数学考试大纲
2024 高考 数学考试大纲
![2024 高考 数学考试大纲](https://img.taocdn.com/s3/m/22e1bc5553d380eb6294dd88d0d233d4b14e3f82.png)
2024 高考数学考试大纲2024年高考数学考试大纲主要分为数与式、函数、几何与变换、统计与概率四个部分。
一、数与式1. 实数:实数的概念、实数的四则运算、有理数与无理数的关系、开方运算。
2. 立方根:立方根的概念、立方根的计算、立方根的性质。
3. 代数式与多项式:代数式的概念、等价代数式的判定、多项式的概念与多项式的次数、整除与同余等概念。
二、函数1. 函数的定义:函数的定义域、函数的值域、函数的单调性、函数的奇偶性等概念。
2. 一次函数:一次函数的定义、一次函数的图象与性质。
3. 二次函数:二次函数的定义、二次函数的图象与性质。
4. 分式函数:分式函数的定义、分式函数的图象与性质。
5. 三角函数:正弦函数、余弦函数、正切函数等三角函数的定义与性质。
6. 指数函数与对数函数:指数函数与对数函数的定义、指数函数与对数函数的图象与性质。
三、几何与变换1. 平面几何:平行线与相交线、三角形、四边形、圆等平面图形的性质与判定。
2. 立体几何:空间几何体的表面积和体积,空间点线面的位置关系等概念。
3. 解析几何:直线的方程,圆的方程,圆锥曲线的方程等解析几何的基本概念。
4. 坐标变换:平移变换、旋转变换等坐标变换的概念与性质。
四、统计与概率1. 概率初步知识:概率的基本概念,随机事件的概率等概念。
2. 统计初步知识:总体与样本的概念,数据的整理与表示方法等概念。
3. 离散型随机变量及其分布:离散型随机变量的概念,几种常见的离散型随机变量的分布等概念。
4. 二项分布及其应用:二项分布的概念,二项分布的性质等概念。
《高等数学》考试大纲
![《高等数学》考试大纲](https://img.taocdn.com/s3/m/b1c1bd86ddccda38366bafcc.png)
《高等数学》考试大纲一、考试目标及要求要求考生了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握上述各部分的基本方法。
应具有一定的抽象思维能力、逻辑推理能力、运算能力;有运用基本方法准确地计算;能综合运用所学知识分析并解决简单的实际问题。
二、考试内容及要求(一)函数、极限、连续1.考试内容(1)函数的概念及表示法、函数的有界性、单调性、周期性和奇偶性、复合函数、反函数的概念、基本初等函数的性质及其图形。
(2)数列极限与函数极限的概念、无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较、极限的四则运算、两个重要极限:0sin lim 1x x x→=,()10lim 11x x x →+=。
(3)函数连续的概念、 函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质2.考试要求(1)理解函数概念,知道函数的表示法;会求函数的定义域及函数值。
(2)掌握函数的奇偶性、单调性、周期性、有界性。
(3)理解复合函数与反函数的定义。
(4)掌握基本初等函数的性质与图像,了解初等函数的概念。
(5)理解极限概念及性质,掌握极限的运算法则。
(6)理解无穷小量与无穷大量的概念及两者的关系,掌握无穷小量的性质和无穷小量的比较。
(7)掌握两个重要极限:0sin lim 1x x x→=,()10lim 11x x x →+=。
(8)理解函数连续与间断的定义,理解函数间断点的分类,会利用连续性求极限,会判别函数间断点的类型。
(9)理解闭区间上连续函数的有界性定理、最值定理、介值定理,并会用上述定理推证一些简单命题。
(二)一元函数微分学1.考试内容导数的概念、导数的几何意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、基本初等函数的导数、导数的四则运算、复合函数、反函数、隐函数的导数的求法、高阶导数的概念和计算、微分的概念、函数可微与可导的关系、微分的运算法则及函数微分的求法、微分中值定理、洛必达(L’Hospital)法则、函数单调性、函数图形的凹凸性和拐点、函数的极值、函数最值。
数学二考试大纲
![数学二考试大纲](https://img.taocdn.com/s3/m/e44ad8d9bb0d4a7302768e9951e79b8968026882.png)
数学二考试大纲数学二考试大纲。
1.平面坐标系与函数。
1.1平面直角坐标系。
1.2函数的概念。
1.3函数的运算。
1.4函数的图像及其性质。
2.极坐标系与参数方程。
2.1极坐标系。
2.2极坐标方程。
2.3参数方程及其图形。
3.三角函数。
3.1角度与弧度。
3.2常用三角函数及其图像。
3.3三角函数的运算。
3.4反三角函数及其应用。
4.函数的极限与连续性。
4.1函数的极限概念。
4.2函数的极限集合及其性质。
4.3函数的连续性概念。
4.4连续函数的性质及其应用。
5.导数与微分。
5.1导数的定义与运算法则。
5.2高阶导数。
5.3函数的微分与微分法。
5.4高阶微分及其应用。
6.不定积分与定积分。
6.1不定积分的概念与性质。
6.2基本积分公式及其应用。
6.3定积分的概念与性质。
6.4罗尔定理与中值定理。
7.应用题型。
7.1最值、极值及其应用。
7.2反问题及其应用。
7.3常微分方程初值问题及其应用。
7.4面积、体积及其应用。
7.5函数拟合及其应用。
7.6解析几何及其应用。
7.7向量及其应用。
注:以上内容为参考,具体考试大纲以当地招生部门公布为准。
高考数学全国统一考试大纲
![高考数学全国统一考试大纲](https://img.taocdn.com/s3/m/ddd0f21bec630b1c59eef8c75fbfc77da2699723.png)
高考数学全国统一考试大纲高考数学全国统一考试大纲Ⅰ。
考试性质全国统一考试是选拔性考试,由合格的高中毕业生和具有同等学力的考生参加,高等学校依照考生的成绩,按照招生计划进行综合评估,以德、智、体、全面衡量,择优录取。
因此,考试应具有较高的信度、效度、必要的区分度和适当的难度。
Ⅱ。
考试能力要求1.平面向量考试内容包括向量、向量的加法与减法、实数与向量的积、平面向量的坐标表示、线段的定比分点、平面向量的数量积、平面两点间的距离和平移。
考生需要:1) 理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2) 掌握向量的加法和减法。
3) 掌握实数与向量的积,了解两个向量共线的充要条件。
4) 了解平面向量的差不多定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
5) 掌握平面向量的数量积及其几何意义,了解用平面向量的数量积能够处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
6) 掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,同时能够熟练运用平移公式。
2.集合、简易逻辑考试内容包括集合、子集、补集、交集、并集、逻辑联结词、四种命题、充分条件和必要条件。
考生需要:1) 理解集合、子集、补集、交集、并集的概念。
了解空集和全集的意义。
了解属于、包含、相等关系的意义。
掌握有关的术语和符号,并能正确表示一些简单的集合。
2) 理解逻辑联结词“或”、“且”、“非”的含义。
理解四种命题及其相互关系。
掌握充分条件、必要条件及充要条件的意义。
3.函数考试内容包括映射、函数、函数的单调性、奇偶性、反函数、互为反函数的函数图像间的关系、指数概念的扩充、有理指数幂的运算性质、指数函数、对数、对数的运算性质、对数函数和函数的应用。
考生需要:1) 了解映射的概念,理解函数的概念。
2) 了解函数单调性、奇偶性的概念,掌握判定一些简单函数的单调性、奇偶性的方法。
3) 了解反函数的概念及互为反函数的函数图像间的关系,能够求一些简单函数的反函数。
中考数学试卷大纲
![中考数学试卷大纲](https://img.taocdn.com/s3/m/619ab95a02d8ce2f0066f5335a8102d276a2613d.png)
一、试卷结构1. 试卷总分:满分120分,考试时间120分钟。
2. 试卷结构:分为选择题、填空题、解答题三大块。
二、选择题(共20题,每题2分,满分40分)1. 数与代数(1)实数的运算及性质(2)一元一次方程及不等式(3)二元一次方程组(4)一元二次方程及根的判别式(5)函数及其性质2. 几何与代数(1)三角形、四边形及相似、全等(2)圆及圆的性质(3)平面直角坐标系与坐标计算(4)解析几何基础3. 统计与概率(1)平均数、中位数、众数(2)频率分布表(3)概率计算(4)随机事件三、填空题(共10题,每题3分,满分30分)1. 完成实数的运算2. 求一元一次方程的解3. 求二元一次方程组的解4. 求一元二次方程的解5. 求函数的值6. 判断三角形的性质7. 求圆的面积8. 在平面直角坐标系中求点的坐标9. 求概率10. 求平均数、中位数、众数四、解答题(共5题,每题10分,满分50分)1. 数与代数(一元二次方程、函数)题目:已知一元二次方程ax^2+bx+c=0(a≠0)的解为x1和x2,求:(1)若x1+x2=5,求a、b、c的值;(2)若x1x2=4,求a、b、c的值。
2. 几何与代数(三角形、四边形)题目:已知在三角形ABC中,AB=AC,BC=5cm,求:(1)求三角形ABC的面积;(2)求角B的度数。
3. 统计与概率题目:某班级有30名学生,成绩如下表所示:成绩区间 | 人数——|——0-60 | 560-70 | 1070-80 | 1080-90 | 590-100 | 0求:(1)求该班级的平均成绩;(2)求该班级的中位数;(3)求该班级的众数。
4. 综合题题目:已知平面直角坐标系中,点A(2,3),点B(-1,2),求:(1)直线AB的方程;(2)点C(x,y)在直线AB上,且AC的长度为5,求点C的坐标。
5. 应用题题目:某工厂生产一批产品,每天产量为100件,成本为1000元,售价为200元。
高等数学(一)考试大纲
![高等数学(一)考试大纲](https://img.taocdn.com/s3/m/08ac2531011ca300a6c390f2.png)
高等数学(一)考试大纲一、考试性质二、考试目标《高等数学》专升本入学考试注重考察学生基础知识、基本技能和思维能力、运算能力、以及分析问题和解决问题的能力。
三、考试内容和基本要求一、函数、极限与连续(一)考试内容函数的概念与基本特性;数列、函数极限;极限的运算法则;两个重要极限;无穷小的概念与阶的比较;函数的连续性和间断点;闭区间上连续函数的性质。
(二)考试要求1.理解函数的概念,了解函数的奇偶性、单调性、周期性、有界性。
了解反函数的概念;理解复合函数的概念。
理解初等函数的概念。
会建立简单实际问题的函数关系。
2.理解数列极限、函数极限的概念(不要求做给出ε,求N或δ的习题);了解极限性质(唯一性、有界性、保号性)和极限的两个存在准则(夹逼准则和单调有界准则)。
3.掌握函数极限的运算法则;熟练掌握极限计算方法。
掌握两个重要极限,并会用两个重要极限求极限。
4.了解无穷小、无穷大、高阶无穷小、等价无穷小的概念,会用等价无穷小求极限。
5.理解函数连续的概念;了解函数间断点的概念,会判别间断点的类型(第一类与第二类)。
6.了解初等函数的连续性;了解闭区间上连续函数的性质,会用性质证明一些简单结论。
二、导数与微分(一)考试内容导数概念及求导法则;隐函数与参数方程所确定函数的导数;高阶导数;微分的概念与运算法则。
(二)考试要求1.理解导数的概念及几何意义,了解函数可导与连续的关系,会求平面曲线的切、法线方程;2.掌握导数的四则运算法则和复合函数的求导法则;掌握基本初等函数的求导公式,会熟练求函数的导数。
3.掌握隐函数与参数方程所确定函数的求导方法(一阶);掌握取对数求导法。
3.了解高阶导数的概念,掌握初等函数的一阶、二阶导数的求法。
会求简单函数的n 阶导数。
4.理解微分的概念,了解微分的运算法则和一阶微分形式不变性,会求函数的微分。
三、中值定理与导数应用(一)考试内容罗尔中值定理、拉格朗日中值定理;洛必达法则;函数单调性与极值、曲线凹凸性与拐点。
单考数学考试大纲
![单考数学考试大纲](https://img.taocdn.com/s3/m/edf03e23de80d4d8d15a4fc4.png)
711单考数学考试大纲一、考试内容高等数学、线性代数二、高等数学部分的考试大纲(一)函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 简单应用问题函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:e x x x x x x =⎪⎭⎫ ⎝⎛+=∞→→11lim ,1sin lim 0 函数连续的概念 函数间断点的类型 初等函数的连续性、闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,并会建立简单应用问题的函数关系式。
2. 了解函数的有界性、单调性、周期性和奇偶性。
3. 理解复合函数及分段函数概念,了解反函数及隐函数的概念。
4. 掌握基本初等函数的性质及其图形,了解初等函数的概念。
5. 理解极限的概念,理解函数的左极限与右极限概念,以及函数极限存在与左、右极限之间的关系。
6. 掌握极限的性质及四则运算法则。
7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限的方法。
9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
(二)一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数和微分的四则运算 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值考试要求1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
《小学数学考试大纲》
![《小学数学考试大纲》](https://img.taocdn.com/s3/m/f822257ade80d4d8d15a4fef.png)
《小学数学考试大纲》第一部分学科专业基础一、集合和简易逻辑(一)考试内容集合;子集;交集、并集;补集;逻辑联结词;四种命题;充分条件和必要条件(二)考试要求1.理解集合、子集、交集、并集、补集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用他们正确表示一些简单的集合。
2.理解逻辑联接词“或”、“且”、“非”的含义;理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义二、函数(一)考试内容对应于映射;函数概念;函数表示法和函数图象;函数的单调性、奇偶性;反函数;互为反函数的函数图象间的关系;分数指数幂;有理数指数幂的运算性质;幂函数;指数函数;对数;对数的运算性质;对数函数;函数的应用(二)考试要求1.了解对应于映射的概念;理解函数的概念;掌握函数的表示法。
2.了解函数的单调性、奇偶性的概念;掌握判断一些简单函数的单调性、奇偶性的方法3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数4.理解分数指数幂的概念;掌握有理数指数幂的运算性质;了解幂函数、指数函数的概念、图象和性质5.理解对数的概念,掌握对数的运算性质;了解对数函数的概念、图象、性质6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题三、数列(一)考试内容数列;等差数列及其通项公式;等差数列前n项和公事;等比数列及其通项公式;等比数列前n项和公式(二)考试要求1.理解数列的概念;理解数列通项公式的意义;了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项2.理解等差数列的概念;掌握等差数列的通项公式与前几项和公式,并能解决简单的实际问题3.理解等比数列的概念;掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题四、三角函数(一)考试内容角的概念的推广;弧度制;任意角的三角函数;单位圆中的三角函数线;同角三角函数的基本关系式:tanαcot α=1;正弦、余弦的诱导公式;两角和与差的正弦、余弦、正切;二倍角的正弦、余弦、正切;正弦函数、余弦函数的图象和性质;周期函数;函数的图象;正切函数的图象和性质;已知三角函数值求角;正弦定理、余弦定理;斜三角形解法(二)考试要求1.了解任意角的概念、弧度的意义;能正确地进行弧度与角度的换算2.理解任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;3.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式4.能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明5.了解正弦函数、预选函数、正切函数的图象和性质、会用“五点法”画正弦函数、预先函数和函数y=Asin(wx+Φ)的简图6.会由已知三角函数值求角,并会用符号arcsinx,arccosx,arctanx表示7.掌握正弦定理、余弦定理,并能初步运用他们解斜三角形五、不等式(一)考试内容不等式;不等式的基本性质;不等式的证明;含绝对值的不等式;不等式的解法(二)考试要求1.理解不等式的性质及其证明2.掌握两个正数的算数平均数不小于它们的几何平均数的定理,并会简单的应用3.掌握分析法、综合法、比较法证明简单的不等式4.掌握简单不等式的解法5.理解不等式|a|-|b|≤a+b≤|a|+|b|六、复数(一)考试内容复数的概念;复数的向量表示;复数的加法与减法;复数的乘法和除法;复数的三角形形式(二)考试要求1.了解引入复数的必要性;理解复数的有关概念;掌握复数的代数表示、几何表示;了解复数的向量表示2.掌握复数的代数形式的加法、减法、乘法、除法的运算3.掌握复数的三角形式七、数集(一)考试内容数的概念的发展;整数集;有理数集;无理数的引入;复数集(二)考试要求1.掌握自然数集、整数集、有理数集、实数集和复数集之间的关系2.理解自然数集、整数集和有理数集的性质;了解实数集、复数集的性质八、向量代数与空间解析几何(一)考试内容空间直角坐标系与向量的概念;向量的向量积与数量积;线段的定比分点;平面与直线;曲面与空间曲线(二)考试要求1.理解空间直角坐标系的概念;熟练掌握两点间距离公式;会确定空间点的坐标2.理解向量的概念;掌握向量的线性运算、数量积及向量积等运算方法;掌握判断向量平行或垂直的条件;会求向量的模、方向余弦及两向量间的夹角3.掌握线段的定比分点和中点坐标公式4.理解平面方程的概念;熟练掌握平面的点法式方程、一般方程;会判断两平面间的位置关系,并会建立平面方程5.理解空间直线的概念;熟练掌握直线的标准方程、参数方程及一般方程;会判断两直线的位置关系、并会建立直线方程6.了解一些常见的曲线方程、曲面方程九、直线和圆的方程(一)考试内容直线的倾斜角与斜率;直线的方程(点斜式、两点式、直线方程的一般式);两条直线的位置关系(平行与垂直的条件、两条直线的交角、点到直线的距离);简单的线性规划问题;曲线与方程的概念;由已知条件求曲线方程;圆的标准方程和一般方程;圆的参数方程(二)考试要求1.理解直线的倾斜角和斜率的概念;掌握过两点的直线的斜率公式;掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程2.掌握两条直线平行于垂直的条件,两条直线所称的角和颠倒直线的举例公式;能改也根据直线的翻唱歌和那个判断两条直线的位置关系3.了解二院一次不等式表示平面区域及线性规划的意义,并会简单的应用。
2024年数学二考研考试大纲
![2024年数学二考研考试大纲](https://img.taocdn.com/s3/m/8396dacaa1116c175f0e7cd184254b35eefd1ac2.png)
2024年数学二考研考试大纲如下:一、高等数学1. 函数与极限2. 导数与微分3. 积分4. 常微分方程5. 多元函数微分学6. 多元函数积分学7. 级数8. 空间解析几何9. 向量代数与解析几何10. 多元函数的极值与最值11. 重积分12. 曲线积分与曲面积分13. 场论初步二、线性代数1. 行列式2. 矩阵3. 向量空间4. 线性变换5. 特征值与特征向量6. 二次型7. 正定二次型8. 线性方程组9. 矩阵的对角化10. 实对称矩阵的对角化11. 二次型的标准形与规范形12. 二次型的正定性判定13. 线性空间的基本概念14. 线性空间的同构与基变换15. 线性空间的维数与基16. 线性空间的子空间17. 线性空间的直和与交和18. 线性空间的同态与同构19. 线性空间的泛性质20. 线性空间的完备性与距离21. 线性空间的内积空间22. 内积空间的基与正交性23. 内积空间的正交分解与标准正交基24. 内积空间的谱定理25. 内积空间的算子与本征值问题26. 内积空间的特征值与特征向量问题27. 内积空间的正定性判定问题28. 内积空间的紧性与完备性问题29. 内积空间的Hilbert空间问题30. 内积空间的Banach空间问题31. 内积空间的弱拓扑问题32. 内积空间的弱*拓扑问题33. 内积空间的弱收敛问题34. 内积空间的弱*收敛问题35. 内积空间的弱*一致收敛问题36. 内积空间的弱*可积问题37. 内积空间的弱*可测问题38. 内积空间的弱*连续问题39. 内积空间的弱*有界问题40. 内积空间的弱*紧性问题41. 内积空间的弱*完备性问题42. 内积空间的弱*Hilbert空间问题43. 内积空间的弱*Banach空间问题。
高考数学(文科)考试大纲
![高考数学(文科)考试大纲](https://img.taocdn.com/s3/m/8eb830970129bd64783e0912a216147917117ece.png)
高考数学(文科)考试大纲以下是高考数学(文科)考试大纲:一、考试内容本科目考试内容分为数与式、函数与方程、三角函数与解三角形、解析几何、数列与数学归纳法、概率与统计和数学思想方法等七个部分。
二、考试形式本科目考试采取笔试形式。
三、考试时间考试时间为 120 分钟。
四、知识点1.数与式1.1 数的基本概念1.2 数的运算与性质1.3 数的应用1.4 算式的基本概念1.5 算式的运算1.6 算式的应用2.函数与方程2.1 函数的基本概念2.2 常用函数的性质2.3 函数的图像与性质2.4 函数的应用2.5 方程的基本概念2.6 一元一次方程及应用2.7 一元二次方程及应用2.8 二元一次方程组及图像2.9 其他代数方程及应用3.三角函数与解三角形3.1 角的基本概念3.2 三角函数的定义与性质3.3 三角函数的图像与性质3.4 解三角形4.解析几何4.1 解析几何基本概念4.2 二维坐标系与图形4.3 三维坐标系与图形4.4 平面解析几何4.5 空间解析几何5.数列与数学归纳法5.1 数列的基本概念5.2 数列的通项公式和递推公式5.3 数列的分类5.4 数学归纳法6.概率与统计6.1 概率的基本概念6.2 概率的计算方法6.3 统计的基本概念6.4 统计的数据处理方法7.数学思想方法7.1 数学证明的基本方法7.2 数学建模的基本方法7.3 数学探究的基本方法7.4 数学推理的基本方法以上是高考数学(文科)考试大纲的全文。
数学(二)考试大纲
![数学(二)考试大纲](https://img.taocdn.com/s3/m/d26f20c19f3143323968011ca300a6c30c22f104.png)
数学(二)考试大纲
本次考试主要涵盖以下内容:
1. 函数与极限
2. 导数与微分
3. 积分与应用
4. 常微分方程
5. 线性代数
6. 概率论与数理统计
7. 离散数学
考试形式:
1. 开卷考试,但不得使用电子设备。
2. 考试时间为3小时。
3. 考试形式为笔试,题型包括选择题、填空题、计算题和证明题等。
4. 考试满分为100分。
考试目标:
1. 熟练掌握函数与极限、导数与微分、积分与应用、常微分方程、线性代数、概率论与数理统计和离散数学等基本概念、理论和方法,并能运用所学知识解决实际问题。
2. 具备数学分析能力和创新思维,能够理解和运用数学方法分析和解决实际问题。
3. 具备科学素养和科学态度,遵守学术道德规范,诚实守信,不作弊行为。
小学数学教案考试大纲
![小学数学教案考试大纲](https://img.taocdn.com/s3/m/3f2450268f9951e79b89680203d8ce2f006665f6.png)
小学数学教案考试大纲
课程名称:小学数学
教学目标:通过本次考试,检测学生对小学数学知识的掌握程度,促进学生的数学思维能
力的提升。
一、知识范围:
1. 算术:加减乘除、四则运算、进位借位等。
2. 几何:图形的认知、平面图形的辨认和性质、空间图形的认知等。
二、考试形式:
1. 选择题:分为单选题和多选题,考查学生对数学概念的理解和掌握能力。
2. 填空题:考查学生对计算能力的掌握和应用能力。
3. 解答题:考查学生对数学问题的分析解决能力。
三、考试内容:
1. 算术:加减乘除的应用、进位借位的规则等。
2. 几何:图形的辨认和性质、简单的空间图形的认知等。
四、考试要求:
1. 学生需认真复习课堂知识,掌握基本算术和几何概念。
2. 考试时需认真审题,准确表达答案。
3. 考试过程中不得互相交谈,不得抄袭他人答案。
五、评分标准:
1. 选择题每题1分,填空题每题2分,解答题根据答案的完整性和合理性进行打分。
六、考试时间:60分钟
※※※※※※※※※※※※※
本次考试旨在检验学生对数学知识的掌握程度和思维能力的提升,希望学生们能充分准备,发挥出自己的潜力,取得优异的成绩。
祝各位同学考试顺利!。
小学数学考试大纲
![小学数学考试大纲](https://img.taocdn.com/s3/m/b34b1cc52cc58bd63186bd27.png)
第一部分学科专业基础一、函数的极限和连续(一)考试内容函数及其性质;初等函数;数列的极限和函数的极限;极限的性质;无穷小量和无穷大量;两个重要极限;函数的连续与间断;初等函数的连续性;(二)考试要求1.理解函数的概念;掌握函数的表示法及函数的性质。
2.了解函数的几种简单性质,会判断函数的有界性、奇偶性。
掌握基本初等函数及其图形的有关知识。
3.掌握数列极限的概念;并能运用ε-N语言处理极限问题。
4.理解函数极限的概念;并能应用ε-δ, ε-M语言处理极限问题;了解函数的左、右极限;掌握函数极限的性质。
5.了解无穷小量、无穷大量的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
6.了解夹挤定理和单调有界定理,掌握用两个重要极限公式求极限的方法。
7.理解一元函数连续性,掌握函数间断点及其分类。
8.了解初等函数的连续性,能正确叙述和简单应用闭区间上连续函数的性质。
二、导数与微分(一)考试内容导数的概念;导数的运算法则;初等函数的导数;高阶导数;隐函数与参数方程确定的函数的导数;微分及应用。
(二)考试要求1.理解导数的概念和导数的几何意义,了解函数的可导性与连续性之间的关系。
2.求曲线上一点处的切线方程与法线方程。
3.掌握求导数的基本公式、导数的四则运算法则及复合函数的求导方法。
4.掌握求隐函数及由参数方程所确定函数的一、二阶导数的方法,会使用对数求导法。
5.了解高阶导数的概念,会求初等函数的二阶导数。
6.掌握微分运算法则,会求函数的微分。
三、微分中值定理及应用(一)考试内容:微分中值定理;洛必塔法则;函数的单调性和极值;函数图象的描绘。
(二)考试要求:1.了解罗尔定理、拉格朗日中值定理,会用罗尔定理证明简单的等式。
2.掌握应用洛必达法则求常见未定式的极限。
3.掌握利用导数判定函数的单调性及求函数的单调增、减区间。
会利用单调性证明不等式。
4.掌握求函数极值的方法。
会解简单的最大(小)值的应用问题。
会判定曲线的凹凸性,会求曲线的拐点,会画出一些常见的函数图像。
301数学一考试大纲
![301数学一考试大纲](https://img.taocdn.com/s3/m/06c1cc994028915f814dc252.png)
301数学一考试大纲一、高等数学(一)函数极限连续1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.(二)一元函数微分学1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数. 5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理. 6.掌握用洛必达法则求未定式极限的方法. 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用. 8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。
当f''(x)>0 时,f(x) 的图形是凹的;当f"(x) <0时,f(x) 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.(三)一元函数积分学考试要求1.理解原函数的概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式和简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式. 5.了解反常积分的概念,会计算反常积分. 6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.(四)向量代数和空间解析几何考试要求1.理解空间直角坐标系,理解向量的概念及其表示. 2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件. 3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法. 4.掌握平面方程和直线方程及其求法. 5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题. 6.会求点到直线以及点到平面的距离. 7.了解曲面方程和空间曲线方程的概念. 8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程. 9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程. (五)多元函数微分学考试要求1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质. 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性. 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,会求多元隐函数的偏导数. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程. 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.(六)多元函数积分学考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理. 2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标). 3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).(七)无穷级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件. 2.掌握几何级数与级数的收敛与发散的条件. 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法. 4.掌握交错级数的莱布尼茨判别法. 5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系. 6.了解函数项级数的收敛域及和函数的概念. 7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法. 8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和. 9.了解函数展开为泰勒级数的充分必要条件. 10.掌握,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数. 11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.(八)常微分方程考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程及一阶线性微分方程的解法. 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程. 4.会用降阶法解下列形式的微分方程: . 5.理解线性微分方程解的性质及解的结构. 6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程. 7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程. 8.会解欧拉方程. 9.会用微分方程解决一些简单的应用问题.二、线性代数(一)行列式考试内容:行列式的概念和基本性质行列式按行(列)展开定理考试要求:1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.(二)矩阵考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵等价分块矩阵及其运算考试要求:1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.(三)向量考试内容:向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间以及相关概念n维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求:1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.(四)线性方程组考试内容: 线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.(五)矩阵的特征值及特征向量考试内容: 矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及相似对角矩阵考试要求: 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. 2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.(六)二次型考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求:1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法三、概率论与数理统计(一)随机事件和概率考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求:1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.(二)随机变量及其分布考试内容:随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求:1.理解随机变量的概念.理解分布函数的概念及性质.会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为λ(λ>0)的指数分布的概率密度为5.会求随机变量函数的分布.(三)多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件. 3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.(四)随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2.会求随机变量函数的数学期望.(五)大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律) . 3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理) . (六)数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.(七)参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.(八)假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验。
数学一考试大纲2024
![数学一考试大纲2024](https://img.taocdn.com/s3/m/6b3383a4534de518964bcf84b9d528ea80c72f61.png)
数学一考试大纲2024如下:
1. 函数与极限
- 函数的概念、性质和分类
- 极限的概念、性质和计算方法
- 连续函数、间断点和导数的概念
- 导数的计算方法和应用
2. 微分学
- 微分的概念、性质和计算方法
- 高阶导数的计算方法和应用
- 微分中值定理和泰勒公式的应用
- 洛必达法则和夹逼定理的应用
3. 积分学
- 不定积分和定积分的概念、性质和计算方法
- 牛顿-莱布尼茨公式的应用
- 换元积分法、分部积分法和有理化根式法的应用
- 定积分的应用,如曲线长度、曲线面积、旋转体的体积等
4. 多元函数微分学
- 多元函数的概念、性质和偏导数的计算方法
- 隐函数的求导和全微分的计算方法
- 多元复合函数的求导法则和应用
- 梯度、散度和旋度的概念、性质和计算方法
5. 多元函数积分学
- 二重积分和三重积分的概念、性质和计算方法
- 曲线积分和曲面积分的概念、性质和计算方法
- Green公式、Gauss公式和Stokes公式的应用
- 重积分的应用,如质量、质心、转动惯量等
6. 常微分方程
- 常微分方程的基本概念和解的存在唯一性条件
- 一阶常微分方程的解法,如可分离变量、齐次方程、线性方程等
- 二阶常微分方程的解法,如特征方程、常系数非齐次方程等
- 高阶常微分方程的解法,如幂级数解法等
7. 概率论与数理统计
- 随机事件与概率的基本概念、性质和运算法则
- 随机变量及其分布函数、密度函数和期望值等概念和性质
- 多维随机变量及其联合分布函数、边缘分布函数和条件分布函数等概念和性质- 参数估计和假设检验的基本思想和方法。
数学自命题考试大纲高等数学
![数学自命题考试大纲高等数学](https://img.taocdn.com/s3/m/a562009369dc5022aaea00b9.png)
数学(自命题)考试大纲高等数学一、函数、极限、连续考试内容函数的概念及表示法;函数的有界性、单调性、周期性和奇偶性;反函数、复合函数、分段函数和隐函数;基本初等函数的性质及其图形;初等函数;函数关系的建立数列极限和函数极限的概念及其性质;左、右极限的概念;无穷小量和无穷大量的概念及其关系;平面曲线的水平渐近线和垂直渐近线;无穷小量的比较;极限的四则运算法则;无穷小和有界量乘积的运算法则;单调有界收敛准则、夹逼准则;两个重要极限函数的连续点和左、右连续的概念及其关系;函数的间断点概念及类型;初等函数的连续性;有限闭区间上连续函数的最值定理及有界性定理、介值定理及零点存在定理定理考试要求1.理解函数概念,掌握函数的表示法,了解函数的有界性、单调性、周期性和奇偶性,会建立应用问题中的函数关系.2.理解复合函数、分段函数和隐函数的概念,了解反函数的概念,掌握基本初等函数的图形及性质,掌握初等函数的概念及分解.3.了解数列极限的概念及四则运算法则,理解函数极限(含左、右极限)的概念及四则、复合运算法则,掌握极限的唯一性、有界性和保号性.4.理解极限的单调有界收敛准则和夹逼准则,掌握利用两个重要极限求数列、函数极限的方法.5.了解无穷小量和无穷大量的概念,掌握无穷小量的比较方法、无穷小量和无穷大量的关系,会求平面曲线的水平渐近线和垂直渐近线.6.理解函数的连续性和间断点的概念,掌握利用左、右连续判断函数在一点连续的方法,会利用左、右极限判断间断点的类型.7.了解连续函数的性质及初等函数的连续性,理解有限闭区间上连续函数的有界性和最大值、最小值定理,掌握有限闭区间上连续函数的介值定理和零点存在定理.二、一元函数微分学考试内容导数、微分的概念与几何意义;函数可导性、可微性与连续性的关系;基本初等函数的导数公式导数和微分的四则运算法则;反函数与复合函数求导法则;隐函数求导法则;高阶导数的概念及计算微分中值定理;洛必达法则;平面曲线的切线和法线;函数的单调性与极值及最大值、最小值;曲线的凹凸性与拐点考试要求1.了解导数的概念及其几何意义,理解可导性与连续性的关系,会求平面曲线的切线方程与法线方程.2. 了解反函数的求导法则,掌握基本初等函数的导数公式、导数的四则运算法则、复合函数求导法则,会求隐函数、分段函数的导数.3.了解高阶导数的概念,会求复合函数及隐函数的二阶导数.4.了解微分的概念及导数与微分的关系,会求函数的微分.5.理解罗尔定理和拉格朗日中值定理,会用洛必达法则求未定式的极限.6. 理解函数极值与曲线拐点的概念,掌握函数单调性与曲线凹凸性的判别法,掌握极值的必要条件和充分条件,会求函数的最大值、最小值及曲线拐点.三、一元函数积分学考试内容原函数、不定积分的概念及基本性质;不定积分的基本公式(13个);换元积分法和分部积分法定积分的概念及基本性质;积分上限函数及其导数;定积分基本公式(牛顿—莱布尼兹);换元积分法和分部积分法;反常积分;定积分的几何应用考试要求1.理解原函数、不定积分的概念,掌握不定积分的基本性质、不定积分的基本公式(13个)、换元积分法和分部积分法.2. 理解定积分的概念及基本性质,了解定积分的中值定理,掌握积分上限函数的导数、牛顿—莱布尼兹公式、定积分的换元积分法和分部积分法.3.会用定积分计算平面图形的面积和旋转体的体积.4.理解无穷区间上反常积分的概念,会求无穷区间上的反常积分.四、空间解析几何考试内容空间向量的概念;空间直角坐标系;向量的坐标表示、模、方向角和方向余弦;向量的数量积和向量积;空间平面和直线考试要求1.了解空间向量的坐标表示,理解向量的模、方向角和方向余弦的概念,掌握向量的数量积、向量积的计算及应用.2. 理解空间平面方程的概念及平面之间的位置关系,掌握平面方程的求法,会求点到平面的距离.3. 理解空间直线方程的概念、直线之间的位置关系、直线与平面之间的位置关系,掌握直线方程的求法,会求直线和平面的交点.五、多元函数微积分学考试内容多元函数的概念;二元函数的几何意义、极限与连续;多元函数偏导数和全微分的概念与计算;二阶偏导数;多元复合函数和隐函数的求导法偏导数的几何应用;多元函数的极值和条件极值二重积分的概念及基本性质;二重积分的计算考试要求1.了解多元函数的概念,理解二元函数的几何意义,掌握二元函数极限和连续的概念及求法.2.理解多元函数偏导数和全微分的概念,掌握多元复合函数和隐函数的一阶、二阶偏导数的求法;会求多元函数的全微分.3. 掌握多元函数极值的必要条件和充分条件,会求多元函数的极值,会用拉格朗日乘数法求条件极值,会求空间曲线的切线和法平面方程,会求空间曲面的切平面和法线方程.4.了解二重积分的概念和基本性质,掌握在直角坐标和极坐标系下计算二重积分的方法,会用二重积分计算曲顶柱体的体积.六、常微分方程考试内容常微分方程的基本概念;可分离变量的微分方程;一阶线性微分方程; 二阶常系数齐次线性微分方程考试要求1.了解微分方程及其阶数、通解、初始条件和特接的概念.2. 掌握可分离变量的微分方程和一阶线性微分方程的求解.3. 会求二阶常系数齐次线性微分方程的通解和特阶.。
2024年高考数学考试大纲
![2024年高考数学考试大纲](https://img.taocdn.com/s3/m/67efad2a82c4bb4cf7ec4afe04a1b0717fd5b30a.png)
2024年高考数学考试大纲本部分包括必考内容和选考内容两部分,必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”等3个专题。
(一) 必考内容与要求1.集合(1) 集合的含义与表示①了解集合的含义、元素与集合的属于关系。
②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。
(2) 集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。
②在具体情境中,了解全集与空集的含义。
(3) 集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
③能使用韦恩(Venn)图表达集合的关系及运算。
2.函数概念与基本初等函数I (指数函数、对数函数、幂函数)(1) 函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。
③了解简单的分段函数,并能简单应用。
④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。
⑤会运用函数图像理解和研究函数的性质。
(2) 指数函数①了解指数函数模型的实际背景。
②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。
③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点。
④知道指数函数是一类重要的函数模型。
(3) 对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点。
③知道对数函数是一类重要的函数模型。
④了解指数函数与对数函数互为反函数(a>0,且a≠1 )。
(4) 幂函数①了解幂函数的概念。
2024新高考数学考纲
![2024新高考数学考纲](https://img.taocdn.com/s3/m/706c7908ce84b9d528ea81c758f5f61fb73628e9.png)
2024年新高考数学考纲一、数学基础知识数学基础知识是高考数学考试的重要内容,涵盖了代数、几何、概率与统计等多个方面。
考生需要掌握以下内容:1. 代数部分:(1)函数:包括函数的定义、函数的性质(单调性、奇偶性、周期性等)、函数的应用等。
(2)数列:包括等差数列、等比数列的通项公式、求和公式等。
(3)不等式:包括不等式的性质、不等式的解法、不等式的证明等。
(4)解析几何:包括直线、圆、椭圆、双曲线的方程和性质等。
2. 几何部分:(1)平面几何:包括三角形、四边形、圆等图形的性质和判定等。
(2)立体几何:包括空间点、线、面的关系,空间几何体的性质和判定等。
3. 概率与统计部分:(1)概率:包括事件的概率、独立事件的概率、条件概率等。
(2)统计:包括数据的收集、整理、分析、描述等。
二、几何与空间几何与空间部分主要考察考生的空间想象能力和逻辑推理能力,考生需要掌握以下内容:1. 平面几何:包括三角形的重心坐标、四边形的对角线长度相等、圆的半径相等等基本性质。
2. 立体几何:包括空间点、线、面的关系,空间几何体的性质和判定等。
在解题过程中,考生需要能够将几何问题转化为代数问题,运用方程的思想解决几何问题。
3. 解析几何:包括直线与圆的位置关系,椭圆、双曲线和抛物线的方程和性质等。
在解题过程中,考生需要能够将几何问题转化为代数问题,运用方程的思想解决几何问题。
4. 空间向量:包括空间向量的加减运算、数乘运算、数量积运算等基本运算规则。
在解题过程中,考生需要能够运用空间向量的运算规则解决空间位置关系问题。
5. 图形变换:包括平移变换、旋转变换等基本变换规则。
在解题过程中,考生需要能够运用图形变换的规则解决几何作图和判断问题。
6. 圆的性质:包括圆的标准方程、一般方程和参数方程的求法,直线与圆的位置关系等。
在解题过程中,考生需要能够运用圆的性质解决直线与圆的位置关系问题。
数学一考试大纲
![数学一考试大纲](https://img.taocdn.com/s3/m/f0ecc61e650e52ea551898a8.png)
高 等 数 学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x xx →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭ 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学考试大纲
第一部分代数
一、函数
1.了解集合的意义及其表示方法,了解集合运算的概念及其表示方法,会表示集合与集合之间的关系.
2.了解函数的概念,会求函数的定义域.
3.掌握增函数、减函数及奇函数、偶函数的图象特征.
4.理解一次、二次函数的概念,掌握它们的图象和性质;会求它们的解析式,并会求二次函数的最大值和最小值.
5.了解反函数的定义,会求简单函数的反函数.
6.掌握指数函数、对数函数的运算法则,掌握它们的图象和性质,并能用其解决有关问题.
二、不等式和不等式组
1.理解不等式的性质,会解一元一次及一元二次不等式和不等式组.
2.了解绝对值不等式的性质,会求解简单的绝对值不等式.
三、数列
1.了解数列及其有关概念.
2.理解等差数列的概念,会灵活运用等差数列的通项公式、前项求和公式解决有关问题.
3.理解等比数列的概念,会灵活运用等比数列的通项公式、前项求和公式解决有关问题.
四、复数
1.理解复数的有关概念,了解复数的三角形式,会进行复数的代数形式与三角形式的互化.
2.会进行复数的加、减、乘、除、乘方、开方六大类运算.
五、导数
1.了解极限的概念及四则运算法则,了解函数连续的概念.
2.理解导数的概念及其几何意义.
3.掌握基本求导公式及导数的四则运算法则.
4.会用导数求函数的单调区间、极大值、极小值及最大、最小值.
第二部分平面三角
一、三角函数及三角函数式的变换
1.理解三角函数的概念.
2.掌握同角三角函数间的基本关系、诱导公式,会用它们进行计算、化简和证明.
3.掌握和角公式、倍角公式,会用它们进行计算、化简和证明
二、三角函数的图象和性质
1.掌握正弦、余弦函数的图象和性质,会用其解决有关问题.
2.了解正切函数的图形和性质
3.会由已知三角函数值求角
三、解三角形
1.掌握直角三角形的边角关系,会用其解直角三角形及应用题.
2.掌握正弦及余弦定理,会用其解斜三角形及简单应用题.
第三部分平面解析几何
一、平面向量
1.理解向量的概念、了解向量共线的概念.
2.掌握向量的加、减及数乘运算
3.掌握向量的数量积运算,了解其几何意义,掌握向量垂直的条件.
4.掌握向量的直角坐标及其运算.
5.掌握平面内两点间的距离公式、线段的中点公式和平移公式
二、直线
1.理解直线的倾角及斜率的概念,会求直线的斜率及方程,并能用直线方程解决有关问题. 2.掌握两直线平行及垂直的条件及点到直线的距离公式,会用它们解决有关问题.
三、圆锥曲线
1.理解充分条件、必要条件及充分必要条件的概念.
2.掌握圆、椭圆、双曲线、抛物线的标准方程和性质,并能应用它们解决有关问题.
3.会用平移公式化简圆锥曲线方程.
四、空间向量
1.理解空间向量的概念、掌握向量的加、减及数乘运算
2.掌握向量的数量积运算,了解其几何意义,掌握向量垂直的条件.
1.掌握向量的直角坐标及其运算.
第四部分概率与统计
排列、组合及二项式定理
1.了解排列、组合的意义,会用排列数、组合数的计算公式,会解排列、组合的简单应用题
2.会用二项展开式性质和通项公式解决简单问题.
概率初步
1.了解随机事件、可能性事件及其概率的意义,会用计数方法和排列组合基本公式计算可能事件的概率. 2.了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.
3.了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率.。