粘均分子量测试方法
聚合物分子量的测定——粘度法
中国石油大学化学原理(Ⅱ)实验报告实验日期:2010.11.17 成绩:班级:石工09-10 学号:09021452 姓名:任婷教师:于老师同组者:周霞聚合物分子量的测定——粘度法一、实验目的学会一种测定分子量的方法。
二、实验原理有许多测定分子量的方法,但最简单、而使用范围又广的是粘度法。
由粘度法测得的聚合物的分子量叫粘均分子量。
粘度法又分多点法和一点法:1.多点法多点法测定聚合物粘均分子量的计算依据是:[η]=k(7—1)式中:[η]—特性粘数;k,α—与温度和溶剂有关的常数;—聚合物的粘均分子量。
聚合物溶液粘度与浓度间有如下关系:(7—2)(7—3)以对c作图,外推直线至c为0(参考图1)求[η]。
图1 特性粘数[η]的求法由于k、α是与温度、溶剂有关的常数,所以对一定温度和特定的溶剂,k、α有确定的数值。
例如,30℃时,以1mol/L硝酸钠溶液作溶剂,用粘度法测定聚丙烯酰胺粘均分子量的经验式可表示如下:[η]=3.73×10-4(7—5)即:=1.40×10-5[η]3/2(7—6)2.单点法对低浓度的聚合物溶液,其特性粘数可由下式计算:[η]=(7—7)实验时,只要测定一个低浓度的聚合物溶液的相对粘度,即可由式7—7求得所测试样的特性粘数。
本实验采用乌式粘度计测定聚合物溶液在不同浓度下的粘度。
三、仪器与药品1.仪器乌式粘度计、秒表、吸耳球、恒温水浴、量筒、容量瓶。
2.药品聚丙烯酰胺(工业品)、硝酸钠(分析纯)、蒸馏水。
四、实验步骤1.调节恒温水浴温度30±1℃。
2.在30℃的恒温水浴中,向乌式粘度计中用量筒加入15.0ml 1molL-1NaNO3溶液,恒温10min,测t0,重复3-5次,取。
3.取15.0mlPAM溶液,以同样方法测PAM溶液所用时间t,重复3-5次,取。
4.实验完毕将乌式粘度计洗净。
五、结果处理计算聚丙烯酰胺的粘均分子量。
表1 聚合物分子量的测定数据表溶液时间(S)实验数据1molL-1NO3 t0 1’41”151’41”451’41”121’40”88 PAM0.01g/100ml t 1’49”101’48”491’49”041’49”78t0=(t01+t02+t03)/3=1’41”15t=(t1+t2+t3)/3=1’49”10ηr=t/t0=1.0786ηSP==0.0786[η]==7.713=1.40×105×[η]3/2=2.999×106即聚丙烯酰胺的粘均分子量为2.999×106。
粘度法测定聚合物的粘均分子量
实验一 粘度法测定聚合物的粘均分子量线型聚合物溶液的基本特性之一,是粘度比较大,并且其粘度值与分子量有关,因此可利用这一特性测定聚合物的分子量。
粘度法尽管是一种相对的方法,但因其仪器设备简单,操作方便,分子量适用范围大,又有相当好的实验精确度,所以成为人们最常用的实验技术,在生产和科研中得到广泛的应用。
一、实验目的掌握粘度法测定聚合物分子量的原理及实验技术。
二、基本原理聚合物溶液与小分子溶液不同,甚至在极稀的情况下,仍具有较大的粘度。
粘度是分子运动时内摩擦力的量度,因溶液浓度增加,分子间相互作用力增加,运动时阻力就增大。
表示聚合物溶液粘度和浓度关系的经验公式很多,最常用的是哈金斯(Huggi n s )公式2[][]spk c c ηηη=+ --------------------------------------- (1)在给定的体系中k 是一个常数,它表征溶液中高分子间和高分子与溶剂分子间的相互作用。
另一个常用的式子是2[][]ln r c c ηβηη=--------------------------------------- (2)式中k 与β均为常数,其中k 称为哈金斯参数。
对于柔性链聚合物良溶剂体系,k =1/3,k+β= l/2。
如果溶剂变劣,k 变大;如果聚合物有支化,随支化度增高而显著增加。
从(1)式和(2)式看出,如果用或对sp c ηln r cηc 作图并外推到c →0(即无限稀释),两条直线会在纵坐标上交于一点,其共同截距即为特性粘度[η],如图1-1所示00ln lim lim []sp r c c c cηηη→→== ----------------------------------------(3) 图1-1通常式(1)和式(2)只是在了r η=1.2~2.0范围内为直线关系。
聚合物分子量的测定--粘度法
聚合物分子量的测定----粘度法一.实验目的学会一种测定分子量的方法二.实验原理由于聚合物具有多分散性,所以聚合物的分子量是一个平均值。
有许多测定分子量的方法(如光散射法、渗透压法、超速离心法、端基分析法等),但最简单、而使用范围又广的是粘度法。
由粘度法测得的聚合物的分子量叫粘均分子量,以 “M v ”表示。
粘度法又分多点法和一点法:1.多点法多点法测定聚合物粘均分子量的计算依据是:[]αηM K =式中: [η]-特性粘数;K,v --与温度和溶剂有关的常数;M η―聚合物的粘均分子量。
若设溶剂的粘度为η 0,聚合物溶液浓度为 c(100mL 所含聚合物的克数表示)时的粘度为η,则聚合物溶液粘度与浓度间有如下关系:sp 2k c c ηηη=[]+[][][]c cr 2ln ηβηη-=以ηsp , r ln c η/对 c 作图,外推直线至 c 为0(参考图 7-1)求 [η],即sp r c 0c 0ln lim lim c c ηηη→→[]==图 7-1特性粘数 [η]的求法由于k 、α是与温度、溶剂有关的常数,所以对一定温度和特定的溶剂,k 、α有确定的数值。
例如,30℃时,以 1mol/L 硝酸钠溶液作溶剂,用粘度法测定聚丙烯酰胺粘均分子量的经验式可表示如下:[]3/241073.3M -⨯=η即: []2/351040.1η⨯=v M因此,只要测定不同浓度下聚合物溶液的粘度,即可通过上述的数据处理,求出聚合物的粘均分子量MV 。
2.单点法对低浓度的聚合物溶液,其特性粘数可由下式计算:[]()r sp cηηηln 21+= 实验时,只要测定一个低浓度的聚合物溶液的相对粘度,即可由式7-7求得所测试样的特性粘数。
本实验采用如图7-2所示的乌氏粘度计测定聚合物溶液在不同浓度下的粘度。
这种粘度计的具体用法参考下述步骤。
图 7-2乌氏粘度计三.仪器与药品1.仪器乌氏粘度计,秒表,吸耳球,恒温箱,移液管,容量瓶。
粘度测量
乌氏粘度计测量纺丝溶液粘均分子量的测量方法将纺丝溶液中各组分按原比例稀释至1:7:10:10(即:蛋白质含量为1,盐含量为7,酸和氺含量均为10),然后在磁力搅拌器上搅拌均匀,不同批次的搅拌时间应该一致,取均匀稀释后的溶液,参照乌氏粘度计使用方法测量溶液的粘度。
一、纺丝溶液浓度的测定
1)取样:称取培养皿的质量m1,取溶解后纺丝液5g左右,在培养皿上均匀成膜,称取成膜后的培养皿质量m2;
2)沉淀:反复用清水浸泡纺丝溶液沉淀出蛋白质,直至溶液中溶剂全部析出为止,然后用蒸馏水清洗,各批次清洗时间应一致;
3)烘干:将清洗完毕后的培养皿和蛋白质放入烘箱中烘干,称取质量m3;
4)浓度:纺丝溶液中蛋白质的实际浓度为C = (m3-m1)/ (m2-m1)×100%
二、纺丝溶液稀释方法
1)取样:用50ml的烧杯取溶解后比较均匀的纺丝溶液5-6g左右,根据溶液的实际浓度计算出取样溶液中实际的蛋白质、酸、盐、水的含量,然后将溶液配比至比例为1:7:10:10(蛋白质:盐:酸:水);
2)搅拌:将配比好的待稀释溶液置于磁力搅拌器上搅拌至均匀状态用于乌氏粘度计进行粘度测试,各批次搅拌时间转速温度一致;
三、粘度测量
测量:用乌氏粘度计测量稀释后的均匀溶液的粘度,测试要在60℃恒温条件下进行;。
三粘度法测定聚合物的粘均分子量
实验3 粘度法测定聚合物的粘均分子量一 实验目的掌握粘度法测定聚合物分子量的原理及实验技术。
二、实验原理聚合物溶液与小分子溶液不同,甚至在极稀的情况下,仍具有较大的粘度。
粘度是分子运动时内摩擦力的量度,因溶液浓度增加,分子间相互作用力增加,运动时阻力就增大。
表示聚合物溶液粘度和浓度关系的经验公式很多,最常用的是哈金斯(Huggins )公式2[][]spk c cηηη=+ --------------------------------------- (1)在给定的体系中k 是一个常数,它表征溶液中高分子间和高分子与溶剂分子间的相互作用。
另一个常用的式子是2[][]ln rc cηβηη=--------------------------------------- (2)式中k 与β均为常数,其中k 称为哈金斯参数。
对于柔性链聚合物良溶剂体系,k =1/3,k+β= l/2。
如果溶剂变劣,k 变大;如果聚合物有支化,随支化度增高而显著增加。
从(1)式和(2)式看出,如果用sp cη或ln r cη对c 作图并外推到c →0(即无限稀释),两条直线会在纵坐标上交于一点,其共同截距即为特性粘度[η],如图1-1所示0ln limlim[]sprc c ccηηη→→==----------------------------------------(3)通常式(1)和式(2)只是在了r η=1.2~2.0范围内为直线关系。
当溶液浓度太高或分子量太大均得不到直线,如图1-2所示。
此时只能降低浓度再做一次。
特性粘度[η]的大小受下列因素影响: (1)分子量:线型或轻度交联的聚合物分子量增大,[η]增大。
(2)分子形状:分子量相同时,支化分子的形状趋于球形,[η]较线型分子的小。
(3)溶剂特性:聚合物在良溶剂中,大分子较伸展,[η]较大,而在不良溶剂中,大分子较卷曲,[η]较小。
(4)温度:在良溶剂中,温度升高,对[η]影响不大,而在不良溶剂中,若温度升高使溶剂变为良好,则[η]增大。
粘度法测定高聚物的粘均分子量
粘度法测定高聚物的粘均分子量高聚物摩尔质量不仅反映了高聚物分子的大小,而且直接关系到它的物理性能,是个重要的基本参数。
与一般的无机物或低分子的有机物不同,高聚物多是摩尔质量大小不同的大分子混合物,所以通常所测高聚物摩尔质量是一个统计平均值。
测定高聚摩尔质量的方法很多,而不同方法所得平均摩尔质量也有所不同。
比较起来,粘度法设备简单,操作方便,并有很好的实验精度,是常用的方法之一。
用该法求得的摩尔质量成为粘均摩尔质量。
粘度法测高聚物溶液摩尔质量时,常用名词的物理意义,如表1所示:表1 常用名词的物理意义符号名称与物理意义η0纯溶剂的粘度,溶剂分子与溶剂分子间的内摩擦表现出来的粘度。
η溶液的粘度,溶剂分子与溶剂分子之间、高分子与高分子之间和高分子与溶剂分子之间三者内摩擦的综合表现。
ηr相对粘度,ηr=η/η0,溶液粘度对溶剂粘度的相对值。
ηsp增比粘度,ηsp= (η -η0) / η0 = η / η0 –1 = ηr – 1,反映了高分子与高分子之间,纯溶剂与高分子之间的内摩擦效应。
ηsp/C比浓粘度,单位浓度下所显示出的粘度。
[η]特性粘度,,反映了高分子与溶剂分子之间的内摩擦。
高聚物稀溶液的粘度是它在流动时内摩擦力大小的反映,这种流动过程中的内摩擦主要有:纯溶剂分子间的内摩擦,记作η0;高聚物分子与溶剂分子间的内摩擦;以及高聚物分子间的内摩擦。
这三种内摩擦的总和称为高聚物溶液的粘度,记作η。
实践证明,在相同温度下η>η0 ,为了比较这两种粘度,引入增比粘度的概念,以ηsp表示:ηsp =(η -η0)/η0 =η/ η0 -1 =ηr -1 (5)式中,ηr称为相对粘度,反映的仍是整个溶液的粘度行为,而ηsp则是扣除了溶剂分子间的内摩擦以后仅仅是纯溶剂与高聚物分子间以及高聚物分子间的内摩擦之和。
高聚物溶液的ηsp往往随质量浓度C的增加而增加。
为了便于比较,定义单位浓度的增比粘度ηsp/C为比浓粘度,定义lnηr /C为比浓对数粘度。
1.粘度法测定聚合物的粘均分子量
粘度法测定聚合物的粘均分子量分子量即相对分子质量是聚合物最基本的结构参数之一,与材料的性能有密切的关系。
测定聚合物相对分子质量的方法很多,不同测定方法所得出的统计平均相对分子质量的意义有所不同,其适应的分子量范围也不同。
在高分子工业和研究中最常用的方法是粘度法,它是一种相对的方法,适用于分子量在104 ~ 107范围的聚合物,测定方便,又有较高的实验精度。
通过聚合物溶液的粘度测定,除了提供粘均分子量v M 外,还可得到聚合物的无扰链尺寸和膨胀因子。
一、 实验目的(1) 掌握毛细管粘度计测定聚合物相对分子质量的原理;(2) 学会使用粘度法测定特性粘数。
二、 实验原理由于聚合物的相对分子质量远大于溶剂,因此将聚合物溶解于溶剂时,溶液的粘度(η)将大于纯溶剂的粘度(η0)。
可用多种方式来表示溶液粘度相对于溶剂粘度的变化,其名称及定义如表1-1所示。
表1-1 溶液粘度的各种定义及表达式溶液的粘度与溶液的浓度有关,为了消除粘度对浓度的依赖性,定义了一种特性粘数[η],其定义式为cc c c r 0sp 0ln lim lim ][h h h ®®== (1-1) 特性粘数[η]又称为极限粘数,其值与浓度无关,量纲是浓度的倒数。
特性粘数取决于聚合物的相对分子质量和结构、溶液的温度和溶剂的特性,当温度和溶剂一定时,对于同种聚合物而言,其特性粘数就仅与其分子量有关。
因此,如果能建立相对分子质量与特性粘数之间的定量关系,就可以通过特性粘数的测定得到聚合物的分子量。
这就是用粘度法测定聚合物分子量的理论依据。
根据式(1-1)的定义式,只要测定一系列不同浓度下的比浓粘度和比浓对数粘度,然后对浓度作图,并外推到浓度为零时,得到的比浓粘度和比浓对数粘度就是特性粘数。
实验表明,在稀溶液范围内,比浓粘度和比浓对数粘度与溶液浓度之间呈线性关系,可以用两个近似的经验方程来表示:c k c 2sp][][h h h += (1-2)c c2r ][][ln h b h h -= (1-3) 式(1-2)和式(1-3)分别称为Huggins 和Kraemer 方程式。
1.粘度法测定聚合物的粘均分子量
1.粘度法测定聚合物的粘均分⼦量粘度法测定聚合物的粘均分⼦量分⼦量即相对分⼦质量是聚合物最基本的结构参数之⼀,与材料的性能有密切的关系。
测定聚合物相对分⼦质量的⽅法很多,不同测定⽅法所得出的统计平均相对分⼦质量的意义有所不同,其适应的分⼦量范围也不同。
在⾼分⼦⼯业和研究中最常⽤的⽅法是粘度法,它是⼀种相对的⽅法,适⽤于分⼦量在104 ~ 107范围的聚合物,测定⽅便,⼜有较⾼的实验精度。
通过聚合物溶液的粘度测定,除了提供粘均分⼦量v M 外,还可得到聚合物的⽆扰链尺⼨和膨胀因⼦。
⼀、实验⽬的(1)掌握⽑细管粘度计测定聚合物相对分⼦质量的原理;(2)学会使⽤粘度法测定特性粘数。
⼆、实验原理由于聚合物的相对分⼦质量远⼤于溶剂,因此将聚合物溶解于溶剂时,溶液的粘度(η)将⼤于纯溶剂的粘度(η0)。
可⽤多种⽅式来表⽰溶液粘度相对于溶剂粘度的变化,其名称及定义如表1-1所⽰。
表1-1 溶液粘度的各种定义及表达式溶液的粘度与溶液的浓度有关,为了消除粘度对浓度的依赖性,定义了⼀种特性粘数[η],其定义式为cc c c r 0sp 0ln lim lim ][h h h ??== (1-1) 特性粘数[η]⼜称为极限粘数,其值与浓度⽆关,量纲是浓度的倒数。
特性粘数取决于聚合物的相对分⼦质量和结构、溶液的温度和溶剂的特性,当温度和溶剂⼀定时,对于同种聚合物⽽⾔,其特性粘数就仅与其分⼦量有关。
因此,如果能建⽴相对分⼦质量与特性粘数之间的定量关系,就可以通过特性粘数的测定得到聚合物的分⼦量。
这就是⽤粘度法测定聚合物分⼦量的理论依据。
根据式(1-1)的定义式,只要测定⼀系列不同浓度下的⽐浓粘度和⽐浓对数粘度,然后对浓度作图,并外推到浓度为零时,得到的⽐浓粘度和⽐浓对数粘度就是特性粘数。
实验表明,在稀溶液范围内,⽐浓粘度和⽐浓对数粘度与溶液浓度之间呈线性关系,可以⽤两个近似的经验⽅程来表⽰:c k c 2sp][][h h h += (1-2)c c2r ][][ln h b h h -= (1-3) 式(1-2)和式(1-3)分别称为Huggins 和Kraemer ⽅程式。
粘度法测定聚合物的粘均分子量
粘度法测定聚合物的粘均分子量粘度法是一种常见的测定聚合物粘均分子量的方法。
本文将详细介绍粘度法的原理、实验步骤以及误差分析。
一、原理粘度法通过测量溶液的粘度来推测其中分子的大小,进而求得聚合物的粘均分子量。
粘度与聚合物溶液中聚合物链的长度、空间构型以及分子之间的相互作用有关。
一般情况下,溶液的粘度与其浓度有关,由于聚合物浓度一般较低,可以近似认为单位体积溶液中分子的平均数为常数。
因此,可以根据下式推导粘度和粘均分子量的关系:η=K·M^a其中,η代表溶液的粘度,M代表聚合物的粘均分子量,K和a都是常数。
二、实验步骤1.准备样品:选取适当溶剂,将所需浓度的聚合物加入容器中制备溶液。
2.测量粘度:将粘度计完全浸入溶液中,使其在溶液中达到平衡。
根据粘度计读数和设备常数计算得到溶液的粘度。
3.测量溶液密度:使用密度计或其他方法测量溶液的密度。
4.计算聚合物的粘均分子量:根据实验数据,利用上述的粘度和粘均分子量关系公式计算聚合物的粘均分子量。
三、误差分析1.溶剂的选择:溶剂的选择对溶液的粘度测定有重要影响。
溶剂选择不当会影响粘度的测量结果。
2.温度的影响:温度对聚合物溶液的粘度有很大影响。
由于粘度和粘均分子量的关系式中包含温度参数,所以温度的误差会直接影响粘度和粘均分子量的计算结果。
3.实验仪器的误差:实验仪器的不准确性和使用方法的不当也会引入误差。
4.聚合物的结构和特性:聚合物的结构和特性也会影响粘度和粘均分子量的计算结果。
综上所述,粘度法是一种测定聚合物粘均分子量的常用方法,通过测量溶液的粘度来推断溶液中聚合物分子的大小,并据此计算聚合物的粘均分子量。
在实验过程中需注意溶剂的选择和温度控制,并考虑实验仪器的误差以及聚合物的结构和特性对结果的影响。
PVA粘均分子量的测定
3. 溶液流出时间的测定 用移液管吸取5ml 0.005g/ml的聚乙烯醇水溶 液,由A管注入黏度计中,在C管处用洗耳球 打气,使溶液混合均匀,浓度记为C1 ,恒温 15min,进行测定。
测定方法如下: 将C管用夹子夹紧使之不通气,在B管处用洗耳球将溶液从 F球经D球、毛细管、E球抽至G球2/3处,解去C管夹子, 让C管通大气,此时D球内的溶液即回入F球,使毛细管以 上的液体悬空。毛细管以上的液体下落,当液面流经a刻 度时,立即按停表开始记时间,当液面降至b刻度时,再 按停表,测得刻度a、b之间的液体流经毛细管所需时间。 重复这一操作至少三次,它们间相差不大于0.3s,取三次 的平均值为t1。
• 醇解法(醇解剂:甲醇;催化剂:NaOH)
[CH2-CH] + CH3OH
n
NaOH
[CH2-CH] OH
n
+CH3COOCH3
(乙酸乙酯)
OCO-CH3
• 副反应:
CH3COOCH3 +NaOH CH3OH +CH3COONa
• 在酸性或碱性条件下,PVAc 均可发生醇解 反应。 但一般不采用在酸性条件下醇解!
• 高分子溶液的本质是真溶液,属于均相分散系。 高分子溶液的黏度和渗透压较大,分散相与分散 系亲和力强,但丁达尔(Tyndall)现象不明显,加 入少量电解质无影响,加入多时引起盐析。
溶解过程
• 非晶态聚合物的溶胀与溶解 溶胀:溶剂分子渗入聚合物内部,即溶剂分子和 高分子的某些链段混合,使高分子体积膨胀。 溶解:高分子被分散在溶剂中,整个高分子和溶 剂混合。 • 交联聚合物的溶胀平衡 交联聚合物在溶剂中可以发生溶胀,但是由于 交联键的存在,溶胀到一定程度后,就不在继续 胀大,此时达到溶胀平衡,不能再进行溶解。
粘度法测定高聚物的粘均分子量
粘度法测定高聚物的粘均分子量粘度法是一种常用的测定高聚物粘均分子量的方法,它基于高聚物分子链的流动性和粘度之间的关系。
本文将介绍粘度法的基本原理、实验步骤以及在高聚物领域中的应用。
一、粘度法的基本原理粘度是一种描述流体流动阻力大小的物理量,高聚物分子链的流动性和粘度之间存在着一定的关系。
根据牛顿定律,通过其中一点的液体流体在单位横截面积上的切变速度与单位切变力成正比。
可以用下式表示:η=σ/γ其中,η表示粘度,σ表示切变力,γ表示切变速率。
对于一根长为L、半径为r的柱状体,其受到的切变力可以表示为:F=ηA(∂v/∂z)其中,F表示切变力,A表示横截面积,v表示速度,z表示流体的流动方向。
将公式进行整理后可以得到:η=(F/A)(L/(∂v/∂z))根据流体动力学理论,当高聚物溶液粘度η足够高时,高聚物分子链在流动过程中作用于流体的内摩擦力远大于流体分子的相互作用力,通过一定速度下的流动满足牛顿性质。
根据牛顿定律,可得出以下关系:η=k(Ma/V)其中,η表示粘度,k表示比例常数,M表示高聚物的相对分子质量,a表示高聚物溶液的摩尔浓度,V表示溶液的摩尔体积。
将上述两个公式进行整理和联立,可以得到:M=k(a/η)从上式可以看出,高聚物的相对分子质量与摩尔浓度和粘度之间存在一定的关系。
二、粘度法的实验步骤1.样品的准备:将待测高聚物溶解在适当的溶剂中,制备一系列不同浓度的高聚物溶液。
浓度范围应该足够宽,以便得到精确的分子量测定结果。
2.样品的测定:将所制备的高聚物溶液分别加入粘度计的注射器或测量池中,注意溶液的温度和粘度计的温度应该相同。
粘度计通常有三种类型:玻璃管式粘度计、滚球粘度计和旋转粘度计。
根据粘度计的类型选择合适的实验方法进行测定。
3.数据的处理:根据测得的粘度值和浓度值,可以利用上述原理中的公式计算出高聚物的相对分子质量。
通过绘制浓度与相对分子质量之间的曲线,可以得到线性关系,进而得到高聚物的平均分子量。
PVA粘均分子量的测定
4. 溶剂流出时间的测定 用蒸馏水洗净黏度计,尤其要反复流洗黏度 计的毛细管部分。用蒸馏水洗1~2次,然后由A 管加入约10ml蒸馏水。用同法测定溶剂流出的 时间t0。
❤❤实验完毕后,黏度计一定要用蒸馏水洗干净。
注意事项
高聚物在溶剂中溶解缓慢,配制溶液时必须保证 其完全溶解,否则会影响溶液起始浓度,而导致 结果偏低。 黏度计必须洁净,高聚物溶液中若有絮状物不能 将它移入黏度计中。 本实验中溶液的稀释是直接在黏度计中进行的, 因此每加入一次溶剂进行稀释时必须混合均匀, 并抽洗E球和G球。 实验过程中恒温槽的温度要恒定,溶液每次稀释 恒温后才能测量。 黏度计要垂直放置,实验过程中不要振动黏度计, 否则影响结果的准确性。
[ ] K M
M为黏均摩尔质量;K为比例常数; α 是与分子形状有 关的经验参数。 K和α值与温度、聚合物、溶剂性质有关,也和分子量大 小有关。 K值受温度的影响较明显,而α 值主要取决于高分子线 团在某温度下,某溶剂中舒展的程度,其数值介于0.5~1 之间。
K与α的数值可通过其它绝对方法确定,例如渗透 压法、光散射法等,由黏度法只能测定[η]。可以 看出高聚物摩尔质量的测定最后归结为特性黏度[η] 的测定。本实验采用毛细管法测定黏度,通过测定 一定体积的液体流经一定长度和半径的毛细管所需 时间而获得。
sp
c
lim
ln r c 0 c
实验原理
在足够稀的高聚物溶液中, lnηr/c-c和 ηSP/c-c之间
分别符合下述经验公式:
Huggims 经验公式 Kraemer 经验公式
sp
c
[ ] [ ]2 c
ln r [ ] [ ]2 c c
实验原理
高分子粘均分子量的两种模拟方法及比较
高分子粘均分子量的两种模拟方法及比较
高分子粘均分子量是指高分子物质分子量的平均值,它是用来衡量高分子物质的分子量大小的一个参数。
一种模拟方法是使用质谱仪测量高分子粘均分子量。
质谱仪是一种用于测量物质的分子量的仪器,它可以测量高分子物质的分子量,从而得出其粘均分子量。
另一种模拟方法是使用液相色谱仪测量高分子粘均分子量。
液相色谱仪是一种用于测量物质的分子量的仪器,它可以根据物质的分子量的不同而产生不同的峰,从而可以测量高分子物质的粘均分子量。
两种模拟方法的比较:
1. 质谱仪和液相色谱仪对高分子粘均分子量的测量精度不同。
质谱仪可以精确测量高分子粘均分子量,而液相色谱仪的测量精度较低。
2. 质谱仪和液相色谱仪对高分子粘均分子量的测量速度不同。
质谱仪的测量速度较快,而液相色谱仪的测量速度较慢。
3. 质谱仪和液相色谱仪对高分子粘均分子量的测量范围不同。
质谱仪可以测量较大的高分子粘均分子量,而液相色谱仪只能测量较小的高分子粘均分子量。
高分子分子量的主要测定方法
高分子分子量的主要测定方法用途高聚物的分子量及分子量分布,是研究聚合物及高分子材料性能的最基本数据之一。
它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工条件的选择。
也是在高分子化学、高分子物理领域对具体聚合反应,具体聚合物的结构研究所需的基本数据之一。
表征方法及原理1.粘度法测相对分子量(粘均分子量Mη)用乌式粘度计,测高分子稀释溶液的特性粘数[η],根据Mark-Houwink公式[η]=kMα,从文献或有关手册查出k、α值,计算出高分子的分子量。
其中,k、α值因所用溶剂的不同及实验温度的不同而具有不同数值。
2.小角激光光散射法测重均分子量(Mw)当入射光电磁波通过介质时,使介质中的小粒子(如高分子)中的电子产生强迫振动,从而产生二次波源向各方向发射与振荡电场(入射光电磁波)同样频率的散射光波。
这种散射波的强弱和小粒子(高分子)中的偶极子数量相关,即和该高分子的质量或摩尔质量有关。
根据上述原理,使用激光光散射仪对高分子稀溶液测定和入射光呈小角度(2℃-7℃)时的散射光强度,从而计算出稀溶液中高分子的绝对重均分子量(MW)值。
采用动态光散射的测定可以测定粒子(高分子)的流体力学半径的分布,进而计算得到高分子分子量的分布曲线。
3.体积排除色谱法(SES)(也称凝胶渗透色谱法(GPC))当高分子溶液通过填充有特种多孔性填料的柱子时,溶液中高分子因其分子量的不同,而呈现不同大小的流体力学体积。
柱子的填充料表面和内部存在着各种大小不同的孔洞和通道,当被检测的高分子溶液随着淋洗液引入柱子后,高分子溶质即向填料内部孔洞渗透,渗透的程度和高分子体积的大小有关。
大于填料孔洞直径的高分子只能穿行于填料的颗粒之间,因此将首先被淋洗液带出柱子,而其他分子体积小于填料孔洞的高分子,则可以在填料孔洞内滞留,分子体积越小,则在填料内可滞留的孔洞越多,因此被淋洗出来的时间越长。
按此原理,用相关凝胶渗透色谱仪,可以得到聚合物中分子量分布曲线。
粘均分子量测试方法
粘均分子量测试方法粘度法测定聚合物的粘均分子量一、实验目的1. 掌握使用粘度法测定聚合物分子量的基本原理2. 掌握乌氏粘度计测定聚合物稀溶液粘度的实验技术及数据处理方法3. 分析分子量大小对聚合物性能以及聚合物加工性能的关系及影响。
二、基本原理聚合物稀溶液的粘度主要反映了液体分子之间因流动或相对运动所产生的内摩擦阻力。
内摩擦阻力与聚合物的结构、溶剂的性质、溶液的浓度及温度和压力等因素有关,它的数值越大,表明溶液的粘度越大。
聚合物溶液粘度的变化,一般采用下列的粘度量来描述。
相对粘度,又称粘度比,用ηr表示。
它是相同温度条件下,溶液粘度η与纯溶剂粘度η0之比,表示为:ηr=η/η0 (1)相对粘度是一个无因次量,随着溶液浓度增加而增加。
对于低剪切速率下聚合物溶液,其值一般大于1。
增比粘度(粘度相对增量),用ηsp表示,是相对于溶剂来说,溶液粘度增加的分数: ηsp =(η-η0)/η0 =ηr –1 (2)3. 比浓粘度(粘数),对于高分子溶液,粘度相对增量往往随溶液浓度的增加而增大,因此常用其与浓度c之比来表示溶液的粘度,称为比浓粘度或粘数,即:ηsp/c = (ηr-1)/c (3)粘数的因次是浓度的倒数,一般用 ml/g表示。
比浓对数粘度(对数粘度),其定义是相对粘度(粘度比)的自然对数与浓度之比,即: ( lnηr)/c = /c (4)单位为浓度的倒数,常用 ml/g表示。
特性粘度(极限粘度),其定义为比浓粘度(粘数)ηsp/c或比浓对数粘度(对数粘度)lnηr/c在无限稀释时的外推值,用表示,即:= lim(ηsp/c) = lim(lnηr/c) (5)c?0 c?0称为特性粘度(或极限粘数),其值与浓度无关,量纲是浓度的倒数。
实验证明,对于给定聚合物,在给定的溶剂和温度下,的数值仅有试样的分子量Mη所决定。
和Mη的关系如下:=K Mηα (6)上式称为Mark-Houwink方程。
式中:——扩张因子,与溶液中聚合物分子形态有关;Mη——粘均分子量(注:一些常用聚合物的K 、α值见附表1所示)K 、α与温度、聚合物种类和溶剂性质有关,K值受温度影响明显,而α值主要取决于高分子线团在溶剂中舒展的程度,一般介于0.5~1.0之间。
gpc 计算粘均分子量mv
GPC(凝胶渗透色谱)是一种常用的分子量测定方法,可以用来计算粘均分子量。
在GPC中,样品被流动的凝胶柱分离成不同分子量的组分,并使用分子量标样进行标定。
通过测定每个分子量组分的粘度,可以计算出它们的粘均分子量。
具体来说,GPC计算粘均分子量的步骤如下:
1. 收集一定数量的样品分子量数据;
2. 根据凝胶柱的分离度公式,利用已知分子量的标准品进行标定,得到样品中各个分子量组分的数量;
3. 利用分子量与粘度的关系公式,根据每个分子量组分的峰面积或峰高,计算出它们的粘度;
4. 最后,根据粘度数据,使用粘度-分子量关系公式,计算出粘均分子量。
需要注意的是,GPC只能给出样品中各种不同分子量的分布情况,并不能给出每个分子量的具体数值。
另外,由于GPC受到流动相流速、温度等因素的影响,因此其测定的分子量结果可能会有一定的误差。
粘均分子量与
粘均分子量与粘均分子量(AverageMolecularWeight)是在高分子物质研究中,表示物质的中位分子量的重要指标。
它与所研究物质的性质有关,可用来评价高分子物质的质量。
它广泛应用于军事、安全、环境等领域,以及生物、制药、化工、农业和建筑等行业。
粘均分子量是在分子结构中表示各种分子量的一种技术方法,能反映分子结构的整体特性,一般用重量平均分子量(Mw)来表示。
它表示某种特定的分子结构类型中,每个分子中各种结构成分的重量的平均值。
它用来表示物质的结构性质,例如液体的粘度。
粘均分子量可用来测定、反映物质的分子结构、分子量分布、性质及变化规律。
粘均分子量与粘度有着密切的关系,粘度是一种测量液体流动性的常用方法,它反映了液体的粘度、流变性和流动性。
因此,粘均分子量的测定可以得到液体的粘度,从而可以更好地控制和应用液体材料。
粘均分子量的测定主要有两种技术方法:离子迁移实验和流变仪实验。
离子迁移实验是通过检测模拟溶液中细胞膜两端电位计算粘均分子量的一种方法;而流变仪实验是通过测定一定范围内液体流变曲线来确定粘均分子量的另一种方法。
粘均分子量的确定可以帮助我们更清楚地了解某一物质的分子特性,它能有效提高某一物质的性能,并且利于获得新的应用。
因此,粘均分子量的测定在许多方面具有实际应用价值。
此外,粘均分子量也可以用于评价物质的质量,特别是高分子物质,这一点很重要。
事实上,粘均分子量可以反映物质的结构、流变性、粘度等特性,对于高分子物质的评价,尤其重要。
此外,粘均分子量的测定可以帮助我们加强对高分子物质的检验,确保其质量。
综上所述,粘均分子量是一种重要的指标,广泛应用于军事、安全、环境等领域,以及生物、制药、化工、农业和建筑等行业。
它对于高分子物质的评价,尤其重要,可以反映物质的结构、流变性、粘度等特性,有助于提高物质的性能,为人们提供更加安全、优质的高分子物质产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粘均分子量测试方法粘度法测定聚合物的粘均分子量一、实验目的1. 掌握使用粘度法测定聚合物分子量的基本原理2. 掌握乌氏粘度计测定聚合物稀溶液粘度的实验技术及数据处理方法3. 分析分子量大小对聚合物性能以及聚合物加工性能的关系及影响。
二、基本原理聚合物稀溶液的粘度主要反映了液体分子之间因流动或相对运动所产生的内摩擦阻力。
内摩擦阻力与聚合物的结构、溶剂的性质、溶液的浓度及温度和压力等因素有关,它的数值越大,表明溶液的粘度越大。
聚合物溶液粘度的变化,一般采用下列的粘度量来描述。
相对粘度,又称粘度比,用ηr表示。
它是相同温度条件下,溶液粘度η与纯溶剂粘度η0之比,表示为:ηr=η/η0 (1)相对粘度是一个无因次量,随着溶液浓度增加而增加。
对于低剪切速率下聚合物溶液,其值一般大于1。
增比粘度(粘度相对增量),用ηsp表示,是相对于溶剂来说,溶液粘度增加的分数: ηsp =(η-η0)/η0 =ηr –1 (2)3. 比浓粘度(粘数),对于高分子溶液,粘度相对增量往往随溶液浓度的增加而增大,因此常用其与浓度c之比来表示溶液的粘度,称为比浓粘度或粘数,即:ηsp/c = (ηr-1)/c (3)粘数的因次是浓度的倒数,一般用 ml/g表示。
比浓对数粘度(对数粘度),其定义是相对粘度(粘度比)的自然对数与浓度之比,即: ( lnηr)/c = /c (4)单位为浓度的倒数,常用 ml/g表示。
特性粘度(极限粘度),其定义为比浓粘度(粘数)ηsp/c或比浓对数粘度(对数粘度)lnηr/c在无限稀释时的外推值,用表示,即:= lim(ηsp/c) = lim(lnηr/c) (5)c?0 c?0称为特性粘度(或极限粘数),其值与浓度无关,量纲是浓度的倒数。
实验证明,对于给定聚合物,在给定的溶剂和温度下,的数值仅有试样的分子量Mη所决定。
和Mη的关系如下:=K Mηα (6)上式称为Mark-Houwink方程。
式中:——扩张因子,与溶液中聚合物分子形态有关;Mη——粘均分子量(注:一些常用聚合物的K 、α值见附表1所示)K 、α与温度、聚合物种类和溶剂性质有关,K值受温度影响明显,而α值主要取决于高分子线团在溶剂中舒展的程度,一般介于0.5~1.0之间。
在一定温度时,对给定的聚合物-溶剂体系,一定的分子量范围内K 、α为常数,只与分子量大小有关。
K 、α值可从有关手册中查到(见附表1),或采用几个标准试样又式(6)进行测定,标准试样的分子量有绝对方法(如渗透压法和光散射法)确定。
在一定温度下,聚合物溶液粘度对浓度有有一定的依赖关系,通常用哈金斯(Huggins)方程描述为:ηsp/c = –kˊ2c (7)或用克拉默(Kraemer)方程描述为:(lnηr)/c = –β2c (8)对于给定的聚合物,在给定的温度和溶剂时,kˊ、β应为常数,其中kˊ为哈金斯(Huggins)常数,它表示溶液中高分子间和高分子与溶剂分子间的相互作用,kˊ一般说来对分子量并不敏感。
对于线形柔性链高分子良溶剂体系,kˊ=0.3 ~ 0.4,kˊ+β=0.5。
外推可得到共同的截距,如图1所示,由式(7)和式(8)可得到一点法求的方程:= (1/c)1/2 (9)图1用ηsp/c和(lnηr)/c 对c作图图2 乌氏粘度计由上可见,用粘度法测定高聚物分子量,关键在于的求得,最为方便的是用毛细管粘度计测定溶液的相对粘度(粘度比)。
常用的粘度计为乌氏(Ubbelchde)粘度计(如图2所示),其特点是溶液的体积对测量没有影响,所以可以在粘度计内采取逐步稀释的方法得到不同浓度的溶液。
根据相对粘度(粘度比)定义η ρt(1-B/At2)ηr = —— = —————— (10)η0 ρ0t0(1-B/At02)式中,ρ、ρ0分别为溶液和溶剂的密度,因溶液很稀,ρ=ρ0;A和B为粘度计常数;t和t0分别为溶液和溶剂在毛细管中的流出时间,即液面经过刻线a和b 所需时间。
在恒温条件下,用同一支粘度计测定溶液和溶剂的流出时间,如果溶剂在该粘度计中的流出时间大于100秒,则动能校正项B/At2远小于1(有关动能校正,可参考有关资料),因此溶液的粘度比为ηr=t/t0试样溶液浓度一般在0.01g/ml以下,使ηr值在1.05,2.5之间较为适宜。
最大不应超过3.0。
三、试样与仪器1. 仪器如表 1所示。
表1 粘度测定仪器一览表名称规格数量乌氏粘度计溶剂流出体积大于100s 1支恒温水槽温度波动不大于?0.05? 1套容量瓶 25ml 2只100ml 2只玻璃砂芯漏斗 3号 2只移液管 5ml 1支10ml 2支秒表 1/10s 1只吸球橡皮 1只医用乳胶管φ6*150 1根附注恒温水槽包括电动搅拌机1台,加热器1个,继电器1个,水银触点温度计1支,50?十分之一刻度温度计1支。
测量分子量用的主要仪器是粘度计和恒温槽,其中恒温槽要求具有较高的温度精度和小的温度分布。
2. 药品 ?待测试样聚苯乙烯1g或丁苯橡胶1g;?溶剂:甲苯(AR)100ml,丙酮(CP)100ml。
四、实验步骤1. 调节恒温槽温度至25?0.05?。
2. 配制聚合物溶液准确称取100-500mg试样放入100ml清洁干燥的容量瓶中,倒入约80ml甲苯,使之溶解,待试样完全溶解之后,放入已调节好的恒温槽中,溶量瓶也放入恒温槽中。
再加溶剂至刻度,取出摇匀,用3号玻璃砂芯漏斗过滤到另一100ml容量瓶中,放入恒温槽恒温待用,容量瓶及玻璃砂芯漏斗,用后立即洗涤。
玻璃砂芯漏斗要用含30%硝酸钠的硫酸溶液洗涤,再用蒸馏水抽滤,烘干待用。
3. 洗涤粘度计粘度计和待测液体的清洁是决定实验成功的关键之一。
若是新的粘度计应先用洗液洗,再用自来水洗三次,蒸馏水洗三次,烘干待用。
对已用过的温度计,则先用甲苯(溶剂)灌入粘度计中浸洗除去留在粘度计中的高分子,尤其是毛细管部分要反复用溶剂清洗,洗毕,倾去甲苯液(倒入回收瓶中),再用洗液、自来水、蒸馏水洗涤,最后烘干。
4. 溶剂流出时间的测定将清洁干燥的乌氏粘度计垂直放入恒温水槽内,使水面完全浸没小球。
用移液管吸10ml甲苯,从A管注入E球中,于25?恒温槽中恒温3分钟,然后进行测定。
在C管套一乳胶管,用手捏住,使之不通气。
在B管用吸球将E球的溶剂吸起,经毛细管及F球吸入G球,然后先松开吸球,再松开C管橡皮管,让C管通大气,随即,被吸起的溶剂开始流回E球,此时操作者要集中精神,用眼睛水平地注视正在下降的液面,并用秒表准确地测出液面流经a线与b线之间所需的时间,并记录。
重复上述操作三次,每次测定相差不大于0.2秒。
取三次的平均值为t0,即为溶剂甲苯的流出时间。
5. 溶液流出时间的测定(1)测定t0后,将粘度计中的甲苯倒入回收瓶,并将粘度计烘干,用干净的移液管吸取已恒温好的被测溶液10ml,移入粘度计(注意尽量不要将溶液沾在管壁上),恒温2分钟,按前面的步骤,测定溶液(浓度c1)的流出时间t1。
(2)用移液管加入5ml预先恒温好的甲苯,对上述溶液进行稀释,稀释后的溶液浓度(c2)即为起始浓度c1的2/3。
然后用同样的方法测定浓度为c2的溶液的流出时间t2。
与此相同,依次加入甲苯5ml、10ml、10ml,使溶液浓度成为起始浓度的1/2、1/2、1/4,分别测定其流出时间并记录之(注意每次加入纯试剂后,一定要混合均匀,且要等到恒温后再测定)6. 粘度计洗涤测量完毕后,取出粘度计,将溶液倒入回收瓶中,用溶剂反复清洗几次,烘干,并用热溶液装满,浸泡数小时后倒去洗液,再用自来水、蒸馏水冲洗,烘干备用。
五、注意事项1. 粘度计必须保证干净,溶剂、溶液也必须过滤纯净;2. 粘度计材质为玻璃,容易碰坏,尤其是B、C管,操作要特别小心;恒温槽温度要严格控制在要求范围内;粘度计安装要垂直,读数要求精确。
六、数据处理1. 记录格式如表2所示。
为作图方便,用相对浓度c′来计算和作图。
3. 外推法作图计算Mη以ηSP/c′、lnηt/ c′对浓度c′作图,得两条直线,外推至c′?0得截距。
经换算,就得特性粘度,将代入式(6),即可换算出聚合物的分子量Mη。
4. 用―一点法‖计算聚合物的分子量。
实际工作中,希望简化操作,快速得到产品的分子量。
―一点法‖只要在一个浓度下测定粘度比,用式(9)即可算出其分子量。
七、实验报告要求1、简述实验原理。
2、明确操作步骤和注意事项。
3、做好原始记录及数据处理。
4、详细记录拉伸过程中观察到的现象,结合学过的理论知识分析现象产生原因(包括变形情况,表面及颜色变化,断裂情况及断面牲等)。
八、预习要求1、搞清实验原理;2、了解粘度法测定聚合物的粘均分子量操作步骤及注意事项。
3、写好预习报告,准备记录表格。
附表1 一些常见聚合物的K、α值聚合物聚合方法分子量范围,*103 溶剂温度(?) K值,*102 α值聚苯乙烯 (PS) 溶液聚合 3,1700 甲苯 25 1.7 0.691,11 苯 25 4.17 0.605.9,5.2 苯 20 1.23 0.72330, 甲苯 30 1.1 0.73聚甲基丙烯酸甲酯 (PMMA) 本体聚合 70,6300 苯 25 0.468 0.77240,4500 苯 25 0.38 0.70乳液聚合 410,3400 丙酮 25 0.96 0.69410,3400 甲苯 25 0.71 0.73410,3400 氯仿 25 0.34 0.83丁苯橡胶 (SBR) 乳液聚合 50? 25,500 甲苯 25 5.25 0.66 26,1740 甲苯 30 1.65 0.735? 55,1000 甲苯 30 2.95 0.7525,1000 苯 25 1.3 0.55天然橡胶 (NR) 0.4,1500 苯 25 5.02 0.17顺丁橡胶 (BR) 20,1300 甲苯 25 2.15 0.6526,660 丁酮 30 4.8 0.55聚丙烯氰 (PAN) 48,270 二甲基甲酰胺 25 1.66 0.813,370 二甲基甲酰胺 25 2.33 0.75涤纶(PET) 12,28 磷氯代苯 25 3.0 0.775,25 酚/四氯乙烷 25 2.1 0.82聚乙烯醇 (PVA) 11.6,195 水 25 5.95 0.6344,1100 水 50 5.9 0.6730,120 水 30 6.6 0.64。