福州大学数值分析考试复习题

合集下载

数值分析期末考试题

数值分析期末考试题

数值分析期末考试题一、选择题1. 在数值分析中,用于求解线性方程组的雅可比方法属于以下哪种迭代法?A. 直接迭代法B. 间接迭代法C. 外推法D. 松弛法2. 插值法中,拉格朗日插值多项式的主要特点是?A. 适用于多项式插值B. 适用于函数值已知的情况C. 只适用于单点插值D. 适用于分段插值3. 在数值积分中,辛普森法则是一种?A. 单区间求积公式B. 双区间求积公式C. 三区间求积公式D. 多区间求积公式4. 误差分析中,截断误差通常与以下哪个概念相关?A. 舍入误差B. 舍入误差的补偿C. 条件数D. 病态条件5. 非线性方程求解中,牛顿法的收敛速度通常?A. 较慢B. 较快C. 与初始值有关D. 与方程的性质有关二、填空题1. 在求解三对角线性方程组时,托马斯算法是一种________方法。

2. 多项式插值中,牛顿插值多项式可以通过________法来构建。

3. 数值积分中,高斯求积法是一种________方法。

4. 误差传递的估计通常通过________公式来进行。

5. 非线性方程的求解中,二分法是一种________方法。

三、简答题1. 请简述数值分析中的条件数概念及其在解方程中的应用。

2. 描述线性方程组迭代法中的收敛性判断方法,并给出收敛域的计算公式。

3. 解释插值和拟合的区别,并举例说明各自的应用场景。

4. 阐述数值积分中梯形法则的原理及其误差估计方法。

5. 讨论非线性方程求解中不动点理论和收敛性的关系。

四、计算题1. 给定线性方程组如下,请使用高斯消元法求解未知数x、y、z的值: \[\begin{cases}2x + y + z = 6 \\x + 3y + 2z = 11 \\3x + y + 4z = 17\end{cases}\]2. 假设有一个函数f(x) = sin(x),给定插值节点如下,请使用拉格朗日插值法构造一个三次插值多项式,并计算在x=π/4处的插值误差。

福州大学2009年数学分析试题及解答

福州大学2009年数学分析试题及解答

福州大学2009年《数学分析》1.设00x =,1n n k k x a ==∑(1n ≥),n x b →(n →∞).求级数11()n n n n a x x ∞-=+∑之和.2.设(0)(1)f f =,''()2f x ≤(01x ≤≤).证明'()1f x ≤(01x <<).此估计式能否改进?3.设(,)f x y 有处处连续的二阶偏导数,'(0,0)'(0,0)(0,0)0x y f f f ===.证明 (,)f x y 1221112220(1)[(,)2(,)(,)]t x f tx ty xyf tx ty y f tx ty dt =-++⎰. 4.设(,)f x y 在,0x y ≥上连续,在,0x y >内可微,存在唯一点00(,)x y ,使得00,0x y >,0000'(,)'(,)0x y f x y f x y ==.设00(,)0f x y >,(,0)(0,)0f x f y ==(,0x y ≥), 22lim (,)0x y f x y +→∞=,证明00(,)f x y 是(,)f x y 在,0x y ≥上的最大值.5.设处处有''()0f x >.证明:曲线()y f x =位于任一切线之上方,且与切线有唯一公共点.6.求2249L xdy ydx I x y -=+⎰,L 是取反时针方向的单位圆周.7.设()f是连续正值函数, 22222222222222()()()()x y z t x y t f x y z dxdydzF t x y f x y dxdy ++≤+≤++=++⎰⎰⎰⎰⎰.证明()F t (0t >)是严格单调减函数.8.设级数01n n a n ∞=+∑收敛,证明10001n n n n n a a x dx n ∞∞===+∑∑⎰. 9.设()f x 在[0,)∞上连续,其零点为01:0n n x x x x =<<<< ,()n x n →∞→∞.证明:积分0()f x dx ∞⎰收敛⇔级数10()n n x x n f x dx +∞=∑⎰收敛.10.设a b <,()n f x 在[,]a b 上连续,()0bn a f x dx ≥⎰(1,2,n = ),当n →∞时,()n f x 在[,]a b 上一致收敛于()f x .证明:至少存在一点0[,]x a b ∈,使得0()0f x ≥.。

福州大学2010-2011年数值分析考题及答案1

福州大学2010-2011年数值分析考题及答案1
得分 评卷人
1、若向量 x (4, 2,3) ,则
T
x 2 =___ 29 _________
=____ 6 ____,A 的
2、
1 1 A , 则 A 的谱半径 -5 1
=____6____
3、 确定求积公式 尽量高,则 A0=_

1
1
f ( x)dx A0 f (1) A1 f (0) A2 f '(1) 中的待定参数,使其代数精度
0 2 0 5、设 B 2 1 2 ,试用平面旋转矩阵对矩阵 A 进行 QR 分解,其中 Q 为正交 0 2 1
矩阵,R 为上三角阵(8 分)
4
记A1 A, 先将A的第一列变得与e1平行 cos = 0 2 0,sin = 1 04 04 0 1 0 0 1 0 0 P A 2 P A1 1 12 12 0 0 0 1
3、
h 用二步法 yn1 yn [ f ( xn , yn ) f ( xn1 , yn1 )] 求解一阶常微分方程初值问题 2
y f ( x, y ) 问:如何选择参数 , 的值,才使该方法的阶数尽可能地高?写出 y ( x0 ) y0
此时的局部截断误差主项,并说明该方法是几阶的。 证明:局部截断误差为:
( x x )l ( x) 等于
i 0 i i
4
( a ) 1 (c) 2 (d) 4
(a)
0
(b)
3、设 f ( x) 3x5 4 x 4 x 2 1 和节点 xk k / 2, k 0,1 则差商 f [ x0 , x1 x5 ] (a) 4 (b) 2 (c) 3 (d) 1 ( ( c ) c )

数值分析期末试题及答案

数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。

答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。

答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。

答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。

答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。

解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。

拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。

数值分析试卷及答案

数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。

答:牛顿-科特斯公式2. 数值微分的基本公式是_________。

答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。

答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。

答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。

数值分析期末复习题答案

数值分析期末复习题答案

数值分析期末复习题答案一、选择题1. 以下哪个算法是用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 共轭梯度法D. 辛普森积分法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的主要区别是什么?A. 插值点的选取不同B. 插值多项式的构造方式不同C. 计算复杂度不同D. 适用的函数类型不同答案:B3. 在数值积分中,梯形法则和辛普森法则的主要区别是什么?A. 精度不同B. 适用的积分区间不同C. 计算方法不同D. 稳定性不同答案:A二、简答题1. 解释什么是数值稳定性,并举例说明。

答案:数值稳定性指的是数值方法在计算过程中对于舍入误差的敏感程度。

例如,在求解线性方程组时,如果系数矩阵的条件数很大,则该方程组的数值解对舍入误差非常敏感,即数值稳定性差。

2. 说明数值微分与数值积分的区别。

答案:数值微分是估计函数在某一点的导数,而数值积分是估计函数在某个区间上的积分。

数值微分通常用于求解函数的局部变化率,而数值积分用于求解函数在一定区间内的累积效果。

三、计算题1. 给定一组数据点:(1, 2), (2, 3), (3, 5), (4, 6),请使用拉格朗日插值法构造一个三次插值多项式。

答案:首先写出拉格朗日插值基函数,然后根据数据点构造插值多项式。

具体计算过程略。

2. 给定函数 f(x) = x^2,使用牛顿-科特斯公式中的辛普森积分法在区间 [0, 1] 上估计积分值。

答案:首先确定区间划分,然后应用辛普森积分公式进行计算。

具体计算过程略。

四、论述题1. 论述数值分析中误差的来源及其控制方法。

答案:误差主要来源于舍入误差和截断误差。

舍入误差是由于计算机在进行浮点数运算时的精度限制造成的,而截断误差是由于数值方法的近似性质导致的。

控制误差的方法包括使用高精度的数据类型、选择合适的数值方法、增加计算步骤等。

五、综合应用题1. 给定一个线性方程组 Ax = b,其中 A 是一个 3x3 的矩阵,b 是一个列向量。

数值分析期末复习-福大研究生版

数值分析期末复习-福大研究生版

数值分析期末复习题型:一、填空 二、判断 三、解答(计算) 四、证明第一章 误差与有效数字一、 有效数字1、 定义:若近似值x*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n 位,就说x*有n 位有效数字。

2、 两点理解:(1) 四舍五入的一定是有效数字(2) 绝对误差不会超过末位数字的半个单位eg. 3、 定理1(P6):若x*具有n 位有效数字,则其相对误差限为4、 考点:(1)计算有效数字位数:一个根据定义理解,一个根据定理1(P7例题3)二、 避免误差危害原则 1、 原则:(1) 避免大数吃小数(方法:从小到大相加;利用韦达定理:x1*x2= c / a )(2) 避免相近数相减(方法:有理化)eg. 或(3) 减少运算次数(方法:秦九韶算法)eg.P20习题14三、 数值运算的误差估计 1、 公式:(1) 一元函数:|ε*( f (x *))| ≈ | f ’(x *)|·|ε*(x )|或其变形公式求相对误差(两边同时除以f (x *)) eg.P19习题1、2、5(2) 多元函数(P8)eg. P8例4,P19习题4第二章 插值法一、 插值条件1、 定义:在区间[a,b]上,给定n+1个点,a ≤x 0<x 1<…<x n ≤b 的函数值yi=f(xi),求次数不超过n 的多项式P(x),使 2、 定理:满足插值条件、n+1个点、点互异、多项式次数≤n 的P(x)存在且唯一二、 拉格朗日插值及其余项1、 n 次插值基函数表达式(P26(2.8))2、 插值多项式表达式(P26(2.9))3、 插值余项(P26(2.12)):用于误差估计*(1)11102n r a ε--≤⨯;x εx εx εx ++=-+();1ln ln ln ⎪⎪⎭⎫ ⎝⎛+=-+x εx εx x cos 1-2sin 22x =n i y x P ii n ,,2,1,0)(Λ==4、 插值基函数性质(P27(2.17及2.18))eg.P28例1三、 差商(均差)及牛顿插值多项式 1、 差商性质(P30):(1) 可表示为函数值的线性组合(2) 差商的对称性:差商与节点的排列次序无关 (3) 均差与导数的关系(P31(3.5)) 2、 均差表计算及牛顿插值多项式四、埃尔米特插值(不用背公式) 两种解法:(1) 用定义做:设P 3(x)=ax 3+bx 2+cx+d ,将已知条件代入求解(4个条件:节点函数值、导数值相等各2个)(2) 牛顿法(借助差商):重节点eg.P49习题14 五、三次样条插值定义(1) 分段函数,每段都是三次多项式(2) 在拼接点上连续(一阶、二阶导数均连续) (3)考点:利用节点函数值、导数值相等进行解题第三章 函数逼近与曲线拟合一、 曲线拟合的最小二乘法解题思路:确定ϕi ,解法方程组,列方程组求系数(注意ϕi 应与系数一一对应)eg.P95习题17nj y x S j j ,,1,0,)(Λ==形如y=ae bx 解题步骤: (1) 线性化(2)重新制表(3)列法方程组求解(4)回代第四章 数值积分与数值微分一、 代数精度 1、 概念:如果某个求积公式对于次数不超过m 的多项式准确成立,但对于m+1次多项式不准确成立,则称该求积公式具有m 次代数精度 2、 计算方法:将f(x)=1,x,x 2, …x n 代入式子求解 eg.P100例1二、 插值型的求积公式求积系数定理:求积公式至少具有n 次代数精度的充要条件是:它是插值型的。

数值分析复习题及答案

数值分析复习题及答案

2 x1 2 x2 3x3 3
5. 用列主元消元法解线性方程组
x1 3x2 2
作第一次消元后得到的第 3 个方程(
).
A . x2 x3 2 x2 0.5x3 1.5
B . 2x2 1.5x3 3.5
C . 2 x2 x3 3
D.
二、填空
1. 设 x 2.3149541... ,取 5 位有效数字,则所得的近似值 x=
1, x2
9
1.设
4
4
( 1)试求
fx

19 ,
4 4 上的三次 Hermite 插值多项式
x 使满足
H (x j ) f ( xj ), j 0,1,2,... H ' ( x1) f ' (x1) , x 以升幂形式给出。
( 2)写出余项 R(x) f ( x) H (x) 的表达式
, 。
2.已知
(1) 用拉格朗日插法求 f (x) 的三次插值多项式; (2) 求 x , 使 f (x) 0 。
确定下列求积公式中的待定参数,使其代数精确度尽量高,并指明求积公式所具有的代数精确度
24、用 Gauss 消去法求解下列方程组
1
1
. 试求 x1, x2 使求积公式
f ( x)
1
[ f ( 1) 2 f ( x1) 3
11 dx
01 x .
9.用二次拉格朗日插值多项式 L2 ( x)计算 sin 0.34 的值。
插值节点和相应的函数值是( 0,0),(,),(,)。
10. 用二分法求方程
f (x)
3
x
x 1 0在 [1.0,1.5] 区间内的一个根,误差限
10

数值分析期末复习题

数值分析期末复习题

数值分析期末复习题⼀、填空题1.设真值x=983350,则其近似值y=98000的有效数字的位数,绝对误差为,相对误差为。

2.x=0.1062,y=0.947,计算x+y 其有效数字的位数为。

3.对f(x)=x 3+x+1,差商f[0,1,2,3]= ;f[0,1,2,3,4]= 。

4.设f(x)可微,求⽅程x=f(x)根的⽜顿迭代法格式是。

5.设⽅程x=?(x)有根x *,且设?(x)在含x *的区间(a,b)内可导,设x 0∈(a,b)则迭代格式x k+1=?(x k )收敛的充要条件为。

6.求解线性⽅程组Ax=b 的迭代格式x (k+1)=Jx (k)+f 收敛的充要条件为。

7.=011001001001....A ,||A||∝= ,cond(A)∝= 。

8.n 次Legendre 多项式的最⾼次项系数为。

9.中矩形公式:)()2()(a b b a f dx x f b a -+=?的代数精度为。

10.求积公式:)1(21)0()(10f f dx x f '+≈?的代数精度为。

11.在区间[1,2]上满⾜插值条件??==3)2(1)1(P P 的⼀次多项式P(x)= 。

12.设∑==n k k k n x f A f I 0)()(是函数f(x)在区间[a,b]上的插值型型求积公式,则 ∑=n k k A0= 。

13.梯形公式和改进的Euler 公式都是阶精度的。

⼆、计算题1.利⽤矩阵的⾼斯消元法,解⽅程组=++=++=++2053182521432321321321x x x x x xx x x2.设有函数值表试求各阶差商,并写出Newton 插值多项式。

3.求解超定⽅程组= ?43231211121x x的最⼩⼆乘解。

4.给定下列函数值表:求3次⾃然样条插值函数5.给定x x f =)(在x=100, 121, 144 三点处的值,试以这三点建⽴f(x)的⼆次(抛物)插值公式,利⽤插值公式求115的近似值并估计误差。

数值分析题库

数值分析题库

一. 单项选择题(每小题2分,共10分)1. 在下列四个数中,有一个数具有4位有效数字,且其绝对误差限为 51021-⨯,则该数是( ) A 0.001523 B 0.15230 C 0.01523 D 1.52300 2. 设方阵A 可逆,且其n 个特征值满足:n λλλ>≥> (21),则1-A 的主特征值是( )A11λ B nλ1 C1λ或n λ D 11λ或nλ13. 设有迭代公式→→+→+=fxB x k k )()1(。

若||B|| > 1,则该迭代公式( )A 必收敛B 必发散C 可能收敛也可能发散4. 常微分方程的数值方法,求出的结果是( )A 解函数B 近似解函数C 解函数值D 近似解函数值 5. 反幂法中构造向量序列时,要用到解线性方程组的( ) A 追赶法 B LU 分解法C 雅可比迭代法D 高斯—塞德尔迭代法二. 填空题(每小题4分,共20分)1. 设有方程组⎪⎩⎪⎨⎧=+-=+-=+02132432132132x x x x x x x x ,则可构造高斯—塞德尔迭代公式为⎪⎩⎪⎨⎧2. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111112101A ,则=∞A3. 设1)0(,2'2=+=y y x y ,则相应的显尤拉公式为=+1n y4. 设1)(+=ax x f ,2)(x x g =。

若要使)(x f 与)(x g 在[0,1]上正交,则a =5. 设T x )1,2,2(--=→,若有平面旋转阵P ,使P →x 的第3个分量为0,则P =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ 三. 计算题(每小题10分,共50分)1. 求27的近似值。

若要求相对误差小于0.1%,问近似值应取几位有效数字?2. 设42)(x x x f -=,若在[-1,0]上构造其二次最佳均方逼近多项式,请写出相应的法方程。

3. 设有方程组⎪⎩⎪⎨⎧=++=++=-+1221122321321321x x x x x x x x x ,考察用雅可比迭代解此方程组的收敛性。

(完整)数值分析学期期末考试试题与答案(A),推荐文档

(完整)数值分析学期期末考试试题与答案(A),推荐文档

期末考试试卷( A 卷)2007 学年第二学期 考试科目: 数值分析 考试时间: 120 分钟学号 姓名 年级专业100011. 用计算机求11000时,应按照 n 从小到大的顺序相加。

n1n2. 为了减少误差 ,应将表达式 2001 1999 改写为 2进行计算。

( )2001 19993. 用数值微分公式中求导数值时,步长越小计算就越精确。

( )4. 采用龙格-库塔法求解常微分方程的初值问题时, 公式阶数越高,数值解越精确。

( )5. 用迭代法解线性方程组时, 迭代能否收敛与初始向量的选择、 系数矩阵及其演变方式有关,与常数项无关。

( ) 二、填空每空 2 分,共 36 分)1. 已知数 a 的有效数为 0.01 ,则它的绝对误差限为 _______ ,相对误差限为 _1 0 1 02. 设 A0 2 1 ,x 5 ,则 A 1____________________________ _, x 2 ______ ,Ax1 3 0 13. 已知 f (x) 2x 54x 35x,则 f[ 1,1,0] , f[ 3, 2, 1,1,2,3] .14. 为使求积公式 f (x)dx A 1f ( 3) A 2f (0) A 3f ( 3)的代数精度尽量高,应使13 3A 1 , A 2 , A 3,此时公式具有 次的代数精度。

5. n 阶方阵 A 的谱半径 ( A)与它的任意一种范数 A 的关系是 .6. 用迭代法解线性方程组 AX B 时,使迭代公式 X (k 1)MX (k)N (k 0,1,2,K )产 生的向量序列X (k)收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B时,系数矩阵A可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即A LU. 若采用高斯消元法解AX B,其中A 4 2,则21L ___________ ,U ____________ ;若使用克劳特消元法解AX B ,则u11 _______ ;若使用平方根方法解AX B,则l11与u11的大小关系为(选填:>,<,=,不一定)。

数值分析考试题

数值分析考试题

数值分析考试题一、选择题1. 以下哪个方法不是数值分析中常用的数值积分方法?A. 梯形法则B. 辛普森法则C. 牛顿法D. 龙格-库塔法2. 在求解线性方程组的直接方法中,高斯消元法属于以下哪种类型?A. 列主元消去法B. 行主元消去法C. 完全主元消去法D. 选主元消去法3. 非线性方程求根的二分法属于以下哪种类型的数值方法?A. 迭代法B. 直接法C. 优化算法D. 插值法4. 在数值分析中,用于度量舍入误差的常用指标是:A. 截断误差B. 舍入误差C. 估计误差D. 计算误差5. 插值多项式的最高次数与插值节点的数量关系是:A. 次数多于节点数量B. 次数少于节点数量C. 次数等于节点数量D. 与节点数量无关二、填空题1. 在数值分析中,__________是用来描述一个算法在实际运算中所需步数的度量。

2. 线性方程组的雅可比方法是一种__________消去法。

3. 牛顿法在求解非线性方程时,每次迭代都需要计算__________。

4. 龙格现象是指在数值积分中,由于__________而引起的误差。

5. 在多项式插值中,拉格朗日插值法是通过__________来构建插值多项式的。

三、简答题1. 请简述数值分析中的截断误差和舍入误差的区别。

2. 描述高斯-赛德尔迭代法的基本思想,并与雅可比迭代法进行比较。

3. 解释在数值积分中为什么需要使用自适应方法。

4. 讨论在求解非线性方程时,二分法与牛顿法的适用条件和优缺点。

5. 分析多项式插值与样条插值的主要区别及其各自的应用场景。

四、计算题1. 给定函数f(x) = sin(x),在区间[0, π]上使用梯形法则计算积分的近似值,取4个等分点。

2. 设线性方程组如下:\[\begin{cases}2x + y + z = 6 \\x + 2y + 4z = 14 \\3x + y + 2z = 10\end{cases}\]使用高斯消元法求解该方程组的解。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、选择题(每题3分,共30分)1. 下列关于数值分析的说法,错误的是()。

A. 数值分析是研究数值方法的科学B. 数值分析是研究数值方法的数学理论C. 数值分析是研究数值方法的误差分析D. 数值分析是研究数值方法的数学理论、误差分析及数值方法的实现答案:B2. 在数值分析中,插值法主要用于()。

A. 求解微分方程B. 求解积分方程C. 求解线性方程组D. 通过已知数据点构造一个多项式答案:D3. 线性方程组的解法中,高斯消元法属于()。

A. 直接方法B. 迭代方法C. 矩阵分解方法D. 特征值方法答案:A4. 牛顿法(Newton's method)是一种()。

A. 插值方法B. 拟合方法C. 迭代方法D. 优化方法答案:C5. 在数值分析中,下列哪种方法用于求解非线性方程的根?A. 高斯消元法B. 牛顿法C. 雅可比方法D. 斯托尔-温格尔方法答案:B6. 下列关于误差的说法,正确的是()。

A. 绝对误差总是大于相对误差B. 相对误差总是小于绝对误差C. 误差是不可避免的D. 误差总是可以消除的答案:C7. 在数值分析中,下列哪个概念与数值稳定性无关?A. 条件数B. 截断误差C. 舍入误差D. 插值多项式的阶数答案:D8. 用泰勒级数展开函数f(x)=e^x,下列哪一项是正确的?A. f(x) = 1 + x + x^2/2! + x^3/3! + ...B. f(x) = 1 - x + x^2/2! - x^3/3! + ...C. f(x) = x + x^2/2 + x^3/6 + ...D. f(x) = x - x^2/2 + x^3/6 - ...答案:A9. 插值多项式的次数最多为()。

A. n-1B. nC. n+1D. 2n答案:B10. 下列关于数值积分的说法,错误的是()。

A. 梯形法则是一种数值积分方法B. 辛普森法则是一种数值积分方法C. 龙格法则是数值积分方法中的一种D. 数值积分方法总是精确的答案:D二、填空题(每题3分,共15分)1. 在数值分析中,条件数是衡量问题的______。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。

A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。

A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。

A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。

A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。

A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。

A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。

A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。

A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。

A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。

A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。

答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。

答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。

答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.设432()542f x x x x x =+++和节点/2,0,1
k x k k ==则014[,]f x x x = 。

5.当1,1,2x =-时,()0,3,4f x =-,则()f x 的二次插值多项式
为 。

(0,1,2,3,4)
i
x i =为互异结点,则4
4
()i i
i x l x =≡

()
i l x 为拉格朗日插值基函数。

6.设3R x ∈,123()3f x x x x =++是否为向量范数?(填是或否) 。

7.1
000
()()
f x dx A f x ≈⎰当
A = ,
x = 时该求积公式具有尽可能高的代数精度。

8.(3,0,4,12)T
x =-,则2x = ,1123A -⎡⎤
=⎢⎥⎣⎦,则A ∞= ,()A ρ= 。

9.解线性方程组AX=b 的迭代公式f BX X k k +=+)()1(,对任意给定的初值)0(x 都收
敛的充要条件是 _______ __ 10.当恒有
()1
g x '≥时,迭代法
1()
k k x g x +=的敛散性为
11.牛顿法求重根是 阶收敛的,求
解的牛顿法迭代公式
是: 。

12.在常微分方程初值问题中,改进的欧拉方法具有 阶的精度。

其整体截断误差为 。

1. 给定点集的多项式插值是唯一的,则其多项式表达式也是唯一的。

--------------------------------- 【 】
2. 代数精确度是衡量算法稳定性的一个重要指标。

【 】
3. 只要矩阵是对称的,则1A A ∞≡------ ----- 【 】
4. 非线性方程求根的牛顿迭代法有可能发散。

-------------------- 【 】
5. 显式方法的优点是计算简单且稳定性好。

-----------------------【 】
1. 有效数*0.0490y =的有效位数为 绝对误差限:
2.
的相对误差不超过0.1%应取 位有效数字。

3. 改变计算公式,使之用计算机实现时能给出更为精确的结果
(1)1cos 2-
(2)
作均差表,写出相应的三次Newton
插值多项式,并计算f (1.5)的近似值。

2.用最小二乘法求拟合函数y a bx =+使其与下列数据拟合
3. 1
[0,1](0)0
y x y x y '=+-∈⎧⎨=⎩,0.5h =
4. 用
LU 直接三角分解法求解方程组AX=b
其中A=234548111461320268182940⎛⎫ ⎪
⎪ ⎪ ⎪⎝⎭ b=14376595⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭
5. 对方程组 123122*********x x x -⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪
--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭
⎝⎭
试证:用Jacobi 迭代法求解时收敛,用Gauss-Seide 迭代法求解时发散;
6.
012012001122,0,()()()()a
a
x a x x a A A A f x dx A f x A f x A f x -=-==≈++⎰
以为结点,通过求解构造形如
的插值求积公式,
并证明所得求积公式的代数精度为3
7. 用9个点的复合Simpson 公式求积分
1

,并做误差估计。

(计算过程要求
保留4位小数)。

8. 用最小二乘法求拟合函数1
y =
使其与下列数据相拟合 9.为上三角矩阵(4分)(2)利用分解结果求Ax=b 的解 (4分)
其中1020501013 b 12431701037A ⎛⎫⎛⎫ ⎪ ⎪
⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
10.
)证明用Jacobi 和Gauss-Seidel 法解方程组Ax=b 是收敛的,如果收敛,比较哪种方法收敛较快,其中
302021 212A -⎛⎫ ⎪
= ⎪ ⎪-⎝⎭
(9分)
11.
11111'(,)()(43)
24
n n n n n n h
y f x y y y y y y y +-+-'''==++-+证明解的下列差分公式是二阶的,并求出局部截断误差的主项. (9分)
12.
设方程组1111221
2112222a x a x b a x a x b +=⎧⎨+=⎩ 11,22(0)a a ≠证明解此方程的Jacobi 迭代法与
Gauss-Seidel 迭代法同时收敛或发散。

第一章
1、有效数字
2、误差的估计
3、避免误差的若干原则 第二章
1、拉格朗日插值基函数性质以及构造
2、牛顿插值多项式
3、三次样条插值的定义黄陈思 2013-11-19 21:05:55 第三章
最小二乘拟合
第四章
1、代数精度
2、梯形公式辛普森公式,复合梯形,新浦生公式及其截断误差。

第五章
1、LU 分解
2、范数和谱半径 第六章
1、雅可比迭代法和高斯-赛德尔迭代法的构造
2、判断敛散性 第七章
1、迭代法的构造
2、判断收敛发散的定理和条件。

3、局部收敛性(根附近)
4、牛顿迭代法及其收敛阶
第九章1.欧拉法2.梯形法。

3.改进的欧拉法 4.局部截断误差主项和收敛阶。

5.隐式的方法比较稳定。

相关文档
最新文档