最新数学人教版八年级上册多边形及其内角和练习题(含答案)
八年级数学多边形及其内角和(含解析答案)
多边形和内角和练习题温故而知新:1.多边形多边形的内角和:n边形内角和等于_(n-2)·180°__多边形的外角和:任意多边形外角和等于__360°_多边形的对角线:凸n边形共有_1(3)2n n-_条对角线。
2.平面镶嵌定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)问题.说明:正三角形、正方形和正六边形可以镶嵌平面图案,正五边形不能镶嵌平面图案.多边形的对角线例 1 今年暑假,佳一学校安排全校师生的假期社会实践活动,将每班分成三个组,每组派1名教师作为指导教师,为了加强同学间的联系,学校要求该班每两人之间(包括指导教师)每周至少通一次电话,现知该校七(1)班共有50名学生,那么该班师生之间每周至少要通几次电话?为了解决这一问题,小明把该班师生人数n与每周至少通话次数s之间的关系用下列模型表示,如图。
解析:师生53人看作是53边形的53个顶点,n边形的对角线条数公式为:1(3)2n n-。
答案:解:将七(1)班师生53人看作是53边形的53个顶点,由多边形对角线条数公式1(3)2n n-得1⨯⨯-=53(533)13252所以1325+53=1378次。
答:该班每周师生之间至少要通1378次电话小结:(1)建立数学模型是解决实际问题的基本方法;(2)n边形的对角线的条数公式是1(3)n n-2多边形的内角和与外角和例2 已知一个多边形的外角和等于内角和的1/3,求这个多边形的边数。
解析:多边形的外角和为360°,根据多边形的内角和及外角和列方程.答案:解:设这个多边形的边数为n,根据题意,得1n-⨯=(2)1803603解得 n=8答:这个多边形的边数是8.小结:利用方程求解是解决此类问题的一般方法。
例3 如图,小陈从O点出发,前进5米后向右转20°,再前进5米后又向右转20°,……这样一直走下去,他第一次回到出发点O时一共走了()A.60米B.100米C.90米D.120米解析:根据多边形的外角和求出这个多边形的边数。
八年级数学上册《第十一章 多边形及其内角和》练习题及答案-人教版
八年级数学上册《第十一章多边形及其内角和》练习题及答案-人教版一、选择题1.以下列图形:正三角形、正方形、正五边形、正六边形为“基本图案”可以进行密铺的有( )A.1种B.2种C.3种D.4种2.下列说法中,正确的是( )A.直线有两个端点B.射线有两个端点C.有六边相等的多边形叫做正六边形D.有公共端点的两条射线组成的图形叫做角3.从 7 边形的一个顶点作对角线,把这个 7 边形分成三角形的个数是( )A.7 个B.6 个C.5 个D.4 个4.若一个正多边形的一个外角是36°,则这个正多边形的边数是( )A.10B.9C.8D.65.一个多边形的内角和比它的外角和的3倍少1800,这个多边形的边数是 ( )A.5条B.6条C.7条D.8条6.若正多边形的内角和是540°,则该正多边形的一个外角为( )A.45°B.60°C.72°D.90°7.一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为( )A.8B.9C.10D.128.如果一个多边形的每个内角都相等,且内角和为1800°,那么这个多边形的一个外角是( )A.30°B.36°C.60°D.72°9.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是( )A.a>bB.a=bC.a<bD.b=a+180°10.把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,则原多边形纸片的边数不可能是( )A.16B.17C.18D.19二、填空题11.形状、大小完全相同的三角形________(填“能”或“不能”)铺满地面;形状、大小完全相同的四边形________(填“能”或“不能”)铺满地面.12.从多边形的一个顶点出发,连接这个点和其他顶点,把多边形分割成16个三角形,则这个多边形的边数是________.13.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是边形.14.如果一个多边形的各个外角都是40°,那么这个多边形的内角和是.15.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=.16.如图,五边形ABCDE是正五边形,若l1平行l2,则∠1-∠2=_______.三、解答题17.求下列图形中x的值:18.我们知道把正三角形、正方形、正六边形合在一起可以铺满平面,若把正十边形、正八边形、正九边形合在一起,能不能铺满地面?为什么?19.一个多边形的内角和是外角和的2倍,则这个多边形是几边形?20.如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.21.如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.22.探索问题:(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请你用学过的知识予以证明;(2)如图②﹣1,则∠A+∠B+∠C+∠D+∠E=°;如图②﹣2,则∠A+∠B+∠C+∠D+∠E=°;如图②﹣3,则∠A+∠B+∠C+∠D+∠E=°;(3)如图③,下图是一个六角星,其中∠BOD=70°,则∠A+∠B+∠C+∠D+∠E+∠F=°.参考答案1.C2.D3.C4.A5.C6.C.7.C.8.A.9.B10.A.11.答案为:能,能.12.答案为:18;13.答案为:十三.14.答案为:1260°.15.答案为:36°.16.答案为:72°.17.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180﹣x)=360.解得x=65.(3)x+(x+30)+60+x+(x﹣10)=(5﹣2)×180.解得x=115.18.解:因为正十边形、正八边形、正九边形的一个内角分别为144°,135°,140°它们的和144°+135°+140°>360°所以正十边形、正八边形、正九边形合在一起不能铺满地面19.解:设这个多边形的边数为n∴(n﹣2)•180°=2×360°解得:n=6.故这个多边形是六边形.20.解:(5﹣2)×180°=540°540°÷360°π×12=32π.21.解:连接AF.∵在△AOF和△COD中,∠AOF=∠COD,∴∠C+∠D=∠OAF+∠AFD,∴∠A+∠B+∠C+∠D+∠E+∠F=∠OAF+∠OFA+∠CFE+∠OAB+∠E+∠F=∠BAF+∠AFE+∠E+∠B=360°.22.解:(1)如图①,∠BOC=∠B+∠C+∠A.(2)如图②,∠A+∠B+∠C+∠D+∠E=180°.如图③根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D∵∠1+∠2+∠E=180°∴x=∠A+∠B+∠C+∠D+∠E=180°.如图④,延长EA交CD于点F,EA和BC交于点G根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B ∵∠GFC+∠FGC+∠C=180°∴x=∠A+∠B+∠C+∠D+∠E=180°.(3)如图⑤,∵∠BOD=70°∴∠A+∠C+∠E=70°∴∠B+∠D+∠F=70°∴∠A+∠B+∠C+∠D+∠E+∠F=70°+70°=140°.。
人教版八年级上册 11.3 多边形及其内角和 同步练习(含答案)
多边形及其内角和同步练习一.选择题1.正多边形的每个内角为135度,则多边形为()A.4B.6C.8D.102.若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形3.一个四边形的四个内角度数之比为1:2:4:5,则这个四边形中,最小的内角为()A.30°B.40°C.50°D.60°4.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3B.4C.6D.125.如图,已知一个五边形ABCDE纸片,一条直线将该纸片分割成两个多边形.若这两个多边形内角和分别为m和n,则m+n不可能是()A.540°B.720°C.900°D.1080°6.如图,在五边形ABCDE中,AE∥BC,延长DE至点F,连接BE,若∥A=∥C,∥1=∥3,∥AEF=2∥2,则下列结论正确的是()∥∥1=∥2 ∥AB∥CD ∥∥AED=∥A ∥CD∥DEA.1个B.2个D.4个7.如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α (0°<α<90°),若DE∥B′C′,则∥α为()A.36°B.54°C.60°D.72°8.如图,在四边形ABCD中,∥DAB的角平分线与∥ABC的外角平分线相交于点P,且∥D+∥C=210°,则∥P=()A.10°B.15°C.30°D.40°9.设BF交AC于点P,AE交DF于点Q.若∥APB=126°,∥AQF=100°,则∥A-∥F=()A.60°B.46°C.26°D.45°10.如图,已知四边形ABCD中,∥C=90°,若沿图中虚线剪去∥C,则∥1+∥2等于()B.135°C.270°D.315°11.如图,在六边形ABCDEF中,若∥A+∥B+∥C+∥D=500°,∥DEF与∥AFE的平分线交于点G,则∥G等于()A.55°B.65°C.70°D.80°12.如图,A,B,C,D,E,F是平面上的6个点,则∥A+∥B+∥C+∥D+∥E+∥F的度数是()A.180°B.360°C.540°D.720°二.填空题13.八边形的内角和为;一个多边形的每个内角都是120°,则它是边形.14.一个多边形,除了一个内角外,其余各角的和为2750°,则内角和是.15.如图,已知在四边形ABCD中,∥A+∥C=135°,∥ADE=125°,则∥B= .16.如图所示,若∥DBE=78°,则∥A+∥C+∥D+∥E= °.17.如图所示,∥A+∥B+∥C+∥D+∥E+∥F+∥G+∥H= °.三.解答题18.(1)已知一个正多边形的每个内角比它的每个外角的4倍多30°,求这个多边形的边数;(2)一个多边形的外角和是内角和的七分之二,求这个多边形的边数.19.如图,在四边形ABCD中,BD∥CD,EF∥CD,且∥1=∥2.(1)求证:AD∥BC;(2)若BD平分∥ABC,∥A=130°,求∥C的度数.20.如图,四边形ABCD中,∥BAD=106°,∥BCD=64°,点M,N分别在AB,BC上,将∥BMN沿MN翻折得∥FMN,若MF∥AD,FN∥DC.求(1)∥F的度数;(2)∥D的度数.21.将纸片∥ABC沿DE折叠使点A落在点A'处【感知】如图∥,点A落在四边形BCDE的边BE上,则∥A与∥1之间的数量关系是;【探究】如图∥,若点A落在四边形BCDE的内部,则∥A与∥1+∥2之间存在怎样的数量关系?并说明理由.【拓展】如图∥,点A落在四边形BCDE的外部,若∥1=80°,∥2=24°,则∥A的大小为.22.已知,在四边形ABCD中,∥A+∥C=160°,BE,DF分别为四边形ABCD的外角∥CBN,∥MDC的平分线.(1)如图1,若BE∥DF,求∥C的度数;(2)如图2,若BE,DF交于点G,且BE∥AD,DF∥AB,求∥C的度数.参考答案1-5:CAACD 6-10:CBBBC 11-12:CB13、1080°;六14、2880°15、170°16、10217、72018、:(1)设这个多边形的每个内角是x°,每个外角是y°,则得到一个方程组得而任何多边形的外角和是360°,则多边形内角和中的外角的个数是360÷30=12,则这个多边形的边数是12边形;(2)设这个多边形的边数为n,依题意得:(n-2)180°=360°,解得n=9,答:这个多边形的边数为9.19、:(1)证明:∵BD⊥CD,EF⊥CD(已知),∴BD∥EF(垂直于同一直线的两条直线平行),∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AD∥BC(内错角相等,两直线平行).(2)∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=25°.∴∠C=90°-∠3=65°.20、:(1)∵MF∥AD,FN∥DC,∠BAD=106°,∠BCD=64°,∴∠BMF=106°,∠FNB=64°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=53°,∠FNM=∠MNB=32°,∴∠F=∠B=180°-53°-32°=95°;(2)∠F=∠B=95°,∠D=360°-106°-64°-95°=95°.21、:(1)如图,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1-∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.22、:(1)过点C作CH∥DF,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=∠CDM,∠EBC=∠CBN,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.。
八年级上册数学人教版多边形及其内角和 课时练 试题试卷 含答案解析
一、选择题 1. 在如图所示的图形中,凸多边形共有
A. 1 个
B. 2 个
C. 3 个
D. 4 个
2. 若一个多边形的内角和是 900∘,则这个多边形是
A. 五边形
B. 六边形
C. 七边形
D. 八边形
3. 将一个 边形变成 + 1 边形,内角和将
A. 减少 180∘
∴∠
+∠
= 240∘.
∵ , 分别是 ∠ ,∠ 的平分线,
∴∠
=
1 2
∠
,∠
=
1 2
∠
.
∴∠+∠源自=1 2∠
+∠
= 120∘.
∴ ∠ = 180∘ − ∠ + ∠ = 60∘.
8. 在平面内,由一些线段
相接组成的封闭图形叫做多边形;多边形
组
成的角叫做多边形的内角;多边形的边与它的
组成的角叫做多边形的外角.
9. 连接多边形
的两个顶点的线段,叫做多边形的对角线.从 边形 ≥ 4 的一
个顶点出发,可以作
条对角线,这些对角线将 边形分为
个三角形;
边形共有
条对角线.
10. 画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的 个多边形就叫做凸多边形.
,那么这
11.
都相等,
都相等的多边形叫做正多边形.
12. 边形的内角和等于
;多边形的外角和等于
.
13. (1)如图①, =
;如图②, =
;(3)如图③, =
.
14. (1)若一个正多边形的一个外角等于 18∘,则这个正多边形的边数是 (2)已知一个正多边形的内角是 140∘,则这个正多边形的边数是
八年级数学上册多边形及其内角和测试题答案人教版
八年级数学上册多边形及其内角和测试题答案人教版一、选择题共8小题,每小题3分,满分24分1.若一个多边形的边数增加1,它的内角和A.不变B.增加1C.增加180°D.增加360°2.当多边形的边数增加时,其外角和A.增加B.减少C.不变D.不能确定3.某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是A.180°B.540°C.1900°D.1080°4.如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是A.6B.9C.14D.205.如果一个多边形的内角和是它的外角和的n倍,则这个多边形的边数是A.nB.2n﹣2C.2nD.2n+26.一个多边形截去一个角截线不过顶点之后,所形成的多边形的内角和是2520°,那么原多边形的边数是A.19B.17C.15D.137.已知一个多边形的内角和是外角和的4倍,则这个多边形是A.八边形B.九边形C.十边形D.十二边形8.一个多边形中,除一个内角外,其余各内角和是120°,则这个角的度数是A.60°B.80°C.100°D.120°二、填空题9.n边形的内角和= 度,外角和= 度.10.从n边形n>3的一个顶点出发,可以画条对角线,这些对角线把n边形分成三角形,分得三角形内角的总和与多边形的内角和.11.已知一个多边形的内角和与它的外角和正好相等,则这个多边形是边形.12.一个多边形的内角和等于它的外角和的5倍,那么此多边形的边数为.13.若n边形的每个内角都是150°,则n= .14.一个多边形的每一个外角都为36°,则这个多边形是边形.15.如果一个多边形的每个内角都相等,且内角的度数是与它相邻的外角度数的2倍,那么这个边形的每个内角是度,其内角和等于度.16.一个多边形的内角和是1800°,这个多边形是边形.17.n边形的内角和等于度.任意多边形的外角和等于度.18.若一个多边形的外角和是它的内角和的,则此多边形的边数是.19.如果十边形的每个内角都相等,那么它的每个内角都等于度,每个外角都等于度.20.若一个多边形的内角和为1080°,则这个多边形边形.21.外角和等于内角和的多边形一定是四边形. .判断对错22.如果一个多边形的内角和等于1800°,则这个多边形是边形;如果一个n边形每一个内角都是135°,则n= ;如果一个n边形每一个外角都是36°,则n= .三、解答题23.分别画出下列各多边形的对角线,并观察图形完成下列问题:1试写出用n边形的边数n表示对角线总条数S的式子:.2从十五边形的一个顶点可以引出条对角线,十五边形共有条对角线:3如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数.24.若两个多边形的边数之比是1:2,内角和度数之和为1440°,求这两个多边形的边数.25.某学校艺术馆的地板由三种正多边形的小木板铺成,设这三种多边形的边数分别为x、y、z,求 + 的值.一、选择题共8小题,每小题3分,满分24分1.2021秋•腾冲县校级期中若一个多边形的边数增加1,它的内角和A.不变B.增加1C.增加180°D.增加360°【考点】多边形内角与外角.【分析】设原来的多边形是n,则新的多边形的边数是n+1.根据多边形的内角和定理即可求得.【解答】解:n边形的内角和是n﹣2•180°,边数增加1,则新的多边形的内角和是n+1﹣2•180°.则n+1﹣2•180°﹣n﹣2•180°=180°.故选C.【点评】本题考查多边形的内角和计算公式,解答时要会根据公式进行正确运算、变形和数据处理.2.2021春•城西区校级期中当多边形的边数增加时,其外角和A.增加B.减少C.不变D.不能确定【考点】多边形内角与外角.【分析】根据多边形的外角和定理即可判断.【解答】解:任何多边形的外角和是360°,因而当多边形的边数增加时,其外角和不变.故选C.【点评】任何多边形的外角和是360°,不随边数的变化而变化.3.2021秋•宣威市校级期中某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是A.180°B.540°C.1900°D.1080°【考点】多边形内角与外角.【分析】利用多边形的内角和公式可知,多边形的内角和一定是180的整数倍,由此即可找出答案.【解答】解:∵nn≥3边形的内角和是n﹣2180°,所以多边形的内角和一定是180的整数倍.∴在这四个选项中不是180的倍数的是1900°.故选C.【点评】本题考查了多边形的内角与外角,熟记多边形的内角和公式是解题的关键.4.2021秋•硚口区校级月考如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是A.6B.9C.14D.20【考点】多边形内角与外角;多边形的对角线.【专题】计算题.【分析】首先根据多边形的内角和计算公式:n﹣2×180°,求出多边形的边数;再进一步代入多边形的对角线计算方法:求得结果.【解答】解:多边形的边数n=720°÷180°+2=6;对角线的条数:6×6﹣3÷2=9.故选B.【点评】此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.5.2021秋•长葛市校级月考如果一个多边形的内角和是它的外角和的n倍,则这个多边形的边数是A.nB.2n﹣2C.2nD.2n+2【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,即可求得多边形的内角的度数,然后利用多边形的内角和定理即可求解.【解答】解:设多边形的边数为m,根据题意列方程得,m﹣2•180°=n×360°,m﹣2=2n,m=2n+2.故选D.【点评】本题主要考查了多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.6.2021秋•凉山州期末一个多边形截去一个角截线不过顶点之后,所形成的多边形的内角和是2520°,那么原多边形的边数是A.19B.17C.15D.13【考点】多边形内角与外角.【分析】一个多边形截去一个角截线不过顶点之后,则多边形的角增加了一个,求出内角和是2520°的多边形的边数,即可求得原多边形的边数.【解答】解:设内角和是2520°的多边形的边数是n.根据题意得:n﹣2•180=2520,解得:n=16.则原来的多边形的边数是16﹣1=15.故选C.【点评】本题主要考查了多边形的内角和公式,理解新多边形的边数比原多边形的边数增加1是解题的关键.7.2021春•金东区期末已知一个多边形的内角和是外角和的4倍,则这个多边形是A.八边形B.九边形C.十边形D.十二边形【考点】多边形内角与外角.【分析】先设这个多边形的边数为n,得出该多边形的内角和为n﹣2×180°,根据多边形的内角和是外角和的4倍,列方程求解.【解答】解:设这个多边形的边数为n,则该多边形的内角和为n﹣2×180°,依题意得n﹣2×180°=360°×4,解得n=10,∴这个多边形的边数是10.故选:C.【点评】本题主要考查了多边形内角和定理与外角和定理,多边形内角和=n﹣2•180 n≥3且n为整数,而多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和始终为360°.8.一个多边形中,除一个内角外,其余各内角和是120°,则这个角的度数是A.60°B.80°C.100°D.120°【考点】多边形内角与外角.【分析】根据多边形的内角和公式n﹣2•180°可知多边形的内角和是180°的倍数,然后用960°÷180°所得商的整数部分加1就是多边形的边数.【解答】解:∵一个内角外,其余各内角和是120°,∴这个角的度数是60°.故选A.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.同时要注意每一个内角都应当大于0°而小于180度.二、填空题9.n边形的内角和= n﹣2×180度,外角和= 360 度.【考点】多边形内角与外角.【分析】根据多边形的内角和定理和外角和特征即可求出答案.【解答】解:任意n边形的内角和是n﹣2×180度,外角和是360度.故答案为:n﹣2×180,360.【点评】本题考查了多边形的外角和定理和内角和定理,这是一个需要熟记的内容.10.从n边形n>3的一个顶点出发,可以画n﹣3 条对角线,这些对角线把n边形分成n﹣2 三角形,分得三角形内角的总和与多边形的内角和相等.【考点】多边形内角与外角;三角形内角和定理;多边形的对角线.【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,n边形有n个顶点,和它不相邻的顶点有n﹣3个,因而从n边形n>3的一个顶点出发的对角线有n﹣3条,把n边形分成n﹣2个三角形,根据三角形内角和定理即可求得n边形的内角和与分得三角形内角的总和相等,都等于n﹣2•180°.【解答】解:从n边形n>3的一个顶点出发的对角线有n﹣3条,可以把n边形划分为n﹣2个三角形,由此,可得n边形的内角和与分得三角形内角的总和相等,故答案为:n﹣3,n﹣2,相等.【点评】本题考查多边形的对角线与三角形内角和定理,多边形的问题可以通过作对角线转化为三角形的问题解决,是转化思想在多边形中的应用.11.2021•宝安区校级模拟已知一个多边形的内角和与它的外角和正好相等,则这个多边形是四边形.【考点】多边形内角与外角.【专题】计算题.【分析】根据多边形的外角和为360°,由一个多边形的内角和与它的外角和正好相等,得到内角和,再根据多边形的内角和定理即可得到多边形的边数.【解答】解:∵多边形的外角和为360°,而一个多边形的内角和与它的外角和正好相等,设这个多边形为n边形,∴n﹣2•180°=360°,∴n=4,故答案为:四.【点评】本题考查了边形的内角和定理:边形的内角和=n﹣2•180°;多边形的外角和为360°.12.2021春•邵阳期末一个多边形的内角和等于它的外角和的5倍,那么此多边形的边数为12 .【考点】多边形内角与外角.【分析】一个多边形的内角和等于它的外角和的5倍,任何多边形的外角和是360度,因而这个正多边形的内角和为5×360度.n边形的内角和是n﹣2•180°,代入就得到一个关于n的方程,就可以解得边数n.【解答】解:根据题意,得n﹣2•180=5×360,解得:n=12.所以此多边形的边数为12.【点评】已知多边形的内角和求边数,可以转化为解方程的问题解决.13.2021春•苏仙区期末若n边形的每个内角都是150°,则n= 12 .【考点】多边形内角与外角.【分析】由题可得,该多边形的内角和为n﹣2×180°,根据n边形的每个内角都是150°,可得该正多边形的内角和为n×150°,再列方程求解.【解答】解:依题意得,n﹣2×180°=n×150°,解得n=12故答案为:12【点评】本题主要考查了多边形内角和定理,多边形内角和=n﹣2•180 n≥3且n为整数.14.2021春•工业园区期末一个多边形的每一个外角都为36°,则这个多边形是十边形.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:这个多边形是360÷36=10边形.故答案为:十.【点评】根据外角和的大小与多边形的边数无关,由外角和求多边形的边数,是常见的题目,需要熟练掌握.15.如果一个多边形的每个内角都相等,且内角的度数是与它相邻的外角度数的2倍,那么这个边形的每个内角是120 度,其内角和等于720 度.【考点】多边形内角与外角.【分析】设多边形的外角为n度,则根据内角的度数是与它相邻的外角度数的2倍,可求出n的值,进而求出多边形的内角度数,根据多边形外角和为360度,可求出多边形的边数,然后求出其内角和即可.【解答】解:设多边形的外角为n度,则根据内角的度数是与它相邻的外角度数的2倍,可得:n+2n=180°,解得:n=60°,∴2n=120°,根据多边形外角和为360度,可求出多边形的边数为:360÷60=6,∵多边形的每个内角都相等,∴多边形内角和为:120×6=720°.故答案为:120,720.【点评】本题考查了多边形内角与外角,解答本题的关键在于熟练掌握多边形内角和定理与多边形外角和为360度.16.2021秋•广西期末一个多边形的内角和是1800°,这个多边形是12 边形.【考点】多边形内角与外角.【分析】首先设这个多边形是n边形,然后根据题意得:n﹣2×180=1800,解此方程即可求得答案.【解答】解:设这个多边形是n边形,根据题意得:n﹣2×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:n﹣2×180°.17.n边形的内角和等于n﹣2•180度.任意多边形的外角和等于360 度.【考点】多边形内角与外角.【分析】根据多边形内角和定理:n﹣2•180 n≥3且n为整数,且多边形的外角和等于360度,进行求解即可.【解答】解:根据多边形内角和定理可得n边形的内角和为:n﹣2•180,任意多边形的外角和等于360度.故答案为:n﹣2•180,360.【点评】本题考查了多边形内角和外角,解答本题的关键在于熟练掌握多边形内角和定理和多边形的外角和等于360度.18.2021秋•长葛市校级月考若一个多边形的外角和是它的内角和的,则此多边形的边数是10 .【考点】多边形内角与外角.【分析】多边形的外角和是360度,外角和是它的内角和的,则内角和是1440度.n边形的内角和是n﹣2•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得n﹣2•180=1440,解得:n=10.则此多边形的边数是10.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.19.如果十边形的每个内角都相等,那么它的每个内角都等于144 度,每个外角都等于36 度.【考点】多边形内角与外角.【分析】利用十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出每个内角的度数.【解答】解:∵十边形的每个内角都相等,∴十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°.故答案为:144,36.【点评】本题主要考查了多边形的外角性质及内角与外角的关系.多边形的外角性质:多边形的外角和是360度.边形的内角与它的外角互为邻补角.20.2021春•诸城市期末若一个多边形的内角和为1080°,则这个多边形8 边形.【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°n﹣2,即可得方程180n﹣2=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180n﹣2=1080,解得:n=8,故答案为:8.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.21.外角和等于内角和的多边形一定是四边形. 对.判断对错【考点】多边形内角与外角.【分析】任意多边形的外角和为360°,然后依据多边形的内角和公式求得多边形的边数,从而可作出判断.【解答】解:设多边形的边数为n.根据题意得:n﹣2×180°=360°.解得:n=4.所以该多边形为四边形.故答案为:对.【点评】本题主要考查的是多边形的内角和与外角和,掌握多边形的内角和公式是解题的关键.22.如果一个多边形的内角和等于1800°,则这个多边形是十二边形;如果一个n 边形每一个内角都是135°,则n= 8 ;如果一个n边形每一个外角都是36°,则n= 10 .【考点】多边形内角与外角.【分析】n边形的内角和可以表示成n﹣2•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则n﹣2•180°=1800°,解得:n=12,则这个正多边形是12.如果一个n边形每一个内角都是135°,∴每一个外角=45°,则n= =8,如果一个n边形每一个外角都是36°,则n= =10,故答案为:十二,8,10.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:n﹣2×180°.三、解答题23.分别画出下列各多边形的对角线,并观察图形完成下列问题:1试写出用n边形的边数n表示对角线总条数S的式子:S= nn﹣3 .2从十五边形的一个顶点可以引出12 条对角线,十五边形共有90 条对角线:3如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数.【考点】多边形的对角线.【分析】1根据多边形对角线的条数的公式即可求解;2根据多边形对角线的条数的公式代值计算即可求解;3根据等量关系:一个多边形对角线的条数与它的边数相等,列出方程计算即可求解.【解答】解:1用n边形的边数n表示对角线总条数S的式子:S= nn﹣3;2十五边形从一个顶点可引出对角线:15﹣3=12条,共有对角线:×15×15﹣3=90条;3设多边形有n条边,则 nn﹣3=n,解得n=5或n=0应舍去.故这个多边形的边数是5.故答案为:S= nn﹣3;12,90.【点评】本题主要考查了多边形对角线的条数的公式总结,熟记公式对今后的解题大有帮助.24.2021秋•岳池县月考若两个多边形的边数之比是1:2,内角和度数之和为1440°,求这两个多边形的边数.【考点】多边形内角与外角.【分析】本题根据等量关系“两个多边形的内角之和为1440°”列方程求解,解答时要会根据公式进行正确运算、变形和数据处理.【解答】解:设多边形较少的边数为n,则n﹣2•180°+2n﹣2•180°=1440°,解得n=4.2n=8.故这两个多边形的边数分别为4,8.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,考查多边形的内角和、方程的思想.关键是记住内角和的公式.25.某学校艺术馆的地板由三种正多边形的小木板铺成,设这三种多边形的边数分别为x、y、z,求 + 的值.【考点】平面镶嵌密铺.【分析】根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.【解答】解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x、y、z,那么这三个多边形的内角和可表示为: + + =360,两边都除以180得:1﹣ +1﹣ +1﹣ =2,两边都除以2得: + = .【点评】本题考查了平面镶嵌密铺.解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.感谢您的阅读,祝您生活愉快。
人教版2023-2024学年八年级上册数学《多边形及其内角》同步练习(含答案)
人教版2023-2024学年八年级上册数学《多边形及其内角》同步练习一、单选题1.一个多边形的每个外角都等于与它相邻的内角,这个多边形是( )边形A .四B .五C .六D .八2.若一个多边形的每个内角都是,那么它的边数是( )140︒A .5B .7C .9D .113.中国古代建筑具有悠久的历史传统和光辉的成就,其建筑艺术也是美术鉴赏的重要对象.如图是中国古代建筑中的一个正八边形的窗户,则它的内角和为( )A .B .C .D .1080︒900︒720︒540︒4.如图,一束平行太阳光照射到正五边形上,若∠1=46°,则∠2的度数为( )A .46°B .108°C .26°D .134°5.如图1是一个2×5长方形方格,用图2所示的1×2的黑色长方形(允许只用一种)去填满,共有( )种不同的方法.A .7B .8C .9D .106.如图,四边形中,与相邻的两外角平分线交ABCD 90,ADC ABC ∠=∠=︒ADC ABC ∠∠、于点若则的度数为( ),E 60,A ∠=︒E ∠A .B .C .D .60 50 40 307.如图,要使一个七边形木架不变形,至少要再钉上木条的根数是( )A .1根B .2根C .3根D .4根8.七边形中,、的延长线相交于点.若图中、、、的ABCDEFG AB ED O 1∠2∠3∠4∠外角的角度和为,则的度数为( )220︒BOD ∠A .B .C .D .30︒35︒40︒45︒9.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A .B .C .D .240︒220︒180︒330︒10.如图,直线,将一个含角的直角三角尺按图中方式放置,点E 在AB CD ∥60︒EGF 上,边、分别交于点H 、K ,若,则等于( ).AB GF EF CD 64BEF ∠=︒GHC ∠三、解答题21.若一个多边形的内角和等于它的外角和的24.已知一个正n边形的内角和是正三角形内角和的4倍.(1)求n;(2)用边长相等的正n 边形和正三角形两种地板镶嵌地面,则一个公共顶点处需要正n边形和正三角形的个数分别为x、y,求x和y的关系式.25.如图,小明从点A出发,前进10m后向右转30°,再前进10m后又向右转30°,……,如此反复下去,直到她第一次回到出发点A,他所走的路径构成了一个正多边形.(1)求小明一共走了多少米;(2)求这个正多边形的内角和.答案:1.A2.C3.A4.C5.B6.D7.D8.C9.A10.B11.512.③④13.50°或130°14. 15 60°15.18/十八16. 2 817./36度36︒18./度 144︒1443519. 144 10 144020./度180︒18021.这个多边形是十边形22.(1)15;(2)1523.(1)8(2)360︒24.(1)6n =(2)26x y +=25.(1)小明一共走了120米1800 (2)这个多边形的内角和是.。
11.3多边形及其内角和同步练习2024-2025学年人教版数学八年级上册
11.3 多边形及其内角和一、单选题1.用“筝形”和“镖形”两种不同的瓷砖铺设成如图所示的地面,则“筝形”瓷砖中的内角BCD ∠的度数为( )A .120︒B .135︒C .144︒D .150︒2.若一个多边形的内角和为900︒,则从该多边形的一个顶点出发的对角线条数是( ) A .3 B .4 C .5 D .63.过八边形一个顶点的所有对角线,把这个多边形分成三角形的个数是( )A .5B .6C .7D .84.如图所示,图中x 的值是()A .80B .70C .60D .505.一个多边形的内角和是外角和的5倍,这个多边形边数为( )A .14B .12C .10D .86.若一个正n 边形的内角和为1080︒,则它的每个外角度数是( )A .36︒B .45︒C .72︒D .60︒7.如图,直线MN PQ ∥,点A 在直线MN 与PQ 之间,点B 在直线MN 上,连接AB .ABM ∠的平分线BC 交PQ 于点C ,连接AC ,过点A 作AD PQ ⊥交PQ 于点D ,作AF AB ⊥交PQ 于点F ,AE 平分DAF ∠交PQ 于点E ,若45CAE ∠=︒,52ACB DAE ∠=∠,则ACD ∠的度数是( )A .18︒B .27︒C .30︒D .45︒8.若一个正多边形每一个外角都相等,且一个内角的度数是140︒,则这个多边形是( ) A .正七边形 B .正八边形 C .正九边形 D .正十边形9.如图,在△ABC 中,△A=50°,则△1+△2的度数为( )A .180°B .230°C .250°D .310°10.一个多边形的内角和为1800︒,则这个多边形的边数为( )A .10B .11C .12D .13二、填空题11.若正多边形的一个中心角为40︒,则这个正多边形的一个内角等于 ︒. 12.如图,一张内角和为1800︒的多边形纸片按图示的剪法.....剪去一个内角后,得到的新多边形的边数为 .13.五边形从一个顶点出发的对角线的条数为 条.14.如图,在六边形ABCDEF 中,若500A B C D ∠+∠+∠+∠=︒,DEF ∠与AFE ∠的平分线交于点G ,则G ∠等于 .15.当一个多边形边数增加2时,它的内角和增加了 .16.正六边形的内角和为 度.17.下列说法中,△同位角相等;△两条平行线被第三条直线截成的同位角的平分线互相平行;△三角形的角平分线、中线、高都是线段;△十边形的内角和为1800︒.正确的是 .(请将你认为正确的序号填写在横线上)18.一个多边形的内角和为1800︒,则这个多边形的边数是 .19.如图,BE 是正五边形ABCDE 的对角线.若过点A 作直线//l BE ,则1∠的大小是 度.20.已知一个多边形中,除去一个内角外,其余内角的和为1160°,则除去的那个内角的度数是 .三、解答题21.(1)已知四边形ABCD 如图(1)所示.求证360A B C D ∠+∠+∠+∠=︒;(2)如图(2)所示的模板,按规定,AB ,CD 的延长线相交成40︒的角,因交点不在板上,不便测量,质检员测得115BAE ∠=︒,117DCE ∠=︒.如果你是质检员,如何知道模板是否合格?为什么?22.问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究. 我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如图,用正方形镶嵌平面,可以发现在一个顶点O 周围围绕着4个正方形的内角.试想:如果用正六边形镶嵌平面,在一个顶点周围应该围绕 个正六边形内角. 问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案? 问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:()8218090?3608x y -⨯+=,整理得:238x y +=,我们可以找到唯一一组适合方程的正整数解为12x y =⎧⎨=⎩. 结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.23.已知一个正n边形的内角和是正三角形内角和的4倍.(1)求n;(2)用边长相等的正n边形和正三角形两种地板镶嵌地面,则一个公共顶点处需要正n边形和正三角形的个数分别为x、y,求x和y的关系式.24.已知一个多边形的各内角相等,并且一个外角等于一个内角的23,则这个多边形的边数是几?25.已知一个多边形的边数为n,若这个多边形的每个内角都比与它相邻的外角的4倍多30 ,求这个多边形对角线的总条数.参考答案:1.C2.B3.B4.C5.B6.B7.B8.C9.B10.C11.14012.1313.214.70︒/70度15.360︒16.72017.②③/③② 18.1219.3620.100°.21.(1)略;(2)不合格,略 22.略23.(1)6n =(2)26x y +=24.这个多边形的边数是5. 25.54。
(完整版)数学人教版八年级上册多边形及其内角和练习题(含答案)
11.3 多边形及其内角和基础过关作业1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80° B.90° C.170° D.20°2.一个多边形的内角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.内角和等于外角和2倍的多边形是()A.五边形 B.六边形 C.七边形 D.八边形4.六边形的内角和等于_______度.5.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,南通)已知一个多边形的内角和为540°,则这个多边形为()A.三角形 B.四边形 C.五边形 D.六边形(2)(2005年,福建泉州)五边形的内角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A.1个 B.2个 C.3个 D.4个培优作业14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的内角和增加多少度?若将n边形的边数增加1倍,则它的内角和增加多少度?数学世界攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°-⨯︒=144°,点拨:正十边形每一个内角的度数为:(102)18010每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个内角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的内角和为360°,如果四个内角都是锐角或都是钝角,•则内角和小于360°或大于360°,与四边形的内角和为360°矛盾.•所以四个内角不可以都是锐角或都是钝角.若四个内角都是直角,则四个内角的和等于360°,与内角和定理相符,所以四个内角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n(n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的内角和.12.(1)C 点拨:设这个多边形的边数为n,依题意,得(n-2)×180°=540°,解得n=5,故选C.(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;……n n-条对角线.n边形有(3)2(2)当n边形的边数增加1时,对角线增加(n-1)条.点拨:从n边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n个顶点共可引n(n-3)条,但这些对n n-.角线每一条都重复了一次,故n边形的对角线条数为(3)2 15.180°,n·180°.数学世界答案:是最短的路程.可用纸板做一个模型,沿AB 剪开便可看出结论.。
人教版数学八年级上册11章三角形(多边形及其内角和)重点常考题
11章三角形常考题(多边形及其内角和)1、若正n边形的每个内角都等于150°,则n= ,其内角和为。
解:∵每个内角为150°∴每个外角等于30°∵多边形的外角和是360°360°÷30°=12∴这个正多边形的边数为12 内角和为1800°2、一个多边形内角和是10800,则这个多边形的边数为 ( )A、 6B、 7C、 8D、 9解:多边形的内角和公式是(n-2)×180°所以(n-2)×180°=1080°解得 n=83、如果多边形的内角和是外角和的k倍,那么这个多边形的边数是( ).A.k B.2k+1C.2k+2 D.2k-2解析:设它的边数为n 则(n-2)×180°=360°K 解得n=2k+24、五边形的内角和是()A.180° B.360° C.540°D.600°解析:多边形的内角和公式是(n-2)×180°,当n=5时,(5-2)×180°=540°5、若将n边形边数增加1倍,则它的内角和增加__________.解析:利用多边形内角和定理进行计算.因为n边形与n+1边形的内角和分别为(n-2)×180°和(n+1-2)×180°并且(n+1-2)×180°-(n-2)×180°=180°所以内角和增加180°6、若一个多边形的每个外角都为36°,则这个多边形的对角线有__________条.[来源:学科网ZXXK]解析:设这个多边形的边数为n,则,所以这个多边形是十边形.因为边形的对角线的总条数为n(n−3)2,所以这个多边形的对角线的条数为10(10−3)2=357、一个多边形的内角和与外角和相等,它是 边形 .解析:多边形的内角和公式是(n-2)×180°, 所以(n-2)×180°=360° 解得 n=48、若一个四边形的四个内角度数的比为3∶4∶5∶6,则这个四边形的四个内角的度数分别为__________.解析:设这个四边形的内角度数分别为3x,4x,5x,6x则由题意可得 3x+4x+5x+6x=360°解得 x=20°∴3x=60° ,4x=80°,5x=100°,6x=120°四个角度数分别为60°,80°,100°,120°9、把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是( )解析:一个n 边形剪去一个角后,剩下的形状可能是n 边形或(n+1)边形或(n-1)边形。
多边形及其内角和八年级数学人教版(附答案)
多边形及其内角和中考频度:★★★☆☆难易程度:★★☆☆☆1.如图,下列图形不是凸多边形的是A.B.C.D.2.n边形的每个外角都为72°,则边数n为A.5 B.6 C.7 D.83.从五边形的一个顶点,可以引几条对角线A.2 B.3 C.4 D.54.如图,在△ABC中,∠C=70°,沿图中虚线截去∠C,则∠1+∠2=A.250°B.360°C.180°D.140°5.一个凸多边形的内角和等于540°,则这个多边形的边数是A.5 B.6 C.7 D.86.一个多边形的内角和与它的外角和的比为5∶2,则这个多边形的边数为A.8 B.7 C.6 D.57.从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成三角形A.10个B.9个C.8个D.7个8.一个多边形截去一个角(不过顶点)后,形成的多边形的内角和是2520°,那么原多边形的边数是A.13 B.14 C.15 D.13或159.当一个多边形的边数增加时,其外角和A.增加B.减少C.不变D.不能确定10.已知一个多边形的每一个外角都等于36°,下列说法错误的是A.这个多边形是十边形B.这个多边形的内角和是1800°C.这个多边形的每个内角都是144°D.这个多边形的外角和是360°11.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是A.50°B.55°C.60°D.65°12.如图所示,小华从A点出发,沿直线前进10米后左转20︒,再沿直线前进10米,又向左转20︒,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是A.200米B.180米C.160米D.140米13.马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830︒,则该多边形的边数是A.7 B.8 C.7或8 D.无法确定14.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是A.a>b B.a=bC.a<b D.b=a+180°15.如图,在△ABC中,∠B=63º,∠C=45º,DE⊥AC于E,DF⊥AB于F,那么∠EDF=__________.16.一个多边形的每个内角都等于135°,则这个多边形是__________边形.17.一个四边形截去一个角后变成__________.18.如图,∠2+∠3+∠4=320°,则∠1=__________.19.n边形一共有__________条对角线.学-科网20.一个凸多边形的一个内角的外角与其他内角的和为500°,求这个多边形的边数.21.已知:如图,五边形ABCDE中,AB∥CD,求图形中∠AED的值.22.某同学在求多边形的内角和时,多算了一个内角的度数,求得内角和为1560°,问这个内角是多少度?这个多边形的边数是多少?23.如图,小东在足球场的中间位置,从A点出发,每走6 m向左转60°,已知AB=BC=6 m.(1)小东是否能走回A点,若能回到A点,则需走几米,走过的路径是一个什么图形?为什么?(路径A到B到C到……)(2)求出这个图形的内角和.24.某同学采用把多边形内角逐个相加的方法计算多边形的内角和,求得一个多边形的内角和为1520°,当他发现错了以后,重新检查,发现少加了一个内角.问:这个内角是多少度?他求的这个多边形的边数是多少?1.【答案】C【解析】选项A、B、D中,画出这个多边形的任意一条边所在的直线,整个多边形都在这条直线的同一侧,所以都是凸多边形,只有C不符合凸多边形的定义,不是凸多边形.故选C.4.【答案】A【解析】∵在△ABC中,∠C=70°,∴∠A+∠B=180°–70°=110°,又∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°–110°=250°.故选A.5.【答案】A【解析】因为多边形内角和公式是:(2)180n -⨯︒,所以(2)180540n -⨯︒=︒,解得5n =,故选A . 6.【答案】B【解析】设多边形的边数是n ,则(n –2)•180°∶360°=5∶2,整理得n –2=5,解得n =7.故选B . 7.【答案】C【解析】从一个十边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个十边形分割成10-2=8个三角形.故选C .学科=网 8.【答案】C【解析】设内角和是2520°的多边形边数是n ,∵(n -2)·180°=2520°,∴n =16,则原多边形的边数是16-1=15.故选C . 9.【答案】C【解析】任何多边形的外角和都为360°,则多边形的边数增加时,其外角和是不变的.故选C .12.【答案】B【解析】∵多边形的外角和为360°,而每一个外角为20°,∴多边形的边数为360°÷20°=18,∴小华一共走了:18×10=180米.故选B . 13.【答案】C【解析】设少加的2个内角和为x 度,边数为n .则(n -2)×180=830+x ,即(n -2)×180=4×180+110+x , 因此x =70,n =7或x =250,n =8.故该多边形的边数是7或8.故选C . 14.【答案】B【解析】∵四边形的内角和等于a ,∴a =(4–2)×180°=360°.∵五边形的外角和等于b ,∴b =360°, ∴a =b .故选B . 15.【答案】108°【解析】∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,∴∠BDF=180°–∠B–∠BFD=27°,∠CDE=180°–∠C–∠CED=45°.∵∠BDF+∠EDF+∠CDE=180°,∴∠EDF=180°–∠BDF–∠CDE=108°.故答案为:108°.16.【答案】八【解析】∵一个正多边形的每个内角都为135°,∴这个正多边形的每个外角都为:180°–135°=45°,∴这个多边形的边数为:360°÷45°=8.故这个多边形是八边形.故答案为:八.17.【答案】三角形或四边形或五边形【解析】一个四边形截去一个角可以截去两条边,得到三角形(如图1);也可以截去一条边,得到四边形(如图2);也可以直接新增一条边,变为五边形(如图3).故答案为:三角形或四边形或五边形.18.【答案】40°【解析】∵∠1+∠2+∠3+∠4=360°,∠2+∠3+∠4=320°,∴∠1=40°,故答案为:40°.19.【答案】(3)2n n-【解析】n边形总共有(3)2n n-条对角线.故答案为(3)2n n-.20.【解析】设这个多边形的边数为n,这个内角的度数为x.则有180°–x+[(n–2)×180°–x]=500°,化简,得(n–2)×180°=320°+2x.令n–2=2,即n=4,则有x=20°;令n–2=3,即n=5,则有x=110°.所以当这个内角是20°时,边数为4;当这个内角是110°时,边数为5.故这个多边形是四边形或五边形.21.【解析】∵AB∥CD,∴∠B=180°-∠C=120°,∵五边形ABCDE内角和为(5-2)×180°=540°,∴在五边形ABCDE 中,∠AED =540°-150°-120°-60°-160°=50°.23.【解析】(1)∵从A 点出发,每走6 m 向左转60°,∴360606︒÷︒=,∴走过的路径是一个边长为6的正六边形. (2)正六边形的内角和为:(6-2)×180°=720°. 24.【解析】设此多边形的内角和为x ︒,则有152********x <<+, 即1808801809100x ⨯+<<⨯+,因为x ︒为多边形的内角和,所以它是180︒的倍数, 所以18091620x =⨯=.所以9211+=,16201520100︒-︒=︒.因此,漏加的这个内角是100︒,这个多边形的边数是11.。
人教版八年级上册:11.3 多边形及其内角和 课后作业 word版,含答案
11.3 多边形及其内角和课后作业一.选择题1.如图,在五边形ABCDE中,AB∥CD,∠A=135°,∠C=60°,∠D=150°,则∠E 的大小为()A.60°B.65°C.70°D.75°2.下列说法中错误的是()A.三角形的一个外角大于任何一个内角B.边数为n的多边形内角和是(n﹣2)×180°C.有一个内角是直角的三角形是直角三角形D.三角形的中线、角平分线、高线都是线段3.已知正多边形的一个内角为144°,则该正多边形的边数为()A.12B.10C.8D.64.一个正多边形的内角和为540°,则这个正多边形的每一个内角是()A.120°B.108°C.90°D.605.如果一个正多边形的一个内角与一个外角的度数之比是7:2,那么这个正多边形的边数是()A.11B.10C.9D.86.如图,∠A+∠B+∠C+∠D+∠E的度数为()A.180°B.260°C.270°D.360°二.填空题7.已知正n边形的每个内角为144°,则n=.8.已知一个多边形的内角和与外角和之比是3:2,则这个多边形的边数为.9.如图所示,正五边形中∠α的度数为.10.为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A,B,C,D,E是正五角星的五个顶点),则图中∠A的度数是度.11.如图,已知∠B=30°,则∠A+∠D+∠C+∠G=°.12.如图,将△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A'的位置,若∠A =40°,则∠1﹣∠2的度数为度.三.解答题13.一个多边形的每个内角都相等,都等于150°,求这个多边形的边数?14.在四边形ABCD中,∠D=60°,∠B=∠A+20°,∠C=2∠A,求∠B的度数.15.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.(1)若∠ABC=70°,∠ACB=40°,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.16.(1)已知图①中的三角形ABC,分别作AB,BC,CA的延长线BD,CE,AF,测量∠CBD,∠ACE,∠BAF的度数,并计算∠CBD+∠ACE+∠BAF.由此你有什么发现?请利用所学知识解释说明;(2)类似地,已知图②中的四边形PQRS,分别作PQ,QR,RS,SP的延长线QG,RH,SM,PN,测量∠RQG,∠SRH,∠PSM,∠QPN的度数,并计算∠RQG+∠SRH+∠PSM+∠QPN.由此你又有什么发现?(3)综合(1)(2)的发现,你还能进一步得到什么猜想?参考答案一.选择题1.解:∵AB∥CD,∴∠C+∠B=180°,∵五边形ABCDE中,∠A=135°,∠D=150°,∴∠E=540°﹣180°﹣135°﹣150°=75°.故选:D.2.解:A、三角形的一个外角大于与它不相邻的任何一个内角,故原说法错误,故本选项符合题意;B、边数为n的多边形内角和是(n﹣2)×180°,说法正确,故本选项不合题意;C、有一个内角是直角的三角形是直角三角形,说法正确,故本选项不合题意;D、角形的中线、角平分线、高线都是线段,说法正确,故本选项不合题意;故选:A.3.解:∵正多边形的一个内角是144°,∴该正多边形的一个外角为36°,∵多边形的外角之和为360°,∴边数==10,∴这个正多边形的边数是10.故选:B.4.解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5.则这个正多边形的每一个内角为540°÷5=108°.故选:B.5.解:设这个正多边形的边数为n,由题意得:(n﹣2)×180=360,解得:n=9,故选:C.6.解:如图,∵∠1=∠B+∠2,∠2=∠D+∠E,∠A+∠1+∠C=180°,∴∠A+∠B+∠D+∠E+∠C=180°,故选:A.二.填空题7.解:由题意得正n边形的每一个外角为180°﹣144°=36°,n=360°÷36°=10,故答案为10.8.解:设这个多边形的边数为n,依题意得:(n﹣2)180°=×360°,解得n=5.故这个多边形的边数为5.故答案为:5.9.解:∵正五边形的内角为:(5﹣2)×180°÷5=108°,∴∠α=×(180°﹣108°)=36°,故答案为:36°.10.解:如图,∵正五角星中,五边形FGHMN是正五边形,∴∠GFN=∠FNM==108°,∴∠AFN=∠ANF=180°﹣∠GFN=180°﹣108°=72°,∴∠A=180°﹣∠AFN﹣∠ANF=180°﹣72°﹣72°=36°.故答案是:36.11.解:∵∠B=30°,∴∠BEF+∠BFE=180°﹣30°=150°,∴∠DEF+∠GFE=360°﹣150°=210°.∵∠DEF=∠A+∠D,∠GFE=∠C+∠G,∴∠A+∠D+∠C+∠G=∠DEF+∠GFE=210°,故答案为:210.12.解:如下图所示,∵△ABC纸片沿DE进行折叠,点A落在四边形BCED的外部点A'的位置,∴∠4=∠5,∠3=∠2+∠DEC,∵∠1+∠4+∠5=180°,∴∠1+2∠4=180°,∴∠1=180°﹣2∠4,∵∠3+∠DEC=180°,∴∠2=∠3﹣∠DEC=2∠3﹣180°,∴∠1﹣∠2=180°﹣2∠4﹣2∠3+180°=360°﹣2∠4﹣2∠3=2∠A,∴∠1﹣∠2=2×40°=80°,故答案为:80.三.解答题13.解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.边数为12.14.解:四边形内角和定理得:∠A+∠B+∠C+∠D=360°,∵∠D=60°,∠B=∠A+20°,∠C=2∠A,∴∠A+(∠A+20°)+2∠A+60°=360°,∴∠A=70°,∴∠B=∠A+20°=90°,答:∠B的度数是90°.15.解:(1)∵∠ACE=∠A+∠ABC,∴∠ACD+∠DCE=∠A+∠ABD+∠DBC,∠DCE=∠D+∠DBC,又BD平分∠ABC,CD平分∠ACE,∴∠ABD=∠DBE,∠ACD=∠ECD,∴∠A=2(∠DCE﹣∠DBC),∠D=∠DCE﹣∠DBC,∴∠A=2∠D,∵∠ABC=70°,∠ACB=40°,∴∠A=180°﹣∠ABC﹣∠ACB=70°,∴∠D=35°;(2)∠D=(∠M+∠N﹣180°);理由:延长BM、CN交于点A,∵∠A+∠ANM+∠AMN=180°,∠AMN+∠BMN=180°,∠ANM+∠CNM=180°,∴∠A=180°﹣∠ANM﹣∠AMN=180°﹣(180°﹣∠CNM)﹣(180°﹣∠BMN)=180°﹣180°+∠CNM﹣180°+∠BMN,则∠A=∠BMN+∠CNM﹣180°,由(1)知,∠D=∠A,∴∠D=(∠BMN+∠CNM﹣180°).16.解:(1)∠CBD=138°,∠ACE=117°,∠BAF=105°,所以∠CBD+∠ACE+∠BAF=360°,发现:三角形中的外角和为360°,理由:因为∠CBD+∠ABC=180°,∠ACE+∠ACB=180°,∠BAC+∠BAF=180°,所以∠CBD+∠ACE+∠BAF+∠ABC+∠ACB+∠BAC=540°,又因为∠ABC+∠ACB+∠BAC=180°,所以∠CBD+∠ACE+∠BAF=360°;(2)∠RQG=125°,∠SRH=113°,∠PSM=48°,∠QPN=74°,所以∠RQG+∠SRH+∠PSM+∠QPN=360°;发现:在四边形的外角和是360°;∵∠RQG+∠PQR=180°,∠SRH+∠QRS=180°,∠PSM+∠RSP=180°,∠QPN+∠QPS=180°,∵∠RQG+∠PQR+∠SRH+∠QRS+∠PSM+∠RSP+∠QPN+∠QPS=720°,∵∠PQR+∠QRS+∠RSP+∠QPS=360°,∴∠RQG+∠SRH+∠PSM+∠QPN=360°.(3)猜想:多边形的外角和和都是360°.设多边形为n边形,则n边形的每一个内角与它相邻的外角的和为180°,∴n边形的外角和=180°n﹣(n﹣2)×180°=180°n﹣180°n+360°=360°.。
2023-2024学年人教版数学八年级上册 11.3多边形及其内角和同步练习(含答案)
2023-2024学年人教版数学八年级上册11.3多边形及其内角和同步练习(含答案)2023-2024学年人教版数学八年级上册11.3 多边形及其内角和同步练习一、单选题1.五边形的内角和为()A.720° B.540° C.360° D.180°2.下列角度中,不能成为多边形内角和的是()A.600° B.720° C.900° D.1080°3.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形4.若从一个正多边形的一个顶点出发,最多可以引5条对角线,则它的一个内角为()A.B.C.D.5.如果一个四边形的面积正好等于它的两条对角线乘积的一半,那么这个四边形一定是()A.菱形B.矩形C.正方形D.对角线互相垂直的四边形6.在一个凸n边形的纸板上切下一个三角形后,剩下一个内角和为1080°的多边形,则n的值为()A.7 B.8C.9 D.以上都有可能7.一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.14或15或16 B.15或16或17 C.15或16 D.16或178.下列说法中,正确的个数有()①若一个多边形的外角和等于360°,则这个多边形的边数为4;②三角形的高相交于三角形的内部;③三角形的一个外角大于任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加;⑤对角线共有5条的多边形是五边形.A.1个B.2个C.3个D.4个二、填空题9.若一个正多边形的一个外角等于18°,则这个正多边形的边数是.10.一个多边形的内角和与外角和的比是4:1,则它的边数是.11.如图,点O是正五边形ABCDE的中心,连接BD、OD,则∠BDO =°.12.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.13.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=度.三、解答题14.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.15.如图,是四边形的一个外角,且.那么与互补吗?为什么?16.如图,CD∠AF,∠CDE=∠BAF,AB∠BC,∠C=120°,∠E=80°,试求∠F的度数.17.如图,四边形ABCD中,BA丄DA,CD丄BC,BE、DF分别是∠ABC、∠ADC的平分线.(1)∠1与∠2有什么数量关系,为什么?(2)BE与DF有什么位置关系?请说明理由.18.如图,将六边形纸片ABCDEF沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=460°.(1)求六边形ABCDEF的内角和;(2)求∠BGD的度数.19.如图,五边形中,.(1)求的度数;(2)直接写出五边形的外角和.参考答案1.B 2.A 3.C 4.D 5.D 6.D 7.A 8.B 9.2010.1011.1812.24°13.360 °14.解:根据题意,得(n﹣2)180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.15.解:与互补,理由如下:∠ ,∠ABC+=180∠∠ABC+∠D=180 ,∠四边形内角和等于360 ,∠ + =360°-(∠ABC+∠D)=180°∠ 与互补.解:如图,连结AD在四边形ABCD中,∠BAD+∠ADC+∠B+∠C=360°.∠AB∠BC,∠∠B=90°.又∠∠C=120°,∠∠BAD+∠ADC=150°.∠CD∠AF,∠∠CDA=∠DAF.又∠∠CDE =∠BAF,∠∠EDA=∠BAD.在四边形ADEF∠DAF+∠EDA+∠F+∠E=360°,∠∠F+∠E=360°(∠ADC+∠BAD)=210°.又∠∠E=80°,∠∠F=130°17.(1)解:∠1+∠2=90°;理由如下:∠BE,DF分别是∠ABC,∠ADC的平分线,∠∠ABC=2∠1,∠ADC=2∠2,∠BA丄DA,CD丄BC,∠∠A=∠C=90°,∠∠ABC+∠ADC=180°,∠2(∠1+∠2)=180°,∠∠1+∠2=90°;(2)解:BE∠DF;理由如下:在∠FCD中,∠∠C=90°,∠∠DFC+∠2=90°,∠∠1+∠2=90°,∠∠1=∠DFC,∠BE∠DF.18.(1)解:六边形ABCDEF的内角和为:180°×(6-2)=720°;(2)解:∠∠1+∠2+∠3+∠4+∠5=460°,∠∠GBC+∠C+∠CDG=720°-460°=260°,∠∠G=360°-(∠GBC+∠C+∠CDG)=100°.19.(1)解:∠AE∠CD,∠∠D+∠E=180°,∠五边形ABCDE中,∠A=100°,∠B=120°,∠.(2)解:根据多边形的外角和定理:五边形的外角和是:°。
数学人教版八年级上册多边形及其内角和练习题(含答案)
11.3 多边形及其内角和基础过关作业1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80° B.90° C.170° D.20°2.一个多边形的内角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.内角和等于外角和2倍的多边形是()A.五边形 B.六边形 C.七边形 D.八边形4.六边形的内角和等于_______度.5.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,南通)已知一个多边形的内角和为540°,则这个多边形为()A.三角形 B.四边形 C.五边形 D.六边形(2)(2005年,福建泉州)五边形的内角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A.1个 B.2个 C.3个 D.4个培优作业14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的内角和增加多少度?若将n边形的边数增加1倍,则它的内角和增加多少度?数学世界攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°-⨯︒=144°,点拨:正十边形每一个内角的度数为:(102)18010每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个内角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的内角和为360°,如果四个内角都是锐角或都是钝角,•则内角和小于360°或大于360°,与四边形的内角和为360°矛盾.•所以四个内角不可以都是锐角或都是钝角.若四个内角都是直角,则四个内角的和等于360°,与内角和定理相符,所以四个内角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n(n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的内角和.12.(1)C 点拨:设这个多边形的边数为n,依题意,得(n-2)×180°=540°,解得n=5,故选C.(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;……n n-条对角线.n边形有(3)2(2)当n边形的边数增加1时,对角线增加(n-1)条.点拨:从n边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n个顶点共可引n(n-3)条,但这些对n n-.角线每一条都重复了一次,故n边形的对角线条数为(3)2 15.180°,n·180°.数学世界答案:是最短的路程.可用纸板做一个模型,沿AB 剪开便可看出结论.。
新人教版八年级数学上册11.3 多边形及其内角和 同步练习及答案
第11章《三角形》同步练习(§11.3 多边形及其内角和)班级学号姓名得分1.填空:(1)平面内,由____________________________________________________________叫做多边形.组成多边形的线段叫做______.如果一个多边形有n条边,那么这个多边形叫做______.多边形____________叫做它的内角,多边形的边与它的邻边的______组成的角叫做多边形的外角.连结多边形________________的线段叫做多边形的对角线.(2)画出多边形的任何一条边所在直线,如果整个多边形都在______,那么这个多边形称作凸多边形.(3)各个角______,各条边______的______叫做正多边形.2.(1)n边形的内角和等于____________.这是因为,从n边形的一个顶点出发,可以引______条对角线,它们将此n边形分为______个三角形.而这些三角形的内角和的总和就是此n边形的内角和,所以,此n边形的内角和等于180°×______.(2)请按下面给出的思路,进行推理填空.如图,在n边形A1A2A3…A n-1A n内任取一点O,依次连结______、______、______、……、______、______.则它们将此n边形分为______个三角形,而这些三角形的内角和的总和,减去以O为顶点的一个周角就是此多边形的内角和.所以,n边形的内角和=180°×______-( )=( )×180°.3.任何一个凸多边形的外角和等于______.它与该多边形的______无关.4.正n边形的每一个内角等于______,每一个外角等于______.5.若一个正多边形的内角和2340°,则边数为______.它的外角等于______.6.若一个多边形的每一个外角都等于40°,则它的内角和等于______.7.多边形的每个内角都等于150°,则这个多边形的边数为______,对角线条数为______.8.如果一个角的两边分别垂直于另一个角的两边,其中一个角为65°,则另一个角为______度.9.选择题:(1)如果一个多边形的内角和等于它的外角和的两倍,则这个多边形是( ).(A)四边形(B)五边形(C)六边形(D)七边形(2)一个多边形的边数增加,它的内角和也随着增加,而它的外角和( ).(A)随着增加(B)随着减少(C)保持不变(D)无法确定(3)若一个多边形从一个顶点,只可以引三条对角线,则它是( )边形.(A)五(B)六(C)七(D)八(4)如果一个多边形的边数增加1,那么它的内角和增加( ).(A)0°(B)90°(C)180°(D)360°(5)如果一个四边形四个内角度数之比是2∶2∶3∶5,那么这四个内角中( ).(A)只有一个直角(B)只有一个锐角(C)有两个直角(D)有两个钝角(6)在一个四边形中,如果有两个内角是直角,那么另外两个内角( ).(A)都是钝角(B)都是锐角(C)一个是锐角,一个是直角(D)互为补角10.已知:如图四边形ABCD中,∠ABC的平分线BE交CD于E,∠BCD的平分线CF交AB于F,BE、CF相交于O,∠A=124°,∠D=100°.求∠BOF的度数.11.(1)已知:如图1,求∠1+∠2+∠3+∠4+∠5+∠6___________.图1(2)已知:如图2,求∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8____________.图212.如图,在图(1)中,猜想:∠A+∠B+∠C+∠D+∠E+∠F=______度.请说明你猜想的理由.图1如果把图1成为2环三角形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F;图2称为2环四边形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H;图2则2环四边形的内角和为_____________________________________________度;2环五边形的内角和为________________________________________________度;2环n边形的内角和为________________________________________________度.13.一张长方形的桌面,减去一个角后,求剩下的部分的多边形的内角和.14.一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数.15.如果一个凸多边形除了一个内角以外,其它内角的和为2570°,求这个没有计算在内的内角的度数.16.小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回点A时共走了多少米?若不能,写出理由.参考答案1.略.2.(1)(n -2)×180°,n -3,n -2,n -2.(2)OA 1,OA 2,OA 3……,OA n -1,OA n ,n ,n ,360°,(n -2).3.360°,边数. 4.⋅⨯-n nn oo 360,180)2( 5.十五,24°. 6.1260°. 7.12,54. 8.65°或115°.9.(1)C ,(2)C ,(3)B ,(4)C ,(5)A ,(6)D 10.68°11.(1)360°;(2)360°.12.(1)360°;(2)720°;(3)1080°;(4)2(n -2)×180°.13.180°或360°或540°.14.九.提示:设多边形的边数为n ,某一个外角为α.则(n -2)×180+α =1350. 从而1809071801350)2(αα-+=-=-n . 因为边数n 为正整数,所以α =90,n =9.15.130°.提示:设多边形的边数为n ,没有计算在内的内角为x °.(0<x <180)则(n -2)×180=2570+x . 从而⋅++=-18050142x n 因为边数n 为正整数,所以x =130.16.可以走回到A 点,共走100米.可以编辑的试卷(可以删除)学习提示:1、通过练习发现不足。
人教版八年级上册_多边形及其内角和(解析版)(仅供参考)
)除以边数(n)以外,还可以通过
利用外角和( )除以边数(n),得到一个顶点处外角的度数,再拿 180 减去它即可.
易错点:每个多边形在其一个顶点处对应的外角也都只有一个,它们的和等于 .
题模一:对角线条数
例 1.1.1 若一个正 n 边形的每个内角为 144°,则这个正 n 边形的所有对角线的条数是( )
本题中,设这个多边形是 n 边形. 代入公式,得 n 3 10 , ∴ n 13 .
例 1.1.3
【答案】7 【解析】从一个 9 边形的某个顶点出发,分别连接这个点与其他顶点可以把这个 9 边形分割成三角形的个 数是 7 个
例 1.1.4
【答案】(1)2;5;9,(2)14; n(n 3) 2
D.7 或 8 或 9
拓展 4 如图,小明从点 A 出发,向前走 2 米,左拐 20 ,再向前走 2 米,再左拐 20 ,如此下去,小明能
否回到出发点 A ?如果能,第一次回到出发点共走了多少路程?
A2
2 20
2 20 2
20
拓展 5 如图,∠1=m°,∠2+∠4+∠6+∠8=n°,则∠3+∠5+∠7 的大小是__.
例 1.2.1
【答案】C 【解析】该题考查的是多边形的角度计算.
多边形内角和公式为 n 2 180 ,外角度数和为定值 360 , 本题中, n 2 180 1980 ,解得 n 13
而多边形从某一个顶点出发截去一个角,边数有两种可能,一种是边数不变,一种是边数减少 1 条,所以 原来的多边形边数可能是 13 或 14,故答案是 C.
A.2 个
B.3 个
C.4 个
D.5 个
拓展 2 一个多边形,把一个顶点与其它各顶点连接起来,把这个多边形分成了 12 个三角形,则这个多边 形的边数__________
人教版初中八年级数学多边形及其内角和选择题练习含答案
人教版初中八年级数学多边形及其内角和选择题练习含答案1.一个正多边形的外角与其相邻的内角之比为1:5,那么这个多边形的边数为( )A.8B.9C.10D.12【答案】D【解答】解:设正多边形的每个外角的度数为x,与它相邻的内角的度数为5x,依题意有x+ 5x=180∘,解得x=30∘,这个多边形的边数=360∘÷30∘=12.故选D.2. 某个人从多边形一个顶点出发引对角线可以把这个多边形分成八个三角形,这个多边形是()边形.A.六B.八C.十D.十一【答案】C【解答】解:这个多边形的边数是8−1+3=10.故选C.3.(2020-2021·宁夏·月考试卷)如图,⊙A,⊙B,⊙C,⊙D,⊙E相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是( )A.πB.1.5πC.2πD.2.5π【答案】B【解答】解:∵ 五边形的内角和是:(5−2)×180∘=540∘,∴ 阴影部分面积之和=540π×12=1.5π.故选B.3604. 如图,四边形ABCF≅四边形EDCF,若∠AFC+∠DCF=150∘,则∠A+∠B+∠D+∠E 的大小是()A.240∘B.300∘C.420∘D.460∘【答案】C【解答】解:∵ 四边形ABCF≅四边形EDCF,∠AFC+∠DCF=150∘,∴ ∠EFC+∠DCF=150∘,∴ ∠AFE+∠BCD=300∘.又∵ 六边形的内角和为(6−2)×180∘=720∘,∴ ∠A+∠B+∠D+∠E=720∘−300∘=420∘.故选C.5. 如图,木工师傅从边长为90cm 的正三角形木板上锯出一正六边形木板,那么正六边形木板的边长为( )A.34cmB.30cmC.32cmD.28cm【答案】B【解答】解:图中三个小三角形也是正三角形,且边长等于正六边形的边长,所以正六边形的周长是大正三角形周长的23,正六边形的周长为90×3×23=180(cm), 所以正六边形的边长是180÷6=30(cm).故选B .6. 如图,若干全等正五边形排成环状,图中所示的其中3个正五边形,要完成这一圆环需要正五边形的个数为( ).A.7B.8C.9D.10【答案】D【解答】解:五边形的内角和为(5−2)×180∘=540∘,所以正五边形的每一个内角为540∘÷5=108∘.如图,延长正五边形的两边相交于点O ,则∠1=360∘−108∘×3=360∘−324∘=36∘,360∘÷36∘=10,即完成这一圆环共需10个五边形.故选D .7. 如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )A.8B.9C.10D.11【答案】A【解答】解:多边形的外角和是360∘,根据题意,得180∘×(n −2)=3×360∘,解得n =8.故选A .8. 若过n 边形的一个顶点的所有对角线正好将该n 边形分成8个三角形,则n 的值是( )A.7B.8C.9D.10【答案】D【解答】解:经过n边形的一个顶点的所有对角线把多边形分成(n−2)个三角形,由题意,得n−2=8,解得n=10.故选D.。
人教版八年级数学上册 多边形及其内角和同步练习题精选(附答案)
人教版八年级数学上册 多边形及其内角和同步练习题精选一、选择题。
1.下列图形中具有稳定性的有( )A .正方形B .长方形C .梯形D .直角三角形2.四边形没有稳定性,当四边形形状改变时,发生变化的是( )A .四边形的边长B .四边形的周长C .四边形的某些角的大小D .四边形的内角和3.九边形的对角线有( )A .25条B .31条C .27条D .30条4.下列图中不是凸多边形的是( )5.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是( )A . 六边形B .五边形C .四边形D .三角形6.如图,木工师傅从边长为90cm 的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为( )A . 34cmB .32cmC .30cmD .28cm7.六边形内角和为( )A .360°B .540°C .720°D .1080°8.某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是( )A .180°B .540°C .1900°D .1080°9.下列多边形中,内角和与外角和相等的是( )A . 四边形B .五边形C .六边形D .八边形10.当一个多边形的边数增加时,其外角和( )A .增加B .减少C .不变D .不能确定11.如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是( )A .6B .9C .14D .2012.已知正n 边形的一个内角为135°,则边数n 的值是( )A .6B .7C .8D .1013.如图,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( )A .120°B .180°C .240°D .300°ABCD14.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为( )A .5B .5或6C .5或7D .5或6或715.一个多边形截去一个角(不过顶点)后,形成的多边形的内角和是2520°,那么原多边形的边数是( )A .13B .14C .15D .13或1516.如图,过正五边形ABCDE 的顶点A 作直线l ∥BE ,则∠1的度数为( )A .30°B .36°C .38°D .45°17.若一个多边形的内角和小于其外角和,则这个多边形的边数是( )A .3B .4C .5D .618.如果一个多边形的内角和是它的外角和的n 倍,则这个多边形的边数是( )A .nB .2n-2C .2nD .2n+2二、填空题。
最新人教版初中八年级上册数学《多边形及其内角和》同步练习含答案解析
《11.3 多边形及其内角和》一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:44.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6三、填空题:10.多边形的内角中,最多有个直角.11.从n边形的一个顶点出发可以引条对角线,这些对角线将这个多边形分成个三角形.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为.14.每一个内角都是144°的多边形有条边.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?16.一个多边形的每一个外角都等于24°,求这个多边形的边数.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.《11.3 多边形及其内角和》参考答案与试题解析一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个【考点】多边形内角与外角.【专题】计算题.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选D.【点评】本题考查了多边形的外角和:n边形的外角和为360°.2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°【考点】多边形内角与外角.【分析】根据n边形的内角和(n﹣2)•180°分别建立方程,求出n,由于n≥3的整数即可得到D 选项正确.【解答】解:A、(n﹣2)•180°=120•n,解得n=6,所以A选项错误;B、(n﹣2)•180°=(128)°•n,解得n=7,所以B选项错误;C、(n﹣2)•180°=144°•n,解得n=10,所以C选项错误;D、(n﹣2)•180°=145°•n,解得n=,不为整数,所以D选项正确.故选D.【点评】本题考查了多边形的内角和定理:n边形的内角和为(n﹣2)•180°.3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:4【考点】多边形内角与外角.【分析】多边形的外角和是360°,且根据多边形的各内角都相等则各个外角一定也相等,根据选项中的比例关系求出外角的度数,根据多边形的外角和定理求出边数,如果是≥3的正整数即可.【解答】解:A、外角是:180×=60°,360÷60=6,故可能;B、外角是:180×=90°,360÷90=4,故可能;C、外角是:180×=度,360÷=7,故可能;D、外角是:180×=80°.360÷80=4.5,故不能构成.故选D.【点评】本题主要考查了多边形的外角和定理,理解外角与内角的关系是解题的关键.4.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个【考点】多边形内角与外角.【分析】利用多边形的外角和是360度即可求出答案.【解答】解:因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,多边形的内角与相邻的外角互为邻补角,则外角中最多有三个钝角时,内角中就最多有3个锐角.故选A.【点评】本题考查了多边形的内角问题.由于内角和不是定值,不容易考虑,而外角和是360度不变,因而内角的问题可以转化为外角的问题进行考虑.5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=10,∴n=13.故这个多边形是13边形.故选:A.【点评】多边形有n条边,则经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形【考点】多边形的对角线.【分析】根据多边形对角线公式,可得答案.【解答】解:设多边形为n边形,由题意,得=14,解得n=7,故选:B.【点评】本题考查了多边形的对角线,熟记公式并灵活运用是解题关键.8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°【考点】多边形内角与外角.【专题】计算题.【分析】可设这是一个n边形,这个内角的度数为x度,利用多边形的内角和=(n﹣2)•180°,根据多边形内角x的范围,列出关于n的不等式,求出不等式的解集中的正整数解确定出n的值,从而求出多边形的内角和,减去其余的角即可解决问题.【解答】解;设这是一个n边形,这个内角的度数为x度.因为(n﹣2)180°=2570°+x,所以x=(n﹣2)180°﹣2570°=180°n﹣2930°,∵0<x<180°,∴0<180°n﹣2930°<180°,解得:16.2<n<17.2,又n为正整数,∴n=17,所以多边形的内角和为(17﹣2)×180°=2700°,即这个内角的度数是2700°﹣2570°=130°.故本题选C.【点评】本题需利用多边形的内角和公式来解决问题.二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.三、填空题:10.多边形的内角中,最多有 4 个直角.【考点】多边形内角与外角.【分析】由多边形的外角和为360°可求得答案.【解答】解:当内角和90°时,它相邻的外角也为90°,∵任意多边形的外角和为360°,∴360°÷90°=4.故答案为:4.【点评】本题主要考查的是多边形的内角与外角,明确任意多边形的外角和为360°是解题的关键.11.从n边形的一个顶点出发可以引n﹣3 条对角线,这些对角线将这个多边形分成n﹣2 个三角形.【考点】多边形的对角线.【分析】根据n边形对角线的定义,可得n边形的对角线,根据对角线的条数,可得对角线分成三角形的个数.【解答】解从n边形的一个顶点出发可以引n﹣3条对角线,这些对角线将这个多边形分成n﹣2个三角形,故答案为:n﹣3,n﹣2.【点评】本题考查了多边形的对角线,由对角线的定义,可画出具体多边形对角线,得出n边形的对角线.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为9 .【考点】多边形内角与外角.【分析】根据多边形的外角和定理,列出不等式即可求解.【解答】解:因为n边形的外角和是360度,每一个内角都大于135°即每个外角小于45度,就得到不等式:,解得n>8.因而这个多边形的边数最少为9.【点评】本题已知一个不等关系就可以利用不等式来解决.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为11 .【考点】多边形内角与外角.【分析】先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的360°,从而可代入公式求解.【解答】解:设多边形的一个内角为9x度,则一个外角为2x度,依题意得9x+2x=180°解得x=()°360°÷[2×()°]=11.答:这个多边形的边数为11.【点评】本题考查多边形的内角与外角关系、方程的思想.关键是记住多边形的一个内角与外角互补、及外角和的特征.14.每一个内角都是144°的多边形有10 条边.【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.【解答】解:解法一:设所求n边形边数为n,则144°n=(n﹣2)•180°,解得n=10;解法二:设所求n边形边数为n,∵n边形的每个内角都等于144°,∴n边形的每个外角都等于180°﹣144°=36°.又因为多边形的外角和为360°,即36°•n=360°,∴n=10.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?【考点】规律型:图形的变化类.【分析】关键是通过归纳与总结,得到其中的规律,按规律求解.【解答】解:n=1时,有1个三角形,需要火柴的根数为:3×1;n=2时,有5个三角形,需要火柴的根数为:3×(1+2);n=3时,需要火柴的根数为:3×(1+2+3);…;n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630.【点评】此题考查的知识点是图形数字的变化类问题,本题的关键是弄清到底有几个小三角形.16.一个多边形的每一个外角都等于24°,求这个多边形的边数.【考点】多边形内角与外角.【分析】根据多边形外角和为360°及多边形的每一个外角都等于24°,求出多边形的边数即可.【解答】解:设这个多边形的边数为n,则根据多边形外角和为360°,可得出:24×n=360,解得:n=15.所以这个多边形的边数为15.【点评】本题考查了多边形内角与外角,解答本题的关键在于熟练掌握多边形外角和为360°.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.【考点】多边形内角与外角.【分析】设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度得到m:n=180(a ﹣2):360,从而用m、n表示出a的值.【解答】解:设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度,m:n=180(a﹣2):360a=,因为m,n 是互质的正整数,a为整数,所以n=2,故答案为:,2.【点评】本题考查了多边形的内角与外角,解答本题的关键在于熟练掌握多边形内角和与多边形外角和.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.【考点】多边形的对角线.【分析】从n边形的一个顶点出发,最多可以引n﹣3条对角线,然后即可计算出结果.【解答】解:过n边形的一个顶点可引出n﹣3条对角线;n边形共有条对角线.【点评】本题主要考查的是多边形的对角线,掌握多边形的对角线公式是解题的关键.非常感谢!您浏览到此文档。
人教版八年级数学11.3 多边形及其内角和(含答案 )
人教版八年级数学11.3多边形及其内角和(含答案)知识要点:1.多边形:在平面内,由一些线段首位顺次相接组成的封闭图形叫做多边形.2.正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.3.多边形内角和定理:n 边形内角和等于(2)180n -⨯︒.4.多边形内角和定理的推理过程:(1)从n 边形的一个顶点出发,可以引出(3)n -条对角线,这(3)n -条对角线把n 边形分成(2)n -个三角形,又每个三角形的内角和是180︒,所以n 边形的内角和是(2)180n -⨯︒.(2)在n 边形内任取一点P ,连接1PA ,2PA ,…,n PA ,把n 边形分成n 个三角形,这n 个三角形的内角和为180n ⋅︒,再减去中间的一个周角,即得n 边形的内角和为(2)180n -⨯︒.5.多边形的外角和定理:多边形的外角和为360︒.6.多边形的外角和定理的推理过程:多边形的每个内角同与它相邻的外角都是邻补角,所以n 边形的内角和加上外角和为180n ⋅︒,外角和等于180(2)180360n n ⋅︒--⨯︒=︒.一、单选题1.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为()A .13B .15C .13或14或15D .15或16或17【答案】D解:设新多边形的边数是n ,则(n-2)•180°=2520°,解得n=16,∵截去一个角后的多边形与原多边形的边数可以相等,多1或少1,∴原多边形的边数是15,16,17,故选:D.2.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的度数为()的外角和等于210°,则BODA.30°B.35°C.40°D.45°【答案】A∵∠1、∠2、∠3、∠4的外角的角度和为210°,∴∠1+∠2+∠3+∠4+210°=4×180°,∴∠1+∠2+∠3+∠4=510°,∵五边形OAGFE内角和=(5−2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°−510°=30°,故选:A.3.一幅美丽的图案是由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边形、正六边形,那么另外一个为()A.正三角形B.正四边形C.正五边形D.正六边形【答案】B∵正三角形、正四边形、正六边形的内角分别为60°、90°、120°,又∵360°-60°-90°-120°=90°,∴另一个为正四边形,故选B.4.下列正多边形中,能够铺满地面的是()A.正十边形B.正五边形C.正八边形D.正六边形【答案】DA.正十边形每个内角为144°,不能整除360°,所以不能铺满地面;B.正五边形每个内角为108°,不能整除360°,所以不能铺满地面;C.正八边形每个内角为135°,不能整除360°,所以不能铺满地面;D.正六边形每个内角为120°,能整除360°,所以能铺满地面;故选D.5.一个多边形的每个内角均为150°,则这个多边形是()A.九边形B.十边形C.十二边形D.十五边形【答案】C解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=12,故选:C.6.下面哪一个度数可以是某个多边形的内角和().A.1060°B.1080°C.1100°D.1200°【答案】B四个选项中只有1080°是180°的倍数,其余的都不是180°的倍数,因此是某多边形的内角和的是1080°,故选B.7.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度【答案】B由多边形的外角和等于360°,有∠1+∠2+∠3+∠4=360°,∠2+∠3+∠4=320°,所以∠1=360°-320°=40°.8.一个多边形的内角和为540°,则它的对角线共有()A.3条B.5条C.6条D.12条【答案】B解:设该多边形的边数为n,∴(n﹣2)•180°=540°,解得n=5;∴这个五边形共有对角线12×5×(5﹣3)=5条.故选:B.9.如果一个多边形的每一个外角都等于60°,这个多边形的边数是()A.4B.5C.6D.7【答案】C∵一个多边形的每一个外角都等于60°,且多边形的外角和等于360°,∴这个多边形的边数是:360÷60=6.故选C.10.正五边形的每一个外角的度数是()A.60°B.108°C.72°D.120°【答案】C多边形的外角和为360°,正多边形的每一个外角都相等,所以正五边形的每个外角的度数为360°÷5=72°.故选:C.11.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=_____()A.180°B.360°C.540°D.不能确定【答案】B如图所示.∵∠1+∠5=∠8,∠4+∠6=∠7.又∵∠2+∠3+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.故选B.12.把边长相等的正五边形ABCDE和正方形ABFG按照如图所示的方式叠合在一起,则∠EAG的度数是()A.18°B.20°C.28°D.30°【答案】A∠EAG=180°-360°÷5-90°=18°.二、填空题13.一个多边形的内角和是1080°,这个多边形的边数是_____.【答案】8解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.14.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=_____°.【答案】360°由图形可知:∠AMQ=∠A+∠B,∠CNA=∠C+∠D,∠CPE=∠E+∠F,∠EQG=∠G+∠H,∵∠AMQ+∠CNA+∠CPE+∠EQG=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠AMQ+∠CNA+∠CPE+∠EQG=360°,故答案为:360°.15.六边形有m条对角线,五边形有n条对角线,则m﹣n=________.【答案】4∵六边形有()6632⨯-=9条对角线,∴m=9,∵五边形有()5532⨯-=5条对角线,∴n=5,∴m-n=9-5=4,故答案为:4.16.一个多边形截去一个角后,形成的另一个多边形的内角和是1260°,则原多边形的边数是为_______________.【答案】8或9或10设多边形截去一个角的边数为n,根据题意得:(n﹣2)•180°=1260°解得:n=9.∵截去一个角后边上可以增加1,不变,减少1,∴原多边形的边数是8或9或10.故答案为:8或9或10.17.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD的度数为_________.【答案】61°首先连接OD,由直角三角板ABC的斜边AB与量角器的直径恰好重合,可得点A,B,C,D共圆,又由点D对应的刻度是58°,利用圆周角定理求解即可求得∠BCD=1∠BOD=29°,2继而求得∠ACD=90°﹣∠BCD=61°.考点:圆周角定理18.根据如图所示的已知角的度数,求出其中∠α的度数为______.【答案】50度如图所示,由图可得,∠ACD=180°-120°=60°,∠ADC=180°-120°=60°.所以由四边形内角和等于360°可以求得∠BAD=360°-110°-60°-60°=130°,所以∠α=180°-∠BAD=50°,故答案为50度。
人教版八年级数学上册《第十一章11.3多边形及内角和》课后练习(含答案)
八年级数学上册《第十一章11.3多边形及其内角和》课后练习一、单选题1.一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.62.正十边形的外角和为()A.180°B.360°C.720°D.1440°3.如图,足球图片正中的黑色正五边形的内角和是( ).A.180°B.360°C.540°D.720°4.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A.12 B.10 C.8 D.65.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或96.一个多边形的每个内角都等于144°,那么这个多边形的内角和为()A.1980°B.1800°C.1620°D.1440°7.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.50°B.55°C.60°D.65°二、填空题∠=_______°.8.如图,六边形ABCDEF的内角都相等,//AD BC,则DAB9.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可∠=____度.以得到如图2所示的正五边形ABCDE.图中,BAC10.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.11.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是_____度.12.如图,正方形MNOK和正六边形ABCDEF的边长相等,边OK与边AB重合.将正方形在正六边形内绕点B顺时针旋转,使边KM与边BC重合,则KM旋转的度数是______ °.三、解答题13.(1)若多边形的内角和为2340°,求此多边形的边数.(2)一个多边形的每个外角都相等,如果它的内角与外角的度数之比为13:2,求这个多边形的边数.14.已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.∠+∠+∠+∠+∠+∠的度数.15.如图所示,求A B C D E F16.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4.求∠CAD的度数.∠的变化情况,解答下列问题:17.观察每个正多边形中α(1)将下面的表格补充完整:(2)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.18.(1)已知:如图1,P为△ADC内一点,DP、CP分别平分∠ADC和∠ACD,如果∠A=90°,那么∠P=______°;如果∠A=x°,则∠P=____________°;(答案直接填在题中横线上)(2)如图2,P为四边形ABCD内一点,DP、CP分别平分∠ADC和∠BCD,试探究∠P与∠A+∠B的数量关系,并写出你的探索过程;(3)如图3,P为五边形ABCDE内一点,DP、CP分别平分∠EDC和∠BCD,请直接写出∠P与∠A+∠B+∠E的数量关系:________________;(4)若P为n边形A1A2A3…A n内一点,PA1平分∠A n A1A2,PA2平分∠A1A2A3,请直接写出∠P与∠A3+A4+A5+…∠A n的数量关系:__________________________.(用含n 的代数式表示)答案:1.B 2.B 3.C 4.B 5.D 6.D 7.C.8.60°.9.36°. 10.360°.11.540 12.30. 13.解:(1)设边数为n,则解得:n=15,答:边数为15;(2)每个外角度数为180°×=24°,∴多边形边数为=15,答:边数为15.14.解:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.15.解:∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,又∵∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.16.解:∵五边形的内角和是540°,∴每个内角为540°÷5=108°,∴∠E=∠B=∠BAE=108°,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=(180°-108°)÷2=36°,∴∠CAD=∠BAE-∠1-∠3=108°-36°-36°=36°.17.解:(1)正三角形中∠α=60°,正四角形中∠α=45°,正五角形中∠α=36°,正六角形中∠α=30°,(2)18021oo n,解得n 不是整数,所以不存在这样的n 值. 18.解:(1)∵DP 、CP 分别平分∠ADC 和∠ACD ,∴∠PDC=12∠ADC ,∠PCD=12∠ACD , ∴∠DPC=180°﹣∠PDC ﹣∠PCD=180°﹣12∠ADC ﹣12∠ACD =180°﹣12(∠ADC+∠ACD ) =180°﹣12(180°﹣∠A ) =90°+ 12∠A , ∴如果∠A=90°,那么∠P=135°;如果∠A=x°,则∠P=(90+2x )°; (2)∵DP 、CP 分别平分∠ADC 和∠BCD ,∴∠PDC=12∠ADC ,∠PCD=12∠BCD , ∴∠DPC=180°﹣∠PDC ﹣∠PCD=180°﹣12∠ADC ﹣12∠BCD =180°﹣12(∠ADC+∠BCD ) =180°﹣12(360°﹣∠A ﹣∠B ) =12(∠A+∠B ); (3)五边形ABCDEF 的内角和为:(5﹣2)•180°=540°,∵DP 、CP 分别平分∠EDC 和∠BCD ,∴∠PDC=12∠EDC ,∠PCD=12∠BCD , ∴∠P=180°﹣∠PDC ﹣∠PCD=180°﹣12∠EDC ﹣12∠BCD =180°﹣12(∠EDC+∠BCD ) =180°﹣12(540°﹣∠A ﹣∠B ﹣∠E ) =12(∠A+∠B+∠E )﹣90°, 即∠P=1(∠A+∠B+∠E )﹣90°;(4)同(1)可得,∠P=12(∠A 3+∠A 4+∠A 5+…∠A n )﹣(n ﹣4)×90°. 故答案为:(1)如果∠A=90°,那么∠P=135°;如果∠A=x°,则∠P=(90+2x )°(2)∠P=180°﹣∠PDC ﹣∠PCD=12(∠A+∠B )(3)∠P=12(∠A+∠B+∠E )﹣90°(4)∠P=12(∠A 3+∠A 4+∠A 5+…∠A n )﹣(n ﹣4)×90°人教版八年级数学上册《第十一章11.3多边形及内角和》课后练习(含答案)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.3 多边形及其内角和
基础过关作业
1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()
A.80° B.90° C.170° D.20°
2.一个多边形的内角和等于1080°,这个多边形的边数是()
A.9 B.8 C.7 D.6
3.内角和等于外角和2倍的多边形是()
A.五边形 B.六边形 C.七边形 D.八边形4.六边形的内角和等于_______度.
5.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.
6.如图,你能数出多少个不同的四边形?
7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?
8.求下列图形中x的值:
综合创新作业
9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?
10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?
11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.
12.(1)(2005年,南通)已知一个多边形的内角和为540°,则这个多边形为()
A.三角形 B.四边形 C.五边形 D.六边形
(2)(2005年,福建泉州)五边形的内角和等于_______度.
13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )
A.1个 B.2个 C.3个 D.4个
培优作业
14.(探究题)
(1)四边形有几条对角线?
五边形有几条对角线?
六边形有几条对角线?
……
猜想并探索:
n边形有几条对角线?
(2)一个n边形的边数增加1,对角线增加多少条?
15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的内角和增加多少度?若将n边形的边数增加1倍,则它的内角和增加多少度?
数学世界
攻其不备
壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB
除外)?
答案:
1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.
2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.
3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.
4.720
5.144°;36°
-⨯︒=144°,点拨:正十边形每一个内角的度数为:(102)180
10
每一个外角的度数为:180°-144°=36°.
6.有27个不同的四边形.
7.解:四边形的四个内角不可以都是锐角,不可以都是钝角,可以都是直角.
因为四边形的内角和为360°,如果四个内角都是锐角或都是钝角,•
则内角和小于360°或大于360°,与四边形的内角和为360°矛盾.•
所以四个内角不可以都是锐角或都是钝角.
若四个内角都是直角,则四个内角的和等于360°,与内角和定理相符,
所以四个内角可以都是直角.
8.解:(1)90+70+150+x=360.
解得x=50.
(2)90+73+82+(180-x)=360.
解得x=65.
(3)x+(x+30)+60+x+(x-10)=(5-2)×180.
解得x=115.
9.解:BE∥DF.
理由:∵∠A=∠C=90°,
∴∠A+∠C=180°.
∴∠ABC+∠ADC=360°-180°=180°.
∵∠ABE=1
2∠ABC,∠ADF=1
2
∠ADC,
∴∠ABE+∠ADF=1
2(∠ABC+∠ADC)=1
2
×180°=90°.
又∵∠ABE+∠AEB=90°,
∴∠AEB=∠ADF,
∴BE∥DF(同位角相等,两直线平行).
10.解:1
2n(n-3)=1
2
×10×(10-3)=1
2
×10×7=35(场).
答:按此规定,所有代表队要打35场比赛.
点拨:问题类似于求多边形对角线的个数.
11.解:(5-2)×180°÷360°×12=1.5.
点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的内角和.
12.(1)C 点拨:设这个多边形的边数为n,
依题意,得(n-2)×180°=540°,解得n=5,故选C.
(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C
14.解:(1)四边形有2条对角线;
五边形有5条对角线;
六边形有9条对角线;
……
n n-条对角线.
n边形有(3)
2
(2)当n边形的边数增加1时,对角线增加(n-1)条.点拨:从n边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n个顶点共可引n(n-3)条,但这些对
n n-.角线每一条都重复了一次,故n边形的对角线条数为(3)
2 15.180°,n·180°.
数学世界答案:是最短的路程.可用纸板做一个模型,沿AB剪开便可看出结论.定义:介词是一种用来表示词与词, 词与
句之间的关系的词。
在句中不能单独作句字成分。
介词后面一般有名词代词或相当于名词的其他词类,短语或从句作它的宾语。
介词和它的宾语构成介词词组,在句中作状语,表语,补语或介词宾语。
※一、表示时间的介词:
1)in , on,at 在……时
in表示较长时间,如世纪、朝代、时代、年、季节、月及一般(非特指)的早、中、晚等。
如in the 20th century, in the 1950s, in 1989, in summer, in January, in the morning, in the night, in one’s life , in one’s thirties等。
on表示具体某一天及其早、中、晚。
如on May 1st, on Monday, on New Year’s Day, on a cold night in January, on a fine morning, on Sunday afternoon等。
at表示某一时刻或较短暂的时间,或泛指圣诞节,复活节等。
如at 3:20, at this time of year, at the beginning of, at the end of …, at the age of …, at Christmas,at night, at noon, at this moment等。
注意:在last, next, this, that, some, every 等词之前一律不用介词。
如:We meet every day.
“at时间点,有on必有天,in指月季年,也和色相连”
就是说,有具体的时间点的时候用at,具体那一天用on,说到月份,季节,年份,就用in ;而且说谁穿了什么颜色的衣服的时候,也是用in XX(color)】at用于某一具体时刻或重大节日之前
①在五点钟______②在中午________③在夜晚________④在圣诞节________⑤在午夜_________
(2)on用在具体某一天或某天的上午、下午、晚上之前
①在国庆节_________②在周二晚上_________③在星期天_________
(3)in用在周、日、季节或泛指的上午、下午、晚上前
①在一周内_________②在五月_________③在夏季_________④在2009年_________⑤在下午_________
归纳总结
在初中阶段常见的固定短语
in English用英语in a minute一会儿、立刻in a short while一会儿、不久
in a hurry匆匆忙忙in danger在危险中in full全部地、详细地
in a word一句话in all总共in every case不管怎样
in the end最后in spite of尽管in person亲自。