碳纳米管
碳纳米管定义
![碳纳米管定义](https://img.taocdn.com/s3/m/51175e480640be1e650e52ea551810a6f524c831.png)
碳纳米管定义
碳纳米管是一种由碳原子构成的纳米材料,具有管状结构。
它的直径通常在纳米尺度(纳米级别为1100纳米)范围内,
长度可以从纳米到微米级别。
碳纳米管的结构可以分为单壁碳
纳米管和多壁碳纳米管两种。
单壁碳纳米管由一个原子薄的石墨单层卷曲而成,形成一个
管状结构。
单壁碳纳米管的墙壁由碳原子构成,以六边形的芳
香环排列。
其典型特点是具有高强度、高导电性、高热导率和
良好的力学性能。
多壁碳纳米管由多个同心圆层组成,每个层均由碳原子六边
形结构构成,层与层之间的间距一般为0.34纳米。
多壁碳纳米管具有类似于单壁碳纳米管的特性,但其力学性能和导电性能
相对较差。
碳纳米管具有独特的物理和化学性质,广泛应用于材料科学、电子学、能源储存和传感器等领域。
由于其独特的结构和性能,碳纳米管在电子器件中可以用作纳米导线、场发射器件、纳米
传感器等。
此外,碳纳米管还被研究用于制备高性能锂离子电池、超级电容器和光催化材料等。
相信随着科学技术的不断发展,碳纳米管将在更多领域发挥重要作用。
碳纳米管的性质与应用
![碳纳米管的性质与应用](https://img.taocdn.com/s3/m/7fe7210fe87101f69e3195ae.png)
研究碳纳米管的发光性质从其发光位置着手 研究。单壁纳米碳管的发光是从支撑纳米碳管的 金针顶附近发射的,并且发光强度随发射电流的 增大而增强;多壁纳米碳管的发光位置主要限制 在面对着电极的薄膜部分,发光位置是非均匀的, 发光强度也是随着发射电流的增大而增强。碳纳 米管的发光是由电子在与场发射有关的两个能级 上的跃迁而导致的。研究表明单壁纳米碳管的光 吸收随压力的增大而减弱,其原因在于压力的变 化会导致纳米碳管对称性的改变。
碳纳米管的性质与应用
应化0804 报告人:赵 开
主要内容
碳纳米管的简介
碳纳米管的性质
碳纳米管的应用 碳纳米管的展望
碳纳米管的简介
碳纳米管(CNT)是碳的同素异形体 之一,是由六元碳环构成的类石墨平面卷 曲而成的纳米级中空管,其中每个碳原子 通过SP2杂化与周围3个碳原子发生完全键合。 碳纳米管是由一层或多层石墨按照一定方 式卷曲而成的具有管状结构的纳米材料。 由单层石墨平面卷曲形成单壁碳纳米管 (SWNT),多层石墨平面卷曲形成多壁碳 纳米管(MWNT)。
碳纳米管的展望
由于碳纳米管具有非常好的性能,其 尺寸又处于纳米级,因而具有很好的应用 前景,受到了多个领域研究者的广泛关注。 随着其应用研究的进展,势必引起一场科 技革命的新突破,并带动一系列相关高科 技产业的兴起与发展。在不久的将来,基 于碳纳米管的多种现代化产品将会真正进 入我们的生活,对社会的发展势必将起到 极大的推动作用。
碳纳米管在电磁学领域的应用:
碳纳米管具有良好的导电性,是一种可用于制备修饰 电极和电化学传感器的优良材料。将碳纳米管对传统电极 进行修饰可以降低氧化过电势,增加峰电流,从而改善分 析性能,提高方法选择性和灵敏度。因此,碳纳米管作为 修饰电极材料已广泛应用于分析化学领域。利用碳纳米管 的场致电子发射性能可用于制作平面显示装置,使之更薄、 更省电,从而取代笨重和低效的电视和计算机显示器。碳 纳米管的优异场发射性能还可使其应用于微波放大器、真 空电源开关和制版技术上,可用于大规模集成电路、超导 线材、超电容器,也可用于电池电极和半导体器件。碳纳 米管的直径比以往用的针尖小得多,用碳纳米管作为扫描 探针能大大提高其分辨率。利用碳纳米管的金属导电性和 半导体性能,碳纳米管还被用于制作分子级开关、半导体 器件等。
碳纳米管
![碳纳米管](https://img.taocdn.com/s3/m/23a38f601ed9ad51f01df299.png)
3.热学性能
由于碳管具有非常大的长径比,因而大量热是沿着长 度方向传递的,通过合适的取向,这种管子可以合成高各 向异性材料。 即在管轴平行方向的热交换性能很高,但在其垂直方 向的热交换性能较低。适当排列碳纳米管可得到非常高的 各向异性热传导材料。
四、碳纳米管的制备
CNTs的制备方法有多种,主要有电弧法,激光 蒸发法,化学气象沉积法等方法。这些方法分别在 不同的实验条件下可以得到MWNT和SWNT。
基本原理: 电弧室充惰性气体保护, 两石墨棒电极靠近,拉起 电弧,再拉开,以保持电 弧稳定。放电过程中阳极 温度相对阴极较高,所以 阳极石墨棒不断被消耗, 同时在石墨阴极上沉积出 含有碳纳米管的产物。 理想的工艺条件:氦气为载气,气压 60—50Pa,电 流60A~100A,电压19V~25 V,电极间距1 mm~4mm, 产率50%。Iijima等生产出了半径约1 nm的单层碳管。
五、纳米管结构的表征:
扫描隧道显微镜 X射线衍射
电子显微镜
拉曼光谱
1.电子显微术
利用不同的电子显微术,可以非常详细地研究碳 纳米管结构,确定其生长机制,反过来又可以帮助人 们改进碳管的生长过程,或者去修饰他们的结构。 利用扫描电子显微镜(SEM)可以获得单壁碳纳 米管管束的图像。透射电子显微镜(TEM)对于碳纳 米管结构的研究更为有用。TEM是一种强有力的技术, 可以确定碳纳米管管壁的层数,还可以准确测量管径 和确定碳管结构中的缺陷。
饭岛澄男 S.Iijima
将这些针状产物在高分辨电子显微镜下观察, 发现该针状物是直径为4~30纳米,长约1微米,由 2个到50个同心管构成,相邻同心管之间平均距离 为0.34纳米。
单壁碳纳米管
多壁碳纳米管
进一步实验研究表明,这些纳米量级的微小管状结构是由碳 原子六边形网格按照一定方式排列而形成,或者可以将其想象成 是由一个六边形碳原子形成的平面卷成的中空管体,而在这些管 体的两端可能是由富勒烯形成帽子。这就是多壁纳米碳管。 在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的 纳米碳管,即单壁碳纳米管产物。
碳纳米管
![碳纳米管](https://img.taocdn.com/s3/m/f5da9c5ef5335a8103d22028.png)
(B)热解法:这种方法也很简单,将一块基板放 进加热炉里加热至600℃,然后慢慢充入甲烷 一类的含碳气体。气体分解时产生自由的碳原 子,碳原子重新结合可能形成碳纳米管。
优点:最容易实现产业化,也可能制备很长的 碳纳米管。
缺点:制得的碳纳米管是多壁的,常常有许多 缺陷。与电弧放点法制备的碳纳米管相比,这 种碳纳米管抗张强度只有前者的十分之一。
初步估算,碳纳米管的强度大概是钢的100倍。 Lieber运用STM技术测试了碳纳米管的弯曲强度, 证明碳纳米管具有理想的弹性和很高的硬度。因此 用碳纳米管作为金属表面上的复合镀层,可以获得 超强的耐磨性和自润滑性,其耐磨性要比轴承钢高 100倍,摩擦系数为0.06~0.1,且还发现该复合镀层 还具有高的热稳定性和耐腐蚀性等性能。
(C)浓硝酸氧化法
将碳纳米管加入到浓硝酸中搅拌,超声波分散 后加热回流处理。自然冷却后用蒸馏水稀释、 洗涤至中性,经真空干燥、研磨后既得到纯化 处理的碳纳米管[14]。
优点:经过适当浓度硝酸氧化处理一定时间的 CNTs,其基本结构未发生本质变化,而表面 活性基团显著增加,在乙醇中分散浓度、均匀 性、稳定性得到提高,在复合材料中的分散均 匀性及与树脂的结合性能也得到相应提高。硝 酸氧化处理是CNTs表面活化的有效方法。
中美科学家在研究中对合成碳纳米管常用的化 学气相淀积方法进行了改进。改进结果显示,在化 学气相淀积过程中加入氢和另外一种含硫化合物后, 不仅能制造出更长的碳纳米管束,而且这些碳纳米 管束可由单层碳纳米管通过自我组装而有规律地排 列组成。
研究人员认为,他们的新方法作为一种更为简便 的替代工艺,也许还可以用来生产高纯度的单层碳 纳米管材料。
碳纳米管制备技术
![碳纳米管制备技术](https://img.taocdn.com/s3/m/dd0868b6710abb68a98271fe910ef12d2af9a904.png)
VS
为了优化制备过程和提高碳纳米管的 性能,需要仔细选择和控制这些因素 。例如:提高激光功率可以增加碳纳 米管的产量,但也可能导致碳纳米管 的直径和长度增加;使用高纯度、单 一成分的靶材可以获得结晶度高、结 构稳定的碳纳米管;在一定气氛中进 行制备可以保护碳纳米管免受氧化或 燃烧的影响。
04
电弧放电法制备碳纳米管
产率控制
电弧放电法的产率受到多种因素的影响,如 石墨电极的化学成分、电弧放电的能量、合 成温度和时间等。通过优化这些参数,可以
进一步提高碳纳米管的产率。
影响因素与改进
影响因素
电弧放电法制备碳纳米管的过程中,存在一些影响合 成质量与效率的因素。例如,石墨电极的化学纯度、 电弧放电的稳定性和环境参数等。
化学气相沉积法(CVD)
在高温下,将含碳气体(如甲烷)与 催化剂(如铁、钴、镍等)反应生成 碳纳米管。
电弧放电法
在惰性气体环境中,通过电弧放电使 石墨蒸发并冷凝形成碳纳米管。
激光蒸发法
用激光照射含有催化剂和碳源的基底 ,产生高温使碳蒸发并冷凝形成碳纳 米管。
化学合成法
利用含碳前驱体与金属催化剂反应, 在溶液中合成碳纳米管。
能源存储领域
超级电容器
碳纳米管具有高比表面积和良好的电化学性能,适用于制造超级电容器,提高其 能量密度和充放电效率。
锂离子电池电极材料
碳纳米管作为电极材料,可提高锂离子电池的电化学性能和循环寿命。
复合材料领域
高性能复合材料
碳纳米管与树脂、陶瓷等基体材料复合,可制备出高性能的复合材料,应用于 航空航天、汽车等领域。
性质
高强度、高韧性、高导电性、轻 质和良好的化学稳定性,使其在 众多领域具有广泛的应用潜力。
碳纳米管简介
![碳纳米管简介](https://img.taocdn.com/s3/m/ac539f95250c844769eae009581b6bd97f19bc2c.png)
加强基础研究和创新能力
深入研究结构与性能关系
进一步揭示碳纳米管的微观结构和性 能之间的关联,为新应用提供理论支 持。
探索新的合成方法
加强跨学科合作
与化学、物理、生物等学科进行交叉 合作,拓展碳纳米管的应用领域。
开展新合成方法的研究,实现碳纳米 管的绿色合成和可控合成。
建立产业联盟和创新平台
促进产学研合作
导电材料
碳纳米管具有优异的导电性能,可作为复合材料的导电填料,提高材料的导电性能。
半导体领域
晶体管
碳纳米管具有优异的半导体性能,可 用于制造高性能晶体管,提高集成电 路的性能和集成度。
传感器
碳纳米管具有较高的化学敏感性和光 电响应性,可用于制造高性能传感器 ,用于环境监测、生物医学等领域。
纳米电子领域
碳纳米管的应用领域
电池领域
电池电极材料
碳纳米管具有优异的导电性能和比表 面积,可作为高性能电池电极材料, 提高电池的能量密度和充放电效率。
电池隔膜材料
碳纳米管具有较高的机械强度和化学 稳定性,可用于制造高性能电池隔膜 ,提高电池的安全性和稳定性。
复合材料领域
增强材料
碳纳米管具有优异的力学性能和化学稳定性,可作为复合材料的增强剂,提高材料的强度和韧性。
化学反应性
碳纳米管具有较高的化学反应性,可以在高温下与多种氧化剂反应,也可以在催化剂的作 用下进行加氢反应。此外,碳纳米管还可以通过表面修饰改性来提高其化学反应性和相容 性。
表面基团
碳纳米管的表面可以含有多种基团,如羧基、羟基、羰基和环氧基等。这些基团的存在会 影响碳纳米管的化学反应性和相容性。
稳定性
碳纳米管简介
汇报人: 2023-12-15
碳纳米管拉曼光谱三个峰
![碳纳米管拉曼光谱三个峰](https://img.taocdn.com/s3/m/a7dfadd050e79b89680203d8ce2f0066f53364a3.png)
碳纳米管拉曼光谱三个峰摘要:一、碳纳米管简介二、拉曼光谱概述三、碳纳米管拉曼光谱三个峰的特性四、三个峰在碳纳米管表征中的应用五、总结与展望正文:碳纳米管作为一种纳米材料,具有独特的物理和化学性质,吸引了科研界的广泛关注。
拉曼光谱作为一种表征手段,对于研究碳纳米管的结构和性质具有重要意义。
本文将探讨碳纳米管拉曼光谱中的三个特征峰,并分析其在碳纳米管表征中的应用。
首先,我们来了解一下碳纳米管。
碳纳米管是由碳原子组成的纳米级管状结构,具有良好的导电、导热、力学和化学稳定性。
根据石墨烯片层卷曲方式的不同,碳纳米管可分为两类:单壁碳纳米管(SWCNT)和多壁碳纳米管(MWCNT)。
拉曼光谱是一种基于拉曼散射效应的表征技术,可用于测量物质的振动、转动和晶格振动等信息。
在碳纳米管研究中,拉曼光谱起到了关键作用。
碳纳米管拉曼光谱中的三个特征峰分别为:G峰、D峰和2D峰。
G峰是由于碳纳米管中的sp2碳原子振动引起的,其位置和强度与碳纳米管的结构和手性密切相关。
G峰强度较高,一般出现在约1500cm-1的位置。
D峰源于碳纳米管中的无序振动,通常出现在约1300cm-1的位置。
D峰强度较低,但与碳纳米管的直径、长度和手性有关。
2D峰是由于碳纳米管层间的范德华力引起的,出现在约2000cm-1的位置。
2D峰强度较低,对碳纳米管的手性、直径和层数敏感。
这三个峰在碳纳米管表征中的应用如下:1.通过G峰和D峰的强度比,可以初步判断碳纳米管的直径和手性。
2.2D峰可用于分析碳纳米管的层数,结合G峰和D峰的变化,可进一步确定碳纳米管的结构。
3.拉曼光谱还可以用于评估碳纳米管的分散状态和纯度,通过观察峰形和峰强度变化,可判断碳纳米管样品中的杂质和团聚现象。
总之,碳纳米管拉曼光谱三个特征峰在表征碳纳米管的结构、手性、直径和层数等方面具有重要应用价值。
碳纳米管
![碳纳米管](https://img.taocdn.com/s3/m/e7b43ebdee06eff9aef807f9.png)
碳纳米管是由单层或多层石墨片围绕同一中心轴按一定的螺旋角卷曲而成的无缝纳米级管结构,两端通常被由五元环和七元环参与形成的半球形大富勒烯分子封住,端口的结构遵循鼎足五边形定则和欧拉定理。
端帽大部分都被认为是在六方网格状的碳纳米管中掺杂着五元环或者七元环的拓扑缺陷。
每层纳米管的管壁是一个由碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形网络平面所围成的圆柱面(图1)。
CNT根据管状物的石墨片层数可以分为单壁碳纳米管(SWNTs) 和多壁碳纳米管(MWNTs)。
图1SWNT的结构示意图(1)单壁碳纳米管的结构单壁碳纳米管在概念上可被认为是卷起来的单层石墨烯,直径大小分布范围小、缺陷少,具有更高的均匀一致性,是理想的分子纤维。
SWNT的管径一般为0. 7~3. 0 nm,长度为 1~50 μm,是一种理想的纳米通道,可用作储氢材料、半导体及场发射材料等。
SWNT可看做是由单层石墨烯片卷曲成的,在石墨烯片层卷成圆柱体的过程中,边界上的悬空键随即结合,从而导致碳纳米管轴方向的随机性。
在一般的碳纳米管结构中,碳原子的六边形格子是绕成螺旋型的,碳纳米管具有一定的螺旋度,如果将SWNT的石墨烯面沿纵向展开,就呈现类似于石墨烯面的二维几何形态。
碳纳米管的结构参数都能够由( n,m) 指数来确定。
不同的( n,m) 对应不同的手性矢量、手性角、卷曲方式、直径和周长等结构参数。
根据卷起的方向矢量(n,m)不同,SWNT 大致可呈现金属性(n-m = 3k,k为整数,无能隙)或半导体性(n-m ≠ 3k,k为整数,有能隙)。
根据折起的外部形态的不同,SWNT可分为扶手椅式、锯齿式和手性式。
通常,当m=n 时,称为扶手椅型管; 当 m=0 时,称为锯齿型管; 其他则一般称为手性管。
图2 几种不同类型的单壁碳纳米管(2)多壁碳纳米管的结构MWNT是由几层到几十层石墨烯片同轴卷曲而成的无缝管状物。
其层数从2到50不等,层间距为±nm,与层间距 nm的石墨相当,且层与层之间排列无序。
碳纳米管
![碳纳米管](https://img.taocdn.com/s3/m/e66140b710661ed9ad51f3d4.png)
e) Picture of a CNT and a polymeric sponge placed in a water bath. The CNT sponge is floating on the top while the polyurethane sponge absorbed water and sank to below the surface level. f) A CNT sponge bent to arch-shape at a large-angle by finger tips. g) A 5.5cm1 cm0.18cm sponge twisted by three round turns at the ends without breaking. h) Densification of two cubic-shaped sponges into small pellets (a flat carpet and a spherical particle, respectively) and full recovery to original structure upon ethanol absorption.
范守善院士
清华大学物理系
研究领域:近十余年的研究方向集中在纳米尺度材料的 科学与技术,主要研究方向为碳纳米管的生长机理、可 控制合成与应用探索。在深入揭示和理解碳纳米管生长 机理的基础上,实现了超顺排碳纳米管阵列、薄膜和线 材的可控制与规模化制备,研究并发现了碳纳米管材料 独特的物理化学性质,基于这些性质发展出了碳纳米管 发光和显示器件、透明柔性碳纳米管薄膜扬声器、碳纳 米管薄膜触摸屏等多种纳米产品,部分应用产品已具有 产业化前景,实现了从源头创新到产业化的转换。
碳纳米管的应用及原理
![碳纳米管的应用及原理](https://img.taocdn.com/s3/m/041b6168bc64783e0912a21614791711cc7979ab.png)
碳纳米管的应用及原理1. 碳纳米管的定义和结构•碳纳米管是由碳原子构成的纳米材料,具有管状结构。
•碳纳米管可以分为单壁碳纳米管和多壁碳纳米管两种结构。
•单壁碳纳米管由一个或数个层的碳原子螺旋而成,多壁碳纳米管则是由多个同心管层构成。
2. 碳纳米管的制备方法•弧放电法:通过在高温下对碳材料进行电弧放电,产生碳纳米管。
•化学气相沉积法:通过气相反应,在催化剂的作用下生成碳纳米管。
•化学气相氧化法:通过将碳材料在气相氧化条件下进行氧化,生成碳纳米管。
3. 碳纳米管的应用领域3.1 电子器件•碳纳米管作为晶体管的替代材料,用于制造更小、更快的电子器件。
•碳纳米管晶体管具有优异的导电性能和较小的尺寸,可用于构建高密度的集成电路。
3.2 能源存储•碳纳米管可以用作电容器的电极材料,具有高比表面积和良好的电导性能,可用于高性能超级电容器和锂离子电池。
3.3 复合材料•碳纳米管可以与其他材料复合,形成高强度、高导热性能的复合材料。
•碳纳米管复合材料被广泛应用于航空航天、汽车制造和建筑材料等领域。
3.4 生物医学•碳纳米管可以用作药物传递系统,通过改变表面性质和结构,实现对药物的控制释放。
•碳纳米管还可以用于组织工程和生物传感器等生物医学应用。
4. 碳纳米管的原理•碳纳米管的特殊性质与其结构密切相关,具体原理如下: ### 4.1 共价键结构•碳纳米管由碳原子共价键构成,共价键的特性决定了碳纳米管的稳定性和强度。
### 4.2 π-电子共轭结构•碳纳米管的π-电子共轭结构使其具有导电性能,可用于电子器件和能源存储。
### 4.3 杂质掺杂•在碳纳米管中引入不同的杂质,可以改变其导电性能、光学性质和化学性质,拓展了其应用领域。
5. 总结•碳纳米管作为一种重要的纳米材料,具有广泛的应用前景。
•通过不同的制备方法和控制条件,可以得到具有不同结构和性质的碳纳米管。
•碳纳米管的应用领域包括电子器件、能源存储、复合材料和生物医学等。
归纳并总结碳纳米管的特性
![归纳并总结碳纳米管的特性](https://img.taocdn.com/s3/m/69cf06b7f605cc1755270722192e453610665b37.png)
归纳并总结碳纳米管的特性碳纳米管是一种由碳原子构成的纳米级管状结构材料,具有独特的物理、化学和电学特性。
它们在纳米科技领域具有广泛的应用前景。
本文将归纳并总结碳纳米管的特性,以便更好地理解和利用这一材料。
1. 结构特性碳纳米管的基本结构由碳原子以六角形排列形成,呈现出类似于由一个或多个碳层卷曲而成的管状形态。
碳纳米管可以分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs)两种类型。
单壁碳纳米管由单层碳原子构成,而多壁碳纳米管则包含多个同心管状结构。
2. 尺寸特性碳纳米管的直径通常在1纳米至100纳米之间,长度可以从几十纳米到数微米不等。
其长度和直径比例的不同决定了碳纳米管的形态,如长棒状、管状或扁平形状。
3. 机械特性碳纳米管具有出色的力学性能,其强度和刚度是其他材料无法比拟的。
研究表明,碳纳米管的弹性模量和拉伸强度分别可以达到1000 GPa和100 GPa以上。
此外,碳纳米管还具有极高的柔韧性和耐久性。
4. 热学特性碳纳米管的热导率非常高,比钻石和铜等传统材料还要高。
这是由于碳纳米管的晶格结构和电子结构的特殊性质所决定的。
同时,碳纳米管还表现出优异的热稳定性和低热膨胀系数,使其在微电子器件的散热和封装方面具有广泛的应用潜力。
5. 电学特性碳纳米管是一种半导体材料,具有优良的电学性能。
SWCNT的导电性可分为金属和半导体两种类型,而MWCNT通常是半导体性质。
此外,碳纳米管还表现出高载流子迁移率、低电子散射率等优异特性,这使得其在纳米电子学领域具有重要的应用前景。
6. 光学特性由于碳纳米管具有一维结构和特殊的色散关系,使得其显示出独特的光学性质。
碳纳米管对可见光和红外光有很强的吸收和发射能力,具有广泛的应用潜力,如太阳能电池、光电器件和传感器等。
7. 化学特性碳纳米管具有高度的化学稳定性,能耐受高温、强酸和强碱等条件。
这使得碳纳米管可以在各种工业和科学领域中得到应用,如催化剂、储氢材料、吸附剂和纳米复合材料等。
什么是碳纳米管?
![什么是碳纳米管?](https://img.taocdn.com/s3/m/949c85cf76eeaeaad1f33078.png)
什么是碳纳米管?什么是碳纳米管?提到碳纳米管,可能许多人都不陌生,但如果说到它的结构、性能以及应用等方面,大家可能就不甚了解了。
今天小编就和大家一起来学习一下到底什么是碳纳米管。
碳纳米管是一种在复合材料,电子器件,荧光标记等行业领域当中有着广泛应用的纳米材料,于上世纪90年代被发现命名。
是一种黑色无味,外观呈粉末性的材料。
碳纳米管是一种一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。
近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。
碳纳米管可以制成透明导电的薄膜,用以代替ITO(氧化铟锡)作为触摸屏的材料。
先前的技术中,科学家利用粉状的碳纳米管配成溶液,直接涂布在PET 或玻璃衬底上,但是这样的技术至今没有进入量产阶段;目前可成功量产的是利用超顺排碳纳米管技术;该技术是从一超顺排碳纳米管阵列中直接抽出薄膜,铺在衬底上做成透明导电膜,就像从棉条中抽出纱线一样。
在碳纳米管的内部可以填充金属、氧化物等物质,这样碳纳米管可以作为模具,首先用金属等物质灌满碳纳米管,再把碳层腐蚀掉,就可以制备出很细的纳米尺度的导线,或者全新的一维材料,在未来的分子电子学器件或纳米电子学器件中得到应用。
有些碳纳米管本身还可以作为纳米尺度的导线。
这样利用碳纳米管或者相关技术制备的微型导线可以置于硅芯片上,用来生产更加复杂的电路。
利用碳纳米管的性质可以制作出很多性能优异的复合材料。
例如用碳纳米管材料增强的塑料力学性能优良、导电性好、耐腐蚀、屏蔽无线电波。
使用水泥做基体的碳纳米管复合材料耐冲击性好、防静电、耐磨损、稳定性高,不易对环境造成影响。
碳纳米管增强陶瓷复合材料强度高,抗冲击性能好。
碳纳米管上由于存在五元环的缺陷,增强了反应活性,在高温和其他物质存在的条件下,碳纳米管容易在端面处打开,形成一个管子,极易被金属浸润、和金属形成金属基复合材料。
这样的材料强度高、模量高、耐高温、热膨胀系数小、抵抗热变性能强。
碳纳米管简介讲解
![碳纳米管简介讲解](https://img.taocdn.com/s3/m/58aaa5bd5f0e7cd185253663.png)
一、五、碳纳米管的制备 六、碳纳米管的应用 七、碳纳米管的挑战与展望 八、对复合材料课程建议
一、碳纳米管定义
二、碳纳米管的发展史
1857年,法拉第制备出金纳米颗粒
1985年 柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研究中,发现了与金刚石、石墨的 无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖)
2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳 米管,稳定性稍差;
2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。
2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员, 利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数 目富勒烯分子C141。
由量子限域效应带来的金属性和半导体性
根据卷起的方向矢量 (n,m)不同, 单壁纳米管(大致)可以呈现金属性 (metallic, 无能隙(band gap))或半导体 性(semiconducting, 有能隙)。
根据折起的外部形态上可以分为A 椅式(armchair)、B交错式(zigzag)、C手 性(chiral)。所以椅式管一定是金属性管, 而交错式和手性则既有可能是金属性管, 也有可能是半导体性管。
6.吸附性能
硝酸氧化处理后的碳纳米管对铅,铜和镉离子显示出了良好 的吸附效果,单一金属离子的吸附研究结果表明,碳纳米管 对铅、铜和镉离子的最大吸附容量分别为97.08,28.49和 10.86mg/g;
碳纳米管对Pb2+的亲合性最强,Cu2+次之,Cd2+最弱;
碳纳米管(CNTs)
![碳纳米管(CNTs)](https://img.taocdn.com/s3/m/6cc6652de2bd960590c6772f.png)
碳纳米管(CNTs)—— “新时代的宠儿”2006 级普化论文碳纳米管(CNTs)—— “新时代的宠儿”赵婧 李坤桦 宋杨 刘涛北京大学化学与分子工程学院 一个崭新的碳纳米管世界提供给人类的将是不同于任何以往经验的东 西,它不仅会给人类生活带来一场革命,还会使我们再一次地感受到:科学与 技术正以日新月异的速度发展着,远没有终结的时候 ……摘要 Abstract:1991 年日本 NEC 公司的饭岛纯雄(Sumio Iijima)首次利用电子显微镜观察到中空碳纤 维,直径一般在几纳米到几十个纳米之间,长度为数微米,甚至毫米,称为“碳纳米管” 。
从此便引发了碳纳米管研究的热潮和近十几年来碳纳米管科学和技术的飞速发展。
本文主要 分为三部分: 1. 对纳米材料及碳纳米管的相关知识进行介绍 2. 于应用层次,讨论纳米材料及碳纳米管的应用前景 3. 客观比较各国研究现状,并预测纳米科技面临的机遇与挑战(见附文)关键字 Keywords: 纳米材料概述碳纳米管热点及应用现状与发展引言:生物科学技术、信息科学技术、纳米科学技术是下一世纪内科学技术发展的主流。
生 物科学技术中对基因的认识,产生了转基因生物技术,可以治疗顽症,也可以创造出自然界 不存在的生物; 信息科学技术使人们可以坐在家中便知天下大事, 因特网几乎可以改变人们 的生活方式。
而纳米科学技术作为二十一世纪的主导产业, 又将给人们带来怎样天翻地覆的 改变呢?……理论知识: 1.纳米材料概述: 纳米材料:指晶粒尺寸为纳米级(10-9 米)的超细材料。
从材料的结构单元层次来说, 它处于宏观物质和微观原子、分子之间的介观领域。
在纳米材料中,界面原子占极大比例,而 且原子排列互不相同,界面周围的晶格结构互不相关,从而构成与晶态、非晶态均不同的一 种新的结构状态。
纳米科学技术:研究在千万分之一米(10-8)到亿分之一米(10-9 米)内,原子、分子和其它类型物质的运动和变化的学问; 同时在这一尺度范围内对原子、 分子进行操纵和加工又 被称为纳米技术。
碳纳米管cas号
![碳纳米管cas号](https://img.taocdn.com/s3/m/45b89418abea998fcc22bcd126fff705cc175ccf.png)
碳纳米管CAS号1. 碳纳米管的概述碳纳米管(Carbon Nanotubes,简称CNTs)是由碳原子构成的纳米材料,具有结构独特、力学性能优异、导电导热性能出色等特点。
碳纳米管的发现被认为是纳米科技领域的重大突破之一,其独特的结构和性质使其在许多领域具有广泛的应用前景。
2. 碳纳米管的CAS号碳纳米管的CAS号为:【CAS号】。
3. 碳纳米管的结构和性质碳纳米管可以分为单壁碳纳米管(Single-Walled Carbon Nanotubes,简称SWCNTs)和多壁碳纳米管(Multi-Walled Carbon Nanotubes,简称MWCNTs)两种。
SWCNTs由一个或多个碳原子层组成的单层碳纳米管构成,而MWCNTs则由多个碳原子层叠加而成。
碳纳米管的直径通常在纳米级别,而长度可以达到微米级别。
碳纳米管具有高强度、高韧性和轻质等优异的力学性能,其弹性模量甚至可以超过钢铁。
此外,碳纳米管还具有优异的导电和导热性能,其电导率和热导率分别是铜的几倍和几十倍。
4. 碳纳米管的制备方法目前,碳纳米管的制备方法主要包括化学气相沉积法、电弧放电法、激光热解法等。
其中,化学气相沉积法是最常用的制备方法之一,其原理是在一定的温度和气氛条件下,通过将碳源气体分解生成碳纳米管。
5. 碳纳米管的应用领域由于碳纳米管具有优异的力学性能、导电导热性能和化学稳定性,因此在许多领域都有广泛的应用。
5.1 纳米电子学碳纳米管可以作为纳米电子学领域的重要材料,用于制造纳米尺寸的电子元件,如场效应晶体管、逻辑门等。
碳纳米管具有优异的电导性能和尺寸效应,可以实现高速、低功耗的电子器件。
5.2 纳米材料增强剂碳纳米管可以作为增强剂添加到复合材料中,提高材料的力学性能。
由于碳纳米管的高强度和高刚度,可以显著提高复合材料的强度和刚度,同时保持材料的轻量化特性。
5.3 纳米传感器碳纳米管具有高灵敏度和快速响应的特点,可以用于制造各种类型的纳米传感器。
纳米碳管 碳纳米管
![纳米碳管 碳纳米管](https://img.taocdn.com/s3/m/b882ef0d32687e21af45b307e87101f69f31fb46.png)
纳米碳管碳纳米管
纳米碳管,也称为碳纳米管,是一种由碳原子构成的纳米结构
材料。
它们通常具有纳米级直径和微米级长度,呈现出管状结构。
碳纳米管可以分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs)两种类型。
首先,让我们从结构和性质的角度来看待碳纳米管。
碳纳米管
的结构可以是单层(SWCNTs)或多层(MWCNTs)的碳原子排列而成
的管状结构。
它们通常具有优异的力学性能,如高强度、高导电性
和高导热性,这使得碳纳米管在材料科学和纳米技术领域具有重要
应用价值。
其次,从制备方法的角度来看,碳纳米管可以通过电弧放电法、化学气相沉积法、化学气相沉积法等多种方法制备。
每种方法都有
其独特的优点和局限性,因此在选择制备方法时需要综合考虑所需
的纯度、产率和成本等因素。
再者,从应用领域的角度来看,碳纳米管具有广泛的应用前景。
在材料科学领域,碳纳米管可以用于制备高性能复合材料、导电纳
米材料和传感器等;在生物医学领域,碳纳米管可以用于药物输送、
生物成像和组织工程等方面;在电子学领域,碳纳米管可以用于制备柔性电子器件和纳米电子器件等。
最后,从环境和安全的角度来看,碳纳米管的环境影响和安全性也备受关注。
由于其纳米级尺寸和特殊的化学性质,碳纳米管可能对环境和人体健康造成潜在风险,因此在碳纳米管的生产和应用过程中需要加强对其环境影响和安全性的评估和管理。
综上所述,碳纳米管作为一种重要的纳米结构材料,在结构和性质、制备方法、应用领域和环境安全等方面都具有重要意义和挑战。
对碳纳米管进行深入研究和全面评估,有助于推动其在各个领域的应用和发展。
碳纳米管CNTS
![碳纳米管CNTS](https://img.taocdn.com/s3/m/29dbad25647d27284b73515b.png)
碳纳米管的独特工能及应用1985年,Kroto和Smalley[1]发现了一种直径仅为0.7nm的球状分子,被称为C60,亦称富勒烯(fullerene)。
这是继石墨和金刚石之后,碳的另一种同素异形体。
随后,日本NEC公司的Sumio.Iijima[2]在合成C60中,首次利用电子显微镜发现了CNTs(Carbon nanotubes),又称巴基管(Bucktube)。
CNTs是一种类似石墨结构的六边形网格卷绕而成的、两端为半球形端帽、具有典型层状中空结构的材料。
根据石墨片层数的不同,CNTs可分为多壁碳纳米管(MWNTs)和单壁碳纳米(SWNTs)。
研究表明,CNTs的密度只有钢的1/6,强度却是钢的100倍,模量可达1.8 TPa。
CNTs是典型的一维纳米结构,其超强的力学性能、超大的长径比(一般大于1000)、极好的化学和热稳定性、良好的光电性能,使其具有广泛应用于生物传感器、储氢容器、超容量电容器、机电激励器、结构增强材料等方面的应用前景[3-4]。
CNTs长径比高、比表面大、比强度高、电导率高、界面效应强,因而具有优异的力学、电学、热学、光学性能.成为世界范围内的研究热点之一。
近几年来.随着CNTs合成技术的日益成熟.低成本批量生产CNTs已成为可能,并在场发射、分子电子器件、复合材料、储氢、吸附、催化诸多领域已经展现出其广阔的应用前景。
一、碳纳米管的结构CNTs是一种主要由碳六边形(弯曲处为碳五边形或碳七边形)组成的单层或多层石墨片卷曲而成的无缝纳米管状壳层结构,相邻层间距与石墨的层间距相当,约为0.34nm。
碳纳米管的直径为零点几纳米至几十纳米,长度一般为几十纳米至微米级,也有超长CNTs,长度达2mm。
按照石墨烯片的层数,可分为单壁CNTs和多壁CNTs。
(1)单壁CNTs(Single-walled nanotubes,SWNTs):由一层石墨烯片组成。
单壁管典型的直径和长度分别为0.75~3nm和1~50μm,又称富勒管(Fullerenes tubes)。
碳纳米管
![碳纳米管](https://img.taocdn.com/s3/m/ffc575db6f1aff00bed51ed2.png)
碳纳米管一、简介(结构和性能)碳纳米管是一种具有石墨结晶的管状纳米碳材料,分为单壁碳纳米管(SWCNT)和多壁碳纳米管(MWCNT)两种,直径在纳米量级,具有很高的长径比。
单壁碳纳米管由单层石墨卷成柱状无缝管而形成,是结构完美的单分子材料。
多壁碳纳米管可看作由多个不同直径的单壁碳纳米管同轴套构而成。
单壁碳纳米管根据六边环螺旋方向螺旋角的不同,可以是金属型碳纳米管也可以是半导体型碳纳米管。
碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。
管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。
是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。
它主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。
层与层之间保持固定的距离,约为0.34nm,直径一般为2~20nm。
多壁碳纳米管的电性能和单壁碳纳米管相近。
金属型单壁碳纳米管和金属型多壁碳纳米管碳纳米管均是弹道式导体。
大电流通过不产生热量每平方厘米最大电流密度可达10安培。
碳纳米管也是优良的热传导材料。
多壁碳纳米管的热传导系数超过3000W/m.K,是很好的超导材料。
单壁碳纳米管的超导温度和直径相关,直径越小超导温度越高。
直径1.4nm时超导温度为0.55K,直径0.5nm时超导温度为 5K,直径0.4nm时超导温度为20K 。
碳纳米管还有非常好的力学性能。
小直径的单壁碳纳米管不但坚硬而且强度很高,是目前发现的唯一同时具有极高的弹性模量和抗拉强度的材料。
单壁碳纳米管的弹性模量和抗拉强度分别达到0.64TPa和 37Gpa。
多壁碳纳米管的弹性模量和抗拉强度分别达到0.45TPa和 1.7Gpa。
碳纳米管的抗拉强度可达钢的100倍同时密度只是钢的1/6。
二、碳纳米管的制备方法目前常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相淀积法(碳氢气体热解法),固相热解法、辉光放电法和气体燃烧法等以及聚合反应合成法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳纳米管,又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。
它主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。
层与层之间保持固定的距离,约0.34nm,直径一般为2~20nm。
碳纳米管不总是笔直的,而是局部区域出现凸凹现象,这是由于在六边形编织过程中出现了五边形和七边形。
除六边形外,五边形和七边形在碳纳米管中也扮演重要角色。
根据碳六边形沿轴向的不同取向可以将其分成锯齿形、扶手椅型和螺旋型三种。
其中螺旋型的碳纳米管具有手性,而锯齿形和扶手椅型碳纳米管没有手性。
碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。
快速导航微信文章图册集锦知乎精选分享基本信息中文名:碳纳米管危险性描述:该产品并没有爆炸的危险别称:巴基管熔点:预计3652-3697℃密度:在20°C时2.1克/立方厘米相容性溶解度:有外观:粉末闪点:不适用蒸汽压力:未确定升华温度:未确定分解温度:未确定点火温度:未确定沸点:未确定颜色:黑色气味:无味历史由来碳纳米管1985 年,“足球”结构的C60一经发现即吸引了全世界的目光,Kroto H. W.、Smalley R. E.、和Curl R. F.亦因共同发现C60并确认和证实其结构而获得1996 年诺贝尔化学奖。
在富勒烯研究推动下,1991 年一种更加奇特的碳结构——碳纳米管被日本电子公司(NEC)的饭岛博士发现。
碳纳米管在1991 年被正式认识并命名之前,已经在一些研究中发现并制造出来,只是当时还没有认识到它是一种新的重要的碳的形态。
1890 年人们就发现含碳气体在热的表面上能分解形成丝状碳。
1953 年在CO 和Fe3O4在高温反应时,也曾发现过类似碳纳米管的丝状结构。
从20 世纪50 年代开始,石油化工厂和冷核反应堆的积炭问题,也就是碳丝堆积的问题,逐步引起重视,为了抑制其生长,开展了不少有关其生长机理的研究。
这些用有机物催化热解的办法得到的碳丝中已经发现有类似碳纳米管的结构。
在20 世纪70 年代末,新西兰科学家发现在两个石墨电极间通电产生电火花时,电极表面生成小纤维簇,进行了电子衍射测定发现其壁是由类石墨排列的碳组成,实际上已经观察到多壁碳纳米管。
目录摘要基本信息历史由来结构特征分类介绍性质介绍制备信息健康影响应用前景发展历史潜在风险图册集锦微信文章知乎精选新闻动态结构特征碳纳米管碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础。
对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。
一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。
以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。
内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。
由于具有物理结构和化学结构的不均匀性,碳纳米管中大量的表面碳原子具有不同的表面微环境,因此也具有能量的不均一性。
碳纳米管不总是笔直的,而是局部区域出现凸凹现象,这是由于在六边形编制过程中出现了五边形和七边形。
如果五边形正好出现在碳纳米管的顶端,即形成碳纳米管的封口。
当出现七边形时纳米管则凹进。
这些拓扑缺陷可改变碳纳米管的螺旋结构,在出现缺陷附近的电子能带结构也会发生改变。
另外,两根毗邻的碳纳米管也不是直接粘在一起的,而是保持一定的距离。
分类介绍单壁碳纳米管碳纳米管可以看做是石墨烯片层卷曲而成,因此按照石墨烯片的层数可分为:单壁碳纳米管(或称单层碳纳米管,Single-walled Carbon nanotubes,SWCNTs)和多壁碳纳米管(或多层碳纳米管,Multi-walled Carbon nanotubes, MWCNTs),多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。
与多壁管相比,单壁管直径大小的分布范围小,缺陷少,具有更高的均匀一致性。
单壁管典型直径在0.6-2nm,多壁管最内层可达0.4nm,最粗可达数百纳米,但典型管径为2-100nm。
碳纳米管依其结构特征可以分为三种类型:扶手椅形纳米管(armchairform),锯齿形纳米管(zigzag form)和手性纳米管(chiral form)。
碳纳米管的手性指数(n,m)与其螺旋度和电学性能等有直接关系,习惯上n>=m。
当n=m时,碳纳米管称为扶手椅形纳米管,手性角(螺旋角)为30o;当n>m=0时,碳纳米管称为锯齿形纳米管,手性角(螺旋角)为0o;当n>m≠0时,将其称为手性碳纳米管。
根据碳纳米管的导电性质可以将其分为金属型碳纳米管和半导体型碳纳米管:当n-m=3k(k 为整数)时,碳纳米管为金属型;当n-m=3k±1,碳纳米管为半导体型。
按照是否含有管壁缺陷可以分为:完善碳纳米管和含缺陷碳纳米管。
按照外形的均匀性和整体形态,可分为:直管型,碳纳米管束,Y型,蛇型等。
关于管壁缺陷对碳纳米管力学性质的影响规律也值得引起关注,这也将有助于进一步认识碳纳米管及其复合材料。
由于碳纳米管制造工艺的限制,碳纳米管中含有大量的各种缺陷,如原子空位缺陷(单原子或多原子空位)和Stone-Thrower-Wales (STW)型缺陷等。
性质介绍力学由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量和高强度。
碳纳米管碳纳米管具有良好的力学性能,CNTs抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。
对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa。
碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。
碳纳米管是如今可制备出的具有最高比强度的材料。
若将以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。
碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。
在工业上常用的增强型纤维中,决定强度的一个关键因素是长径比,即长度和直径之比。
材料工程师希望得到的长径比至少是20:1,而碳纳米管的长径比一般在1000:1以上,是理想的高强度纤维材料。
2000年10月,美国宾州州立大学的研究人员称,碳纳米管的强度比同体积钢的强度高100倍,重量却只有后者的1/6到1/7。
碳纳米管因而被称“超级纤维”。
莫斯科大学的研究人员曾将碳纳米管置于1011 MPa的水压下(相当于水下10000米深的压强),由于巨大的压力,碳纳米管被压扁。
撤去压力后,碳纳米管像弹簧一样立即恢复了形状,表现出良好的韧性。
这启示人们可以利用碳纳米管制造轻薄的弹簧,用在汽车、火车上作为减震装置,能够大大减轻重量。
此外,碳纳米管的熔点是已知材料中最高的。
导电碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。
碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。
理论预测其导电性能取决于其管径和管壁的螺旋角。
当CNTs的管径大于6nm 时,导电性能下降;当管径小于6nm时,CNTs可以被看成具有良好导电性能的一维量子导线。
有报道说Huang通过计算认为直径为0.7nm的碳纳米管具有超导性,尽管其超导转变温度只有1.5×10-4K,但是预示着碳纳米管在超导领域的应用前景。
常用矢量Ch表示碳纳米管上原子排列的方向,其中Ch=na1+ma2,记为(n,m)。
a1和a2分别表示两个基矢。
(n,m)与碳纳米管的导电性能密切相关。
对于一个给定(n,m)的纳米管,如果有2n+m=3q(q为整数),则这个方向上表现出金属性,是良好的导体,否则表现为半导体。
对于n=m的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1万倍。
传热碳纳米管具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。
另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。
其他碳纳米管还具有光学和储氢等其他良好的性能,正是这些优良的性质使得碳纳米管被认为是理想的聚合物复合材料的增强材料。
制备信息常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。
发展出了化学气相沉积法,或称为碳氢气体热解法,在一定程度上克服了电弧放电法的缺陷。
这种方法是让气态烃通过附着有催化剂微粒的模板,在800~1200度的条件下,气态烃可以分解生成碳纳米管。
这种方法突出的优点是残余反应物为气体,可以离开反应体系,得到纯度比较高的碳纳米管,同时温度亦不需要很高,相对而言节省了能量。
但是制得的碳纳米管管径不整齐,形状不规则,并且在制备过程中必须要用到催化剂。
这种方法的主要研究方向是希望通过控制模板上催化剂的排列方式来控制生成的碳纳米管的结构,已经取得了一定进展。
聚合反应合成在碳纳米管制备方法中,聚合反应合成法一般指利用模板复制扩增的方法。
碳纳米管的一般制备过程与有机合成反映类似,其副反应复杂多样,很难保证同一炉碳纳米管均为扶手椅式纳米管或锯齿形纳米管。
科学家发现,在强酸、超声波作用下,碳纳米管可以先断裂为几段,再在一定纳米尺度催化剂颗粒作用下增殖延伸,而延伸后所得的碳纳米管与模板的卷曲方式相同。
于是科学家设想,如果通过这种类似于DNA扩增的方式对碳纳米管进行增殖,那么只需找到少量的扶手椅式纳米管或锯齿形纳米管,便可在短时间内复制、扩增出数量几百万倍于模板数量的、同类型的碳纳米管。
这可能会成为制备高纯度碳纳米管的新方式。