圆锥曲线定义在高考中的应用PPT课件

合集下载

圆锥曲线定义的应用94111PPT精品文档18页

圆锥曲线定义的应用94111PPT精品文档18页

两点,若|AB|=m ,求ΔF2 AB 的周长 .
y
A
F1 o
F2 x
B
三、规律总结
1、在求轨迹方程时先利用定义判断曲线 形状可避免繁琐的计算. 2、涉及椭圆双曲线上的点与两个焦点构 成的三角形问题,常用第一定义结合正、 余弦定理来解决. 3、涉及焦点、准线、离心率、圆锥曲线上 的点中的三者,常用统一定义解决问题.
青并没有因为那天的小小不愉快,再表现出什么不高兴的和反常的举动来。108第三十四回 东伢子照面起风波|(兴冲冲前往 小树林,东伢子照面起风波;兴致全无扫兴归,小青耍小性真懊悔。)看到小青、耿英和耿直都不想再待在床上休息了,耿正 就对他们说:“我是一点儿也不累了。如果你们也不想再睡觉,不如和我一起到小树林那边去吧。咱们去告诉淋灰的人,来拉 他们的家伙什儿,顺便还可以在林子里边走一走呢!”大家都拍手称好。尤其是耿直,还高兴地蹦了一个高,大声说:“太好 了,到小树林里玩儿去喽,我看能不能抓到一只小兔子!”看他一边高兴地叫着,一边蹦跳着跑去开门了,小青笑着对耿英说: “直子小弟可真可爱啊,还顽皮呢!”耿英也笑着说:“他就是一个永远长不大的样子!”耿正高兴地一挥手,痛痛快快地大 声说:“小青姐,英子,咱们也走!”说着话,耿正领头出了过厅,忽然想起来没有带上那天卖石灰膏的头儿开的收据,就回 头对小青说:“对啦小青姐,你去向娘娘要上那个收据,我们好取回来押金!”小青恍然大悟,赶快回屋里跟姆妈要上收据, 出来了递给耿正,大家一起高高兴兴地出发了。不成想,四个人刚出院门儿,迎面就碰上了对门儿的东伢子正好挑着空水桶出 来。耿正和耿英同时向东伢子点点头打招呼:“嗨,东伢子,打水去啊?”东伢子憨厚地笑一笑,说:“啊,打水去。你们这 是要去哪里呀?”耿正和耿英还没有来得及回答呢,耿直就抢着说:“我们要去小树林里玩儿!”耿正也笑一笑,说:“我们 去小树林那边叫淋灰的人来拉他们的家伙什儿,顺便在林子里边走一走。”东伢子说:“小树林里是挺不错呢。天儿暖和了, 树上已经长出了新叶子,树下也有了小草小花儿的。走一走好哇,叫什么来着?”看他那可爱的憨厚样子,耿英忍不住笑了, 说:“你是想说‘踏青’吧?”东伢子说:“啊,对对对,踏青,踏青。春日里踏青,挺有意思的,我也很喜欢呢!”看耿正 兄妹三人和东伢子聊得很热乎,小青不乐意了。她偷偷地拽一拽耿英的衣角,大声说:“咱们快走啊,怎么说起来还没完了 呢!”耿正不解地看着小青,问:“小青姐,你这是怎么了?”小青赌气地一扭头,说:“没什么。你们去吧,我不去了,回 家去!”说着转身就要走,耿英赶快伸手拉住她,陪着笑脸说:“小青姐,这就是你的不对了。说好了一起去走一走的。你这 样赌气不去了,我们也玩儿不好啊!”抬头一看,东伢子已经很识趣儿地走了,就继续低声对她说:“人家东伢子又没有惹你, 你干吗要那样对待人家呢?”耿直也眨巴着眼睛说:“我也觉得刚才是小青姐姐不对。我很喜欢这个东伢子,他很像我们的大 壮哥哥呢!”耿直的后半句话让耿英心里一

圆锥曲线PPT优秀课件

圆锥曲线PPT优秀课件
F1
.
F0 A2 x
其中 a2 b2 c2 , a 0,b c 0 , F0 , F1, F2 是对应的焦点。 B1
(1)若三角形 F0 F1F2 是边长为 1 的等边三角形,求“果圆”的方程;
(2)若
A1 A
B1B
,求
b a
的取值范围;
解:(1)∵F0(c,0)F1(0, b2 c2 ),F2(0, b2 c2 )
①;
∵点 P1, P2 在双曲线上,∴点 P1, P2 的坐标适合方程①。
将 (3, 4
2
),
(
9 4
,
5)
分别代入方程①中,得方程组:
(4 2)2 a2
32 b2
25 a2
(
9)2 4 b2
1
1

1 a2

1 b2
1
看着整体,解得
a2 1
1 16
1

b2 9

a 2 b2
16 即双曲线的标准方程为 y2
9
16
x2 9
1。
点评:本题只要解得 a2 ,b2 即可得到双曲线的方程,没有
必要求出 a,b 的值;在求解的过程中也可以用换元思想, 可能会看的更清楚。
(4) 与双曲线 x 2 y 2 1有共同渐近线, 9 16
且过点 (3,2 3) 。
解析:(4)设所求双曲线方程为 x2 y 2 ( 0) ,
3 m
5 n
1
定义,还要知道椭 圆中一些几何要素
所以,椭圆方程为 y2 x2 1 . 与椭圆方程间的关
10 6
系。
例 2.设椭圆的两个焦点分别为 F1、、F2,过 F2 作椭圆长轴的垂线交椭圆于点 P,若△F1PF2 为

圆锥曲线定义的应用课件

圆锥曲线定义的应用课件

双曲线
• 双曲线的定义及性质 • 双曲线的标准方程 • 双曲线的渐近线
抛物线
• 抛物线的定义及性质 • 抛物线的标准方程 • 抛物线的焦点和准线
应用
• 圆锥曲线在工程、物理、化学等领域的应用 • 圆锥曲线在艺术中的应用
结语
• 圆锥曲线的重要性 • 继续深入研究圆锥曲线的意义与益处
圆锥曲线定义的应用ppt 课件
本课件介绍圆锥曲线的定义及其广泛的应用领域。探讨直线、椭圆、双曲线 和抛物线的性质、方程和应用。深入了解这一重要数学概念。
概述
• 圆锥曲线的定义 • 不同种类的圆锥曲线
直线的方程
• 直线的一般式方程和截距式方程 • 直线与圆锥曲线的交点
椭圆
• 椭圆的定义及性质 • 椭ቤተ መጻሕፍቲ ባይዱ的标准方程 • 椭圆的焦点和准线

圆锥曲线定义在高考中的应用

圆锥曲线定义在高考中的应用
1 2
3 PF2 2
9 7 3 PF1 2
y
Q
3 3 , P 2
F1
o
F2
x
x2 y2 1 12 3
2000年高考题
x2 y2 1 的焦点为F 、F ,点P (14)椭圆 1 2 9 4
为其上的动点.当 F1 PF2 为钝角时,点P
3 5 3 5 , 横坐标的取值范围是___________. 5 5
x y 双曲线 1 12 3
2
2
x2 y2 1 的焦点为F1和F2,点P在 12、椭圆 12 3
椭圆上,如果线段PF1的中点在y轴上,那么 |PF1|是|PF2|的( A.7倍
A)
C.4倍 D.3倍
B.5倍
PF2 x轴
a2 3 b 3
c
PF PF 2a 4 3
等于(
C)
1 D 4a
4 A a
1 B 2a
C 4a
1 PF p 2a 1 FQ q 2a

1 1 2a p q
y
1 x y a
2
P
F
o
Q
x
2005年高考题
(5) (文)抛物线 x
2
4 y上一点A的纵坐
标为4,则点A与抛物线焦点的距离为(
2
求 PF PM MF
min
5
y
P
P
0,1M
o
P A1,0 F 2,0
x


想一想: 什么时候用第一定义解题?
当题中出现两个焦点的字 样时,一般选用第一定义解 题

高考数学圆锥曲线的定义及应用

高考数学圆锥曲线的定义及应用

圆锥曲线的定义及应用一、圆锥曲线的定义1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。

即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。

2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。

即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。

3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

二、圆锥曲线的方程。

1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)2.双曲线:-=1(a>0, b>0)或-=1(a>0, b>0)(其中,c2=a2+b2)3.抛物线:y2=±2px(p>0),x2=±2py(p>0)三、圆锥曲线的性质1.椭圆:+=1(a>b>0)(1)X围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e=∈(0,1)(5)准线:x=±2.双曲线:-=1(a>0, b>0)(1)X围:|x|≥a, y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e=∈(1,+∞)(5)准线:x=±(6)渐近线:y=±x3.抛物线:y2=2px(p>0)(1)X围:x≥0, y∈R(2)顶点:(0,0)(3)焦点:(,0)(4)离心率:e=1(5)准线:x=-四、例题选讲:例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。

解:由题:2b=2,b=1,a=2,c==,则椭圆中心到准线的距离:==。

高三数学圆锥曲线定义应用 ppt课件

高三数学圆锥曲线定义应用 ppt课件

例题选讲
例1 、 已知两个定圆O1和O2,它们的半径分别 为1和2,且|O1O2|=4,动圆M与圆O1内切,又与 圆O2外切,建立适当的坐标系,求动圆心M的轨 迹方程,并说明轨迹是何种曲线。
[思维点拨]利用圆锥曲线定义求轨迹是一种常 用的方法
变式练习:F1、F2是椭圆
x2 y2 1(a>b>0)
例3:已知A( 11 ,3)为一定点,F为
2
x2 y2 1 双曲线的右焦点,M在双曲线右支
9 27
上移动,当|AM|+
1
|MF|最小时,求M点
2
的坐标.
[思维点拨]距离和差最值问题,常利用三角形两边之
和差与第三边之间的关系. 1 数量关系用定义来进行
转换
2
变式:设P(x,y)是椭圆
x2 a2
y2 b2
变式:求证:以双曲线的任意焦半径为直径的圆,与 以实轴为直径的圆相切.
(2a|F1F2|)}的点的轨迹。
知识精讲:
抛物线的定义:到一个定点F的距离与到一条得直 线L的距离相等的点的轨迹.
统一定义:M={P| PF e ,}0<e<1为椭圆,e>1 为双曲线,e=1为抛d物线
重点、难点:培养运用定义解题的意识
2.思维方式:等价转换思想,数形结合
特别注意:圆锥曲线各自定义的区别与联系
a2 b2
的两焦点,P是椭圆上任一点, 从任一焦点引
∠F1PF2的外角平分线的垂线,垂足为Q的轨迹 为( )
A.圆 B.椭圆 C.双曲线 D.抛物线
例2:已知双曲线 x2 y2 1 (a>0,b>
a2 b2
0),P为双曲线上任一点,∠F1PF2=θ, 求 ΔF1PF2的面积.

圆锥曲线PPT优秀课件

圆锥曲线PPT优秀课件
b2 a2 c2 2c , 显然有 PF2 F1F2 ,则 2c ,即 a a
即 e2 2e 1 0 ,解得 e 2 1
例 2.设椭圆的两个焦点分别为 F1、 、F2,过 F2 作椭圆长轴的垂线交椭圆于点 P,若△F1PF2 为 等腰直角三角形,则椭圆的离心率是
x2 y 2 1。 所以,椭圆的标准方程为 8 2
2 2 y a b 5 ,且过点 ( 2,0) ; (4)焦点在 轴上,
y 2 x2 解析: (4)设椭圆方程为 2 2 1 , a b
2 ∴ 2 1 ,∴ b2 2 , b
又∵ a 2 b 2 5 ,∴ a 2 3 ,
y 2 x2 所以,椭圆方程为 1 . 10 6
圆中一些几何要素 与椭圆方程间的关 系。
例 2.设椭圆的两个焦点分别为 F1、 、F2,过 F2 作椭圆长轴的垂线交椭圆于点 P,若△F1PF2 为 等腰直角三角形,则椭圆的离心率是
x2 y 2 解一:设椭圆方程为 2 2 1 ,依题意, a b
焦点分别为 F1 , F2 ,点 P 在双曲线的右支上,且
| PF1 | 4 | PF2 | ,则此双曲线的离心率 e 的最大值为
8 解一:由定义知 | PF1 | | PF2 | 2a ,又已知 | PF1 | 4 | PF2 | ,解得 PF1 a , 3 2 PF2 a , 在 PF1F2 中 , 由 余 弦 定 理 , 得 3
MF1 a ex0
焦半径
MF1 a ey0 MF2 a ey0
MF2 a ex0
2.双曲线
3.抛物线
第三部份:典型例题
例1.求适合下列条件的椭圆的标准方程:

(统考版)2023高考数学二轮专题复习:圆锥曲线的定义、方程与性质课件

(统考版)2023高考数学二轮专题复习:圆锥曲线的定义、方程与性质课件
________.
3 6
4
答案:
x2
(2)[2022·新高考Ⅱ卷]已知直线l与椭圆6 Nhomakorabeay2
+ =1在第一象限交于A,
3
B两点,l与x轴、y轴分别交于M,N两点,且|MA|=|NB|,|MN|=2 3,
x+ 2y-2 2=0
则l的方程为______________.
归纳总结
直线与圆锥曲线关系的求解技巧
18
16
2
x
y2
C. + =1
3
2
答案:B
x2
y2
B. + =1
9
8
2
x
D. +y2=1
2
(2)[2022·贵州毕节模拟预测]如图,唐金筐宝钿团花纹金杯出土于西
安,这件金杯整体造型具有玲珑剔透之美,充分体现唐代金银器制作
的高超技艺,是唐代金银细工的典范之作.该杯主体部分的轴截面可
以近似看作双曲线C的一部分,若C的中心在原点,焦点在x轴上,离
(1)对于弦中点问题常用“根与系数的关系”或“点差法”求解,在
使用根与系数的关系时,要注意使用条件Δ>0,在用“点差法”时,
要检验直线与圆锥曲线是否相交.
(2)椭圆
x2
a2
y2
+ 2
b
=1(a>b>0)截直线所得的弦的中点是P(x0,y0)(y0≠0),
b2 x0
则直线的斜率为- 2 .
a y0
x2
c
a
2c
2a
= 7m,所以C的离心率e= = =
F1 F2
PF1 − PF2

7m
7

2020年高考数学圆锥曲线中第二定义的三类用法(共10张PPT)

2020年高考数学圆锥曲线中第二定义的三类用法(共10张PPT)

1
2
PF22
PF1
F1F22 ,即
PF2
1 2
(e2 x02
e2 4)
x02 1
6
注意:此题有更简单的做法, 上述方法只是为了巩固焦半
径的知识
第二定义
(2)离心率问题
例2:倾斜角为
6
的直线过椭圆
x2 y2 a2 b2
1 的左焦点 ,交椭圆于A,B 两点,且有 | AF | 3 | B F | ,求椭圆的离心率.
,解得
PF2
5 4
PD
5
所以
|
PM
|
4 5
|
PF2
|
PM
PD
因此当P,M,D三点共线时 PM PD 取得最小值,最小
值为从 M到右准线的距离 MH, MH 6 16 14 55
第二定义
本次课重点需要注意三点 :
(1)是第二定义的用法; (2)是注意例2这个题目的常规做法,此外下次课会给出这种例题的常用结论; (3)需要注意焦半径的取值范围,这个范围是求离心率取值范围题目中常用的
解析:AF, B F 为左焦点上的焦半径,所以过A,B 两点
分别作垂直于准线的直线且和准线交于D,E 两点,
从B 点作 BH AD .
因为| AF | 3| B F | ,设 BF m ,则 AF 3m
又因为 AF
AD
所以 AH
BF BE
2m
e
,则
BE
BF e
m e
,
AD
AF ,
e
3m e
为双曲线的左右焦点,

|
PM
|
4 5
|
PF2

2025年高考数学总复习课件71第八章第八节第3课时圆锥曲线中的范围、最值问题

2025年高考数学总复习课件71第八章第八节第3课时圆锥曲线中的范围、最值问题
号,可以转化为函数方法求最值.
第3课时
圆锥曲线中的范围、最值问题
核心考点
提升“四能”
课时质量评价
x2 y2
(2024·临沂模拟)已知椭圆C: 2 + 2 =1(a>b>0)的左、右焦点分别为F1,F2,离
a b
6
2 3
,直线x= 2被C截得的线段长为
.
3
3
(1)求C的方程;
心率为
c
6
c2 2
2
2
1
利用基本不等式求最值
x2 y2
【例4】如图,椭圆 2 + 2 =1(a>b>0)的左、右顶点分别
a b
为A,B,过左焦点F(-1,0)的直线与椭圆交于C,D两点
(其中C点位于x轴上方),当CD垂直于x轴时,|CD|=3.
(1)求椭圆的方程;
x2 y2
解:因为椭圆 2 + 2 =1(a>b>0)的左焦点为F(-1,0),所以a2-b2=1.
解:因为e= = ,所以 2 = ,所以c2= a2.又b2=a2-c2=a2- a2 = a2,
a
3
a
3
3
3
3
2
2
2
2 -2
x
+3
y

a

a
所以椭圆的标准方程为x2+3y2=a2.由൝
解得y=±

3
x= 2,
由题可知2
a2-2
3
2 3
x2 2
2

,解得a =3,所以椭圆C的方程为 +y =1.
3
3
第3课时
圆锥曲线中的范围、最值问题
核心考点

高考二轮复习数学课件(新高考新教材)第2讲圆锥曲线的定义方程与性质

高考二轮复习数学课件(新高考新教材)第2讲圆锥曲线的定义方程与性质

答案 A
解析 如图所示,抛物线C:y2=4x的焦点坐标为F(1,0),过C上一点M作其准线
的垂线,垂足为N,若∠NMF=120°,可得|MF|=|MN|,∠NFO=∠FNM=30°.
4 3
又由|DF|=2,所以|NF|= 3 ,在等腰三角形
MNF 中,可
4
得|MF|= .
3

4
M(x0,y0),根据抛物线的定义,可得|MF|=x0+1=3,解
解析 设椭圆C的左焦点为F1,如图,连接AF1,BF1,因为|OA|=|OB|,|OF1|=|OF|,
所以四边形AF1BF为平行四边形.
又 AF⊥BF,所以四边形
π
AF1BF 为矩形,所以∠F1AF= ,则
2
|OF1|=|OF|=|OA|=2 3.
由直线 y=
π
3x 可知∠AOF=3,则|AF|=|OF|=|OA|=2
||
p=3.
P 在 x 轴的
突破点二 圆锥曲线的几何性质
命题角度1 圆锥曲线的几何性质
x2 y2
x2 y2
[例 2—1]已知双曲线 C1: 2 − 2 =1(a>0,b>0)以椭圆 C2: + =1 的焦点为顶
4
3
a
b
点,左、右顶点为焦点,则双曲线 C1 的渐近线方程为(
A. 3x±y=0
B.x± 3y=0
.
答案 (1)ACD
(2)4
解析 (1)由题意知,m>0 且 m2-1>0.由已知可得 2 --1=1,解得 m=2 或 m=1(舍去负值),故椭圆
2
C 的方程为 3
2
+ 2 =1.

高考数学25个必考点专题22圆锥曲线的统一定义省公开课一等奖百校联赛赛课微课获奖课件

高考数学25个必考点专题22圆锥曲线的统一定义省公开课一等奖百校联赛赛课微课获奖课件

yA
P
则只需|PF1|+|PA|最小即可, 即P, F1 , A三点共线.
F
O
F1 x
4 | F1 A | 4 9 16 9.
第7页
例4. 若点A 坐标为(3,2),F 为抛物线 y2=2x 焦点,点P 在抛物线上移动时, 求|PA|+|PF |最小值,并求这时P 坐标.解析y l来自dPNA
高考数学25个必考点—
解析 几何
—专题复习策略指导
圆锥曲线统一定义
第1页
例1.已知椭圆
x2 25
y2 16
1上一点B到右准线距离为10,
求B点到左焦点距离.
解析
法二
d1
10
F1
第2页
解析
解得:
∴b2=a2-c2 =12-3=9 ∴所求椭圆标准方程为:
BF1 =ed1
a b
6c0°
第3页
例2.已知A(-1,1),B(1,0),点P在椭圆上运动,x2 y2 1求|PA|+2|PB|最小值. 43
第一定义:PF1+PF2=2a.
统一定义: PF=ed.
解析
AF=3ed.
d
2d C 3dd’
第6页
例3.已知F是双曲线
x2 4
y2 12
1
左焦点,
A(1,
4),
P是双曲线右支上
动点,则|PF|+|PA|最小值为
9.
解析 F1(4, 0), |PF|-|PF1|=4. ∴|PF|+|PA|= 4+|PF1|+|PA|.
1 2
o
F
x
第8页
变1.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点F距离为5,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a4
2020年10月2日
a8或 0a2 11
x2 y2 1
3 5 9 4 x y • y 1 5 x 5 x 5
y
P2
P1 x, y
F1 5,0 o F2 5,0 x
2020年10月2日
12
2006年高考题
(5)已知△ABC的顶点B、C在椭圆 x2 y2 1上,
3
顶点A是椭圆的一个焦点,且椭圆的另外
汇报人:XXX 汇报日期:20XX年10月10日
26
双曲线 x2 y2 1
1997年高考题
12 3
12、椭圆
x2
12
y2 3
1
的焦点为F1和F2,点P在
椭圆上,如果线段PF1的中点在y轴上,那么
A |PF1|是|PF2|的( )
A.7倍 B.5倍 C.4倍 D.3倍
2020年10月2日
9
PF2 x轴
3 PF2 2
a 2 3 c 3 P1FP2F2a43
b 3
PF1
97 33 22
y
Q
P 3 ,
3 2
F1 o
F2
x
x2 y2 1
12 3
2020年10月2日
10
2000年高考题
(14)椭圆
x2 y2 1 94
的焦点为F1、F2,点P
为其上的动点.当 F1PF2 为钝角时,点P
横坐标的取值范围是____3_5_5__, _3_5_5.
x2 y2 1a0 求a的取值范围
当e=1时
抛物线
当e>1时
双曲线
2020年10月2日
3
运用第一定义解决的问题
2020年10月2日
4
1993年高考题
(12)一动圆与两圆:x2+y2=1和x2+y2-8x+12=0都
外切,则动圆圆心的轨迹为(C)
(A)抛物线 (B)圆
(C)双曲线的一支 (D)椭圆
2020年10月2日
5
第二个圆方程化为: (x4)2y24
min 求 PF PM MF min
5
y
P
P
0,1M P
o A1,0 F2,0
x
2020年10月2日
21
总结
想一想: 什么时候用第一定义解题?
当题中出现两个焦点的字
样时,一般选用第一定义解 题
2020年10月2日
22
总结
想一想: 什么时候用第二定义解题?
当题中出现一个焦点,准线字样时,
一般选用第二定义
7
Rt F1PF2 P1F2P2F2F1F22
P 1 F P 22 F 2 P 1 • P F 2 F F 1 F 2 2
P1FP2F2a4 F 1F 22c2a2b225 P1F•PF 2 2SF 1P2F 1 2P1F •P2F 1 2•21
y
P
F1 o
F2
x
2020年10月2日
8
2020年10月2日
23
练习
第一定义
1.(2004年全国Ⅰ)椭圆
x2 y2 1 4
的两个焦点F1,F2过F1
作垂直于X轴的直线与椭圆相交,一个交点为P,则 PF 2
A 3
2
B 3
C 7
2
D4
第二定义
2.(2005江苏)抛物线 y 4x2上的一点M到焦点的距离
为1,则点M的纵坐标为( )
A 17
POr1 PAPO1 AO4
PA r 2
y
P
o
2020年10月2日
A4,0
x
6
1994年高考题
(8)设F1和F2为双曲线
x2 4
y2
1的两个焦
点,点P 在双曲线上且满∠F1PF2=90°,
则△F1PF2的面积是( A)
A1 B 5 C2 D 5
2
2020年10月2日
圆锥曲线定义在高考中的应用
高二数学 高惠玲
2020年10月2日
2006年10月24日
1
复习
第一定义
椭圆第一定义:
P1FPF 2 2a F1F2
双曲线第一定义:
PF1 PF2 2a F1F2
2020年10月2日
2
第二定义
圆锥曲线统一定义:
平面内到定点的距离与到定直线的距离之比是常数e 的点的轨迹
当0<e<1时 椭圆
A 4
a
2020年10月2日
B 1 C 4 a D 1
2a
4a
17
PF 1 p 2a FQ 1 q
1 p
1 q
2a
2a
y
x2 1 y a
2020年10月2日
F
PQ
o
x
上一点A的纵坐
(6)标为4,则点A与抛物线焦点的距离为D
A10
B 32 7
7
C2 7 D 32
2020年10月2日
5
15
P2 Fec1058
d
a 8 4 dy
d 32 5
P
F1 o
F2
x
2020年10月2日
16
2000年高考题
(11)过抛物线 ya2xa0的焦点F作一直线
交抛物线于P、Q两点,若线段PF与FQ的长分
C 别是p、q,则 1 1 等于( ) pq
()
(A)2
(B) 3 焦半径公式:
(B)(C) 4
(D) 5
p y0 2
2020年10月2日
19
2004年高考题(全国Ⅳ)
16(理)设P是曲线 y24x1上的一
个动点,则点P到点 0,1 的距离与P
到Y轴的距离之和的最小值是__5___
2020年10月2日
20
y24x1
求 P P PM
PP PF
B 15
C 7
D0
16
16
8
2020年10月2日
24
总结
一.当题中出现两个焦点的字样 时,一般选用第一定义解题
二. 当题中出现一个焦点,准线 字样时,一般选用第二定义
2020年10月2日
25
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
C 一个焦点在BC边上,则△ABC的周长是( )
(A)2 3 (B)6
(C)4 3 (D)12
2020年10月2日
13
运用第二定义解决的问题
2020年10月2日
14
1989年高考题
(10)如果双曲线 x2 y2 1上一点P到它
64 36
的右焦点的距离是8,那么点P到它的右
准线的距离是( D)
相关文档
最新文档