图形的翻转和旋转(画图 )
第3讲 图形的运动(教师版)(知识梳理+典例分析+举一反三+巩固提升)北师大版
![第3讲 图形的运动(教师版)(知识梳理+典例分析+举一反三+巩固提升)北师大版](https://img.taocdn.com/s3/m/f196e80d28ea81c758f578ef.png)
第3讲图形的运动知识点一:图形的旋转1. 图形旋转的含义及三要素旋转中心、旋转方向、旋转角度2. 在方格纸上画简单图形绕其顶点旋转90°后的图形图形绕某一点旋转一定的度数,图形中的对应点、对应线段都旋转了相同的度数,对应点到旋转点的距离相等,对应线段相等,对应角相等。
3.旋转的特点旋转不改变图形的形状和大小,只改变图形的位置。
知识点二:图形的运动1.在方格纸上图形的平移、旋转(1)图形平移时,先确定移动的方向,再确定移动的格数;(2)旋转应找准旋转中心、旋转方向以及旋转角度;(3)作轴对称图形要先确定对称轴。
图形经过平移、旋转、轴对称变换后,图形大小不变。
2. 记录图形位置的“还原”过程用平移或旋转进行图形运动时,要先观察变化前后各部分的位置,再确定如何通过平移或旋转得到。
知识点三:欣赏与设计利用平移、旋转和轴对称设计美丽的图案一个图形通过平移、旋转或轴对称变换可以得到不同的图案。
复杂的图案是由一个或几个简单的基本图形变换而来的。
考点一:图形的旋转例1.(2020春•綦江区期末)画一画,填一填.(1)画出把长方形绕0点顺时针方向旋转90°后的图形.(2)旋转前A点的位置是(4,3),旋转后A点的位置是(2,5).(3)画出把三角形向下平移4格后的图形.(4)画出三角形的各边缩小为原来的后的图形.【分析】(1)根据旋转的特征,长方形绕点O顺时针旋转90°,点O的位置不动,其余各部分均绕此点按相同方向旋转相同的度数即可画出旋转后的图形。
(2)根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,及长方形旋转前、后A所在的列与行即可分别用数对表示出来。
(3)根据平移的特征,把三角形的各顶点分别向下平移4格,依次连结即可得到平移后的图形。
(4)图中三角形是两直角边分别为4格、2格的直角三角形,根据图形放大与缩小的意义,缩小后的图形是两直角分别为(4×)格、(2×)格的直角三角形。
八年级数学下册(北师大版)3.2.2图形的平移与旋转(旋转作图)课件
![八年级数学下册(北师大版)3.2.2图形的平移与旋转(旋转作图)课件](https://img.taocdn.com/s3/m/d0a6f9d765ce05087732133a.png)
后作这两部分关于GH的轴
对称图形,这样就可以得
到整个图形。
G
F
旋转图案设计欣赏
课后任务:
1、旋转作图的步骤 : (1)明确题目要求:弄清旋转中心、方向和角度; (2)分析所作图形:找出构成图形的关键点; (3)旋转关键点:沿一定的方向和角度分别作出
各关键点的对应点; (4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
2、“旋转”作图的条件 : (1)图形原来的位置; (2)旋转中心; (3)旋转方向; (4)旋转角度.
1.将△AOB绕点O旋转180°得到△DOC,则下列作图正确的是( )
2.如图,在正方形网格中有△ABC,△ABC绕点O按逆时针方向旋转90°后的 图案应该是( )
各关键点的对应点;
(4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
目标检测1:
目标检测1:
3、如图,在方格纸上,△DEF是由△ABC绕定 点P顺时针旋转得到的,如果用(2,1)表示方格 纸上A点的位置,(1,2)表示B点的位置,那么 点P的位置为( A ) A.(5,2) B.(2,5) C.(2,1) D.(1,2)
第三章 图形的平移与旋转
3.2 图形的旋转(第二课时)
3.2.2 旋转作图
课前学习——知识回顾
1、“旋转”的定义: 在平面内,将一个图形绕着_一__个_定_点__沿_某_个_方__向_转动
_一_个__角_度__,这样的图形运动称为__旋_转__(变_换__) ___. 2、“旋转”的基本性质: (1)经过旋转,图形的___形_状__和_大_小_____不变; (2)经过旋转,图形上的每一点都绕_旋__转_中_心_沿相同 的方向转动了相同的__角__度__; (3)任意一对_对__应_点__与_旋_转__中_心__的连线所成的角都是 ___旋_转_角___,对应点到__旋_转__中_心___的距离相等.
部编版一年级数学上册第6讲.找规律画图.基础—提高—尖子班.教师版
![部编版一年级数学上册第6讲.找规律画图.基础—提高—尖子班.教师版](https://img.taocdn.com/s3/m/552fbafdd0d233d4b04e6935.png)
9
第六讲
⑵此题的图形排列规律是 : 后一组图形是将前一组图形的最左边一个移到最右边 ,其 它的往左移,最终答案如图:
⑶将第一行的最右边的图形移到了第二行的最左边,第一行剩下的图形往右移,就组 成了第二行的图形.第二行的最右边的图形移到了第三行的最左边.第二行剩下的 图形往右移.第三行的最右边的图形移到了第四行的最左边.第三行剩下的图形就 要往右移.答案如图:
7
第六讲
镜中的气球
仔细观察下图,你能根据镜中的镜像判断出小女孩手里拿的现实的气球是 下面 4 个中哪一个样子的吗?
【答案】镜中的图像是和现实左右相反的 ,但上下是没有相反的,所以答案应为 从左数第二个气球.
第 1 级下·基础-提高-尖子班·教师版
8
第六讲
例4 按规律把空缺的部分补充完整.
⑴
⑵
⑶
【例题分析】⑴ 在这个图中图形的排列规律,有两种不同的观察方法: 方法一:横着看,第一行和第二行都有长方形、三角形、圆这三种图形.竖着看,第一 列也有这三种图形.根据这一规律,中间一列少长方形,最后一列少圆. 方法二:第一行的最左边的图形移到了第二行的最右边 ,剩下的两个往 左移 ,就组成了 第二行的图形.按这种移动的规律,第二行的最左边的图形移到了第三行的最 右边.剩下三角形和长方形就要往左移.答案如图.
⑵ 蓝珠总是一颗,而白珠的颗数分别是 1、2、3、4… 每次多 1 颗.根据这样的规律, 盒子里面隐藏的是 2 颗白珠.
⑶ 黄珠总是两颗,而白珠的颗数分别是 5、4、3、2… 每次少 1 颗.根据这样的规律, 盒子里面隐藏的是 3 颗白珠.
例3 你能根据下面图形的规律,把空缺的部分补充完整吗?
【例题分析】⑴ 通过观察我们发现每一行第一个图形和第二个图形合在一起就组成了第三个图形.所 以第 二行的第三个图形也应该是第一个图形和第二个图形合成的,答案如下图 .
西师大版五年级数学上册第二单元《图形的平移、旋转与轴对称》课件
![西师大版五年级数学上册第二单元《图形的平移、旋转与轴对称》课件](https://img.taocdn.com/s3/m/9cd59d930b4c2e3f5627636a.png)
探究新知
课件PPT
第一步:明确旋转的三要素
1.旋转点:物体旋转时所绕点或轴,也叫旋 转中心。 2.旋转方向:沿顺时针方向旋转和沿逆时针 方向旋转。 3.旋转角度:对应线段的夹角度数或对应顶 点与旋转点连线的夹角度数。
探究新知
课件PPT
第二步:明确图形的旋转点
点O为图形的旋转点。
第三步:明确旋转方向
情景导入2
在方格纸上将三角尺绕点A旋转90°。
理解题意: 所谓旋转就是将 一个图形绕一个 定点转动一定的 角度;旋转前后 图形的形状、大 小不变。
探究新知
第一步:明确画图要求
课件PPT
1.根据“在方格纸上画出三角尺绕点A旋 转90°后的图形”可知:旋转点是点A。 2.旋转方向:顺时针方向或逆时针方向。 旋转角度:90°。
课件PPT
第2单元 图形的平移、旋转和轴对称
3 轴对称图形
复习导入
课件PPT
你还记得我们玩过的纸飞机吗?纸 飞机的左右两边是一样的吗?这种 图形有什么特点呢?今天我们就来 学一学吧。
课件PPT
情景导入1
下面哪些图形是轴对称图形?动手折一折,找 出轴对称图形的对称轴。
理解题意: 共有6个图形,要找轴对称图形,首先我们 要弄清楚什么是轴对称图形。
探究新知
方法二:
课件PPT
先在长方形上确定一个点A,再 数平移到图形②后,A与A'之间有 几格,通过数数发现A与A'之间有 8格,即向右平移了8格。
探究新知
方法三:
课件PPT
在图形①中确定线段AB,然后数 平移到图形②后线段AB与线段 A'B'之间有几格,通过数数发现 AB与A'B'之间有8格,即向右平移 了8格。
人教版九年级上册23.旋转作图课件
![人教版九年级上册23.旋转作图课件](https://img.taocdn.com/s3/m/212e54e3f021dd36a32d7375a417866fb84ac036.png)
• (3)作旋转后的对应点,方法如下: •①连:连接图形的每个关键点与旋转中心; • ②转:把连线绕旋转中心按旋转方向旋转相同的角 度(作旋转角); • ③截:在作得的角的另一边截取与关键点到旋转中 心的距离相等的线段,得到各个关键点的对应点.
• (4)按原图形的顺序连接这些对应点,所得到的图形就 是旋转后的图形.
①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的 对应点为点B′,点C的对应点为点C′.连接BB′. 解:如图①,△AB′C′即为所求.
②在①中所画图形中,∠AB′B=___4_5____°.
(2)【问题解决】 如图②,在Rt△ABC中,BC=1,∠C=90°,延长CA到点 D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接 DE,求∠ADE的度数.
B.(2,-2)
C.(3,-2) D.(-1,4)
4.把一个图案进行旋转变换,选择不同的旋转中心、不同 的旋转方向、不同的__旋__转__角__度_____,会有不同的效果.
5.(202X·赤峰)下列图形绕某一点旋转一定角度都能与原图形 重合,其中旋转角度最··小的是( C )
6.(202X·鄂尔多斯)(1)【操作发现】 如图①,在边长为1个单位长度的小正方形组成的网格中, △ABC的三个顶点均在格点上.
2.把图中的交通标志图案绕着它的中心旋转一定角度后与 自身重合,则这个旋转角度至少为( C ) A.30° B.90° C.120° D.180°
3.(202X·青岛)如图,将△ABC先向上平移1个单位长度,再
绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对
应点A′的坐标是( D)
A.(0,4)
(1)旋转中心不变,改变旋转角(如图).
23.1 图形的旋转 第2课时 旋转作图
![23.1 图形的旋转 第2课时 旋转作图](https://img.taocdn.com/s3/m/7723238b81eb6294dd88d0d233d4b14e85243ed8.png)
O
O
β
α
(1)旋转中心不变,改变旋转角(如图).
O1
α
O2
α
(2)旋转角不变,改变旋转中心.
(3)美丽的图案是这样形成的.
用旋转的知识设计图形
运用旋转作图应满足三要素:旋转中心、旋转方向、旋转角,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,选择不同的旋转中心、不同的旋转角会作出不同效果的图案.
轴对称:
下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
直线EF与GH相交于图形的中心O,且互相垂直,先把左边的两个“十字”作关于EF的轴对称图形,然后作这两部分关于GH的轴对称图形,这样就可以得到整个图形.
平移:
平移的方向
平移的距离
仅靠平移无法得到
旋转:
下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
整个图形可以看作是左边的两个小“十字”绕着图案的中心旋转3次,分别旋转90°、180°、270°前后图形组成的.
平移、 旋转相结合:
先平移
后旋转
下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
整个图形可以看作是左边的两个小“十字”先通过一次平移成图形右侧的部分,然后左、右部分一起绕图形的中心旋转90°前后图形组成的.
B
3. 如图,在Rt△ABC中,∠ACB=90°,∠A= 40°,以直角顶点C为旋转中心,将△ABC旋 转到△A′B′C的位置,其中A′、B′分别是A、 B的对应点,且点B在斜边A′B′上,直角边C A′交AB于点D,则旋转角等于( ) A.70° B.80° C.60° D.50°
Windows画图程序操作技巧
![Windows画图程序操作技巧](https://img.taocdn.com/s3/m/03a70a6cf5335a8102d22097.png)
Windows画图程序操作技巧(转载)[ 2009-2-16 9:27:00 | By: 敏捷 ] 我们在处理图形时,经常用到Windows画图程序,虽然现在处理图形的软件很多,但从处理方法和功能来看,Windows画图程序仍不失为一种简单快捷的图形处理工具。
本文在此介绍一些使用Windows画图程序的操作技巧。
一、图形边框调整我们有时需把某一图形的长宽调整成一定的大小,一种方法是:把鼠标移至图像边框上的缩放操作点,当光标变成双箭头符号时按住鼠标左键不放,然后拖动图形缩放操作点使图像达到需要的大小,放开鼠标左键即可。
这种方法简单快捷,但不易精确调整图形大小,有时需要重复拖动几次才能达到目的;另一种调整方法是:点击菜单栏中的“图像”按钮,在下拉菜单中选取“属性”,这时弹出一属性对话框,其中就有关于当前打开图形的宽度和高度数据,在数据框中,选中宽度和高度数据,重先键入需要的宽度和高度数值,点按“确定”按钮,即可达到精确调整图形大小的目的。
需注意的是,此调整图形大小的方法,对其内容并不随图形边框大小而任意缩放,只是自图形上角为原点截取所调大小的图形而已。
二、图形内容缩放如果我们需对图形内容作大小缩放,就不能用前面介绍的方法了。
其方法是:用鼠标点击左边工具箱中的“选定”按钮,移动光标至图形中,这时光标变成十字形,视所要缩放的图形内容范围,移动光标至图形中需缩放部分的一个矩形区域的左上顶点处,按住鼠标左键往右下方拖曳,此时将出现一矩形虚线框,直到出现的矩形虚线框完全包围所需缩放的图形部分,这时放开鼠标左键,移动光标至矩形虚线框上的八个缩放点之一,当光标变成双箭头形状时,按住鼠标左键拖动矩形框到所需大小后放开鼠标左键,这时我们会发现图形内容随我们的拖曳而缩放了。
三、图形部分内容的位置移动如果我们想把图形上某一小块的位置移动一下,可以点击工具箱中的“选定”按钮,在图形中选取欲移动的一小部分图形,如是不规则的,可用工具箱中的“任意形状的裁剪”按钮选取,然后移动光标到选取框内,当光标变成黑十字形交叉四箭头形状时,按住鼠标左键拖动被选取部分图形到指定的地方,然后释放鼠标左键即可。
《图形的平移》平移旋转和轴对称PPT课件
![《图形的平移》平移旋转和轴对称PPT课件](https://img.taocdn.com/s3/m/285ccc0c842458fb770bf78a6529647d2728349b.png)
返回
平移、旋转和轴对称 认识图形的平移
课后作业 补充习题: 第1页
返回
平苏移教、版旋转数和学轴对四称年认级识图下形册的平移
1 平移、旋转和轴对称
图形的平移
情境导入
探究新知
课堂练习
课堂小结
课后作业
-.
平移、旋转和轴对称 认识图形的平移
情境导入
下面的小船图和金鱼图分别是怎样运动的?它们 的运动有什么相同点和不同点?
返回
平移、旋转和轴对称 认识图形的平移
探究新知
下面的小船图和金鱼图分别是怎样运动的?它 们的运动有什么相同点和不同点?
返回
平移、旋转和轴对称 认识图形的平移
金鱼图向右平移了几格?先数一数,再与同学交流。
金鱼图向右平移了7格。
返回
平移、旋转和轴对称 认识图形的平移
画出平行四边形向下平移3格后的图形。
你是怎么画的?
3格
与同学交流。
画图时,找到关键点,画出关键点平移后的 对应点,再将对应点连线画出平移后的图形。
返回
平移、旋转和轴对称 认识图形的平移
返回
平移、旋转和轴对称 认识图形的平移
蜡烛向右平移了 4 格。
小鱼向 左 平移了 5 格。
返回
平移、旋转和轴对称 认识图形的平移
课堂小结
这节课你们都学会了哪些知识?
1.平移的两要素:方向和距离 2.先找到对应边(点),然后数出它们之间
的距离,就是图形平移的距离 3.画图时,找到对应点,画出点平移后的对
课堂练习 1.下面的图案中,哪些包含平移现象?
X
返回
平移、旋转和轴对称 认识图形的平移
2.哪个三角形向右平移10格得到红色三角形? 另一个三角形平移多少格得到红色三角形?
画图工具的使用
![画图工具的使用](https://img.taocdn.com/s3/m/a0c3cbed1711cc7930b7166c.png)
如果想擦除整个图形内容,可点击菜单栏中的“图像”选项,在下拉菜单中点选“清除图像”项,就可以把整 个图形擦除。如果要擦除部分图形,可点击工具箱中的“橡皮”按钮,移动光标到图形内,此时光标变成一空心 正方形,移动光标到需擦除处,按住鼠标左键不放,拖动“橡皮”即可擦除图形。如果需擦除的面积比较大,也 可用工具箱中的“选定”按钮或“任意形状的裁剪”按钮(一个用于矩形区域,一个用于任意形状区域)选取要擦 除的部分图形,然后直接用鼠标把选取部分拖至图形外即可。
字工具栏”命令,对文字设定字体、字号大小等格式。
8、直线工具 和曲线工具 :绘制不同粗细的直线, 而曲线工具绘制最多带有两个弯曲形状的光滑曲线, 按SHIFT可以画出一条水平线,垂直线和倾斜45的直 线。 9、矩形工具 和多边形工具 :绘制长方形。多边 形工具绘制任意多个边,闭合的多边形,按SHIFT可 以绘制正矩形和正直线。 10、椭圆工具 和圆形矩形 :绘制椭圆形。圆形 矩形绘制四个角带有一定弧度的长方形。可按SHIFT 键画正椭圆和正圆形矩形。
这时用户可以进入“画图”界面,如图所示,为程序默认状态
启动它后,屏幕右边的这一大块白色就是你的画布了。左边是工具 箱,下面是颜色板。
现在的画布已经超过了屏幕的可显示范围,如果你觉得它太大了,那 么可以用鼠标拖曳角落的小方块,就可以改变大小了。
•1、标题栏:它包含了图画的命名。 •2、菜单栏:有六个下拉式菜单。 •3、工具箱:有许多绘图工具,绘画时任选一项工具。 •4、工具模式选项:改变每个工具的线条宽度等。 •5、调色板:左面是绘画时的前景色和背景色的显示框,右边有 28种颜色供选择。 •6、滚动条:上、下、左、右移动绘图区域。 •7、状态栏:帮助信息和绘图区的坐标。 •8、绘图区:在该区作图、绘画。
图形的翻转和旋转画图(共10张PPT)
![图形的翻转和旋转画图(共10张PPT)](https://img.taocdn.com/s3/m/502bcc0ffe00bed5b9f3f90f76c66137ef064f54.png)
小提示:注意准确选定对象,有错误运用 “撤消”命令。
垂直翻转:(上下)
2、通过“图像”菜单中的—“翻转/旋转”把形态各异的喜羊羊放在灰太狼的周围。 2、通过“图像”菜单中的—“翻转/旋转”把形态各异的喜羊羊放在灰太狼的周围。 2、通过 “图像”菜单中的—“翻转/旋转”命令纠正懒羊羊和喜羊羊的错误方向。 1、通过 “编辑”菜单中的“复制”、“粘贴”变出几个大小不一的喜羊羊。 1、通过 “编辑”菜单中的“复制”、“粘贴”变出几个大小不一的喜羊羊。 幸好我从村长那带来了复制药水,等我变成N个自己,吓死它! 刚刚我看到灰太狼跟在我们后面,它肯定又想干坏事。 羊羊们吃得很饱,玩得很开心,到了傍晚他们就回村了。 刚刚我看到灰太狼跟在我们后面,它肯定又想干坏事。 刚刚我看到灰太狼跟在我们后面,它肯定又想干坏事。 幸好我从村长那带来了复制药水,等我变成N个自己,吓死它! 小提示:注意准确选定对象,有错误运用“撤消”命令。 幸好我从村长那带来了复制药水,等我变成N个自己,吓死它! 同学们,喜羊羊想告诉懒羊羊一个秘密,但是他这样能说吗?你能帮帮他吗? 1、利用画图软件打开桌面文件:素材3
打开素材4,完成任务。
现在该ห้องสมุดไป่ตู้午饭了,同学们能让这些羊羊 站好,吃上可口的食物吗?
1、利用画图软件打开桌面文件:素材3 2、边操作边思考羊羊们经过按90度、180度、 270度旋转后
会变成怎么样?
羊羊们吃得很饱,玩得很开心,到了傍晚他 们就回村了。但是他们犯了一个我们某些同学平 时也会犯的小错误,就是吃完东西到处乱扔,连 垃圾桶也打翻了,同学们,你们能把垃圾桶放好 并把他们产生的垃圾扔到垃圾桶里吗?
2、通过“图像”菜单中的—“翻转/旋转”把形态 1、利用画图软件打开桌面文件:素材3
最新BS北师大版数学六年级下册 3.2图形的旋转(二)
![最新BS北师大版数学六年级下册 3.2图形的旋转(二)](https://img.taocdn.com/s3/m/0640a580376baf1ffd4fad40.png)
知识讲解
通过刚刚的两组旋转,你有什么收获呢?
我掌握了旋转的步骤,通过一步一步的顺序,我可 以画好图形的旋转。
知识讲解
请和同学说一说,下面两幅图是怎样旋转得到的。
一朵花瓣每次旋转60°得到的。 一朵花瓣每次旋转40°得到的。
练习巩固
将下面的图案绕点O按顺时针方向旋转90°,得到的 图案是( B )?
A、图1绕点O逆时针旋转90°。 B、图1绕点O顺时针旋转90°。 C、图1绕点O逆时针旋转270°。 D、以线段OP所在的直线为对称轴画图1的对称图形。
知识讲解
把图1绕点A顺时针旋转90°, 得到图2。 把图2绕点A顺时针旋转90°, 得到图3。 把图1绕点A逆时针旋转90°, 得到图4。
4
2
3
北师版小学数学六年级下
图形的旋转(二)
> 12 3
激趣导入
同学们,我们已经学会了线段的旋转,想要得到上面漂 亮的图形,我们还要学会图形的旋转,今天我们就一起来学 习下。
知识讲解
画出图中的小旗绕点M 顺 时针旋转90°后的图形。
1、找中心点。 2、找经过中心点的线段。 3、把找到的线段顺时针旋转90°。 4、数出两格画出剩下的部分。
练习巩固
观察下图,图1是怎样变换得到图2的?( B )
A、先绕点A顺时针旋转90°,再向右平移10格。 B、先绕点A逆时针旋转90°,再向右平移10格。 C、先绕点A顺时针旋转90°,再向右平移8格。 D、先绕点A逆时针旋转90°,再向右平移8格。
练习巩固
下面方法中,不能让图1 变为图2的是( A )
知识总结
01 02
旋转图形也有方法,要先找中心点,再找经过 中心点的线段,把线段进行旋转,最后连接Байду номын сангаас 图形。
旋转知识要点梳理
![旋转知识要点梳理](https://img.taocdn.com/s3/m/386ffaf54793daef5ef7ba0d4a7302768e996f9a.png)
旋转知识要点梳理知识点一、旋转的概念几个图形的共同特点是如果我们把时针、螺旋桨、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.1.旋转的定义:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.3.作图:在画旋转图形时,要把握旋转中心与旋转角这两个元素.确定旋转中心的关键是看图形在旋转过程中某一点是“动”还是“不动”,不动的点则是旋转中心;确定旋转角度的方法是根据已知条件确定一组对应边,看其始边与终边的夹角即为旋转角.作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.知识点二、中心对称与中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.2.中心对称的两条基本性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.3.中心对称图形把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.4.中心对称和中心对称图形的区别与联系中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.5. 关于原点对称的点的坐标特征:关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点的坐标为,反之也成立.知识点三、平移、轴对称、旋转1.平移、旋转、轴对称之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.对应线段关于对称轴对称.*对应线段相等,其所在直线的夹角等于旋转角或与旋转角互补.2.旋转与中心对称中心对称是一种特殊的旋转(旋转180°),满足旋转的性质.旋转中心对称图形性质1对应点与旋转中心所连线段的夹角等于旋转角.对称点所连线段都经过对称中心.3.中心对称与轴对称三、规律方法指导1.在学习了图形平移、轴对称的基础上,学习图形旋转的有关知识,要注意处理好如下三个问题:(1)先复习图形平移、轴对称的有关内容,学习时要采用对比的方法;(2)在对图形旋转性质探索过程中,要从图形变换前后的形状、大小和位置关系上入手分析,发现图形旋转的特性、对应关系、旋转中心和旋转方向;(3)利用旋转设计简单的图案,通过具体画图操作,掌握旋转图形的方法、技巧.2.学习中心对称时,注意采用如下方法进行探究:(1)实物分析法:观察具体事物的特征,结合所学知识,分析它们的共同特征和联系;(2)类比分析法:中心对称是一个图形旋转180°后能和另一个图形重合,离不开旋转的知识,因此要类比着进行学习,以提升对图形变换知识的掌握;(3)理论联系实际:在学习中可以通过具体画图操作,以及对具体事物的分析、归纳总结出中心对称的有关知识.。
第五单元图形的运动(三)第2课时(例3)(课件)-五年级下册数学人教版
![第五单元图形的运动(三)第2课时(例3)(课件)-五年级下册数学人教版](https://img.taocdn.com/s3/m/7222321c3868011ca300a6c30c2259010202f313.png)
探究新知
画出三角形AOB绕点O 顺时针 旋转90°后的图形。
A
只要找出点A 和点B 按
顺时针旋转90°后的位 置,就可以确定三角形 旋转过后的位置了
绕点O旋转,点O的位 置应该不变。
O
B
探究新知
画出三角形AOB绕点O 顺时针 旋转90°后的图形。
画点A′ OA′垂直于 OA
点A′与点O的距离是4格
A A A
A
O
A′
探究新知
画出三角形AOB绕点O 顺时针 旋转90°后的图形。
画点A′
A
OA′垂直于 OA 点A′与点O的距离是4格
O
B A′
探究新知
画出三角形AOB绕点O 顺时针 旋转90°后的图形。
画点A′
A
画点B′
OA′垂直于 OA 点A′与点O的距离是4格
O
B A′
B
B
B′
OB′垂直于OB 点B′与点O 的距离是3格
B
A
C′
1 3
C
O
2
巩固练习
按要求画图。 (1)把图1绕点O逆时针旋转90°,得到图2。 B′ (2)把图1绕点O顺时针旋转90°,得到图3。
A′
1.画点A′ OA′垂直于OA 点A′到点O的距离是4格
2.画点C′ OC′垂直于OC 点C′到点O的距离是2格
3.画点B′ B′在A′的上方 点B′到点A′的距离是2格
1.画点A′ OA′垂直于OA
2.画点C′ OC′垂直于OC 3.画点B′ B′在A′的下方 4.连接点B′和点C′
点A′到点O的距离是4格 点C′到点O的距离是2格 点B′到点A′的距离是2格
巩固练习
三年上第18课《翻转旋转巧变化》吴丞
![三年上第18课《翻转旋转巧变化》吴丞](https://img.taocdn.com/s3/m/346e2c81b8d528ea81c758f5f61fb7360b4c2b7a.png)
3、学生尝试在自己的电脑上找到画图板基本工具的位置。简单基本的了解一下画图板工具的作用。
4、利用单一的图标进行有规律的排列,你能排列出哪些样式的花纹呢?
运用绘画板的图形有目的的画出一些图案:房子、人、花等。
5、教师演示绘制纹样,变一变我们管这样的纹样叫四方连续纹样。
翻转旋转巧变化教学设计
课程名称
翻转旋转巧变化
课时
2
学段学科
三年级上册美术
教材版本
山东版
作者
吴丞
学校
哈尔滨继红小学校
一、教学目标
知识与能力:了解电脑中windows画图板软件的常用工具,并尝试利用画图板设计及绘制四方连续纹样。
过程与方法:学会用单一图案按照一定规律进行重复组合,完成连续纹样的设计方法。
3、引出课题:师:那今天我们就一起受一下电脑制作的乐趣。(出示课题:《翻转旋转巧变化》)
二、探究形成
1、做游戏,用猜谜的方式认识画图板。
利用白板教学让学生分别欣赏画图板中的工具图标并进行猜谜游戏。让学生自己尝试着用一用这些工具图标。发现它们的不同作用。
2、交流探讨
让学生通过教师的白板演示、学生之间的交流研讨、了解画图板基本工具的功能。
四、教学方法
教师电脑终端、白板教学、学生电脑。
五、教学过程
第一课时
一、尝试发现
1、今天老师要送给大家一份小礼物,就在你们的电脑上,看看是什么?
欣赏电脑绘制的各式各样的漂亮的四方连续纹样案例图案。
提出问题:这些美丽的图案你觉得有什么规律呢?知道它们是怎么“画”出来的?
2、小组讨论:交流探讨结果生答:用电脑制作出来的,是四个连续在一起的图案拼凑而成的。
图像的翻转和旋转
![图像的翻转和旋转](https://img.taocdn.com/s3/m/5180b619d0d233d4b14e69a0.png)
作业
安徽省教育科学研究院版小学信息技术第2册第2单元第10课
小鸡叽叽把虫啄 ——图像的翻转和旋转
本节微课学习任务
➢ 1、认识画图中的翻转和旋转命令。 ➢ 2、掌握在画图中对选定的图像进行
翻转和旋转的操作技能。 ➢ 3、利用翻转、旋转的方法,有目的
的变换图形。
认识旋转工具
翻转
即上下翻转,翻转后的 图形是对称图形
翻转
在翻转图形的时候,如果需要上下 变换,就要用垂直翻转,如果需要左右 变换,则要用水平翻转,翻转后得到的 图形与原图成对称图形。
旋转:是图像围绕一个点沿一定方向转动一定角度
想一想,说一说
想一想:右边两 幅图中,哪个是 垂直翻转?哪个 是旋转180度?
说一说:翻转和 旋转180度都能使 图形上下或左右 变换,那么它们 有什么区别呢?
观察思考一
水平翻转 垂直翻转
想一想:图一应该怎样做才能得到图二?
观察思考二
旋转
想一想:图一怎样做才能得到图二?
小试身手:练一练
小结
本节微课,我们学习了图像的翻转和 旋转命令。其中垂直翻转即上下翻转,水 平翻转即左右翻转,翻转后所得到的图形 与原图成对称图形。而旋转是图像围绕一 个点沿一定方向转动一定角度,画图提供 了三种旋转命令:“向右旋转90度”、 “向左旋转90度”和“旋转180度”。
人教版数学九年级上学期课时练习-图形的旋转(知识讲解)(人教版)
![人教版数学九年级上学期课时练习-图形的旋转(知识讲解)(人教版)](https://img.taocdn.com/s3/m/7089e90ccec789eb172ded630b1c59eef8c79ae1.png)
专题23.1 图形的旋转(知识讲解)【学习目标】1、掌握旋转的概念,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2、能够按要求作出简单平面图形旋转后的图形,并能利用旋转进行简单的图案设计.【要点梳理】把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转..点O 叫做旋转中心,转动的角叫做旋转角(如∠AO A ′),如果图形上的点A 经过旋转变为点A ′,那么,这两个点叫做这个旋转的对应点.特别说明:旋转的三个要素:旋转中心、旋转方向和旋转角度.要点二、旋转的性质(1)对应点到旋转中心的距离相等(OA= OA ′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等(△ABC ≌△A B C ''').特别说明:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转. 要点三、旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.特别说明:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.【典型例题】类型一、旋转中心、旋转角、对应点1.在平面直角坐标系xOy 中,ABC 的顶点坐标分别是()2,2A -,()3,2B --,()1,0C -.(1)按要求画出图形:①将ABC 向右平移6个单位得到111A B C △;①再将111A B C △绕点1A 顺时针旋转90°得到22A B C 1△;(2)如果将(1)中得到的22A B C 1△看成是由ABC 经过以某一点M 为旋转中心旋转一次得到的,请写出M 的坐标.【答案】(1)①见分析;①见分析;(2)M (1,-1)【分析】(1)①根据平移的性质得出1A 、1B 、1C 的位置,顺次连接即可;①根据旋转的性质得出2B 、2C 的位置,顺次连接即可;(2)连接CC 2,AA 1,线段CC 2,AA 1的垂直平分线的交点即为M 点的位置,作出M 点写出坐标即可.(1)解:①如图,111A B C △即为所求;①如图,22A B C 1△即为所求;(2)解:连接CC 2,AA 1,线段CC 2,AA 1的垂直平分线的交点即为M 点的位置,由图可知,M 的坐标为(1,-1).【点拨】本题考查了作图—平移和旋转,熟练掌握平移和旋转的性质找出对应点的位置是解题的关键.举一反三:【变式1】在如图的网格中建立平面直角坐标系,ABC的顶点坐标分别为A(1,7)、B(8,6)、C(6,2),D是AB与网格线的交点.仅用无刻度的直尺在给顶点的网格中画图,画图过程用虚线表示,画图结果用实线表示,并完成下列问题:(1)直接写出ABC的形状;(2)画出点D关于AC的对称点E;(3)在AB上画点F,使①BCF12=①BAC.(4)线段AB绕某个点旋转一个角度得到线段CA(A与C对应,B与A对应),直接写出这个旋转中心的坐标.【答案】(1)ABC是等腰三角形,理由见分析;(2)见分析(3)见分析(4)1316,33⎛⎫ ⎪⎝⎭【分析】(1)利用勾股定理求出AB ,AC ,可得结论.(2)取格点Q ,使得ACQ ACB ≌△△,线段AQ 与格线的交点E ,即为所求作. (3)取格点W ,连接CW 交AB 于点F ,点F 即为所求作.(4)线段AC ,AB 的中垂线的交点J ,即为所求作,构建一次函数,利用方程组确定交点解:(1)①=AB =AC①AB AC =,①ABC 是等腰三角形.(2)如图所示,取格点Q ,则AQ ==CQ ==BC ==①AQ =AC =AB ,CQ =CB ,①AQC ABC SSS ≌(),①线段AQ 与格线的交点E ,即为所求作;(3)如图所示,如图,点F 即为所求作.(4)如图所示,取格点H (11,7)①()1,7A , ()6,2C ,①AC 中点的坐标为79,22⎛⎫ ⎪⎝⎭,直线AC 的解析式为:y =-x +8,AH 的中点坐标为(6,7)设线段AC 的中垂线为b y kx =+,①792267k b k b ⎧+=⎪⎨⎪+=⎩,①11k b =⎧⎨=⎩①线段AC 的中垂线为1y x =+,同理可得:线段AB 的中垂线y =7x -25,由1725y x y x =+⎧⎨=-⎩, 解得133163x y ⎧=⎪⎪⎨⎪=⎪⎩, ①旋转中心J 的坐标为1316,33⎛⎫ ⎪⎝⎭【点拨】本题考查了两点距离公式,找旋转中心,一次函数与几何综合,等腰三角形的判定,全等三角形的判定,轴对称作图等等,熟知相关知识是解题的关键.【变式2】如图,ABC ∆和ADC ∆都是等边三角形.(1)ABC ∆沿着______所在的直线翻折能与ADC ∆重合;(2)如果ABC ∆旋转后能与ADC ∆重合,则在图形所在的平面上可以作为旋转中心的点是______;(3)请说出2中一种旋转的旋转角的度数______.【答案】(1)AC ;(2).点A 、点C 或者线段AC 的中点;(3)60︒【分析】(1) 因为ABC ∆和ADC ∆有公共边AC ,翻折后重合,所以沿着直线AC 翻折即可;(2)将①ABC 旋转后与ADC ∆重合,可以以点A 、点C 或AC 的中点为旋转中心;(3)以点A 、点C 为旋转中心时都旋转60︒,以AC 中点旋转时旋转180︒.解:(1)①ABC ∆和ADC ∆都是等边三角形,①ABC ∆和ADC ∆是全等三角形,①①ABC 沿着AC 所在的直线翻折能与①ADC 重合.故填AC;(2)将①ABC 旋转后与ADC ∆重合,则可以以点A 为旋转中心逆时针旋转60︒或以点C 为旋转中心顺时针旋转60︒,或以AC 的中点为旋转中心旋转180︒即可;(3)以点A 、点C 为旋转中心时都旋转60︒,以AC 中点旋转时旋转180︒.【点拨】此题考查平移的对称轴确定的方法、旋转中心确定的方法,依照平移、旋转的性质来确定即可.类型二、根据旋转的性质求解3、P 为正方形ABCD 内一点,且2AP =,将APB △绕点A 按逆时针方向旋转90︒得到'AP D .(1)作出旋转后的图形;(2)试求'APP 的周长和面积.【答案】(1)见分析(2)周长为:4+2【分析】(1)根据题意可直接进行作图;(2)利用等腰直角三角形的性质求出周长和面积即可.(1)解:如图所示:'AP D 即为所求;(2)解:①2AP =,将APB △绕点A 按逆时针方向旋转90︒得到'AP D ,①'2AP AP ==,'90PAP ∠=︒,①'PP =,故'APP 的周长为:224+++'APP 的面积为:12222⨯⨯=. 【点拨】此题主要考查了旋转的性质以及三角形面积求法,得出对应点位置是解题关键.举一反三:【变式1】在Rt ABC 中,90ABC ∠=︒,30ACB ∠=︒,将ABC 绕点C 顺时针旋转一定的角度α得到DEC ,点A 、B 的对应点分别是D 、E .(1)当点E 恰好在AC 上时,如图1,求ADE ∠的大小;(2)若60α=︒时,点F 是边AC 中点,如图2,求证:四边形BEDF 是平行四边形(请用两组对边分别相等的四边形是平行四边形)【答案】(1)15ADE ∠=︒(2)见分析【分析】(1)根据旋转的性质可得CA =CD ,①ECD =①BCA =30°,①DEC =①ABC =90°,根据等边对等角即可求出①CAD =①CDA =75°,再根据直角三角形的两个锐角互余即可得出结论;(2)根据直角三角形斜边上的中线等于斜边的一半可得BF =12AC ,然后根据30°所对的直角边是斜边的一半即可求出AB =12AC ,从而得出 BF =AB ,然后证出①ACD 和①BCE 为等边三角形,再利用HL 证出①CFD ①①ABC ,证出DF =BE ,即可证出结论.(1)解:①①ABC 绕点C 顺时针旋转α得到①DEC ,点E 恰好在AC 上,①CA =CD ,①ECD =①BCA =30°,①DEC =①ABC =90°,①①CAD =①CDA =12(180°﹣30°)=75°, ①①ADE =90°﹣①CAD =15°.(2) 证明:如图2,连接AD ,①点F 是边AC 中点,①BF =AF =CF =12AC , ①①ACB =30°,①AB =12AC , ①BF =CF =AB ,①①ABC 绕点C 顺时针旋转60°得到①DEC ,①①BCE =①ACD =60°,CB =CE ,DE =AB ,DC=AC ,①DE =BF ,①ACD 和①BCE 为等边三角形,①BE =CB ,①点F 为①ACD 的边AC 的中点,①DF ①AC ,在Rt①CFD 和Rt①ABC 中 DC CA CF AB =⎧⎨⎩=,①Rt①CFD ①Rt①ABC ,①DF =BC ,①DF =BE ,而BF =DE ,①四边形BEDF 是平行四边形.【点拨】本题主要考查的是旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定,掌握旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定是解决此题的关键.【变式2】如图点O 是等边ABC 内一点,110,AOB BOC α︒∠=∠=,①ACD=①BCO ,OC=CD ,(1)试说明:COD 是等边三角形;(2)当150α︒=时,试判断AOD △的形状,并说明理由;(3)当BOC ∠为多少度时,AOD △是等腰三角形【答案】(1)见分析;(2)①AOD 是直角三角形,理由见分析;(3) 110°或125°或140°时,①AOD 是等腰三角形.【分析】(1)根据CO=CD ,①OCD=60°,然后根据等边三角形的判定方法即可得到①COD 是等边三角形;(2)先求得①ADC=①BOC=α=150°,再利用①COD 是等边三角形得①CDO=60°,于是可计算出①ADO=90°,由此可判断①AOD 是直角三角形;(3)先利用α表示出①ADO=α-60°,①AOD=190°-α,再进行分类讨论:当①AOD=①ADO时,①AOD 是等腰三角形,即190°-α=α-60°;当①AOD=①DAO 时,①AOD 是等腰三角形,即2(190°-α)+α-60°=180°;当①ADO=①DAO 时,①AOD 是等腰三角形,即190°-α+2(α-60°)=180°,然后分别解方程求出对应的α的值即可.解:(1)①①ACD=①BCO①①ACD+①ACO=①BCO+①ACO=60°又①CO=CD①①COD是等边三角形;(2)①①COD是等边三角形①CO=CD又①①ACD=①BCO,AC=BC①①ACD①①BCO(SAS)①①ADC=①BOC=α=150°,①①COD是等边三角形,①①ADC=①BOC=α=150°,①①COD是等边三角形,①①CDO=60°,①①ADO=①ADC−①CDO=90°,①①AOD是直角三角形;(3)①①COD是等边三角形,①①CDO=①COD=60°,①①ADO=α−60°,①AOD=360°−60°−110°−α=190°−α,当①AOD=①ADO时,①AOD是等腰三角形,即190°−α=α−60°,解得α=125°;当①AOD=①DAO时,①AOD是等腰三角形,即2(190°−α)+α−60°=180°,解得α=140°;当①ADO=①DAO时,①AOD是等腰三角形,即190°−α+2(α−60°)=180°,解得α=110°,综上所述,①BOC的度数为110°或125°或140°时,①AOD是等腰三角形.【点拨】此题考查等腰三角形的判定,旋转的性质,等边三角形的判定与性质,解题关键在于掌握判定定理.类型三、根据旋转的性质证明线段、角相等3、如图,点A(a,0),B(0,b),且a、b满足(a﹣2)2+|4b﹣8|=0.(1)如图1,求a,b的值;(2)如图2,点C在线段AB上(不与A、B重合)移动,AB①BD,且①COD=45°,猜想线段AC、BD、CD之间的数量关系并证明你的结论;(3)如图3,若P 为x 轴正半轴上异于原点O 和点A 的一个动点,连接PB ,将线段PB 绕点P 顺时针旋转90°至PE ,直线AE 交y 轴于点Q ,当P 点在x 轴上移动时,线段BE 和线段BQ 中哪一条线段长为定值,并求出该定值.【答案】(1)2(2)CD =BD +AC .理由见分析(3)BQ 是定值,4BQ =【分析】(1)根据非负数的性质得到a -2=0,4b -8=0,求得a =2,b =2,得到OA =2,OB =2,于是得到结果;(2)证明:将①AOC 绕点O 逆时针旋转90°得到①OBF 根据已知条件得到①DBF =180°,由①DOC =45°,①AOB =90°,同时代的①BOD +①AOC =45°,求出①FOD =①BOF +①BOD =①BOD +①AOC =45°,推出①ODF ①①ODC ,根据全等三角形的性质得到DC =DF =DB +BF =DB +DC ;(3)BQ 是定值,作EF ①OA 于F ,在FE 上截取PF =FD ,由①BAO =①PDF =45°,得到①P AB =①PDE =135°,根据余角的性质得到①BP A =①PED ,推出①PBA ①EPD ,根据全等三角形的性质得到AP =ED ,于是得到FD +ED =PF +AP .即:FE =F A ,根据等腰直角三角形的性质得到结论.(1)解:①(a ﹣2)2+|4b ﹣8|=0,①a -2=0,4b -8=0,①a =2,b =2,①A (2,0)、B (0,2),①OA =2,OB =2,①①AOB 的面积=122=22⨯⨯; (2)证明:如图2,将①AOC 绕点O 逆时针旋转90°得到①OBF ,而2,OA OB ==①①OAC=①OBF=①OBA=45°,①DBA=90°,①①DBF=180°,①①DOC=45°,①AOB=90°,①①BOD+①AOC=45°,①①FOD=①BOF+①BOD=①BOD+①AOC=45°,在①ODF与①ODC中,OF OCFOD COD OD OD,①:①ODF①①ODC,①DC=DF,DF=BD+BF,①CD=BD+AC.(3)BQ是定值,BE明显不是定值,理由如下:作EF①OA于F,在FE上截取FD=PF,①①BAO=①PDF=45°,①①P AB=①PDE=135°,①①BP A+①EPF=90°,①EPF+①PED=90°,①①BP A=①PED,在①PBA与①EPD中,BPAPED PABPDE PB PE ,①①PBA ①EPD (AAS ),①AP =ED ,①FD +ED =PF +AP , 即:FE =F A ,①①FEA =①F AE =45°,①①QAO =①EAF =①OQA =45°,①OA =OQ =2,①BQ =4.BQ ∴为定值.【点拨】本题考查了全等三角形的判定和性质,坐标与图形的性质,等腰直角三角形的判定与性质,旋转的性质,三角形面积的计算,非负数的性质,正确的作出辅助线是解题的关键.举一反三:【变式1】如图,点M ,N 分别在正方形ABCD 的边BC ,CD 上,且45MAN ∠=︒,把ADN △绕点A 顺时针旋转90︒得到ABE △.(1)求证:AEM △①ANM .(2)若3BM =,2DN =,求正方形ABCD 的边长.【答案】(1)证明见分析;(2)正方形ABCD 的边长为6.【分析】(1)先根据旋转的性质可得,AE AN BAE DAN =∠=∠,再根据正方形的性质、角的和差可得45∠=︒MAE ,然后根据三角形全等的判定定理即可得证;(2)设正方形ABCD 的边长为x ,从而可得3,2CM x CN x =-=-,再根据旋转的性质可得2BE DN ==,从而可得5ME =,然后根据三角形全等的性质可得5MN ME ==,最后在Rt CMN 中,利用勾股定理即可得.解:(1)由旋转的性质得:,AE AN BAE DAN =∠=∠四边形ABCD 是正方形90BAD ∴∠=︒,即90BAN DAN ∠+∠=︒90BAN BAE ∴∠+∠=︒,即90EAN ∠=︒45MAN ∠=︒904545MAE EAN MAN ∴∠=∠-∠=︒-︒=︒在AEM △和ANM 中,45AE AN MAE MAN AM AM =⎧⎪∠=∠=︒⎨⎪=⎩()ANM A S S EM A ≅∴;(2)设正方形ABCD 的边长为x ,则BC CD x ==3,2BM DN ==3,2CM BC BM x CN CD DN x ∴=-=-=-=-由旋转的性质得:2BE DN ==235ME BE BM ∴=+=+=由(1)已证:AEM ANM ≅5MN ME ∴== 又四边形ABCD 是正方形90C ∴∠=︒则在Rt CMN 中,222CM CN MN +=,即222(3)(2)5x x -+-=解得6x =或1x =-(不符题意,舍去)故正方形ABCD 的边长为6.【点拨】本题考查了正方形的性质、旋转的性质、三角形全等的判定定理与性质、勾股定理等知识点,较难的是题(2),熟练掌握旋转的性质与正方形的性质是解题关键.【变式2】如图,等腰三角形ABC 中,BA BC =,ABC α∠=.作AD BC ⊥于点D ,将线段BD 绕着点B 顺时针旋转角α后得到线段BE ,连接CE .(1)求证:BE CE ⊥;(2)延长线段AD ,交线段CE 于点F .求CFA ∠的度数(用含有α的式子表示) .【答案】(1)见分析;(2)CFA α∠=【分析】(1)根据“边角边”证ADB CEB ∆∆≌,得到90ADB CEB ∠=∠=︒即可;(2)由(1)得,DAB ECB ∠=∠,再根据三角形内角和证明CFA α∠=即可. 解:证明: 线段BD 绕点B 顺时针旋转角α得到线段BE ,,.BD BE DBE α∴=∠=ABC α∠=,ABC DBE ∴∠=∠.AD BC ⊥,90ADB ∴∠=︒.在ABD ∆与CBE ∆中,,,,AB CB ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩ADB CEB ∴∆∆≌90.ADB CEB ∴∠=∠=︒BE CE ∴⊥.(2)解:ADB CEB ∆∆≌ ,DAB ECB ∴∠=∠,又ADB CDF ∠=∠,CFA CBA α∴∠=∠=,【点拨】本题考查了旋转的性质、全等三角形的判定与性质和三角形内角和定理,解题关键是熟练运用全等三角形的判定与性质进行证明.类型四、旋转图形中的旋转角4、已知:如图,ABC ∆绕某点按一定方向旋转一定角度后得到111A B C ∆,点A ,B ,C 分别对应点A 1,B 1,C 1 .(1)根据点1A 和1B 的位置确定旋转中心是点______________.(2)请在图中画出111A B C ∆;(3)请具体描述一下这个旋转:________________________________.【答案】(1)1O ;(2)详见分析.(3)解析解析. 【分析】(1)连接1AA 和1BB ,分别作它们的垂直平分线,垂直平分线的交点即为旋转中心;(2) 通过(1)作图发现旋转规律,然后点C 旋转后的对应点;(3)①ABC 绕1O 顺(逆)旋转多少°得到111A B C ∆即可.解:()1 如图:可以发现旋转中心为1O ;()2如图:由(1)作图发现是将①ABC 顺时针旋转90°,连接CO 1,绕O 1旋转90°,确定C 1,最后顺次连接A 1,B 1,C 1即可.()3ABC 绕点1O 按顺时针方向旋转后得到111A B C △【点拨】本题考查了图形的旋转,确定旋转中心和旋转方式是解答本题的关键. 举一反三:【变式1】如图,把一副三角板如图甲放置,其中904530ACB DEC A D ︒︒︒∠=∠=∠=∠=,,,斜边67AB cm DC cm ==,,把三角板DCE 绕点C 顺时针旋转15︒得到D CE ''∆(如图乙).这时AB 与CD '相交于点O ,D E ''与AB 相交于点F ,则OFE '∠的度数为________________.【答案】120【分析】根据题意①3=15°,①E′=90°,①1=①2=75°,所以可得①OFE′=①B+①1=45°+75°=120°.解:如图,由题意可知①3=15°,①E′=90°,因为①1=①2,所以①1=75°.又因为①B=45°,所以①OFE′=①B+①1=45°+75°=120°.【点拨】本题考查图形的旋转,解题的关键是知道旋转的性质.【变式2】如图,在平面直角坐标系中,有一Rt①ABC,且A(-1,3),B(-3,-1),C(-3,3),已知①A1AC1是由①ABC旋转得到的.(1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,分别画出①A1AC1顺时针旋转90°、180°的三角形;(3)设Rt①ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.【答案】(1)O(0,0);90度(2)见分析(3)见分析解:(1)图象的旋转可以利用某点的旋转来找到旋转的角度和旋转中心;(2)根据旋转角度为依次90°、180°,旋转方向为顺时针,旋转中心为点O,从而可分、找出各点的对应点,然后顺次连接即可分别得出旋转后的三角形.(3)利用正方形的面积的不同计算方法进行验证勾股定理.解:(1)旋转中心坐标是O(0,0),旋转角是90度;…2分(2)画出的图形如图所示;…6分(3)有旋转的过程可知,四边形CC1C2C3和四边形AA1A2B是正方形.①S正方形CC1C2C3=S正方形AA1A2B+4S△ABC,①(a+b)2=c2+4×ab,即a2+2ab+b2=c2+2ab,①a2+b2=c2.类型五、旋转图形中的坐标5、如图,在平面直角坐标系xOy中,直线y=kx+b与x轴交于点A(1,0),与y轴交于点B(0,2).(1)求直线AB的表达式;(2)将①OAB绕点O逆时针旋转90°后,点A落到点C处,点B落到点D处,线段AB上横坐标为34的点E在线段CD上对应点为点F,求点F的坐标.【答案】(1)y=﹣2x+2(2)(﹣12,34)【分析】(1)把点A和点B点坐标代入y=kx+b得关于k、b的方程组,然后解方程组求出k 和b的值,从而得到直线AB的解析式;(2)先利用一次函数图象上点的坐标特征求出E点坐标,作EH①x轴于H,如图,然后旋转变换求E点的对应点F的坐标.(1)解:把点A(1,0)和点B(0,2)代入y=kx+b得2k bb+=⎧⎨=⎩,解得22kb=-⎧⎨=⎩,所以直线AB的解析式为y=﹣2x+2;(2)解:当x=34时,y=﹣2•34+2=12,则E点坐标为(34,12),作EH①x轴于H,如图,①①OAB绕点O逆时针旋转90°后得到①OCD,①把①OEH绕点O逆时针旋转90°后得到①OFQ,①①OHE=①OQF=90°,①QOH=90°,OQ=OH=34,FQ=EH=12,①F点的坐标为(﹣12,34).【点拨】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y =kx +b ;再将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了旋转的性质.举一反三:【变式1】如图,344y x =-+直线与x 轴、y 轴分别交于A 、B 两点,把①ABC 绕点A 顺时针旋转90º后得到AO B ''△,求点B '的坐标?【答案】2816(,)33【分析】根据坐标轴上点的坐标特征求出A 点和B 点坐标,得到163OA =,3OB =,再利用旋转的性质得90O AO ∠'=︒,AO B AOB ∠''=∠,16'3AO AO ==,4O B OB ''==,则可判断//O B x ''轴,然后根据点的坐标的表示方法写出点B ′的坐标.解:当0y =时,344y x =-+,解得163x =,则16(,0)3A , 当0x =时,4443y x =-+=,则(0,4)B , 所以163OA =,4OB =, 因为把△0A B 绕点A 顺时针旋转90︒后得到△AO B '',所以90O AO ∠'=︒,AO B AOB ∠''=∠,163AO AO '==,4O B OB ''==,则//O B x ''轴,所以B ′点的横坐标为16284=33,纵坐标为163. 所以B ′点的坐标为2816(,)33. 【点拨】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30,45︒,60︒,90︒,180︒.也考查了一次函数图象上点的坐标特征.【变式2】如图,已知线段OA 在平面直角坐标系中,O 是原点.(1)将OA 绕点O 顺时针旋转60°得到OA ',过点A '作A B x '⊥轴,垂足为B .请在图中用不含刻度的直尺和圆规分别作出OA '、A B ';(2)若()2,6A -,则OA B '的面积是______.【答案】(1)见详解 (2)3【分析】(1)利用等边三角形的性质的性质作OA ′,利用垂直平分线的作法求B 点;(2)设A ′(a ,b ),如图过A 作AC 垂直x 轴于C ,过A ′作A ′①AC 于D ,连接AA ′;在Rt ①ADA ′和Rt ①OBA ′中利用勾股定理建立方程组,解方程即可解答;(1)解:分别以O 、A 为圆心,以AO 为半径作弧,两弧交于点A ′,连接OA ′即为所求线段;以A ′为圆心,适当长度为半径作弧交x 轴于点E 、F ,再分别以点E 、F 为圆心,以EA ′、F A ′为圆心作弧,两弧交于点C ,连接CA ′交x 轴于点B ,A ′B 即为所求线段;(2)解:设A′(a,b),如图过A作AC垂直x轴于C,过A′作A′D①AC于D,连接AA′,则四边形DCBA′是矩形;由(1)作图可得,OA=OA′=AA①A(-2,6),A′(a,b),①Rt①ADA′中,AD=6-b,DA′=a+2,AA′2=(6-b)2+(a+2)2=40,①Rt①OBA′中,OB=a,BA′=b,OA′2=a2+b2=40,①①(6-b)2+(a+2)2= a2+b2,解得:a=3b-10,代入①,(3b-10)2+b2=40,b2-6b+6=0解得:b=3,b=3a=1,符合题意;b=3a=1-,不符合题意;①A′(1,3,×(1)×(3=3;OA B'的面积=12【点拨】本题考查了旋转作图,等边三角形的判定和性质,垂直平分线的作法,勾股定理,矩形的判定和性质,一元二次方程的解法;利用勾股定理构建方程是解题关键.类型六、旋转综合题6、阅读下列材料:问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且①EAF=45°.解决下列问题:(1)图(1)中的线段BE、EF、FD之间的数量关系是______.(2)图(2),已知正方形ABCD的边长为8,E、F分别是BC、CD边上的点,且①EAF =45°,AG①EF于点G,求①EFC的周长.【答案】(1)EF=BE+DF(2)过程见分析【分析】对于(1),先将①DAF绕点A顺时针旋转90°,得到①BAH,可得①ADF①①ABH,再根据全等三角形的性质得AF=AH,①EAF=①EAH,然后根据“SAS”证明①F AE①①HAE,根据全等三角形的对应边相等得出答案;对于(2),先根据(1),得①F AE①①HAE,可得AG=AB=AD,再根据“HL”证明Rt①AEG①Rt①ABE,得EG=BE,同理GF=DF,可得答案.解:(1)EF=BE+DF.理由如下:如图,将①DAF绕点A顺时针旋转90°,得到①BAH,①①ADF①①ABH,①①DAF=①BAH,AF=AH,①①EAF=①EAH=45°.①AE=AE ,①①F AE ①①HAE ,①EF=HE=BE+HB ,①EF=BE+DF ;(2)由(1),得①F AE ①①HAE ,AG ,AB 分别是①F AE 和①HAE 的高,①AG=AB=AD=8.在Rt ①AEG 和Rt ①ABE 中,AE AE AG AB =⎧⎨=⎩, ①Rt ①AEG ①Rt ①ABE (HL ),①EG=BE ,同理GF=DF ,①①EFG 的周长=EC+EF+FC=EC+EG+GF+FC=EC+BE+DF+FC=BC+CD=16.【点拨】这是一道关于正方形和旋转的综合题目,考查了旋转的性质,正方形的性质,全等三角形的判定和性质等.举一反三:【变式1】如图,四边形ABCD 是正方形,①ECF 为等腰直角三角形,①ECF =90°,点E 在BC 上,点F 在CD 上,P 为EF 中点,连接AF ,G 为AF 中点,连接PG ,DG ,将Rt①ECF 绕点C 顺时针旋转,旋转角为α(0°≤α≤360°).(1)如图1,当α=0°时,DG 与PG 的关系为 ;(2)如图2,当α=90°时①求证:①AGD①①FGM;①(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.【答案】(1)DG=PG(2)①见分析;①成立,理由见分析【分析】(1)先判断出①ABE①①ADF,得出AE=AF,再用直角三角形斜边的中线等于斜边的一半和三角形中位线定理,即可得出结论;(2)①先判断出①DAG=①MFG,再判断出AG=FG,即可得出结论;①由①知,①AGD①①FGM,得出DG=MG,AD=FM=BC,进而得出CM=CF,由(1)知,DE=CF,得出CM=DE,进而判断出①ADE①①DCM,得出AE=DM,最后同①的方法即可得出结论.(1)解:①四边形ABCD是正方形,①①B=①ADC=90°,AB=BC=AD=CD,①①ECF为等腰直角三角形,①CE=CF,①BE=DF,①①ABE①①ADF(SAS),①AE=AF,①点G是AF的中点,①12DG AF=,①12DG AE=,①P为EF中点,G为AF中点,①PG是①AEF的中位线,①12PG AE =, ①DG =PG ,故答案为:DG =PG ;(2)①证明:①四边形ABCD 是正方形,①AD ①BC ,①①DAG =①MFG ,①点G 是AF 的中点,①AG =FG ,在①AGD 和①FGM 中,DAG MFG AG FG AGD FGM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①AGD ①①FGM (ASA );解:①(1)中的结论DG =PG 成立,证明:由①知,①AGD ①①FGM ,①DG =MG ,AD =FM =BC , ①12BM CF BC ==, ①CM =CF ,由(1)知,DE =CF ,①CM =DE ,①AD =CD ,①ADE =①DCM =90°,①①ADE ①①DCM (SAS ),①AE =DM ,①点G 是DM 的中点, ①1122MG DM AE ==, ①P 为EF 中点,G 为AF 中点,①PG 是①AEF 的中位线, ①12PG AE =, ①DG =PG .【点拨】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的性质,三角形的中位线定理,判断出AE =DM 是解(2)①的关键.【变式2】如图,P 是等边ABC 内的一点,且5,4,3PA PB PC ===,将APB △绕点B 逆时针旋转,得到CQB △.(1)旋转角为_____度;(2)求点P 与点Q 之间的距离;(3)求BPC ∠的度数;(4)求ABC 的面积ABC S .【答案】(1) 60 ( 2) 4 (3)150° (4)9. 【分析】 (1)根据①QCB 是①P AB 绕点B 逆时针旋转得到,可知①ABC 为旋转角即可得出答案, (2)连接PQ ,根据等边三角形得性质得①ABC =60°,BA =BC ,由旋转的性质得BP =BQ ,①PBQ =①ABC =60°,CQ =AP =5,BP =BQ =4,①PBQ =60°,于是可判断①PBQ 是等边三角形,所以PQ =PB =4;(3)先利用勾股定理的逆定理证明①PCQ 是直角三角形,且①QPC =90°,再加上①BPQ =60°,然后计算①BPQ +①QPC 即可.(4)由直角三角形的性质可求CH ,PH 的长,由勾股定理和三角形的面积公式可求解.解:(1)①①ABC 是等边三角形,①①ABC =60°,①①QCB 是①P AB 绕点B 逆时针旋转得到的,①旋转角为60°故答案为:60;(2)连接PQ ,如图1,①①ABC 是等边三角形,①①ABC =60°,BA =BC ,①①QCB 是①P AB 绕点B 逆时针旋转得到的,①①QCB ①①P AB ,①BP =BQ ,①PBQ =①ABC =60°,CQ =AP =5,①BP =BQ =4,①PBQ =60°,①①PBQ 是等边三角形,①PQ =PB =4;(3)①QC =5,PC =3,PQ =4,而32+42=52,①PC 2+PQ 2=CQ 2,①①PCQ 是直角三角形,且①QPC =90°,①①PBQ 是等边三角形,①①BPQ =60°,①①BPC =①BPQ +①QPC =60°+90°=150°;(4)如图2,过点C 作CH ①BP ,交BP 的延长线于H ,①①BPC =150°,①①CPH =30°,①CH 12=PC 32=,PH=, ①BH =4 ①BC 2=BH 2+CH 2232⎛⎫=+ ⎪⎝⎭2425⎛+ ⎝⎭=①S△ABC=2,①S△ABC25=+=9.【点拨】本题考查了旋转的性质,等边三角形的判定与性质,全等三角形的性质,勾股定理的逆定理,掌握旋转的性质是本题的关键.。
人教版小学信息技术(三起)三年级上册第二单元《用“画图”画画》教案(附目录)
![人教版小学信息技术(三起)三年级上册第二单元《用“画图”画画》教案(附目录)](https://img.taocdn.com/s3/m/3e8ccbdbf46527d3250ce00a.png)
由于画图工具的介绍基本结束,教师应逐步引导学生灵活应用各类工具进行 创作性画图。 【教学方法和手段】
综合运用自主创作和实践练习的方法,让学生熟悉基本工具的操作方法,同 时鼓励学生积极创作。 【教学过程】
重点:变化图形跟编辑图形一样,必须先选定图形。 难点:图形的拉伸和扭曲。
教学方法和手段:
创设情境,综合运用自主创作和实践练习的方法,让学生熟悉基本工具的操作方 法,同时鼓励学生积极创作。
教学过程:
一、学习图形的翻转/旋转 师(出示图片):鲸鱼在海里寻找食物,可是它没有发觉小鱼就在它后面呢。同 学们能不能帮助他,让它能饱餐一顿呢? (学生自由交流发言,并尝试操作。)
人教版小学信息技术(三起)三年级上册 第二单元教案
教材目录 第 2 单元 用“画图”画画 第 8 课 认识“画图” 第 9 课 画几何形 第 10 课 画线条和填色 第 11 课 刷子和喷枪 第 12 课 编辑图形 第 13 课 图像大变形 第 14 课 给图画添加文字 第 15 课 综合实践活
第 2 单元 用“画图”画画 第 8 课 认识“画图”
“选定”、“裁剪”等工具的使用方法。
教学过程
一、导入 同学们,你能画出光芒四射的太阳、弯弯的月亮和闪闪的星星吗?这节课跟
大家一起来画这样美丽的图画。 二、新授教学
(一)光芒四射的太阳 1. 用“橡皮/彩色橡皮擦”工具画出太阳光芒的效果 选择合适的工具画出太阳——单击“橡皮/彩色橡皮檫“工具——选择合适 的大小——按下左健擦去不要的部分。 2. 学生试画 3. 交流总结 (二)弯弯的月亮 1. 首先画两个重叠的圆,然后擦除多余的部分,就形成了弯弯的月亮 用“椭圆”工具画出两个重叠的圆——单击“选定”工具——拖动,选定要 擦除的部分——单击“编辑”菜单中的“清除选定内容”命令——用“颜色填充” 工具涂上合适的颜色 2. 学生练习 3. 交流总结 (三)闪闪的星星 1. 可以借助“放大镜”工具来画比较小的星星。 单击“放大镜”工具——选择合适的放大倍数——在画星星的位置单击—— 单击“放大镜”工具,星星恢复原来的大小——用“直线”工具画星星并涂上喜 欢的颜色。 2. 学生练习 3. 展示交流评比 (四)交流评价和课堂小结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同学们,喜羊羊想告诉懒羊 羊一个秘密,但是他这样能 说吗?你能帮帮他吗?
1、利用画图软件打开桌面文件:素材1 2、通过 “图像”菜单中的—“翻转/旋转” 命令纠正懒羊羊和喜羊羊的错误方向。
小要求:边操作边思考如果原本这样的 懒羊羊和 喜羊羊经过水平翻转、垂直翻转后 分别将变成了什么样子?
小提示:注意准确选定对象,有错误运 用“撤消”命令。
垂直翻转:(上下)
水平翻转:(左右)
刚刚我看到灰太狼跟
在我们后面,它肯定 又想干坏事。幸好我
从村长那带来了复制 药水,等我变成N个
自己,吓死它!
利用画图软件打开桌面文件:素材2
1、通过 “编辑”菜单中的“复制”、“粘 贴”变出几个大小不一的喜羊羊。
2、通过“图像”菜单中的—“翻转/旋转”把 形态各异的喜羊羊放在灰太狼的周围。
现在该吃午饭了,同学们能让这些羊 羊站好,吃上可口的食物吗?
1、利用画图软件打开桌面文件:素材3
2、边操作边思考羊羊们经过按90度、180度、 270度 旋转后会变成怎么样?
羊羊们吃得很饱,玩得很开心,到了 傍晚他们就回村了。但是他们犯了一个我 们某些同学平时也会犯的小错误,就是吃 完东西到处乱扔,连垃圾桶也打翻了,同 学们,你们能把垃圾桶放好并把他们产生 的垃圾扔到垃圾桶里吗?
打开素材4,完成任务。
小结:
翻转/旋转 改变方向
翻转:水平(左右) 垂直(上下) 旋转:90度 180度 270度