数学建模常用方法MATLAB求解(好)
数学建模常用方法MATLAB求解
数学建模常用方法MATLAB求解数学建模是通过数学方法对实际问题进行数学描述、分析和求解的过程。
MATLAB是一款功能强大的数学软件,广泛用于数学建模中的问题求解。
在数学建模中,常用的方法有数值求解、优化求解和符号计算。
下面将介绍MATLAB在数学建模中常用的方法和求解示例。
1.数值求解方法:数值求解是利用数值计算方法来近似求解实际问题的数学模型。
MATLAB提供了许多数值求解函数,如方程求根、解线性方程组、曲线拟合、积分和微分等。
以方程求根为例,可以使用fsolve函数来求解非线性方程。
示例:求解非线性方程sin(x)=0.5```matlabx0=0;%初始点x = fsolve(fun,x0);```2.优化求解方法:优化求解是在给定约束条件下,寻找使目标函数取得最优值的变量值。
MATLAB提供了许多优化求解函数,如线性规划、二次规划、非线性规划、整数规划等。
以线性规划为例,可以使用linprog函数来求解线性规划问题。
示例:求解线性规划问题,目标函数为max(3*x1+4*x2),约束条件为x1>=0、x2>=0和2*x1+3*x2<=6```matlabf=[-3,-4];%目标函数系数A=[2,3];%不等式约束的系数矩阵b=6;%不等式约束的右端向量lb = zeros(2,1); % 变量下界ub = []; % 变量上界x = linprog(f,A,b,[],[],lb,ub);```3.符号计算方法:符号计算是研究数学符号的计算方法,以推导或计算数学表达式为主要任务。
MATLAB提供了符号计算工具箱,可以进行符号计算、微积分、代数运算、求解方程等。
以符号计算为例,可以使用syms函数来定义符号变量,并使用solve函数求解方程。
示例:求解二次方程ax^2+bx+c=0的根。
```matlabsyms x a b c;eqn = a*x^2 + b*x + c == 0;sol = solve(eqn, x);```以上是MATLAB在数学建模中常用的方法和求解示例,通过数值求解、优化求解和符号计算等方法,MATLAB可以高效地解决各种数学建模问题。
【数学建模学习】Matlab的数值积分
Matlab 的数值积分问题(1)求和命令sum 调用格式.如果x 是向量,则sum(x) 给出x 的各个元素的累加和;如果x 是矩阵,则sum(x)是一个元素为x 的每列列和的行向量.例3.1 调用命令sum 求向量x 的各个元素的累加和。
解:输入x=[1,2,3,4,5,6,7,8,9,10];sum(x)得到ans=55例3.2 调用命令sum 求矩阵x 的各列元素的累加和。
解:输入x=[1,2,3;4,5,6;7,8,9]x=1 2 34 5 67 8 9sum(x)得到ans=12 15 182.定积分的概念.定积分是一个积分和的极限.例如取x e x f =)(,求定积分⎰10dx e x的近似值。
积分区间为[0,1],等距划分为20个子区间,x=linspace(0,1,21);选取每个子区间的端点,并计算端点处的函数值.y=exp(x);取区间的左端点处的函数值乘以区间长度全部加起来.y1=y(1:20);s1=sum(y1)/20s1=1.6757s1可作为定积分⎰10dx e x 的近似值。
若选取右端点:y2=y(2:21);s2=sum(y2)/20s2=1.7616s2也可以作为定积分⎰10dx e x 的近似值。
下面我们画出图象.plot(x,y);hold onfor i=1:20fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i),y(i),0],'b')end如果选取右端点,则可画出图象.for i=1:20fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i+1),y(i+1),0],'b')hold onendplot(x,y,'r')在上边的语句中,for … end 是循环语句,执行语句体内的命令20次,fill 命令可以填充多边形,在本例中,用的是兰色(blue)填充.可试取50个子区间看一看结果怎样.下面按等分区间计算。
MATLAB差异方程与微分方程求解技巧
MATLAB差异方程与微分方程求解技巧差异方程和微分方程是数学中重要的概念和工具,它们在各个领域的建模和分析中发挥着重要作用。
而MATLAB作为一款强大的数学软件,提供了丰富的工具和函数来求解差异方程和微分方程。
本文将介绍MATLAB中差异方程和微分方程的求解技巧,并提供一些实际案例来加深理解。
一、差异方程的求解技巧差异方程是描述离散域系统的数学模型,通常用递归关系来表达。
MATLAB 提供了多种方法来求解差异方程,其中最常用的是通过递推关系进行迭代。
1. 递推法递推法是通过迭代计算差异方程中的每一项来求解整个方程。
首先,需要定义差异方程的初始条件和递推关系。
然后,可以使用循环结构来进行迭代计算,直到达到所需精度或迭代次数。
假设我们要求解以下差异方程:y[n] = a * y[n-1] + b * y[n-2]其中,a和b为常数,y[n]为求解的项,y[n-1]和y[n-2]为已知的前两项。
在MATLAB中,可以使用for循环或while循环来实现递推法求解差异方程。
以下是使用for循环的实例代码:``` MATLABn = 1:10; % 定义计算的范围y = zeros(size(n)); % 初始化y的空间y(1) = y0; % 设定初始条件y(2) = y1; % 设定初始条件for i = 3:length(n)y(i) = a * y(i-1) + b * y(i-2); % 递推计算end```2. 齐次差异方程和非齐次差异方程的求解在求解差异方程时,需要区分齐次差异方程和非齐次差异方程。
对于齐次差异方程,它的非零解为零解;对于非齐次差异方程,它的非零解可以通过叠加齐次解和特解来得到。
MATLAB中,可以使用dsolve函数来求解差异方程。
以下是求解一阶齐次差异方程的实例代码:``` MATLABsyms y(t); % 定义符号变量eqn = diff(y, t) == a * y; % 定义差异方程cond = y(0) == y0; % 定义初始条件ySol(t) = dsolve(eqn, cond); % 求解差异方程```二、微分方程的求解技巧微分方程是描述连续域系统的数学模型,通常用导数关系来表达。
数学建模10种常用算法
数学建模10种常用算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处参数估计C.F.20世纪60年代,随着电子计算机的。
参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。
数学建模实验二:微分方程模型Matlab求解与分析
实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
数学建模方法-主成分分析和MATLAB应用
1 0.55341 0.51434 0.51538 0.4688 8 0.73562 0.71214
1
0.98793 0.9776 0.97409 0.68282 0.7 8019
1
0.98071 0.9798 0 .69735 0.77306
1
0.99235 0.6266 3 0.78718
X j e1 jY1 e2 jY2 e pjYp , Cov(Yi , X j ) ieij .
由此可得 Yi 与 Xj 的相关系数为
Yi ,X j
Cov(Yi , X j ) Var(Yi ) Var( X j )
ieij i jj
i jj
eij
24.423 36.283
36.283 56.046
49.146 75.404
3.67 47 38.718 5.0022 59.723
71.672 29.029 49.278 49.146 75.404 103.02 6.82 15 74.523
8.602 4.7846 3.629 3.6747 5.0022 6.8215 1.137 6 .7217
i* 的正
交单位特征向量。
第 i 个主成分的贡献率: i* ; p
m
i*
前 m 个主成分的累计贡献率: i1 ; p
Yi*
与
X
* i
的相关系数为
Yi*
,
X
* j
* i
ei*j
。
二、样本主成分 前面讨论的是总体主成分,但在实际问题中,一般 (或 )是未知的,需要通
过样本来估计。设
xi ( xi1, xi 2 , ..., xip )T , i 1, 2, ..., n.
MATLAB数学建模方法与实践
MATLAB数学建模方法与实践引言:MATLAB(Matrix Laboratory)是一种十分强大的数学软件,广泛应用于工程、科学计算以及数学建模等领域。
本文将深入探讨MATLAB在数学建模方面的方法与实践,旨在帮助读者更好地掌握和应用这一工具。
一、MATLAB的基本特点和功能1.1 MATLAB的基本特点MATLAB具有易学易用的特点,无论是初学者还是专业人士,都能迅速上手。
其直观的界面和功能丰富的工具箱,使得用户可以高效地进行数学建模和数据分析。
1.2 MATLAB的功能MATLAB拥有强大的数值计算能力,包括线性代数、各种函数的数值求解、曲线拟合等。
此外,它还支持符号计算,能够对表达式进行符号化求解和化简。
同时,MATLAB还提供了丰富的绘图工具,可以绘制各种类型的图形,如曲线图、柱状图、散点图等。
二、数学建模的基本流程2.1 问题定义在进行数学建模之前,首先需要明确问题的定义。
数学建模可以涉及各种领域,如物理学、工程学、经济学等。
因此,定义好问题是解决问题的第一步。
2.2 建立数学模型建立数学模型是数学建模的核心步骤之一。
通过对问题进行抽象和理论分析,可以将实际问题转化为数学问题,并建立相应的数学模型。
MATLAB提供了丰富的数学函数和工具,可以帮助用户完成模型的建立和求解。
2.3 模型求解模型建立完成后,需要对其进行求解。
MATLAB提供了多种数值计算方法和优化算法,可以方便地对模型进行求解和优化。
同时,MATLAB还支持符号计算,可以进行符号化求解,获得更具普遍性的结果。
2.4 模型验证和分析模型求解之后,需要对结果进行验证和分析。
MATLAB的绘图功能十分强大,可以将模型的结果可视化展示,并通过图表分析结果的合理性和准确性。
此外,MATLAB还支持数据统计和概率分布分析,可以通过统计方法对模型的结果进行验证。
三、MATLAB在数学建模中的实践应用3.1 数值计算数值计算是MATLAB最常用的功能之一,它通过各种算法和方法,对数学模型进行求解。
数学建模的最优化方法
8
x1
,
ห้องสมุดไป่ตู้
25 x2
x1 0
815
x2
1800
运用最优化方法解决最优化问题的一般 方法步骤如下:
①前期分析:分析问题,找出要解决的目标,约束条件, 并确立最优化的目标。
②定义变量,建立最优化问题的数学模型,列出目标函 数和约束条件。
③针对建立的模型,选择合适的求解方法或数学软件。
④编写程序,利用计算机求解。
目标函数:获得的总收益最大。 总收益可表示为:R 10x1 5x2 受一级黄豆数量限制:0.3x1 0.4x2 9
受二级黄豆数量限制:0.5x1 0.2x2 8
综上分析,得到该问题的线性规划模型
max R 10x1 5x2
0.3x1 0.4x2 9
s.t.
0.5x1 0.2x2 8
1、无约束极值问题的数学模型
min f (x) x
2、约束条件下极值问题的数学模型
min f (x) x
s.t. gi (x) 0, i 1, 2,..., m hi (x) 0, i 1, 2,..., n
其中,极大值问题可以转化为极小值问题来
进行求解。如求: max f (x) x 可以转化为:min f (x) x
ans = 175
ans = 10 15
线性规划
设某工厂有甲、乙、丙、丁四个车间,生产 A、B、C、D、E、F六种产品。根据机床性能 和以前的生产情况,得知每单位产品所需车间的 工作小时数、每个车间在一个季度工作小时的上 限以及单位产品的利润,如下表所示(例如,生产
一个单位的A产品,需要甲、乙、丙三个车间分别工作1
其中等式(3)、(4)、(5)的右边可选用(1)或(2) 的等式右边.
matlab数学建模常用模型及编程
matlab数学建模常用模型及编程摘要:一、引言二、MATLAB 数学建模的基本概念1.矩阵的转置2.矩阵的旋转3.矩阵的左右翻转4.矩阵的上下翻转5.矩阵的逆三、MATLAB 数学建模的常用函数1.绘图函数2.坐标轴边界3.沿曲线绘制误差条4.在图形窗口中保留当前图形5.创建线条对象四、MATLAB 数学建模的实例1.牛顿第二定律2.第一级火箭模型五、结论正文:一、引言数学建模是一种将现实世界中的问题抽象成数学问题,然后通过数学方法来求解的过程。
在数学建模中,MATLAB 作为一种强大的数学软件,被广泛应用于各种数学问题的求解和模拟。
本文将介绍MATLAB 数学建模中的常用模型及编程方法。
二、MATLAB 数学建模的基本概念在使用MATLAB 进行数学建模之前,我们需要了解一些基本的概念,如矩阵的转置、旋转、左右翻转、上下翻转以及矩阵的逆等。
1.矩阵的转置矩阵的转置是指将矩阵的一行和一列互换,得到一个新的矩阵。
矩阵的转置运算符是单撇号(’)。
2.矩阵的旋转利用函数rot90(a,k) 将矩阵a 旋转90 的k 倍,当k 为1 时可省略。
3.矩阵的左右翻转对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,依次类推。
matlab 对矩阵a 实施左右翻转的函数是fliplr(a)。
4.矩阵的上下翻转matlab 对矩阵a 实施上下翻转的函数是flipud(a)。
5.矩阵的逆对于一个方阵a,如果存在一个与其同阶的方阵b,使得:a·bb·a=|a|·|b|·I,则称矩阵b 是矩阵a 的逆矩阵。
其中,|a|表示矩阵a 的行列式,I 是单位矩阵。
在MATLAB 中,我们可以使用函数inv(a) 来求解矩阵a 的逆矩阵。
三、MATLAB 数学建模的常用函数在MATLAB 数学建模过程中,我们经常需要使用一些绘图和数据处理函数,如绘图函数、坐标轴边界、沿曲线绘制误差条、在图形窗口中保留当前图形、创建线条对象等。
matlab数值求解常微分方程快速方法
MATLAB是一种用于科学计算和工程应用的高级编程语言和交互式环境。
它在数学建模、模拟和分析等方面有着广泛的应用。
在MATLAB 中,常微分方程的数值求解是一个常见的应用场景。
在实际工程问题中,通常需要对常微分方程进行数值求解来模拟系统的动态行为。
本文将介绍MATLAB中对常微分方程进行数值求解的快速方法。
1. 基本概念在MATLAB中,可以使用ode45函数来对常微分方程进行数值求解。
ode45是一种常用的Runge-Kutta法,它可以自适应地选取步长,并且具有较高的数值精度。
使用ode45函数可以方便地对各种类型的常微分方程进行求解,包括一阶、高阶、常系数和变系数的微分方程。
2. 函数调用要使用ode45函数进行常微分方程的数值求解,需要按照以下格式进行函数调用:[t, y] = ode45(odefun, tspan, y0)其中,odefun表示用于描述微分方程的函数,tspan表示求解的时间跨度,y0表示初值条件,t和y分别表示求解得到的时间序列和对应的解向量。
3. 示例演示为了更好地理解如何使用ode45函数进行常微分方程的数值求解,下面我们以一个具体的例子来进行演示。
考虑如下的一阶常微分方程:dy/dt = -2*y其中,y(0) = 1。
我们可以编写一个描述微分方程的函数odefun:function dydt = odefun(t, y)dydt = -2*y;按照上述的函数调用格式,使用ode45函数进行求解:tspan = [0 10];y0 = 1;[t, y] = ode45(odefun, tspan, y0);绘制出解曲线:plot(t, y);4. 高级用法除了基本的函数调用方式外,MATLAB中还提供了更多高级的方法来对常微分方程进行数值求解。
可以通过设定选项参数来控制数值求解的精度和稳定性,并且还可以对刚性微分方程进行求解。
5. 性能优化在实际工程应用中,常常需要对大规模的常微分方程进行数值求解。
MATLAB中常见的自动化建模方法介绍
MATLAB中常见的自动化建模方法介绍随着科技的不断进步,自动化建模在各个领域中变得越来越重要。
MATLAB作为一种强大的数学建模与仿真工具,为研究人员和工程师们提供了许多自动化建模方法。
本文将介绍几种常见的MATLAB中的自动化建模方法,包括系统辨识、机器学习和优化方法。
一、系统辨识系统辨识是在无法直接获得系统模型的情况下,通过对系统输入和输出数据的观测来估计系统模型。
MATLAB提供了多种用于系统辨识的函数和工具箱,其中最常用的是System Identification Toolbox。
System Identification Toolbox提供了参数估计、模型结构选择和模型验证等功能。
在MATLAB中,使用系统辨识工具箱进行模型辨识一般包括以下步骤:收集系统输入和输出数据、选择适当的模型结构、参数估计和模型验证。
通过这些步骤,研究人员可以获得一个能够准确描述系统动态特性的模型。
二、机器学习机器学习是一种通过让计算机从数据中学习,并且在新的数据上做出预测或决策的方法。
在MATLAB中,有多种机器学习算法可供选择,包括支持向量机(SVM)、人工神经网络(ANN)和决策树等。
支持向量机是一种基于统计学习理论的二分类器,其主要思想是通过在高维特征空间中找到一个最优超平面来实现数据分类。
MATLAB中的Support Vector Machines Toolbox提供了一系列用于支持向量机模型的训练和应用的函数。
人工神经网络是一种模拟人脑神经元网络的算法,它可以通过学习样本数据来进行分类、回归、聚类等任务。
MATLAB中的Neural Network Toolbox提供了一系列用于构建、训练和应用神经网络的函数和工具。
决策树是一种通过对数据进行分割来实现分类的方法。
决策树模型通过一系列的判定条件将数据分为不同的类别。
在MATLAB中,可以利用Classification Learner App来构建和训练决策树模型,同时还可利用TreeBagger函数进行随机森林模型的构建和训练。
如何用MATLAB进行数学建模
如何用MATLAB进行数学建模下面是一个关于如何用MATLAB进行数学建模的文章范例:MATLAB是一种强大的数学软件工具,广泛应用于各种数学建模问题的解决。
通过合理利用MATLAB的功能和特性,可以更加高效地进行数学建模,并得到准确的结果。
本文将介绍如何使用MATLAB进行数学建模,并给出一些实际例子。
一、数学建模的基本步骤数学建模是指将实际问题转化为数学模型,并利用数学方法对其进行求解和分析的过程。
在使用MATLAB进行数学建模之前,我们需要明确问题的具体要求,然后按照以下基本步骤进行操作:1. 理解问题:深入了解问题背景、影响因素以及目标要求,确保对问题有一个清晰的认识。
2. 建立模型:根据问题的特性,选择合适的数学模型,并将问题转化为相应的数学表达式。
3. 编写MATLAB代码:利用MATLAB的计算功能和算法库,编写用于求解数学模型的代码。
4. 数据处理和结果分析:在获得计算结果后,根据需要进行数据处理和结果分析,评估模型的准确性和可行性。
二、MATLAB的数学建模工具MATLAB提供了一系列用于数学建模的工具箱和函数,这些工具可以帮助我们快速构建数学模型,并进行求解。
下面是一些常用的数学建模工具:1. 符号计算工具箱:MATLAB的符号计算工具箱可以实现符号运算,用于建立和求解复杂的数学表达式。
2. 优化工具箱:优化工具箱可以用于求解多种优化问题,如线性规划、非线性规划、整数规划等。
3. 数值解工具箱:数值解工具箱提供了各种数值方法和算法,用于求解微分方程、积分方程、差分方程等数学问题。
4. 统计工具箱:统计工具箱可以进行统计建模和分析,包括假设检验、回归分析、时间序列分析等。
5. 控制系统工具箱:控制系统工具箱用于建立和分析控制系统模型,包括经典控制和现代控制方法。
三、数学建模实例为了更好地展示使用MATLAB进行数学建模的过程,我们给出一个实际的数学建模例子:求解物体的自由落体运动。
Matlab中的数学建模方法介绍
Matlab中的数学建模方法介绍Matlab是一种非常常用的科学计算和数学建模软件,它具有强大的数学运算能力和用户友好的界面。
在科学研究和工程技术领域,Matlab被广泛应用于数学建模和数据分析。
本文将介绍一些在Matlab中常用的数学建模方法,帮助读者更好地理解和应用这些方法。
一、线性回归模型线性回归模型是一种经典的数学建模方法,用于分析数据之间的关系。
在Matlab中,我们可以使用regress函数进行线性回归分析。
首先,我们需要将数据导入Matlab,并进行数据预处理,如去除异常值和缺失值。
然后,使用regress函数拟合线性回归模型,并计算相关系数和残差等统计量。
最后,我们可以使用plot 函数绘制回归线和散点图,以观察数据的拟合程度。
二、非线性回归模型非线性回归模型适用于数据呈现非线性关系的情况。
在Matlab中,我们可以使用lsqcurvefit函数进行非线性回归分析。
首先,我们需要定义一个非线性方程,并设定初始参数值。
然后,使用lsqcurvefit函数拟合非线性回归模型,并输出拟合参数和残差信息。
最后,我们可以使用plot函数绘制拟合曲线和散点图,以评估模型的拟合效果。
三、差分方程模型差分方程模型用于描述离散时间系统的动态行为。
在Matlab中,我们可以使用diffeq函数求解差分方程模型的解析解或数值解。
首先,我们需要定义差分方程的形式,并设置初值条件。
然后,使用diffeq函数求解差分方程,并输出解析解或数值解。
最后,我们可以使用plot函数绘制解析解或数值解的图形,以观察系统的动态行为。
四、优化模型优化模型用于求解最优化问题,如寻找函数的最大值或最小值。
在Matlab中,我们可以使用fmincon函数或fminunc函数进行优化求解。
首先,我们需要定义目标函数和约束条件。
然后,使用fmincon函数或fminunc函数求解最优化问题,并输出最优解和最优值。
最后,我们可以使用plot函数可视化最优解的效果。
数学建模中常用函数(MATLAB)
内部数学常数pi 圆周率exp(1)自然对数的底数e i 或j 虚数单位Inf或 inf 无穷大2 基本数学运算符a+b 加法a-b减法a*b矩阵乘法a.*b数组乘法a/b矩阵右除a\b矩阵左除a./b数组右除a.\b数组左除a^b 矩阵乘方a.^b数组乘方-a负号’ 共轭转置.'一般转置3 关系运算符==等于<小于>大于<=小于或等于>=大于或等于~=不等于4 常用内部数学函数 指数函数exp(x)以e 为底数log(x)自然对数,即以e 为底数的对数log10(x)常用对数,即以10为底数的对数对数函数log2(x)以2为底数的x 的对数开方函数sqrt(x)表示x 的算术平方根绝对值函数abs(x)表示实数的绝对值以及复数的模sin(x)正弦函数cos(x)余弦函数三角函数(自变量的单位为弧度)tan(x)正切函数cot(x)余切函数sec(x)正割函数csc(x)余割函数asin(x)反正弦函数acos(x)反余弦函数反三角函数atan(x)反正切函数acot(x)反余切函数asec(x)反正割函数acsc(x)反余割函数sinh(x)双曲正弦函数cosh(x)双曲余弦函数双曲函数tanh(x)双曲正切函数coth(x)双曲余切函数sech(x)双曲正割函数csch(x)双曲余割函数asinh(x)反双曲正弦函数acosh(x)反双曲余弦函数反双曲函数atanh(x)反双曲正切函数acoth(x)反双曲余切函数asech(x)反双曲正割函数acsch(x)反双曲余割函数求角度函数atan2(y,x)以坐标原点为顶点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度,范围为(,]gcd(a,b)两个整数的最大公约数数论函数lcm(a,b)两个整数的最小公倍数排列组合函数factorial(n)阶乘函数,表示n的阶乘real(z)实部函数imag(z)虚部函数abs(z)求复数z的模angle(z)求复数z的辐角,其范围是(,]复数函数conj(z)求复数z的共轭复数ceil(x)表示大于或等于实数x的最小整数floor(x)表示小于或等于实数x的最大整数求整函数与截尾函数round(x)最接近x的整数最大、最小函数max([a,b,c ,...])求最大数min([a ,b ,c ,..])求最小数符号函数sign(x)5 自定义函数-调用时:“[返回值列]=M 文件名(参数列)”function 返回变量=函数名(输入变量)注释说明语句段(此部分可有可无)函数体语句6.进行函数的复合运算 compose(f,g) 返回值为f(g(y))compose(f,g,z) 返回值为f(g(z))compose(f,g,x,.z) 返回值为f(g(z))compose(f,g,x,y,z) 返回值为f(g(z))7 因式分解syms 表达式中包含的变量factor(表达式)8 代数式展开 syms 表达式中包含的变量expand(表达式)9 合并同类项 syms 表达式中包含的变量collect(表达式,指定的变量)10 进行数学式化简 syms 表达式中包含的变量simplify(表达式)11 进行变量替换syms 表达式和代换式中包含的所有变量subs(表达式,要替换的变量或式子,代换式) 12 进行数学式的转换调用Maple中数学式的转换命令,调用格式如下:maple(‘Maple的数学式转换命令’) 即:maple(‘convert(表达式,form)’’)将表达式转换成form的表示方式maple(‘convert(表达式,form, x)’) 指定变量为x,将依赖于变量x的函数转换成form的表示方式(此指令仅对form为exp与sincos的转换式有用)13 解方程 solve(’方程’,’变元’)注:方程的等号用普通的等号: =14 解不等式调用maple中解不等式的命令即可,调用形式如下:maple('maple中解不等式的命令')*具体说,包括以下五种:maple(' solve(不等式)')maple(' solve(不等式,变元)' )maple(' solve({不等式},变元)' )maple(' solve(不等式,{变元})' )maple(' solve({不等式},{变元})' )15 解不等式组调用maple中解不等式组的命令即可,调用形式如下:maple('maple中解不等式组的命令')即:maple(' solve({不等式组},{变元组})' )16 画图方法1:先产生横坐标x的取值和相应的纵坐标y的取值,然后执行命令: plot(x,y)方法2:fplot('f(x)',[xmin,xmax])fplot('f(x)',[xmin,xmax,ymin,ymax])方法3:ezplot('f(x)')ezplot('f(x)' ,[xmin,xmax])ezplot('f(x)' ,[xmin,xmax,ymin,ymax])17 求极限(1)极限:syms xlimit(f(x), x, a)(2)单侧极限:左极限:syms xlimit(f(x), x, a,’left’)右极限:syms xlimit(f(x), x, a,’right’) 18 求导数 diff('f(x)')diff('f(x)','x')或者:Syms xDiff(f(x))syms xdiff(f(x), x)19 求高阶导数 diff('f(x)',n)diff('f(x)','x',n)或者:syms xdiff(f(x),n)syms xdiff(f(x), x,n)20 在MATLAB中没有直接求隐函数导数的命令,但是我们可以根据数学中求隐函数导数的方法,在中一步一步地进行推导;也可以自己编一个求隐函数导数的小程序;不过,最简便的方法是调用Maple中求隐函数导数的命令,调用格式如下:maple('implicitdiff(f(x,y)=0,y,x)')*在MATLAB中,没有直接求参数方程确定的函数的导数的命令,只能根据参数方程确定的函数的求导公式一步一步地进行推导;或者,干脆自己编一个小程序,应用起来会更加方便。
数学建模中matlab应用
完全二次多项式模型
y x x x x x x
2 2 0 1 1 2 2 3 1 2 4 1 5 2
MATLAB中有命令rstool直接求解
a=xlsread('feiyong3.xls'); y=a(:,7); x=a(:,2:3); rstool(x,y,'quadratic',0.05)
统计回归模型
1 牙膏的销售量 2 软件开发人员的薪金
3 酶促反应
4 投资额与国民生产总值和 物价指数
数学建模的基本方法
机理分析
测试分析
由于客观事物内部规律的复杂及人们认识程度的限制, 无法分析实际对象内在的因果关系,建立合乎机理规 律的数学模型。 通过对数据的统计分析,找出与数据拟合最好的模型. 回归模型是用统计分析方法建立的最常用的一类模型. • 不涉及回归分析的数学原理和方法 • 通过实例讨论如何选择不同类型的模型 • 对软件得到的结果进行分析,对模型进行改进
10.5 10 9.5 9 8.5 x1=0.3 x1=0.1
ˆ x10.3 y ˆ x10.1 x2 7 .5357 y
价格优势会使销售量增加
加大广告投入使销售量增加 ( x2大于6百万元) 价格差较小时增加 的速率更大
ˆ y
8 7.5 5 6 7 8
x2
价格差较小时更需要靠广告 来吸引顾客的眼球
2 y x x x x x 0 1 1 2 2 3 2 4 1 2
参数
参数估计值 置信区间 0 29.1133 [13.7013 44.5252] 1 11.1342 [1.9778 20.2906 ] 2 -7.6080 [-12.6932 -2.5228 ] 3 0.6712 [0.2538 1.0887 ] 4 -1.4777 [-2.8518 -0.1037 ] R2=0.9209 F=72.7771 p=0.0000 s2=0.0426
matlab常用算法大全(数学建模)
本文总结了matlab常用的几个算法,希望对数学建模有帮助。
利用matlab编程FFD算法完成装箱问题:设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。
建立box_main.mfunction[box_count,b]=box_main(v) vmax=100;sort(v,'descend');n=length(v);b=zeros(1,n);for i=1:nb(i)=vmax;endbox_count=1;for i=1:nfor j=1:box_countif v(i)<=b(j) %可以放入 b(j)=b(j)-v(i);break;else%不可放入时continue;endendif j==box_countbox_count=box_count+1;endendbox_count=box_count-1;end主程序为:v=[60 45 35 20 20 20];[box_count,b]=box_main(v)结果:box_count =3 b =5 15 80 100 100 100所以,使用的箱子数为3, 使用的箱子的剩余空间为5,15 ,80。
“超市大赢家”提供了50种商品作为奖品供中奖顾客选择,车的容量为1000dm3 , 奖品i 占用的空间为wi dm3 ,价值为vi 元, 具体的数据如下:vi = { 220, 208, 198, 192, 180, 180, 165, 162, 160, 158,155, 130, 125, 122, 120, 118, 115, 110, 105, 101, 100, 100, 98,96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58,56, 50, 30, 20, 15, 10, 8, 5, 3, 1}wi = {80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48,50, 32, 22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 50, 30, 45,30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2,1}。
MATLAB中的数学建模方法及应用
MATLAB中的数学建模方法及应用引言数学建模作为一门重要的学科,已经成为了现代科学研究和工程实践中不可或缺的一部分。
而在数学建模过程中,数值计算和数据分析是关键步骤之一。
MATLAB作为一种强大的数学计算软件,在数学建模领域得到了广泛应用。
本文将介绍MATLAB中常用的数学建模方法,并探讨一些实际应用案例。
一、线性模型线性模型是数学建模中最基础的一种模型,它假设系统的响应是线性的。
在MATLAB中,我们可以通过矩阵运算和线性代数的知识来构建和求解线性模型。
例如,我们可以使用MATLAB中的线性回归函数来拟合一条直线到一组数据点上,从而得到一个线性模型。
二、非线性模型与线性模型相对应的是非线性模型。
非线性模型具有更强的表达能力,可以描述更为复杂的系统。
在MATLAB中,我们可以利用优化工具箱来拟合非线性模型。
例如,我们可以使用MATLAB中的非线性最小二乘函数来优化模型参数,使得模型与实际数据拟合程度最好。
三、微分方程模型微分方程模型在科学研究和工程实践中广泛应用。
在MATLAB中,我们可以使用ODE工具箱来求解常微分方程(ODE)。
通过定义初始条件和微分方程的表达式,MATLAB可以使用多种数值方法来求解微分方程模型。
例如,我们可以利用MATLAB中的欧拉法或者龙格-库塔法来求解微分方程。
四、偏微分方程模型偏微分方程(PDE)模型是描述空间上的变化的数学模型。
在MATLAB中,我们可以使用PDE工具箱来求解常见的偏微分方程模型。
通过定义边界条件和初始条件,MATLAB可以通过有限差分或有限元等方法来求解偏微分方程模型。
例如,我们可以利用MATLAB中的热传导方程求解器来模拟物体的温度分布。
五、曲线拟合与数据插值曲线拟合和数据插值是数学建模过程中常见的任务。
在MATLAB中,我们可以使用拟合和插值工具箱来实现这些任务。
通过输入一系列数据点,MATLAB可以通过多项式拟合或者样条插值等方法来生成一个模型函数。
Matlab中的数学建模与模拟方法
Matlab中的数学建模与模拟方法Matlab(Matrix Laboratory)是一种广泛使用的数值计算与科学分析软件,它在数学建模与模拟方面具有独特的优势和功能。
本文将从数学建模与模拟的角度,探讨在Matlab中应用的方法与技巧。
一、数学建模的基本原理数学建模是将实际问题抽象为数学模型,并利用数学方法对其进行分析与求解的过程。
在Matlab中进行数学建模,首先需要明确问题的表达方式。
常见的数学建模方式包括:1. 方程模型:通过描述问题中的关系式、条件和约束,将问题转化为一组数学方程。
在Matlab中,可以利用符号计算工具箱来构建方程模型,并求解方程组,得到问题的解析解。
2. 统计模型:通过收集和分析实际数据,建立统计模型来描述数据背后的规律和关联。
在Matlab中,可以利用统计工具箱来进行数据分析和建模,包括回归分析、方差分析等。
3. 优化模型:通过设定目标函数和约束条件,寻找使目标函数取得最大(或最小)值的变量取值。
在Matlab中,可以利用优化工具箱来构建和求解优化模型,包括线性规划、非线性规划等。
二、数学建模的实例为了更好地理解Matlab中数学建模的方法,我们来看一个实际的案例:某公司生产一种产品,其成本与产量的关系为C=200+30x,售价与产量的关系为P=50-x,其中C表示成本,P表示售价,x表示产量。
现在公司希望确定一个最佳产量,使得利润最大化。
首先,我们可以建立一个利润模型,利润等于售价减去成本,即Profit=P-C。
在Matlab中,可以使用符号计算工具箱,通过定义符号变量和构建符号表达式,来实现利润模型的建立。
下一步,我们需要确定目标函数和约束条件。
在本例中,目标函数是利润的最大化,约束条件是产量不能为负数。
在Matlab中,可以使用优化工具箱的线性规划函数linprog来求解该最优化问题。
通过定义目标函数系数、约束条件和取值范围,利用linprog函数可以得到最佳产量和最大利润。
数学建模的十大算法
数学建模的十大算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)把这些算法看懂,然后用c或者c++实现一遍,甚至做成有很好接口的dll,相信以后会受益匪浅...。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xj 互不相同,不妨设 a x0 x1 xn b),
求任一插值点
x ( x j ) 处的插值 y * .
*
y
y0
*
y1
x0 x1 x *
xn
6
构造一个(相对简单的)函数 y f (x), 通过全部节点, 即
f ( x j ) y j ( j 0,1, n)
数学建模竞赛
1
几种常见的数学方法及软件求解
一、曲线拟合及MATLAB软件求解 已知离散点上的数据集 [( x1 , y1 )( x2 , y2 ) ( xn , yn )],
求得一解析函数y=f(x)使y=f(x)在原离散点 xi 上尽可能 接近给定 yi 的值,这一过程叫曲线拟合。最常用的 曲线拟合是最小二乘法曲线拟合,拟合结果可使误差的 平方和最小,即找出使
‘spline’ : 三次样条插值; ‘cubic’ : 立方插值。 缺省时: 分段线性插值。 例2 在1-12的11小时内,每隔1小时测量一次温度,测 得的温度依次为:5,8,9,15,25,29,31,30, 22,25,27,24。试估计在 3.2,6.5,7.1,11.7小时的温 度值。 解 输入命令 : >> hours=1:12; >> temps=[5 8 9 15 25 29 31 30 22 25 27 24]; >> t=interp1(hours,temps,[3.2 6.5 7.1 11.7]) %线性插值 t= 14 10.2000 30.0000 30.9000 24.9000
11
三次样条插值
S ( x) {si ( x), x [ xi 1 , xi ], i 1, n}
1) si ( x ) ai x 3 bi x 2 ci x d i (i 1, n) 2) S ( xi ) yi (i 0,1, n) 3) S ( x ) C 2 [ x0 , xn ]
直接验证可知, Ln x 满足插值条件.
9
分段线性插值
y o
Ln ( x )
xj-1 xj xj+1 xn x
x0
y
j 0
n
j
l j ( x)
x x j 1 , x j 1 x x j n越大,误差越小. x j x j 1 x x j 1 l j ( x) , x j x x j 1 lim Ln ( x) g ( x), x0 x x j x j 1 n 0, 其它 10
lim S ( x) g ( x)
n
g(x)为被插值函数。
12
2、一维插值的MATLAB软件命令: 已知离散点上的数据集[( x1 , y1 )( x2 , y2 ) ( xn , yn )], 求得一解析函数连接自变量相邻的两个点,并求得两点 间的数值,这一过程叫插值。 MATLAB在一维插值函数interp1中,提供了四种 插值方法选择:线性插值、三次样条插值、立方插值 和最近邻点插值。interp1的本格式为: yi=interp1(x,y,xi,'method') 其中x,y分别表示数据点的横、纵坐标向量,x 必须 单调,xi为需要插值的横坐标数据(或数组),xi不能 超出x的范围,而method为可选参数,有四种选择: ‘nearest’ :最邻近插值 ‘linear’ : 线性插值; 13
>> T=interp1(hours,temps,[3.2 6.5 7.1 11.7],'spline') %三次样条插值 T= 9.6734 30.0427 31.1755 25.3820 比较发现,两种结果有差异,这是因为插值是一 个估计或猜测的过程。
两种插值的画图如下;
输入命令 : >> t0=1:0.1:12; >> T0=interp1(hours,temps,t0,'spline'); >> plot(hours,temps,'+',t0,T0,hours,temps,'r:') >> xlabel('时间'); >> ylabel('温度')
si ( xi ) si 1 ( xi ), si( xi ) si1 ( xi ), si( xi ) si1 ( xi ) (i 1, , n 1)
4) S ( x0 ) S ( xn ) 0 ( 自然边界条件) 2) 3) 4) ai , bi , ci , d i S ( x)
4
画出离散点及拟合曲线: 输入命令 : >> x1=0.5:0.05:3.0; >> y1=polyval(p,x1); >> plot(x,y,'*r',x1,y1,'-b') 结果见图5.4
5
二、一维插值
1、一维插值的定义
已知 n+1个节点 ( x j , y j ) ( j 0,1, n, 其中
i 1
n
f ( xi ) yi
2
最小的f(x).
2
格式:p=polyfit(x,y,n). 说明:求出已知数据x,y 的n次拟合多项式f(x)的系 数p,x 必须是单调的。 例1 已知某函数的离散值如表
xi yi 0.5 1.75 1.0 2.45 1.5 3.81 2.0 4.80 2.5 7.00 3.0 8.65
18
例3:测得平板表面3×5网格点处的温度分别为: 82 81 80 82 84 79 63 61 65 81 84 84 82 85 86 试求在平板表面坐标为(1.5,1.5),(2,1.6),(2.5,2) (3.5,4.5)处的温度,并作平板表面的温度分布曲面 z=f(x,y)的图形, (1)先在三维坐标画出原始数据,画出粗糙的温 度分布曲图. 输入以下命令: x0=1:5; y0=1:3; temps=[82 81 80 82 84;79 63 61 65 81;84 84 82 85 86]; 19
再用
f (x) 计算插值,即 y f ( x ).
* *
y
y0
*
y1
x0 x1 x *
xn
7
拉格朗日(Lagrange)插值
已知函数f(x)在n+1个点x0,x1,…,xn处的函数值为 y0,y1,…,yn 。求一n次多项式函数Pn(x),使其满足: Pn(xi)=yi,i=0,1,…,n. 解决此问题的拉格朗日插值多项式公式如下
计算量与n无关;
xn
三次样条插值
比分段线性插值更光滑。
y
a
xi-1
xi
b
x
在数学上,光滑程度的定量描述是:函数(曲 线)的k阶导数存在且连续,则称该曲线具有k阶光 滑性。 光滑性的阶次越高,则越光滑。是否存在较低 次的分段多项式达到较高阶光滑性的方法?三次 样条插值就是一个很好的例子。
>> xlabel('x轴'); >> ylabel('y轴'); >> zlabel('z轴') >> title('线性插值曲面图') 结果见图5.7
22
再输入以下命令得温度的三次样条插值曲面图: >> z=interp2(x0,y0,temps,x',y,'spline'); >> mesh(x,y,z) >> xlabel('x轴'); >> ylabel('y轴'); >> zlabel('z轴') >> title('三次样条插值曲面图') 结果见图5.7
15
>> gtext('线性插值') >> gtext('三次样条插值') 结果见图5.5
16
三、二维插值 对二维插值问题,MATLAB分别给出了针对插值基 点为网格节点的插值函数及针对插值基点为散乱节点的 插值函数调用格式。 1、 用MATLAB作网格节点数据的插值
已知m n个节点:(xi ,yj ,zij ),(i=1,2, m; j 1, 2,, n)
23
例 4 山区地貌: 在某山区测得一些地点的高程如下表。平面区域 为 1200<=x<=4000,1200<=y<=3600) 试作出该山区的地貌图和等高线图,并对几种插值方 法进行比较。
Y x
0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800
mesh(x0,y0,temps) 结果见图5.6
分别用线性性插值和三次样条插值求已知点的温度。
输入命令 :
20
>> t=interp2(x0,y0,temps,[1.5 2 2.5 3.5],[1.5 1.6 2 4.5],'liner')
t=
76.2500 70.2000 62.0000 T= NaN
称为拉格朗日插值基函数。
8
拉格朗日(Lagrange)插值
特别地: 两点一次(线性)插值多项式:
x x0 x x1 L1 x y0 y1 x0 x1 x1 x0
三点二次(抛物)插值多项式:
x x1 x x2 y x x0 x x2 y x x0 x x1 y L2 x 0 1 2 x0 x1 x0 x2 x1 x0 x1 x2 x2 x0 x2 x1