( ) A .16B .13C .12D .237.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为 A .25B .35C .38D .588.在一个棱长为3cm 的正方体的表面涂上颜色,将其适当分割成棱长为1cm 的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是() A .49B .827C .29D .1279.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为x ,y ,则满足()()22lg 2lg 3lg x y x y +=+的概率为( )A .18B .14C .13D .1210.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A ()23323ππ-- B ()323π-C ()323π+ D ()3323π+11.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对()x y ,,再统计其中x ,y 能与1构成钝角三角形三边的数对()x y ,的个数m ,最后根据统计个数m 估计π的值.如果统计结果是34m =,那么可以估计π的值为( ) A .237B .4715C .1715D .531712.斐波那契螺旋线,也称“黄金螺旋线”,是根据斐波那契数列(1,1,2,3,5,8…)画出来的螺旋曲线,由中世纪意大利数学家列奥纳多•斐波那契最先提出.如图,矩形ABCD 是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90°的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD 内任取一点,该点取自阴影部分的概率为( )A .14B .8π C .34D .4π 二、填空题13.辛普森悖论(Simpson’sParadox)有人译为辛普森诡论,在统计学中亦有人称为“逆论”,甚至有人视之为“魔术”.辛普森悖论为英国统计学家E .H .辛普森(E.H.Simpson)于1951年提出的,辛普森悖论的内容大意是“在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论.”下面这个案例可以让我们感受到这个悖论:关于某高校法学院和商学院新学期已完成的招生情况,现有如下数据: 某高校申请人数性别 录取率 法学院200人男50%女 70% 商学院300人男60% 女90% ①法学院的录取率小于商学院的录取率;②这两个学院所有男生的录取率小于这两个学院所有女生的录取率; ③这两个学院所有男生的录取率不一定小于这两个学院所有女生的录取率; ④法学院的录取率不一定小于这两个学院所有学生的录取率. 其中,所有正确结论的序号是___________.14.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.15.在区间[]0,2上分别任取两个数m ,n ,若向量(),a m n =,()1,1b =,则满足1a b -≤的概率是______ .16.一个袋子里装有大小形状完全相同的5个小球,其编号分别为1,2,3,4,5,甲、乙两人进行取球,甲先从袋子中随机取出一个小球,若编号为1,则停止取球;若编号不为1,则将该球放回袋子中.由乙随机取出2个小球后甲再从袋子中剩下的3个小球随机取出一个,然后停止取球,则甲能取到1号球的概率为__________.17.在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分).若直角三角形中较小的锐角为a .现向大正方形区城内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为14,则cos α=_____________.18.农历戊戌年即将结束,为了迎接新年,小康、小梁、小谭、小刘、小林每人写了一张心愿卡,设计了一个与此心愿卡对应的漂流瓶.现每人随机的选择一个漂流瓶将心愿卡放入,则事件“至少有两张心愿卡放入对应的漂流瓶”的概率为___19.若从甲、乙、丙、丁4位同学中选出2名代表参加学校会议,则甲、乙两人至少有一人被选中的概率为____.20.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.三、解答题21.在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.甲镇有基层干部60人,乙镇有基层干部60人,丙镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从甲、乙、丙三镇共选20名基层干部,统计他们走访贫困户的数量,并将走访数量分成[)5,15,[)15,25,[)25,35,[)35,45,[]45,555组,绘制成如图所示的频率分布直方图.(1)求这20人中有多少人来自丙镇,并估计甲、乙、丙三镇的基层干部走访贫困户户数的中位数(精确到整数位);(2)如果把走访贫困户达到或超过35户视为工作出色,求选出的20名基层干部中工作出色的人数,并从中选2人做交流发言,求这2人中至少有一人走访的贫困户在[]45,55的概率.22.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆.轿车A 轿车B 轿车C 舒适型 100 150 z标准型300450600(1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2 把这8辆轿车的得分看作一个总体,从中任取一个得分数a , 记这8辆轿车的得分的平均数为x ,定义事件{|0.5E a a x =-≤,且函数2() 2.31f x ax ax =-+没有零点},求事件E 发生的概率.23.为了响应市政府迎接全国文明城市创建活动的号召,某学校组织学生举行了文明城市创建知识类竞赛,为了了解本次竞赛中学生的成绩情况,从中抽取50名学生的分数(满分为100分,得分取正整数,抽取学生的分数均在[]50,100之内)作为样本进行统计,按照[)[)[)[)[]50,6060,7070,8080,9090,100,,,,分成5组,并作出如下频率分布直方图,已知得分在[)80,90的学生有5人.()1求频率分布直方图中的的, x y 值,并估计学生分数的众数、平均数和中位数: ()2如果从[)[)[)60,7070,8080,90,,三个分数段的学生中,按分层抽样的方法抽取8人参与座谈会,然后再从[)[)70,8080,90,两组选取的人中随机抽取2人作进一步的测试,求这2人中恰有一人得分在[)80,90的概率.24.在这智能手机爆发的时代,大部分高中生都有手机,在手机面前,有些学生无法抵御手机尤其是手机游戏和短视频的诱惑,从而导致无法专心完成学习任务,成绩下滑;但是对于自制力强,能有效管理自己的学生,手机不仅不会对他们的学习造成负面影响,还能成为他们学习的有力助手,我校某研究型学习小组调查研究“中学生使用智能手机对学习的影响部分统计数据如下表:不使用手机 使用手机 合计 学习成绩优秀人数 28 12 40 学习成绩不优秀人数 14 26 40 合计423880参考数据:22()()()()()n ad bc K a c b d a b c d -=++++,其中n a b c d =+++.()20P K k ≥ 0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?(2)研究小组将该样本中不使用手机且成绩优秀的同学记为A 组,使用手机且成绩优秀的同学记为B 组,计划从A 组推选的4人和B 组推选的2人中,随机挑选两人来分享学习经验,求挑选的两人中一人来自A 组、另一人来自B 组的概率.25.为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.节排器等级及利润如表格表示,其中11107a << 综合得分k 的范围节排器等级 节排器利润率85k ≥一级品a(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率; (2)视频率分布直方图中的频率为概率,用样本估计总体,则①若从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望()E ξ; ②从长期来看,骰子哪种型号的节排器平均利润较大?26.在一个盒子中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,从中任取3支.求(1)恰有1支一等品的概率; (2)恰有两支一等品的概率; (3)没有三等品的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】因为菱形的内角和为360°,所以阴影部分的面积为半径为1的圆的面积, 故由几何概型可知20p =, 解得0004.5 1.7327.7912p p p π=≈⨯=.选C . 2.B解析:B 【分析】设“甲、乙不在同一组”为事件M ,12名医护人员平均分配到两所医院的基本事件总数为n 612C ==924,甲、乙在同一组包含的基本事件个数m 4102C ==420,由此能求出甲、乙不在同一组的概率. 【详解】解:设“甲、乙不在同一组”为事件M ,12名医护人员平均分配到两所医院的基本事件总数为n 612C ==924, 甲、乙在同一组包含的基本事件个数m 4102C ==420,∴甲、乙不在同一组的概率P =14206192411m n -=-=. 故选:B 【点睛】本题考查古典概型的应用问题,重点考查分组分配题型,属于基础题型,本题的关键善于用所求事件的对立事件求概率.3.C解析:C 【分析】根据古典概型的概率公式求解即可. 【详解】从袋中任取10个球,共有10100C 种,其中恰好有6个白球的有468020C C ⋅种即其中恰好有6个白球的概率为46208001010C C C ⋅ 故选:C 【点睛】本题主要考查了计算古典概型的概率,属于中档题.4.D解析:D 【分析】根据题意,作出满足题意的图像,利用面积测度的几何概型,即得解. 【详解】分别以A ,B ,C ,D 四点为圆心,1为半径作圆,由题意满足条件的点在图中的阴影部分224ABCD S =⨯=,214144ABCD S S ππ=-⨯⨯=-阴影由几何测度的古典概型,14ABCD S P S π==-阴影 故选:D 【点睛】本题考查了面积测度的几何概型,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.5.C解析:C 【分析】首先求出分段函数在各区间段的值域,然后利用几何概型求其概率. 【详解】 由题意得,当01x <<时,2()ln f x x e =+,则恒有2()f x e <,满足题意; 当1x e ≤<时,()xf x e =,若满足2()xf x e e =<,可得12x ≤<; 所以()f x 的值小于常数2e 的概率是2e. 故选:C. 【点睛】本题主要考查长度比值类型的几何概型,同时考查了分段函数值域的求解,属于基础题.6.D解析:D 【分析】设正品为12,a a ,次品为b ,列出所有的基本事件,根据古典概型求解即可. 【详解】设正品为12,a a ,次品为b ,任取两件所有的基本事件为12(,)a a ,1(,)a b ,2(,)a b 共3个基本事件, 其中恰有1件次品的基本事件为1(,)a b ,2(,)a b ,共2个, 所以23P =, 故选:D 【点睛】本题主要考查了古典概型,基本事件的概念,属于容易题.7.D解析:D 【分析】直接列举出所有的抽取情况,再列举出符合题意的事件数,即可计算出概率。
高中数学必修三第三章《概率》单元测试卷及答案
高中数学必修三第三章《概率》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是()A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%2.某班有男生25人,其中1人为班长,女生15人,现从该班选出1人,作为该班的代表参加座谈会,下列说法中正确的是()①选出1人是班长的概率为140;②选出1人是男生的概率是125;③选出1人是女生的概率是115;④在女生中选出1人是班长的概率是0.A.①②B.①③C.③④D.①④3.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是()A.12B.13C.14D.184.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.不可能事件C.互斥但不是对立事件D.以上答案都不对5.在2010年广州亚运会火炬传递活动中,在编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为()A.110B.310C.710D.9106.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的哪几个?( ) A .①②B .①③C .②③D .①②③7.矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在阴影部分内的黄豆数为204颗,以此实验数据为依据可以估计出阴影部分的面积约为( ) A .16B .16.32C .16.34D .15.968.在区间(15,25]内的所有实数中随机取一个实数a ,则这个实数满足17<a <20的概率是( ) A .13B .12C .310D .7109.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( ) A .0.45B .0.67C .0.64D .0.3210.一只猴子任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为( ) A .9100B .350C .3100D .2911.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m >n 的概率为( ) A .710B .310 C .35D .2512.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A .4πB .12π C .14π-D .112π-二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.从一箱苹果中任取一个,如果其重量小于200克的概率为0.2,重量在[]200,300内的概率为0.5,那么重量超过300克的概率为________.14.在抛掷一颗骰子的试验中,事件A 表示“不大于4的偶数点出现”,事件B 表示“小于5的点数出现”,则事件A B +发生的概率为________.(B 表示B 的对立事件)15.先后两次抛掷同一枚骰子,将得到的点数分别记为a ,b .将a ,b ,5分别作为三条线段的长,则这三条线段能构成等腰三角形的概率是________.16.设b和c分别是先后抛掷一颗骰子得到的点数,则方程x2-bx+c=0有实根的概率为________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)经统计,在某储蓄所一个营业窗口排队等候的人数及相应概率如下:(1(2)至少3人排队等候的概率是多少?18.(12分)为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C 三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂.(1)求从A,B,C区中分别抽取的工厂个数;(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率.19.(12分)在区间(0,1)上随机取两个数m,n,求关于x的一元二次方程20+=有x m实根的概率.20.(12分)某市地铁全线共有四个车站,甲、乙两人同时在地铁第一号车站(首发站)乘车.假设每人自第2号车站开始,在每个车站下车是等可能的.约定用有序实数对(x,y)表示“甲在x号车站下车,乙在y号车站下车”.(1)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;(2)求甲、乙两人同在第3号车站下车的概率;(3)求甲、乙两人在不同的车站下车的概率.21.(12分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完全相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一天能赚多少钱?22.(12分)汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):10辆.(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】D【解析】A选项,此概率只说明发生的可能性大小,具有随机性,并非一定是5场胜3场;B选项,此治愈率只说明发生的可能性大小,具有随机性,并非10人一定有人治愈;C选项,试验的频率可以估计概率,并不等于概率;D选项,概率为90%,即可能性为90%.故选D.2.【答案】D【解析】本班共有40人,1人为班长,故①对;而“选出1人是男生”的概率为255408=;“选出1人为女生”的概率为153408=,因班长是男生,∴“在女生中选班长”为不可能事件,概率为0.故选D.3.【答案】C【解析】抛掷两枚质地均匀的硬币,可能出现“正、正”、“反、反”、“正、反”、“反、正”,因此两个正面朝上的概率14P =.故选C . 4.【答案】C【解析】由互斥事件的定义可知:甲、乙不能同时得到红牌,由对立事件的定义可知:甲、乙可能都得不到红牌,即“甲、乙分得红牌”的事件可能不发生.故选C . 5.【答案】B【解析】从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),∴选出的火炬手的编号相连的概率为310P =.故选B . 6.【答案】A【解析】从口袋内一次取出2个球,这个试验的基本事件空间Ω={(白,白),(红,红),(黑,黑),(红,白),(红,黑),(黑,白)},包含6个基本事件,当事件A “两球都为白球”发生时,①②不可能发生,且A 不发生时,①不一定发生,②不一定发生,故非对立事件,而A 发生时,③可以发生,故不是互斥事件.A 选项正确. 7.【答案】B 【解析】由题意204300S S =阴矩,∴204=24=16.32300S ⨯阴.故选B . 8.【答案】C【解析】∵(]15,25a ∈,∴()201731720251510P a -<<==-.故选C .9.【答案】D【解析】摸出红球的概率为45.45100=0,因为摸出红球,白球和黑球是互斥事件,因此摸出黑球的概率为10.450.230.32--=.故选D . 10.【答案】A【解析】任意敲击0到9这十个数字键两次,其得到的所有结果为(0,i )(i =0,1,2,…,9);(1,i )(i =0,1,2,…,9);(2,i )(i =0,1,2,…,9);…;(9,i )(i =0,1,2,…,9).故共有100种结果.两个数字都是3的倍数的结果有(3,3),(3,6),(3,9),(6,3),(6,6),(6,9),(9,3),(9,6),(9,9).共有9种. 故所求概率为9100.故选A . 11.【答案】A 【解析】建立平面直角坐标系(如图所示),则由图可知满足m >n 的点应在梯形OABD 内, 所以所求事件的概率为7=10OABD OABCS P S =梯形矩形.故选A . 12.【答案】C 【解析】4144P --ππ===-正方形面积圆锥底面积正方形面积.故选C .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0.3【解析】所求的概率10.20.50.3P =--=. 14.【答案】23【解析】事件A 包含的基本事件为“出现2点”或“出现4点”;B 表示“大于等于5的点数出现”,包含的基本事件为“出现5点”或“出现6点”.显然A 与B 是互斥的,故()()()112333P A B P A P B +==+=.15.【答案】718【解析】基本事件的总数为6×6=36.∵三角形的一边长为5,∴当a =1时,b =5符合题意,有1种情况; 当a =2时,b =5符合题意,有1种情况; 当a =3时,b =3或5符合题意,即有2种情况; 当a =4时,b =4或5符合题意,有2种情况; 当a =5时,b ∈{1,2,3,4,5,6}符合题意, 即有6种情况;当a =6时,b =5或6符合题意,即有2种情况. 故满足条件的不同情况共有14种, 所求概率为1473618=.36【解析】基本事件总数为36个,若使方程有实根,则Δ=b 2-4c ≥0,即b 2≥4c .当c =1时,b =2,3,4,5,6;当c =2时,b =3,4,5,6; 当c =3时,b =4,5,6;当c =4时,b =4,5,6; 当c =5时,b =5,6;当c =6时,b =5,6.符合条件的事件个数为5+4+3+3+2+2=19,因此方程x 2-bx +c =0有实根的概率为1936.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)0.56;(2)0.44.【解析】记“有0人等候”为事件A ,“有1人等候”为事件B ,“有2人等候”为事件C ,“有3人等候”为事件D ,“有4人等候”为事件E ,“有5人及5人以上等候”为事件F ,则易知A 、B 、C 、D 、E 、F 互斥.(1)记“至多2人排队等候”为事件G ,则G =A ∪B ∪C , 所以()()()()()=0.10.160.30.56P G P ABC P A P B P C =++=++=.(2)记“至少3人排队等候”为事件H ,则H =D ∪E ∪F ,所以P (H )=P (D ∪E ∪F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44. 也可以这样解,G 与H 互为对立事件, 所以()()110.560.44P H P G --===.18.【答案】(1)A ,B ,C 分别抽取2人,3人,2人;(2)1121. 【解析】(1)工厂总数为18+27+18=63,样本容量与总体中的个体数比为71639=,所以从A ,B ,C 三个区中应分别抽取的工厂个数为2人,3人,2人.(2)设A 1,A 2为在A 区中抽得的2个工厂,B 1,B 2,B 3为在B 区中抽得的3个工厂,C 1,C 2为在C 区中抽得的2个工厂,在这7个工厂中随机抽取2个,全部可能的结果有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(C 1,C 2),共有21种.随机地抽取的2个工厂至少有1个来自A 区的结果(记为事件X )有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2)共有11种,所以这2个工厂中至少有1个来自A 区的概率为()1121P X =.8【解析】在平面直角坐标系中,以x 轴和y 轴分别表示m ,n 的值,因为m ,n 在(0,1)内与图中正方形内的点一一对应,即正方形内的所有点构成全部试验结果的区域.设事件A 表示方程20x nx m +=有实根,则事件()40,0101n m A m n m n ⎧⎫-≥⎧⎪⎪⎪=<<⎨⎨⎬⎪⎪⎪<<⎩⎩⎭,所对应的区域为图中的阴影部分,且阴影部分的面积为18,故()18S P A S ==阴影正方形,即关于x的一元二次方程20x nx m +=有实根的概率为18.20.【答案】(1)见解析;(2)19;(3)23.【解析】(1)甲、乙两人下车的所有可能的结果为:(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4). (2)设甲、乙两人同在第3号车站下车的事件为A ,则()19P A =.(3)设甲、乙两人在不同的车站下车的事件为B ,则()121393P B =-⨯=.21.【答案】(1)0.05;(2)40元.【解析】(1)把3只黄色乒乓球标记为A 、B 、C ,3只白色的乒乓球标记为1、2、3. 从6个球中随机摸出3个的基本事件为:ABC 、AB 1、AB 2、AB 3、AC 1、AC 2、AC 3、A 12、A 13、A 23、BC 1、BC 2、BC 3、B 12、B 13、B 23、C 12、C 13、C 23、123, 共20个.事件E ={摸出的3个球为白球},事件E 包含的基本事件有1个,即摸出123, ()10.0520P E ==. (2)事件F ={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P (F )=2/20=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件F 发生有10次,不发生90次.则一天可赚90×1-10×5=40,每天可赚40元. 22.【答案】(1)400;(2)710;(3)34. 【解析】(1)设该厂这个月共生产轿车n 辆, 由题意得5010100300n =+,所以n =2000. 则z =2 000-(100+300)-(150+450)-600=400. (2)设所抽样本中有a 辆舒适型轿车, 由题意得40010005a=,即a =2. 因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A 1,A 2表示2辆舒适型轿车,用B 1,B 2,B 3表示3辆标准型轿车,用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”, 则基本事件空间包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3)共10个.事件E 包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3)共7个.故()710P E =,即所求概率为710. (3)样本平均数()19.48.69.29.68.79.39.08.298x =⨯+++++++=.设D 表示事件“从样本中任取一数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D 包括的基本事件有: 9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以()6384P D ==,即所求概率为34. 单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军; ②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯; ③从标有1,2,3,4的4张号签中任取一张,恰为1号签; ④在标准大气压下,水在4°C 时结冰. A .1B .2C .3D .4。
新北师大版高中数学必修三第三章《概率》测试题(有答案解析)(1)
一、选择题1.将曲线22x y x y +=+围成的区域记为Ⅰ,曲线1x y +=围成的区域记为Ⅱ,在区域Ⅰ中随机取一点,此点取自区域Ⅱ的概率为( ) A .12π+ B .11π+ C .22π+ D .21π+ 2.如图,在菱形ABCD 中,3AB =,60BAD ∠=,以4个顶点为圆心的扇形的半径为1,若在该菱形中任意选取一点,该点落在阴影部分的概率为0p ,则圆周率π的近似值为( )A .07.74pB .07.76pC .07.79pD .07.81p3.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个区间[]0,1上的均匀随机数()*,110i y i N i ∈≤≤,其数据如下表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22 y 0.84 0.25 0.98 0.15 0.01 0.60 0.59 0.88 0.84 0.10 lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值是 A .()215e + B .()215e - C .()315e + D .()315e - 4.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .345.如图,长方形的四个顶点为(0,0)O ,(4,0)A ,(4,2)B ,(0,2)C ,曲线y x =B .现将一质点随机投入长方形OABC 中,则质点落在图中阴影区域外的概率是( )A .13B .12C .23D .346.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为( )A .12B .34C .27D .387.甲乙两艘轮船都要在某个泊位停靠,甲停靠的时间为4小时,乙停靠的时间为6小时,假定他们在一昼夜的时间段中随机到达,则这两艘船停靠泊位时都不需要等待的概率为( ) A .916B .58C .181288D .5128.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若5AD =,3BD =,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为( )A.964B.449C.225D.279.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为A.25B.35C.38D.5810.在一个棱长为3cm的正方体的表面涂上颜色,将其适当分割成棱长为1cm的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是()A.49B.827C.29D.12711.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为x,y,则满足()()22lg2lg3lgx y x y+=+的概率为()A.18B.14C.13D.1212.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为()A.12B.1C.56D.1112二、填空题13.现有五个分别标有A、B、C、D、E的小球,随机取出三个小球放进三个盒子,每个盒子只能放一个小球,则D、E至少有一个在盒子中的概率为______.14.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为_________15.某班共有4个小组,每个小组有2人报名参加志愿者活动.现从这8人中随机选出4人作为正式志愿者,则选出的4人中至少有2人来自同一小组的概率为________.16.在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分).若直角三角形中较小的锐角为a.现向大正方形区城内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为14,则cosα=_____________.17.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.18.某同学同时掷两颗骰子,得到点数分别为a ,b ,则双曲线2222x y 1a b-=的离心率e 5>的概率是______.19.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.20.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为______.三、解答题21.改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图为体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).(Ⅰ)从2007年至2016年随机选择1年,求该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上的概率;(Ⅱ)从2007年至2016年随机选择3年,设X 是选出的三年中体育产业年增长率超过20%的年数,求X 的分布列与数学期望;(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)22.某大学综合评价面试测试中,共设置两类考题:A 类题有4个不同的小题,B 类题有3个不同的小题.某考生从中任抽取3个不同的小题解答. (1)求该考生至少抽取到2个A 类题的概率;(2)设所抽取的3个小题中B 类题的个数为X ,求随机变量X 的分布列与均值.23.为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.节排器等级及利润如表格表示,其中11107a << 综合得分k 的范围 节排器等级 节排器利润率85k ≥ 一级品 a7585k ≤< 二级品 25a7075k ≤<三级品2a(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率; (2)视频率分布直方图中的频率为概率,用样本估计总体,则①若从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望()E ξ; ②从长期来看,骰子哪种型号的节排器平均利润较大?24.班级新年晚会设置抽奖环节.不透明纸箱中有大小相同的红球3个,黄球2个,且这5个球外别标有数字1、2、3、4、5.有如下两种方案可供选择: 方案一:一次性...抽取两球,若颜色相同,则获得奖品; 方案二:依次有放回...地抽取两球,若数字之和大于5,则获得奖品. (1)写出按方案一抽奖的试验的所有基本事件; (2)哪种方案获得奖品的可能性更大?25.近年来,石家庄经济快速发展,跻身新三线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,石家庄的交通优势在同级别的城市内无能出其右.为了调查石家庄市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中4a b =.(1)求a ,b 的值;(2)求被调查的市民的满意程度的平均数,中位数(保留小数点后两位),众数; (3)若按照分层抽样从[)50,60,[)60,70中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在[)50,60的概率.26.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下: 交付金额(元) 支付方式 (]0,1000(]1000,2000大于2000 仅使用A 18人 9人 3人 仅使用B10人14人1人(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】画出曲线22x y x y +=+与曲线1x y +=的图像,再根据几何概型的方法求解即可. 【详解】当0,0x y >>时,曲线22x y x y +=+、曲线1x y +=分别为2222111222x y x y x y ⎛⎫⎛⎫+=+⇒-+-= ⎪ ⎪⎝⎭⎝⎭,1x y +=.又22x y x y +=+、1x y +=均关于,x y 轴,原点对称.故两曲线围成的区域Ⅰ(正方形和四个半圆)、Ⅱ(正方形)如图:可知区域Ⅰ的面积为22222S ππ⎛⎫+⋅=+ ⎪ ⎪⎝⎭正方形;区域Ⅱ的面积为()222=;∴由几何概率公式得:22p π=+.故选:C. 【点睛】本题主要考查了几何概型的运用,需要根据题意去绝对值画出一象限的图像,再根据对称性补全图像.同时也考查了几何概型中面积型的问题.属于中档题.2.C解析:C 【解析】因为菱形的内角和为360°,所以阴影部分的面积为半径为1的圆的面积, 故由几何概型可知202332p =⨯⨯, 解得000934.5 1.7327.791p p p π=≈⨯=.选C . 3.D解析:D 【详解】 由题意可得ACB ABCD=10S nS ∆曲线矩形,n 为阴影部分的点的个数,即满足y<lnx,共6个点,即ACB ABCD6=101S S S e ∆=-曲线矩形,所以S=()315e -,选D.4.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.5.A解析:A 【分析】计算长方形面积,利用定积分计算阴影部分面积,由面积测度的几何概型计算概率即可. 【详解】由已知易得:34200216=42=8=[]|33S S xdx x ⨯==⎰阴影长方形,,由面积测度的几何概型:质点落在图中阴影区域外的概率11=3S P S =-阴影长方形 故选:A 【点睛】本题考查了面积测度的几何概型,考查了学生转化划归,数学运算的能力,属于基础题.6.C解析:C【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案. 【详解】如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等, 设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=. 则向多边形ABCDEFGH 内投一点, 则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.7.C解析:C 【分析】设甲、乙到达的时间分别为,x y ,列出所有基本事件的约束条件,同时列出两艘船停靠泊位时都不需要等待的约束条件,利用线性规划做出平面区域,利用几何概型概率关系转化为面积比. 【详解】设甲、乙到达的时间分别为,x y ,则所有基本事件的构成的区域024{|}024x x y ≤≤⎧Ω=⎨≤≤⎩, 则这两艘船停靠泊位时都不需要等待包含的基本事件构成的区域024024{(,)|}46x y A x y y x x y ≤≤⎧⎪≤≤⎪=⎨≥+⎪⎪≥+⎩,做出Ω构成的区域,其面积为224=576,阴影部分为集合A 构成的区域,面积为221(2018)3622+=,这两艘船停靠泊位时都不需要等待的概率362181()576288P A ==. 故选:C.【点睛】本题考查利用线性规划做出事件对应的平面区域,再利用几何概型概率公式求出事件的概率,属于中档题.8.B解析:B 【分析】求得120ADB ∠=︒,在ABD 中,运用余弦定理,求得AB ,以及DE ,根据三角形的面积与边长之间的关系即可求解. 【详解】 解:18060120ADB ∠=︒-︒=︒,在ABD 中,可得2222cos AB AD BD AD BD ADB =+-⋅∠, 即为222153253492AB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,解得7AB =, 2DE AD BD =-=,224()749DEF ABCSS∴==. 故选:B . 【点睛】本题考查三角形的余弦定理,同时也考查了利用几何概型的概率公式计算概率,考查方程思想和运算能力,属于基础题.9.D解析:D 【分析】直接列举出所有的抽取情况,再列举出符合题意的事件数,即可计算出概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修三第三章《概率》测试卷及答案2套测试卷一(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.下列事件中不是随机事件的是( )A.某人购买福利彩票中奖B.从10个杯子(8个正品,2个次品)中任取2个,2个均为次品C.在标准大气压下,水加热到100℃沸腾D.某人投篮10次,投中8次2.某班有男生25人,其中1人为班长,女生15人,现从该班选出1人,作为该班的代表参加座谈会,下列说法中正确的是( )①选出1人是班长的概率为1 40;②选出1人是男生的概率是1 25;③选出1人是女生的概率是1 15;④在女生中选出1人是班长的概率是0.A.①② B.①③C.③④ D.①④3.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是( )A.12B.13C.14D.184.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( )A.对立事件 B.不可能事件C.互斥但不是对立事件 D.以上答案都不对5.在2010年广州亚运会火炬传递活动中,在编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为( )A.110B.310C.710D.9106.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的哪几个?( )A.①② B.①③C.②③ D.①②③7.矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在阴影部分内的黄豆数为204颗,以此实验数据为依据可以估计出阴影部分的面积约为( )A.16 B.16.32C.16.34 D.15.968.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a<20的概率是( )A.13B .12C.310D.7109.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( )A.0.45 B.0.67C.0.64 D.0.3210.一只猴子任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为( )A.9100B.350C.3100D.2911.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m和n,则m>n的概率为( )A.710B.310C.35D.2512.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A.πB.πC.1-πD.1-π题号123456789101112 答案13.从一箱苹果中任取一个,如果其重量小于200克的概率为0.2,重量在[200,300]内的概率为0.5,那么重量超过300克的概率为________.14.在抛掷一颗骰子的试验中,事件A表示“不大于4的偶数点出现”,事件B表示“小于5的点数出现”,则事件A+B发生的概率为________.(B表示B的对立事件) 15.先后两次抛掷同一枚骰子,将得到的点数分别记为a,b.将a,b,5分别作为三条线段的长,则这三条线段能构成等腰三角形的概率是________.16.设b和c分别是先后抛掷一颗骰子得到的点数,则方程x2-bx+c=0有实根的概率为________.三、解答题(本大题共6小题,共70分)排队人数012345人及5人以上概率0.10.160.30.30.10.04(2)至少3人排队等候的概率是多少?18.(12分)为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂.(1)求从A,B,C区中分别抽取的工厂个数;(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率.19.(12分)在区间(0,1)上随机取两个数m,n,求关于x的一元二次方程x2-nx+m=0有实根的概率.20.(12分)某市地铁全线共有四个车站,甲、乙两人同时在地铁第一号车站(首发站)乘车.假设每人自第2号车站开始,在每个车站下车是等可能的.约定用有序实数对(x,y)表示“甲在x号车站下车,乙在y号车站下车”.(1)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;(2)求甲、乙两人同在第3号车站下车的概率;(3)求甲、乙两人在不同的车站下车的概率.21.(12分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完全相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一天能赚多少钱?22.(12分)汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(A类轿车10辆.(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.答案1.C2.D3.C4.C5.B6.A7.B8.C9.D10.A11.A12.C13.0.314.2315.71816.193617.解 记“有0人等候”为事件A ,“有1人等候”为事件B ,“有2人等候”为事件C ,“有3人等候”为事件D ,“有4人等候”为事件E ,“有5人及5人以上等候”为事件F ,则易知A 、B 、C 、D 、E 、F 互斥.(1)记“至多2人排队等候”为事件G ,则G =A ∪B ∪C ,所以P (G )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56.(2)记“至少3人排队等候”为事件H ,则H =D ∪E ∪F ,所以P (H )=P (D ∪E ∪F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44.也可以这样解,G 与H 互为对立事件,所以P (H )=1-P (G )=1-0.56=0.44.18.解 (1)工厂总数为18+27+18=63,样本容量与总体中的个体数比为763=19,所以从A ,B ,C 三个区中应分别抽取的工厂个数为2,3,2.(2)设A 1,A 2为在A 区中抽得的2个工厂,B 1,B 2,B 3为在B 区中抽得的3个工厂,C 1,C 2为在C 区中抽得的2个工厂,在这7个工厂中随机抽取2个,全部可能的结果有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2),(B 1,B 2),(B 1,B 3)(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(C 1,C 2),共有21种.随机地抽取的2个工厂至少有1个来自A 区的结果(记为事件X )有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2)共有11种,所以这2个工厂中至少有1个来自A 区的概率为P (X )=1121. 19.解 在平面直角坐标系中,以x 轴和y 轴分别表示m ,n 的值,因为m ,n 在(0,1)内与图中正方形内的点一一对应,即正方形内的所有点构成全部试验结果的区域.设事件A 表示方程x 2-nx +m =0有实根,则事件A ={(m ,n )|⎩⎪⎨⎪⎧ n -4m ≥00<m <10<n <1},所对应的区域为图中的阴影部分,且阴影部分的面积为18,故P (A )=S 阴影S 正方形=18,即关于x 的一元二次方程x 2-nx +m =0有实根的概率为18. 20.解 (1)甲、乙两人下车的所有可能的结果为:(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4).(2)设甲、乙两人同在第3号车站下车的事件为A ,则P (A )=19. (3)设甲、乙两人在不同的车站下车的事件为B ,则P (B )=1-3×19=23. 21.解 把3只黄色乒乓球标记为A 、B 、C,3只白色的乒乓球标记为1、2、3.从6个球中随机摸出3个的基本事件为:ABC 、AB 1、AB 2、AB 3、AC 1、AC 2、AC 3、A 12、A 13、A 23、BC 1、BC 2、BC 3、B 12、B 13、B 23、C 12、C 13、C 23、123,共20个.(1)事件E ={摸出的3个球为白球},事件E 包含的基本事件有1个,即摸出123, P (E )=1/20=0.05.(2)事件F ={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P (F )=2/20=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件F 发生有10次,不发生90次.则一天可赚90×1-10×5=40,每天可赚40元.22.解 (1)设该厂这个月共生产轿车n 辆,由题意得50n =10100+300,所以n =2 000. 则z =2 000-(100+300)-(150+450)-600=400.(2)设所抽样本中有a 辆舒适型轿车,由题意得4001 000=a 5,即a =2. 因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A 1,A 2表示2辆舒适型轿车,用B 1,B 2,B 3表示3辆标准型轿车,用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3)共10个.事件E 包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3)共7个.故P (E )=710,即所求概率为710. (3)样本平均数x =18×(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9. 设D 表示事件“从样本中任取一数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D 包括的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以P (D )=68=34,即所求概率为34.测试卷二(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.从一批产品(其中正品、次品都多于2件)中任取2件,观察正品件数和次品件数,下列事件是互斥事件的是( )①恰好有1件次品和恰好有两件次品;②至少有1件次品和全是次品;③至少有1件正品和至少有1件次品;④至少1件次品和全是正品.A .①②B .①③C .③④D .①④2.平面上有一组平行线,且相邻平行线间的距离为3 cm ,把一枚半径为1 cm 的硬币任意抛掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( )A.14B.13C.12D.233.某班有50名学生,其中男、女各25名,若这个班的一个学生甲在街上碰到一位同班同学,假定每两名学生碰面的概率相等,那么甲碰到异性同学的概率大还是碰到同性同学的概率大( )A .异性B .同性C .同样大D .无法确定4.在区间⎣⎢⎡⎦⎥⎤-π2,π2上随机取一个数x ,cos x 的值介于0到12之间的概率为( ) A.13 B.2π C.12 D.235.已知某运动员每次投篮命中的概率低于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458569 683 431 257 393 027 556 488730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A .0.35B .0.25C .0.20D .0.156.12本相同的书中,有10本语文书,2本英语书,从中任意抽取3本的必然事件是( )A .3本都是语文书B .至少有一本是英语书C .3本都是英语书D .至少有一本是语文书7.某人射击4枪,命中3枪,3枪中有且只有2枪连中的概率是( )A.34B.14C.13D.128.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为( )A.15B.25C.35D.459.已知集合A ={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A 中选取不相同的两个数,构成平面直角坐标系上的点,观察点的位置,则事件A ={点落在x 轴上}与事件B ={点落在y 轴上}的概率关系为( )A .P (A )>P (B ) B .P (A )<P (B )C .P (A )=P (B )D .P (A )、P (B )大小不确定10.如图所示,△ABC 为圆O 的内接三角形,AC =BC ,AB 为圆O 的直径,向该圆内随机投一点,则该点落在△ABC 内的概率是( )A.1πB.2πC.4πD.12π11.若以连续两次掷骰子分别得到的点数m ,n 作为点P 的坐标(m ,n ),则点P 在圆x 2+y 2=25外的概率是( )A.536B.712C.512D.1312.如图所示,两个圆盘都是六等分,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A.49B.29C.23D.13题号 1 2 3 4 5 6 7 8 9 10 11 12 答案13.已知半径为a 的球内有一内接正方体,若球内任取一点,则该点在正方体内的概率为________.14.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为________.15.在半径为1的圆的一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是________.16.在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,则三棱锥S -APC 的体积大于V3的概率是________.三、解答题(本大题共6小题,共70分)17.(10分)已知函数f (x )=-x 2+ax -b .若a ,b 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率.18.(12分)假设向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,求军火库发生爆炸的概率.19.(12分)如右图所示,OA =1,在以O 为圆心,OA 为半径的半圆弧上任取一点B ,求使△AOB 的面积大于等于14的概率.20.(12分)甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i ,j )分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.21.(12分)现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A 1被选中的概率;(2)求B 1和C 1不全被选中的概率.22.(12分)已知实数a ,b ∈{-2,-1,1,2}.(1)求直线y =ax +b 不经过第四象限的概率;(2)求直线y =ax +b 与圆x 2+y 2=1有公共点的概率.答案1.D 2.B3.A4.A5.B6.D7.D8.B9.C11.B12.A13.233π14. π1615.1216.2317.解 a ,b 都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N =5×5=25个.函数有零点的条件为Δ=a 2-4b ≥0,即a 2≥4b .因为事件“a 2≥4b ”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4),共12个.所以事件“a 2≥4b ”的概率为P =1225. 18.解 设A 、B 、C 分别表示炸中第一、第二、第三军火库这三个事件.则P (A )=0.025,P (B )=P (C )=0.1,设D 表示军火库爆炸这个事件,则有D =A ∪B ∪C ,其中A 、B 、C 是互斥事件,∴P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.025+0.1+0.1=0.225.19.解 如下图所示,作OC ⊥OA ,C 在半圆弧上,过OC 中点D 作OA 的平行线交半圆弧于E 、F ,所以在EF 上取一点B ,则S △AOB ≥14.连结OE 、OF ,因为OD =12OC =12OF , OC ⊥EF ,所以∠DOF =60°,所以∠EOF =120°,所以l EF =120180π·1=23π. 所以P =l EF π·1=23ππ=23. 20.解 (1)甲、乙二人抽到的牌的所有情况(方片4用4′表示,其他用相应的数字表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种不同情况.(2)甲抽到红桃3,乙抽到的牌的牌面数字只能是2,4,4′,因此乙抽到的牌的牌面数字比3大的概率为23. (3)甲抽到的牌的牌面数字比乙大的情况有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种,故甲胜的概率P 1=512,同理乙胜的概率P 2=512.因为P 1=P 2,所以此游戏公平. 21.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件为(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2),共18个基本事件.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. 用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)},事件M 由6个基本事件组成,因而P (M )=618=13. (2)用N 表示“B 1、C 1不全被选中”这一事件,则其对立事件N 表示“B 1、C 1全被选中”这一事件,由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 由3个基本事件组成,所以P (N )=318=16,由对立事件的概率公式得:P (N )=1-P (N )=1-16=56. 22.解 由于实数对(a ,b )的所有取值为:(-2,-2),(-2,-1),(-2,1),(-2,2),(-1,-2),(-1,-1),(-1,1),(-1,2),(1,-2),(1,-1),(1,1),(1,2),(2,-2),(2,-1),(2,1),(2,2),共16种.设“直线y =ax +b 不经过第四象限”为事件A ,“直线y =ax +b 与圆x 2+y 2=1有公共点”为事件B .(1)若直线y =ax +b 不经过第四象限,则必须满足⎩⎪⎨⎪⎧ a ≥0,b ≥0,即满足条件的实数对(a ,b )有(1,1),(1,2),(2,1),(2,2),共4种.∴P (A )=416=14.故直线y =ax +b 不经过第四象限的概率为14. (2)若直线y =ax +b 与圆x 2+y 2=1有公共点,则必须满足|b |a 2+1≤1,即b 2≤a 2+1. 若a =-2,则b =-2,-1,1,2符合要求,此时实数对(a ,b )有4种不同取值; 若a =-1,则b =-1,1符合要求,此时实数对(a ,b )有2种不同取值;若a =1,则b =-1,1符合要求,此时实数对(a ,b )有2种不同取值,若a =2,则b =-2,-1,1,2符合要求,此时实数对(a ,b )有4种不同取值.∴满足条件的实数对(a ,b )共有12种不同取值.∴P (B )=1216=34. 故直线y =ax +b 与圆x 2+y 2=1有公共点的概率为34.。