干燥实验报告

合集下载

干燥实验报告

干燥实验报告

引言概述:本文将对干燥实验进行详细的阐述与分析。

干燥是很多工业和实验室中常用的技术,它可将材料中的水分以各种方式去除,从而提高其质量和稳定性。

本次实验将采用特定的干燥方法,对不同材料的干燥效果进行评估和比较。

通过本篇报告,我们将更深入地了解干燥实验的原理、设计和结果。

正文内容:一、干燥方法选择1.理论背景和方法原理2.不同干燥方法的优缺点比较3.选择适合实验的干燥方法二、实验设计1.实验目的和过程2.实验材料和仪器设备3.实验条件和操作步骤4.实验组和对照组设计三、实验结果与分析1.干燥实验结果数据统计a.实验组材料干燥后的质量变化b.实验组材料干燥后的水分含量分析c.对照组材料的质量变化和水分含量分析2.实验结果对比与评估a.实验组与对照组的质量变化对比b.实验组与对照组的水分含量对比c.实验结果的可靠性和稳定性评估四、干燥机理探究1.干燥机理的理论解释2.实验结果与干燥机理的关联分析3.干燥机理的研究进展和应用前景展望五、实验应用与改进1.干燥技术在工业中的应用案例介绍2.干燥实验方法的改进和优化探讨3.干燥实验中可能存在的问题和解决方案总结:通过本次干燥实验,我们深入了解了不同干燥方法的原理和应用,设计了合适的实验方案,并对实验结果进行了详细的统计和分析。

通过对照组的结果对比,我们得出了实验组的干燥效果明显优于对照组的结论。

同时,我们还进一步探究了干燥机理,并介绍了干燥技术在工业中的应用案例。

我们提出了干燥实验方法的改进和优化探讨,并指出了干燥实验中可能存在的问题和解决方案。

本次实验不仅加深了对干燥实验的理论理解,同时也提供了实际操作中的参考价值和应用前景展望。

干燥实验实验报告思考题(3篇)

干燥实验实验报告思考题(3篇)

第1篇一、实验目的1. 了解干燥实验的基本原理和操作方法。

2. 掌握干燥设备的使用技巧。

3. 分析干燥过程中物料的性质变化。

4. 评估干燥效果,为实际生产提供参考。

二、实验内容1. 干燥实验的基本原理2. 干燥设备的选用与操作3. 干燥过程中物料性质的变化4. 干燥效果的评价三、思考题1. 请简述干燥实验的基本原理,并说明干燥过程分为哪几个阶段。

2. 在干燥实验中,如何选用合适的干燥设备?请列举几种常见的干燥设备及其适用范围。

3. 在干燥过程中,如何控制干燥温度和干燥时间?这对干燥效果有何影响?4. 请分析干燥过程中物料性质的变化,如水分、温度、粒度等,并说明这些变化对干燥效果的影响。

5. 在干燥实验中,如何评价干燥效果?请列举几种评价方法。

6. 在干燥过程中,如何防止物料发生结块、焦化等现象?请提出相应的解决措施。

7. 请分析干燥过程中能耗的影响因素,并提出降低能耗的方法。

8. 在干燥实验中,如何提高干燥效率?请从物料、设备、工艺等方面进行分析。

9. 请举例说明干燥实验在实际生产中的应用,如化工、食品、医药等行业。

10. 在干燥实验中,如何保证实验数据的准确性和可靠性?请提出相应的措施。

11. 请分析干燥实验过程中可能出现的故障及解决方法。

12. 在干燥实验中,如何保证实验操作的安全性?请提出相应的措施。

13. 请简述干燥实验在环境保护方面的作用。

14. 在干燥实验中,如何提高干燥设备的利用率?请提出相应的措施。

15. 请分析干燥实验在节能减排方面的意义。

16. 在干燥实验中,如何提高干燥设备的自动化程度?请提出相应的措施。

17. 请探讨干燥实验在提高产品质量方面的作用。

18. 在干燥实验中,如何根据物料特性选择合适的干燥工艺?19. 请分析干燥实验在提高生产效率方面的作用。

20. 在干燥实验中,如何降低干燥过程中的能耗?四、实验报告撰写要求1. 实验报告应包括实验目的、实验内容、实验过程、实验结果、分析与讨论、结论等部分。

干燥实验报告食品报告

干燥实验报告食品报告

一、实验目的1. 了解食品干燥的基本原理和过程;2. 掌握食品干燥设备的工作原理和操作方法;3. 研究不同干燥方式对食品品质的影响;4. 分析食品干燥过程中的水分变化规律。

二、实验原理食品干燥是利用热能将食品中的水分蒸发,使食品达到一定水分含量的过程。

根据干燥过程中物料水分的变化规律,食品干燥过程可分为三个阶段:1. 预热阶段:物料表面水分开始蒸发,内部水分向表面迁移;2. 恒速干燥阶段:物料表面水分蒸发速率达到最大,内部水分继续向表面迁移;3. 降速干燥阶段:物料表面水分蒸发速率逐渐降低,内部水分迁移速率减小。

食品干燥过程中,水分变化规律可用干燥曲线表示,干燥速率曲线表示干燥速率随物料水分含量变化的关系。

三、实验材料与设备1. 实验材料:新鲜水果(如苹果、香蕉等)、食品干燥设备(如隧道式干燥机、流化床干燥机等);2. 实验设备:电子天平、温度计、湿度计、干燥曲线记录仪、干燥速率记录仪等。

四、实验方法1. 准备实验材料:将新鲜水果洗净、去皮、切片,备用;2. 设置干燥参数:根据实验要求,设置干燥温度、干燥时间和干燥方式;3. 干燥实验:将水果放入干燥设备中,进行干燥实验;4. 数据采集:记录干燥过程中物料水分、温度、湿度等数据;5. 数据分析:绘制干燥曲线和干燥速率曲线,分析不同干燥方式对食品品质的影响。

五、实验结果与分析1. 干燥曲线:实验结果表明,水果在干燥过程中水分含量随时间逐渐降低,干燥曲线呈非线性关系。

在恒速干燥阶段,水分含量降低速率较快;在降速干燥阶段,水分含量降低速率逐渐减慢。

2. 干燥速率曲线:实验结果表明,干燥速率随物料水分含量降低而逐渐减小,干燥速率曲线呈非线性关系。

在恒速干燥阶段,干燥速率达到最大值;在降速干燥阶段,干燥速率逐渐降低。

3. 食品品质变化:实验结果表明,不同干燥方式对食品品质的影响不同。

隧道式干燥机干燥的水果在色泽、口感和营养成分方面保持较好;流化床干燥机干燥的水果在色泽和口感方面较好,但营养成分损失较大。

【精品】干燥实验报告

【精品】干燥实验报告

【精品】干燥实验报告摘要本实验旨在研究干燥过程中物料各参数会受到怎样的影响。

干燥实验采用平板干燥箱进行,样品代表性物料为木颗粒,其在一定温度、湿度和风速条件下被干燥123小时+/-1小时,总共分成四组,每组由三个样本组成,分别测量每组样品的温度,湿度,干重,湿重,容重,干基水分率,测出的实验证明:干燥造成物料基本试验指标有显著变化,样品室温及湿度越高,物料含水率越高,反之,物料含水率越低;室内空气风速越大,物料越容易被风力风干,最后由数据统计发现每组样品间的含水率变化最大差异在第2组中最近,表明室温与湿度对样品含水率的影响最大。

1 测试仪器(1)平板干燥箱TKTB-01,内部容积约500L,尺寸800mm*1000mm*1050mm,采用能量温度控制器TK-C01进行温度控制,其最大控制温度为80℃。

(2)空气风速计,室内空气测量空气温度、湿度、空气风速。

(3)可称重型分析秤END-227A,测定商品干重、湿重、容重。

(4)8W实验平台,可连续测定样品特性参数。

(5)紫外(UV)-可见光分光光度计,可测定样品中水分成分浓度。

2 实验方法2.1 样品标准样品采集取样方案,样品总量20kg,每份试样按照1kg,设置4份样品,每份样品3份,总计共有12份试样,在室温25℃常温下包装贮存,12份样品均匀分拣为4组,每组3份,每组分别进行实验。

2.2 实验设置温度为25℃,湿度为50%,空气风速为0.5m·s-1。

(1)各组样品在该实验室环境(温度:25℃;湿度:50%;阴湿度)中,放置三 by 个小时后进行测量并记录:干重、湿重、容重、干基水分率。

(2)各组样品将被放置到平板干燥箱中,干燥时间大约123小时,每小时记录一次温度和湿度。

2.4 数据处理(1)测量出的实验数据记录录入公式,计算各组样品干基水分率:干基水分率=(湿重-干重)/(干重)(2)实验结果分析,计算各组之间的差异。

3 结果分析3.1 各组的温度、湿度曲线各组温度、湿度曲线如下图1所示,可以看到干燥过程总体特点:温度和湿度越到晚干燥时间越持续,温度和湿度越高。

热风干燥实验报告

热风干燥实验报告

一、实验目的1. 了解热风干燥的基本原理和过程;2. 掌握热风干燥设备的使用方法;3. 研究热风干燥过程中物料干燥速率的变化规律;4. 分析影响热风干燥效果的因素。

二、实验原理热风干燥是一种利用热空气作为干燥介质,将物料中的水分蒸发出去的干燥方法。

热风干燥过程中,物料表面水分蒸发速率受物料性质、热风温度、风速、湿度等因素的影响。

三、实验设备与材料1. 实验设备:热风干燥箱、电子天平、温度计、湿度计、风速计、干燥器、干燥箱、干燥物料等;2. 实验材料:玉米、小麦、大豆等。

四、实验步骤1. 准备实验材料:将玉米、小麦、大豆等干燥物料分别称取100g,置于干燥器中,预热至室温;2. 设置热风干燥箱:将热风干燥箱预热至设定温度,调节风速和湿度;3. 放置物料:将预热后的物料均匀地放入热风干燥箱中,开启干燥箱,记录开始干燥时间;4. 测量干燥速率:每隔一定时间,取出物料,称量其质量,计算干燥速率;5. 分析干燥过程:观察干燥过程中物料的变化,记录实验数据;6. 比较不同物料干燥效果:分别对玉米、小麦、大豆等物料进行干燥实验,比较其干燥效果;7. 分析影响干燥效果的因素:改变热风温度、风速、湿度等参数,观察干燥效果的变化。

五、实验结果与分析1. 干燥速率曲线:以干燥时间为横坐标,干燥速率为纵坐标,绘制干燥速率曲线。

结果表明,干燥速率随着干燥时间的推移逐渐降低,呈现下降趋势。

2. 不同物料干燥效果:对玉米、小麦、大豆等物料进行干燥实验,结果表明,玉米干燥速率最快,小麦次之,大豆最慢。

3. 影响干燥效果的因素:(1)热风温度:提高热风温度,干燥速率增加,但过高的温度会导致物料烧焦;(2)风速:增加风速,干燥速率增加,但风速过大可能导致物料表面水分蒸发过快,内部水分迁移不充分;(3)湿度:降低湿度,干燥速率增加,但过低的湿度可能导致物料表面水分蒸发过快,内部水分迁移不充分。

六、实验结论1. 热风干燥是一种有效的干燥方法,适用于多种物料的干燥;2. 干燥速率受物料性质、热风温度、风速、湿度等因素的影响;3. 通过调整热风温度、风速、湿度等参数,可以优化干燥效果;4. 在实际生产中,应根据物料性质和干燥要求,选择合适的干燥设备和技术参数。

干燥实验报告

干燥实验报告

一、摘要本实验旨在通过实验室模拟干燥过程,探究干燥原理和干燥速率,掌握干燥设备的基本操作方法,并分析影响干燥效果的因素。

实验采用流化床干燥器作为干燥设备,对某物料进行干燥实验,并绘制干燥速率曲线、物料含水量与时间的关系曲线以及流化床压降与气速的关系曲线。

二、实验目的1. 了解流化床干燥器的基本流程及操作方法。

2. 掌握干燥速率曲线的测定方法,绘制干燥速率曲线。

3. 分析物料含水量与时间的关系,确定干燥过程的不同阶段。

4. 测定流化床压降与气速的关系,为干燥设备的设计提供理论依据。

三、实验原理1. 干燥原理干燥是利用热能将物料中的水分蒸发的过程。

在干燥过程中,物料表面水分蒸发形成水蒸气,水蒸气在干燥介质(如空气)中扩散,直至物料内部水分达到平衡。

干燥速率与物料表面水分蒸发速率和内部水分扩散速率有关。

2. 流化床干燥原理流化床干燥器是一种利用流化床技术进行干燥的设备。

物料在干燥器内受到热风的作用,床层产生流动,形成流化床。

物料在流化床中受到热风和物料颗粒间的碰撞,水分不断蒸发,从而实现干燥。

四、实验装置与仪器1. 实验装置:流化床干燥器、温度计、湿度计、流量计、电子秤、计时器等。

2. 实验仪器:干燥器、空气加热器、电热恒温干燥箱、恒温水浴锅、数据采集系统等。

五、实验步骤1. 准备实验材料:将物料分成若干份,每份质量相同,并记录初始含水量。

2. 调节干燥器:开启干燥器,调节热风温度和流量,使物料处于流化状态。

3. 干燥实验:将物料放入干燥器,记录干燥时间、物料温度、物料含水量等数据。

4. 数据处理:将实验数据输入计算机,绘制干燥速率曲线、物料含水量与时间的关系曲线以及流化床压降与气速的关系曲线。

六、实验结果与分析1. 干燥速率曲线根据实验数据,绘制干燥速率曲线。

干燥速率曲线呈抛物线形状,可分为三个阶段:恒速干燥阶段、降速干燥阶段和平衡干燥阶段。

在恒速干燥阶段,干燥速率基本保持不变;在降速干燥阶段,干燥速率逐渐降低;在平衡干燥阶段,干燥速率趋于零。

干燥仿真实验报告(3篇)

干燥仿真实验报告(3篇)

第1篇一、实验目的1. 了解干燥过程的基本原理和影响因素。

2. 掌握干燥仿真实验的操作方法。

3. 通过仿真实验,分析干燥过程中物料水分的变化规律,优化干燥工艺。

二、实验原理干燥过程是指将物料中的水分蒸发,使物料达到所需干燥程度的过程。

干燥过程中,物料水分的变化受多种因素影响,如干燥介质、干燥温度、干燥时间等。

本实验采用干燥仿真软件,模拟干燥过程,分析物料水分的变化规律。

三、实验仪器与材料1. 电脑一台;2. 干燥仿真软件一套;3. 物料样品;4. 温度计;5. 时间记录器。

四、实验步骤1. 打开干燥仿真软件,选择合适的干燥介质、干燥温度和干燥时间;2. 将物料样品放入干燥器,设定干燥器的初始状态;3. 启动仿真实验,观察物料水分的变化过程;4. 记录实验数据,包括干燥时间、物料水分、干燥温度等;5. 分析实验数据,优化干燥工艺。

五、实验结果与分析1. 干燥过程中,物料水分随干燥时间的延长而逐渐降低,符合干燥过程的基本规律;2. 在相同干燥条件下,物料水分的降低速度与干燥温度、干燥介质等因素有关;3. 仿真实验结果表明,提高干燥温度和增加干燥介质流量,可以加快物料水分的降低速度;4. 通过优化干燥工艺,可以实现物料水分的快速降低,提高干燥效率。

六、实验结论1. 干燥过程中,物料水分的变化受多种因素影响,如干燥介质、干燥温度、干燥时间等;2. 通过干燥仿真实验,可以分析物料水分的变化规律,优化干燥工艺;3. 提高干燥温度和增加干燥介质流量,可以加快物料水分的降低速度,提高干燥效率。

七、实验注意事项1. 在进行干燥仿真实验时,应选择合适的干燥介质、干燥温度和干燥时间;2. 实验过程中,应注意观察物料水分的变化,及时调整干燥参数;3. 实验数据应准确记录,为优化干燥工艺提供依据。

八、实验总结本实验通过干燥仿真软件,模拟干燥过程,分析了物料水分的变化规律。

实验结果表明,干燥过程中,物料水分的变化受多种因素影响,通过优化干燥工艺,可以实现物料水分的快速降低,提高干燥效率。

干燥实验的实验报告

干燥实验的实验报告

干燥实验的实验报告干燥实验的实验报告一、引言干燥是指将物体中的水分去除的过程,广泛应用于工业生产和实验室研究中。

干燥实验旨在探究不同物质在不同条件下的干燥速度和效果,为实际应用提供参考依据。

本实验选取了几种常见的物质进行干燥实验,并对实验结果进行分析和总结。

二、实验材料和方法1. 实验材料:- 湿度计:用于测量环境湿度;- 水分含量测试仪:用于测量物质的水分含量;- 不同物质样品:如食盐、洗发水、纸张等。

2. 实验方法:1) 设定实验环境:将实验室温度控制在25℃,湿度控制在50%;2) 选取不同物质样品,记录其初始重量和水分含量;3) 将样品放置在干燥箱中,设定不同的温度和时间;4) 定期取出样品,使用水分含量测试仪测量其水分含量;5) 记录实验数据,分析干燥速度和效果。

三、实验结果与分析1. 食盐干燥实验:食盐是一种易溶于水的物质,我们将其放置在干燥箱中,设定温度为60℃,时间为2小时。

实验结果显示,食盐的水分含量从初始的10%降低到了2%。

说明在较高温度下,食盐的干燥速度较快,且效果较好。

2. 洗发水干燥实验:洗发水是一种含有大量水分的液体,我们将其放置在干燥箱中,设定温度为40℃,时间为4小时。

实验结果显示,洗发水的水分含量从初始的80%降低到了20%。

说明在较低温度下,洗发水的干燥速度较慢,但仍然能够达到一定的干燥效果。

3. 纸张干燥实验:纸张是一种吸水性较强的材料,我们将其放置在干燥箱中,设定温度为50℃,时间为3小时。

实验结果显示,纸张的水分含量从初始的30%降低到了10%。

说明纸张在中等温度下,能够较快地干燥,并且干燥效果较好。

四、实验总结通过本次干燥实验,我们得出了以下结论:1. 温度对干燥速度和效果有重要影响:较高温度能够加快干燥速度,但过高的温度可能导致物质的质量损失;2. 不同物质的干燥速度和效果存在差异:易溶于水的物质干燥速度较快,吸水性较强的材料干燥速度较慢;3. 干燥时间的长短也会影响干燥效果:适当延长干燥时间可以提高干燥效果,但过长的时间可能造成能源浪费。

干燥的实验报告

干燥的实验报告

干燥的实验报告干燥的实验报告一、引言干燥是一项广泛应用于工业、实验室以及日常生活中的重要技术。

通过去除材料中的水分,可以提高产品的质量和稳定性。

本实验旨在探究不同干燥方法对材料的影响,以及干燥过程中可能出现的问题和解决方案。

二、实验材料与方法1. 实验材料:- 鲜橙片- 烘箱- 风扇- 干燥剂(二氧化硅)2. 实验方法:1)将鲜橙片均匀分布在两个试验组中,一个放入烘箱,另一个放在通风良好的室内。

2)观察并记录两组橙片的干燥过程,包括颜色变化、质地变化等。

3)在烘箱中加入干燥剂,观察其对橙片干燥速度的影响。

三、实验结果与讨论1. 不同干燥方法对材料的影响:通过对比烘箱和自然通风两种干燥方法,我们发现烘箱能够更快速地将橙片中的水分去除,而自然通风所需时间较长。

这是因为烘箱提供了更高的温度和较低的湿度,有利于水分的蒸发和扩散。

然而,过高的温度可能导致橙片的质地变硬,影响其口感。

2. 干燥过程中可能出现的问题与解决方案:a) 氧化问题:在干燥过程中,橙片暴露在空气中,容易发生氧化反应,导致品质下降。

解决方案是使用氧化剂,如二氧化硅,来吸附橙片周围的氧气,减少氧化反应的发生。

b) 水分不均匀问题:由于橙片的形状和大小不一,干燥速度可能存在差异,导致一些橙片干燥不均匀。

解决方案是在干燥过程中定期翻动橙片,以保证其均匀受热和通风。

四、实验结论通过本实验,我们得出以下结论:1. 烘箱比自然通风更适合进行快速干燥,但需要控制好温度,以避免质地变硬。

2. 使用干燥剂可以减少氧化反应的发生,提高干燥效果。

3. 定期翻动材料可以避免干燥不均匀的问题。

五、进一步研究本实验仅探究了干燥方法对橙片的影响,未来的研究可以扩展到其他材料,如蔬菜、肉类等。

此外,还可以研究不同干燥剂对干燥效果的影响,以及温度、湿度等参数的优化。

六、结语干燥是一项重要的技术,广泛应用于各个领域。

通过本实验,我们了解了不同干燥方法对材料的影响,以及干燥过程中可能出现的问题和解决方案。

干燥程度测量实验报告

干燥程度测量实验报告

一、实验目的1. 理解干燥程度测量的基本原理和方法。

2. 掌握使用干燥度测定仪进行实验操作。

3. 分析干燥程度与时间、温度等因素的关系。

4. 确定不同物料在不同干燥条件下的干燥速率。

二、实验原理干燥程度是指物料中水分含量的多少,通常以水分质量占物料总质量的比例表示。

干燥程度测量主要基于物料中水分含量的变化,通过干燥度测定仪等设备,在恒定的干燥条件下,测定物料在一定时间内的水分蒸发量,从而计算干燥程度。

三、实验材料与设备1. 实验材料:不同含水量的湿物料(如玉米、小麦、大米等)。

2. 实验设备:干燥度测定仪、电子天平、烘箱、干燥皿、温度计、湿度计等。

四、实验步骤1. 准备实验材料:将不同含水量的湿物料分别称重,放入干燥皿中。

2. 设置干燥条件:将烘箱预热至设定温度,保持恒温。

3. 测量初始水分:使用电子天平称量干燥皿及物料的质量,记录数据。

4. 干燥实验:将干燥皿连同物料放入烘箱中,设定干燥时间,开始干燥实验。

5. 定时测量:在实验过程中,每隔一定时间(如30分钟)取出干燥皿,使用电子天平称量干燥皿及物料的质量,记录数据。

6. 计算干燥程度:根据实验数据,计算不同时间点的干燥程度,绘制干燥曲线。

五、实验结果与分析1. 实验结果:| 时间(分钟) | 玉米干燥程度(%) | 小麦干燥程度(%) | 大米干燥程度(%) ||--------------|------------------|------------------|------------------|| 0 | 30 | 25 | 20 || 30 | 20 | 18 | 15 || 60 | 15 | 13 | 12 || 90 | 12 | 10 | 9 || 120 | 10 | 8 | 8 |2. 分析:(1)干燥速率:由实验数据可知,玉米、小麦、大米的干燥速率不同,这与物料本身的特性有关。

(2)干燥程度与时间的关系:随着干燥时间的增加,干燥程度逐渐提高。

【精品】干燥实验报告

【精品】干燥实验报告

【精品】干燥实验报告一、实验目的研究干燥过程的基本规律,掌握干燥过程中湿度、温度、时间等因素的影响,了解干燥设备的结构和工作原理,并掌握干燥操作的基本技能和注意事项。

二、实验原理在干燥过程中,湿物质从初始状态的湿态变成最终的干态,其含水量的变化与干燥的时间、温度、湿度等因素有关。

干燥的速率与温度的高低密切相关,温度会引起物质内部水分的蒸发,从而加速干燥速度。

而湿度的改变则会影响干燥速率的大小。

保持干燥环境的湿度低于物质的水分饱和度能促进干燥的进行。

换言之,适当的温度和湿度条件都是实现高速干燥的前提条件。

三、实验设备和仪器1.干燥箱、卧式加热器、电子秤、温湿度计。

2.实验室用具:钟表、托盘、管子、药勺、滤纸、实验笔记本等。

四、实验步骤1.制备待测样品,将其用温水或蒸馏水浸泡一定时间,以达到一定的湿度,然后放置于室温下晾干一段时间。

2.记录样品质量,称重大约1克左右的样品,记录下来。

3.在干燥箱内平铺草纸。

4.将待测样品均匀地铺在草纸上,记录下来。

5.放入干燥箱内,在加热器上加热,设置温度和时间。

将温度设定为50~60℃,时间设定为30分钟。

6.每隔10分钟记录一次样品重量和温度湿度计的读数。

7.直到干燥结束,依次记录样品质量、干燥时间、干燥温度、湿度等数据。

8.取出样品,称重记录下其重量。

五、实验数据处理按以下公式计算出样品的含水量,比较不同干燥条件下样品的含水量和干燥效率。

6.实验结果1.不同干燥温度下样品含水量的变化。

2.不同干燥时间下样品含水量的变化。

3.不同干燥湿度下样品含水量的变化。

7.实验分析1.从实验结果可以看出,在合适的温度下,湿度越小,干燥速率越快,样品的含水量也会更少。

2.干燥温度越高,干燥速率越快,但超过一定温度会使样品脆化、变色、失去营养成分。

3.不同干燥时间下样品的含水量随干燥时间的延长而减少,但时间过长同样会导致样品品质下降。

8.注意事项1.样品应在相同的温度下进行称重。

干燥实验报告

干燥实验报告

干燥实验报告一、实验目的干燥操作是化工生产中常见的单元操作之一,本次实验的目的在于:1、熟悉常压厢式干燥器的构造和操作方法。

2、测定在恒定干燥条件下物料的干燥曲线和干燥速率曲线。

3、了解湿物料的临界含水量及平衡含水量的概念及其影响因素。

二、实验原理在干燥过程中,物料的含水量随时间而变化。

干燥曲线是指物料含水量与干燥时间的关系曲线。

干燥速率是指单位时间内在单位干燥面积上气化的水分质量,干燥速率曲线则表示干燥速率与物料含水量的关系。

物料在干燥过程中,一般经历预热阶段、恒速干燥阶段和降速干燥阶段。

在恒速干燥阶段,干燥速率保持恒定,主要受外部条件(如空气的温度、湿度和流速等)影响;在降速干燥阶段,干燥速率逐渐下降,主要受物料内部水分扩散速率的限制。

三、实验装置与材料1、实验装置本次实验采用的是常压厢式干燥器,主要由干燥室、电加热装置、风机、温度传感器、湿度传感器等组成。

2、实验材料选用湿的某种物料,其初始含水量较高。

四、实验步骤1、称取一定量的湿物料,记录其初始质量。

2、将湿物料均匀地平铺在干燥室内的托盘上。

3、开启电加热装置和风机,调节空气温度、流速等参数至设定值。

4、每隔一定时间(如 5 分钟)取出少量物料,迅速称重,记录质量和时间。

5、当物料的质量基本不再变化时,停止实验。

五、实验数据记录与处理1、实验数据记录|时间(min)|物料质量(g)|||||5 |_____||10 |_____||15 |_____||||2、计算物料的含水量含水量=(湿物料质量干物料质量)/湿物料质量 × 100%3、绘制干燥曲线以时间为横坐标,含水量为纵坐标,绘制干燥曲线。

4、计算干燥速率干燥速率=(相邻两次含水量之差)/(相邻两次测量的时间间隔)5、绘制干燥速率曲线以含水量为横坐标,干燥速率为纵坐标,绘制干燥速率曲线。

六、实验结果与分析1、干燥曲线分析从干燥曲线可以看出,物料在干燥初期含水量迅速下降,随后下降速度逐渐减缓。

仪器的干燥实验报告

仪器的干燥实验报告

一、实验目的1. 了解仪器干燥的基本原理和方法。

2. 掌握不同类型仪器的干燥方法及注意事项。

3. 培养实验操作技能,提高实验安全意识。

二、实验原理仪器干燥是指将仪器中的水分或湿气除去,使仪器达到干燥状态。

根据仪器材质和实验要求,干燥方法可分为自然干燥、加热干燥、真空干燥等。

本实验主要介绍自然干燥和加热干燥两种方法。

三、实验仪器与试剂1. 实验仪器:烘箱、干燥箱、干燥器、酒精灯、镊子、剪刀等。

2. 实验试剂:无水硫酸钠、氯化钙、硅胶等干燥剂。

四、实验步骤1. 自然干燥法(1)将待干燥的仪器洗净,用蒸馏水冲洗干净,置于通风处晾干。

(2)待仪器表面水分蒸发后,放入干燥器中,加入适量的干燥剂,如无水硫酸钠、氯化钙、硅胶等。

(3)密封干燥器,放置一段时间,使仪器内部水分蒸发。

2. 加热干燥法(1)将待干燥的仪器洗净,用蒸馏水冲洗干净,置于烘箱中。

(2)将烘箱温度设定在100-120℃,开启烘箱,使仪器内部水分蒸发。

(3)待仪器干燥后,关闭烘箱,待温度降至室温后取出仪器。

五、实验结果与分析1. 自然干燥法实验结果显示,经过自然干燥的仪器,其内部水分含量较低,符合实验要求。

2. 加热干燥法实验结果显示,经过加热干燥的仪器,其内部水分含量同样较低,符合实验要求。

六、实验结论1. 自然干燥法和加热干燥法均可有效去除仪器内部水分,达到干燥目的。

2. 自然干燥法操作简单,但干燥时间较长;加热干燥法干燥速度快,但需注意温度控制,防止仪器损坏。

七、注意事项1. 实验过程中,应注意安全,避免火灾等事故发生。

2. 使用加热干燥法时,温度不宜过高,以免损坏仪器。

3. 干燥剂的选择应根据实验要求进行,如无水硫酸钠、氯化钙、硅胶等。

4. 干燥过程中,应定期检查仪器内部水分含量,确保干燥效果。

八、实验心得通过本次实验,我掌握了仪器干燥的基本原理和方法,提高了实验操作技能。

同时,我认识到实验过程中安全意识的重要性,以及合理选择干燥剂的重要性。

干燥实验实验报告书

干燥实验实验报告书

一、实验目的1. 了解气流常压干燥设备的流程和工作原理;2. 测定物料的干燥曲线和干燥速率曲线;3. 测定传质系数KH。

二、实验原理干燥实验是在恒定的干燥条件下进行的,即实验操作为间歇式,采用大量的热空气干燥少量的湿物料,空气进出干燥器的温度、湿度、流速及物料的接触方式不变。

干燥曲线是指物料的平均干基湿度和温度随干燥时间而变化的关系曲线。

干燥速率曲线则是指干燥速率随平均干基湿度而变化的曲线。

平均干基湿度是指1kg绝干物料中含水分的Kg数。

绝干物料是把物料放在烘箱内,保持物性不变的条件下干燥至恒重而得。

1. 干燥曲线:如图2-2-8-1所示,干燥曲线分为三个阶段:AB为预热阶段,BC为恒速阶段,CD为降速阶段。

2. 干燥速率曲线:如图2-2-8-2所示,干燥速率曲线可以由干燥曲线的数据整理而得。

C点对应的湿度叫临界湿度Xo,E点对应的湿度叫平衡湿度XP。

三、实验仪器与材料1. 实验仪器:- 气流常压干燥设备- 温湿度计- 烘箱- 称量瓶- 烧杯- 砝码- 计时器- 绘图仪2. 实验材料:- 湿物料- 热空气四、实验步骤1. 准备工作:将湿物料放入干燥设备中,启动设备,调整热空气温度和湿度,记录初始条件。

2. 干燥过程:在恒定的干燥条件下,每隔一定时间取样,称量物料质量,测量物料温度和湿度,记录数据。

3. 数据处理:根据实验数据,绘制干燥曲线和干燥速率曲线。

4. 计算传质系数KH:根据干燥速率曲线和物料特性,计算传质系数KH。

五、实验结果与分析1. 干燥曲线:根据实验数据,绘制干燥曲线,分析物料干燥过程的变化规律。

2. 干燥速率曲线:根据干燥曲线,绘制干燥速率曲线,分析物料干燥速率的变化规律。

3. 传质系数KH:根据干燥速率曲线和物料特性,计算传质系数KH,分析物料干燥过程中的传质机理。

六、实验结论1. 通过干燥实验,了解了气流常压干燥设备的流程和工作原理。

2. 测定了物料的干燥曲线和干燥速率曲线,分析了物料干燥过程的变化规律。

干燥实验报告2023

干燥实验报告2023

干燥实验报告20231. 实验目的本实验旨在研究不同干燥条件下对物体的影响,以及不同干燥时间对物体的干燥效果。

通过实验结果,总结出最佳的干燥条件和时间。

2. 实验材料•实验室•示范物体(如橙子、纸张等)•温湿度计•干燥剂(如硅胶)3. 实验步骤3.1 实验准备1.将实验室清洁整理,并确保通风良好。

2.准备示范物体。

选择一种适合干燥实验的物体,如橙子或纸张。

3.准备干燥剂。

选择一种合适的干燥剂,如硅胶。

3.2 设定实验组的条件1.设定不同干燥条件的实验组,如常温干燥组、加热干燥组、真空干燥组等。

2.确保每个实验组的温度、湿度等条件能够被准确测量和控制。

3.3 进行实验1.将示范物体放置在每个实验组中的适当位置。

2.开始记录实验组的时间。

3.定期测量和记录每个实验组的温度和湿度。

4.根据实验组的要求,切换不同的干燥剂或调整温度等条件。

5.持续观察示范物体的干燥情况,并记录。

3.4 实验结果记录1.根据实验组的干燥条件和时间,记录示范物体的干燥程度。

2.对于每个实验组,记录干燥时间、温度、湿度等相关数据。

3.将数据整理成表格或图表,并进行分析。

4. 实验结果分析4.1 不同干燥条件的比较通过分析不同干燥条件下示范物体的干燥程度,比较不同条件对干燥效果的影响。

评估各种干燥条件的优劣,并确定最佳的干燥条件。

4.2 不同干燥时间的比较根据示范物体在不同干燥时间下的干燥效果,比较不同时间对干燥效果的影响。

确定最佳的干燥时间。

4.3 温湿度对干燥效果的影响分析温湿度变化对干燥效果的影响。

通过比较不同温湿度条件下的干燥结果,确定温湿度对干燥效果的重要性。

5. 结论本实验通过对不同干燥条件和时间的研究,得出以下结论:1.在所有实验条件中,加热干燥组的干燥效果最好,其次是真空干燥组和常温干燥组。

2.干燥时间对干燥效果也有明显影响,随着时间的增加,示范物体的干燥程度逐渐增加。

3.温湿度对干燥效果有一定影响,较高的温度和较低的湿度有利于加速物体的干燥。

化工干燥实验报告

化工干燥实验报告

一、实验目的1. 了解化工干燥的基本原理和操作方法。

2. 掌握干燥速率曲线、物料含水量、床层温度与时间关系曲线、流化床压降与气速曲线的测定方法。

3. 确定临界含水量、恒速阶段的传质系数及降速阶段的比例系数。

二、实验原理化工干燥实验主要研究物料在干燥过程中的水分蒸发、热量传递和质量传递等基本规律。

本实验采用沸腾流化床干燥器进行干燥实验,通过测量不同干燥条件下的物料含水量、床层温度、气速和压降等参数,分析干燥过程的变化规律。

1. 干燥速率:干燥速率是指单位时间内物料水分蒸发量的多少,可用下式表示:干燥速率 = (物料含水量 - 干燥后物料含水量) / 干燥时间2. 临界含水量:物料开始大量蒸发的含水量,称为临界含水量。

3. 恒速阶段传质系数:干燥过程中,物料含水量低于临界含水量时,干燥速率基本保持不变,此时的传质系数称为恒速阶段传质系数。

4. 降速阶段比例系数:干燥过程中,物料含水量降至临界含水量以下,干燥速率逐渐减小,此时干燥速率与传质系数的关系可用下式表示:干燥速率 = KX (物料含水量 - 临界含水量)其中,KX为降速阶段比例系数。

三、实验装置及方法1. 实验装置:沸腾流化床干燥器、物料、加热器、温湿度计、流量计、压差计等。

2. 实验方法:(1)将物料放入沸腾流化床干燥器中,启动加热器进行干燥。

(2)在干燥过程中,定时测量物料含水量、床层温度、气速和压降等参数。

(3)根据测量数据,绘制干燥速率曲线、物料含水量、床层温度与时间关系曲线、流化床压降与气速曲线。

四、实验结果与分析1. 干燥速率曲线:根据实验数据,绘制干燥速率曲线。

从曲线可以看出,干燥速率随着干燥时间的推移而逐渐减小,在物料含水量低于临界含水量时,干燥速率基本保持不变。

2. 物料含水量、床层温度与时间关系曲线:根据实验数据,绘制物料含水量、床层温度与时间关系曲线。

从曲线可以看出,随着干燥时间的推移,物料含水量逐渐降低,床层温度逐渐升高。

最新干燥实验实验报告

最新干燥实验实验报告

最新干燥实验实验报告实验目的:探究不同条件下物质干燥效率的变化,并分析影响干燥过程的主要因素。

实验材料:- 待干燥物质样品(如石膏粉)- 干燥箱- 电子天平- 温度计- 湿度计- 计时器- 保护眼镜和手套实验方法:1. 准备待干燥的石膏粉样品,记录其初始质量。

2. 将干燥箱预热至预定温度(如50°C、80°C和110°C)。

3. 将等量的石膏粉样品分别放入三个不同的干燥箱中。

4. 记录初始时间,并开始计时。

5. 每隔10分钟测量并记录各样品的质量,直至样品质量不再发生变化。

6. 同时监测并记录干燥箱内的温度和湿度。

7. 比较不同温度下样品干燥的时间和最终质量,分析温度对干燥效率的影响。

实验结果:- 50°C条件下,石膏粉样品干燥时间为60分钟,最终质量减轻了20%。

- 80°C条件下,石膏粉样品干燥时间为40分钟,最终质量减轻了25%。

- 110°C条件下,石膏粉样品干燥时间为30分钟,最终质量减轻了30%。

实验讨论:实验结果显示,随着温度的升高,石膏粉样品的干燥速率加快,干燥时间缩短,质量减轻的百分比也有所增加。

这表明温度是影响干燥效率的重要因素。

此外,实验中也观察到湿度的变化,湿度越低,干燥速度越快。

因此,在实际应用中,控制干燥环境的温度和湿度是提高干燥效率的关键。

结论:通过本次实验,我们得出结论,提高干燥温度可以有效加快物质的干燥速度,但同时也需要考虑能耗和物质本身对高温的耐受性。

未来的研究可以进一步探讨其他因素,如气流速度、样品的形状和大小等,对干燥效率的影响。

洞道干燥实验实验报告

洞道干燥实验实验报告

一、实验目的1. 了解洞道干燥装置的基本结构、工艺流程和操作方法。

2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。

3. 掌握根据实验干燥曲线求干燥速率曲线、恒速阶段干燥速率、临界含水量、平衡含水量等干燥特性数据的分析方法。

4. 研究干燥条件对干燥过程特性的影响。

二、实验原理洞道干燥是一种连续式干燥方式,适用于大批量物料的干燥。

干燥过程中,物料在洞道内连续移动,与干燥介质(热空气)进行热交换,从而实现水分的蒸发。

干燥过程分为三个阶段:1. 预热阶段:物料表面水分开始蒸发,温度逐渐升高。

2. 恒速干燥阶段:物料表面水分蒸发速度达到最大值,干燥速率基本保持恒定。

3. 降速干燥阶段:物料内部水分开始蒸发,干燥速率逐渐降低。

干燥特性曲线是指干燥过程中物料干基含水量与干燥时间的关系曲线。

干燥速率曲线是指干燥过程中物料干基含水量与干燥速率的关系曲线。

三、实验装置1. 洞道干燥装置:长1.10米、宽0.125米、高0.180米,加热功率500w—1500w,空气流量1-5m/min,干燥温度40--120℃,天平量程0-200g,最小秤量值0.1g,干、湿球温度计。

2. 风机:用于输送干燥介质。

3. 孔板流量计:用于测量空气流量。

4. 倾斜式压差计:用于测量空气压力。

5. 风速调节阀:用于调节空气流量。

6. 电加热器:用于加热干燥介质。

7. 干燥室:用于放置待干燥物料。

8. 试样架:用于放置待干燥物料。

9. 热重天平:用于测量物料重量。

10. 电流表:用于测量电加热器电流。

11. 干球温度计、湿球温度计、触点温度计:用于测量干燥介质温度。

四、实验步骤1. 准备实验材料:待干燥物料、洞道干燥装置、相关仪器设备。

2. 安装洞道干燥装置,连接相关管道和仪器。

3. 开启风机,调节空气流量至预定值。

4. 打开电加热器,调节加热功率至预定值,使干燥室温度达到恒定值。

5. 将待干燥物料放入干燥室,确保物料均匀分布。

6. 开启天平,记录物料初始重量。

干燥实验报告

干燥实验报告

干燥实验一、实验目的1、掌握干燥曲线和干燥速率曲线的测定方法。

2、学习物料含水量的测定方法。

3、加深对物料临界含水量Xc的概念及其影响因素的理解。

4、计算恒速阶段的干燥速率以及降速阶段干燥速率线斜率。

5、学习用误差分析方法对实验结果进行误差估算。

二、实验装置实验装置为洞道式循环干燥器(见图1),其基本参数如下:洞道尺寸:长1.10米、宽0.125米、高0.180米;加热功率:500w—1500w;空气流量:1-5m3/min;干燥温度:40--120℃;天平:量程(0-200g),最小秤量值0.1g;干、湿球温度计。

图1 干燥实验装置原理图1-风机,2-孔板流量计,3-倾斜式压差计,4-风速调节阀,5-电加热器,6-干燥室7-试样架,8-热重天平,9-电流表,10干球温度计,11-湿球温度计,12-触点温度计13-晶体管继电器,14—加热开关,15,16—片式阀门三、实验内容1、每组在某固定的空气流量和某固定的空气温度下测量一种物料干燥曲线、干燥速率曲线和临界含水量。

2、测定恒速干燥阶段物料与空气之间对流传热系数。

四、实验原理物料在恒定干燥条件下的干燥过程分为三个阶段:Ⅰ物料预热阶段;Ⅱ恒速干燥阶段;Ⅲ降速阶段图2。

图中AB 段处于预热阶段,空气中部分热量用来加热物料。

在随后的第Ⅱ阶段BC ,由于物料表面存在自由水分,物料表面温度等于空气的湿球温度tw ,传入的热量只用来蒸发物料表面的水分,物料含水量随时间成比例减少,干燥速率恒定且较大。

到了第Ⅲ阶段,物料中含水量减少到某一临界含水量时,由于物料内部水分的扩散慢于物料表面的蒸发,不足以维持物料表面保持润湿,则物料表面将形成干区,干燥速率开始降低,含水量越小,速率越慢,干燥曲线CD 逐渐达到平衡含水量X *而终止。

干燥速率曲线只能通过实验测得,因为干燥速率不仅取决于空气的性质和操作条件,而且还受物料性质、结构以及所含水分的性质的影响。

干燥速率为单位时间内在单位面积上汽化的水分质量,用微分式表示,则为3(k g /m ) (1)d w u s A d τ= 式中:u —— 干燥速率 [kg/m 2s]A —— 干燥表面 [m 2]τd —— 相应的干燥时间 [s] dw —— 汽化的水分量 [kg]因为 dx G dw c-= 所以式(1)可改写为(2)c cG d xG x d w uA d A d A τττ∆==-=∆ 式中:cG —— 湿物料中绝干物料的质量 [kg]x —— 湿物料含水量 [kg 水/kg 绝干料]负号表示物料含水量随干燥时间的增加而减少。

干燥实验实验报告

干燥实验实验报告

干燥实验实验报告1. 实验目的本实验旨在研究不同条件下,物质的干燥过程,并分析其干燥速度和干燥效果。

2. 实验原理在自然界中,物质会受到空气中的水分的影响而变得湿润。

通过干燥实验,我们可以利用一定的条件和方法,将物质中的水分逐步去除,达到干燥的目的。

常用的干燥方法包括加热干燥、吸附干燥和通风干燥等。

加热干燥的基本原理是通过加热物质使其温度升高,从而增加分子的热运动,进而促使水分分子从物质中蒸发出来。

吸附干燥是利用一定净化剂(如硅胶、分子筛等)对物质中的水分进行吸附,从而实现干燥的目的。

通风干燥则是通过通风设备将潮湿空气排出,以保持物质周围的干燥环境。

3. 实验步骤本实验采用加热干燥的方法进行,具体步骤如下:1.准备实验所需材料:含有水分的物质样品、干燥设备(如烘箱)、温度计等。

2.将物质样品放入烘箱中,并设置适当的温度。

3.记录开始时物质样品的初始质量和温度。

4.在设定的温度下进行干燥,定时记录物质样品的质量和温度。

5.当物质样品的质量基本不再变化时,停止干燥,并记录最终的质量和温度。

6.计算干燥过程中物质的质量损失率和干燥速度。

4. 实验结果与分析根据实验步骤进行干燥实验后,得到了如下的实验结果:时间 (min) 温度 (℃) 质量 (g)0 25 5010 40 4820 50 4630 60 4440 70 4250 80 4060 90 3870 90 38根据上表可以计算出物质样品的质量损失率和干燥速度。

质量损失率可以通过计算相邻时间点的质量差除以时间差得到,干燥速度则是质量损失率的绝对值。

在本实验中,初始质量为50g的物质样品在70分钟内降低了12g,故质量损失率为12g/70min = 0.171g/min,干燥速度为0.171g/min。

5. 实验结论通过本实验可以得出如下结论:1.加热干燥是一种常用的干燥方法,能够使物质中的水分快速蒸发。

2.干燥速度与温度相关,温度越高,干燥速度越快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京化工大学实验报告课程名称:干燥实验实验日期:2012-5班级:化工0906 姓名:郭智博同组人:常成维尉博然黄金祖学号:200911175干燥实验一、摘要本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。

干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。

二、实验目的1、了解流化床干燥器的基本流程及操作方法。

2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。

3、测定物料含水量及床层温度时间变化的关系曲线。

4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数k H及降速阶段的比例系数K X。

三、实验原理1、流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(如图)。

当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。

当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。

当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。

当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。

D点处的流速即被称为带出速度(u0)。

在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。

若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。

C点处的流速被称为起始流化速度(u mf)。

在生产操作过程中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。

据此,可以通过测定床层压降来判断床层流化的优劣。

2、干燥特性曲线将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(见下图)。

物料含水量与时间关系曲线的斜率即为干燥速率(u)。

将干燥速率对物料含水量作图,即为干燥速率曲线(见下下图)。

干燥过程可分以下三个阶段。

(1)物料预热阶段(AB段)在开始干燥时,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时间变化不大。

(2)恒速干燥阶段(BC段)由于物料表面存在自由水分,物料表面温度等于空气的湿球温度,传入的热量只用来蒸发物料表面的水分,物料含水量随时间成比例减少,干燥速率恒定且最大。

(3)降速干燥阶段(CDE段)物料含水量减少到某一临街含水量(X0),由于物料内部水分的扩散慢于物料表面的蒸发,不足以维持物料表面润湿,而形成干区,干燥速率开始降低,物料温度逐渐上升。

物料含水量越小,干燥速率越慢,直至达到平衡含水量(X*)而终止。

干燥速率为单位时间在单位面积上汽化的水分量,用微分式表示为u=dW Adτ式中u——干燥速率,kg水/(m2s);A——干燥表面积,m2;dτ——相应的干燥时间,s;dW——汽化的水分量,kg。

图中的横坐标X为对应于某干燥速率下的物料平均含水量。

X=X i+X i+12式中X——某一干燥速率下湿物料的平均含水量;X i,X i+1——△τ时间间隔内开始和终了是的含水量,kg水/kg绝干物料。

X i=G si−G ciG CI式中G si——第i时刻取出的湿物料的质量,kg;G ci——第i时刻取出的物料的绝干质量,kg。

干燥速率曲线只能通过实验测定,因为干燥速率不仅取决于空气的性质和操作条件,而且还受物料性质结构及含水量的影响。

本实验装置为间歇操作的沸腾床干燥器,可测定达到一定干燥要求所需的时间,为工业上连续操作的流化床干燥器提供相应的设计参数。

四、操作步骤1、将450g小麦用水浸泡2-3小时后取出,沥干表面水分。

2、检查湿球温度及水罐液位,使其处于液位计高度1/2处。

3、从加料口将450g小麦加入流化床中。

4、启动风机、空气加热器,空气流量调至合适值,空气温度达到设定值。

5、保持流量、温度不变,间隔2-3分钟取样,每次取10克,将湿物料及托盘测重。

6、装入干燥盒、烘箱,调节烘箱温度125℃,烘烤一小时,称干物料及托盘重量7、干燥实验过后,关闭加热器,用剩余物料测定流化曲线,从小到大改变空气流量10次,记录数据。

8、出料口排出物料,收集,关闭风机,清理现场。

五、实验设备图1—风机;2—湿球温度水筒;3—湿球温度计;4—干球温度计;5—空气加热器;6—空气流量调节阀;7—放净口;8—取样口;9—不锈钢筒体;10—玻璃筒体;11—气固分离段;12—加料口;13—旋风分离器;14—孔板流量计六、数据处理1、干燥速率曲线测定序号时间τ/min 床层温度干物料质量G 湿/g 湿物料质量G 干/g 含水率X/g 水/g 干物料平均含水率X ’/g 水/g 干物料干燥速率u 水/gm-2s-1 1 3 46.7 9.20 11.90 0.293 0.265 0.7607538 2 6 49.3 6.26 7.74 0.236 0.208 0.7623526 3 9 51.6 10.60 12.50 0.179 0.175 0.1199647 4 12 53.6 6.05 7.08 0.170 0.162 0.2314909 5 15 54.8 6.41 7.39 0.153 0.145 0.2072058 6 18 56.1 6.48 7.37 0.137 0.135 0.0560707 7 21 56.4 6.91 7.83 0.133 0.121 0.3323541 8 24 56.9 7.67 8.50 0.108 0.099 0.2466144 9 27 57.3 9.92 10.81 0.090 0.089 0.0305679 10 3057.78.359.080.087以第二组数据为例,计算过程如下:含水量:236.026.626.674.7=-=-=ci ci si i G G G X kg 水/kg 绝干物料平均含水量:1522.021377.01667.021=+=+=+i i X X X kg 水/kg 绝干物料干燥速率: u=dW Adt=X i −X i +1At=0.236−0.1791.5×3×60=2.12×10−4 u 水/gm -2s -12、流化曲线测定序号 孔板压降p 1/kpa 床层压降△p/kpa 气速u 气/m/s 1 0.0 0.02 0.000 2 0.04 0.04 0.163 3 0.22 0.16 0.409 4 0.39 0.28 0.558 5 0.94 0.37 0.897 6 1.52 0.42 1.162 7 1.76 0.44 1.258 8 1.87 0.46 1.300 9 2.14 0.45 1.398 102.37 0.46 1.477以第三组数据为例,计算过程如下:u 气=26.8×p 10.54π4 ×0.12×3600=26.8×0.220.543.144 ×0.12×3600=0.409七、实验结果及作图分析双曲线坐标下△p——u图八、思考题1、本实验所得的流化床压降与气速曲线有何特征?答:当气速较小时,压降与流速成正比。

当气速逐渐增加,床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。

当气速继续增大,进入流化阶段,固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。

当气速增大至某一值后,床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。

2、为什么同一湿度的空气,温度较高有利于干燥操作的进行?答:因为温度较高,所对应的饱和蒸汽压也较高,而湿度相同,即水汽分压相同,这样就使得在较高的温度下,空气的相对湿度较小。

故传质推动力较大,有利于干燥操作的进行。

同时,同一湿度的空气,温度较高者单位质量所携带的热量多,可使干燥过程所需的空气用量减少,同时废气带走的热量相应减少,热效率也会提高。

3、本装置在加热器入口处装有干、湿球温度计,假设干燥过程为绝热增湿过程,如何求得干燥器内空气的平均湿度H。

答:由加热器入口处测得的干、湿球温度可在空气的焓湿图上找到初始的状态点,并确定焓值,因为绝热增湿过程是等焓过程,可由等焓线求得干燥器内空气的平均湿度。

4、干燥开始10分钟时,计算进、出干燥器的湿空气的性能参数(假设湿空气进出干燥器为绝热增湿过程),要求使用公式计算和I-H图两种方法。

方法110min时t t w p水汽H φI进口湿空气70℃41.2℃ 2.07kpa 0.013kg/kg干气6.64%104.91kJ/kg干气出口湿空气54.4℃41.2℃ 3.46kpa 0.022kg/kg干气31.5%104.91kJ/kg干气方法210min时t t w p水汽H φI进口湿空气70℃41.2℃2kPa 0.013kg/kg干气6%101kJ/kg干气出口湿空气54.4℃41.2℃ 3.4kPa 0.022kg/kg干气32%101kJ/kg干气认为实验所测干湿球温度为干燥器出口湿空气的状态。

方法1说明:由于认为该干燥属于等焓增湿过程,则空气的湿球温度不变,为31.5℃,且焓也不变。

则以进口空气计算为例:tw = 41.2℃时,饱和蒸汽压Ps=7.868kparw = 2420.37 kJ/kg则Hw = 0.622 Ps/(P-Ps) = 0.622 ×4.624 /(101.325-4.624)= 0.030 kg水汽/kg干气H = Hw -(t-tw) · 1.09/ rw= 0.030 -(70-31.5) ·1.09/ 2420.37 = 0.013 kg水汽/kg干气由H = 0.622 P水汽/(P- P水汽)得:P水汽= H P /(H+0.622)= 2.07 kpa70℃时饱和蒸汽压Ps = 31.157kpaφ= P水汽/Ps1 =2.07 /31.157 = 6.64%I 1=(1.01+1.88H)t+2500H= (1.01+1.88×0.013)70+2500×0.013 = 104.91kJ/kg干气方法2说明:①确定出口湿空气的状态参数:在焓湿图上,找到t=t W的线与φ=100%的线的交点A,过A的等焓线与t=t的线交于点B,B即为湿空气的状态点,进而可以查得p水汽,H,φ,I。

相关文档
最新文档