《圆的有关性质》PPT课件
合集下载
人教版九年级数学上册第24章第1节《圆》课件
A
A
C
B
B C
O C
O
B A
O
D
D
A
A
C
B
B C
O
O
B A
O
C
D
D
【发现】直径是最长的弦
探究新知
24.1 圆的有关性质/
弧:
圆上任意两点间的部分叫做圆弧,简弧.以A、B为 端点的弧记作 AB,读作“圆弧AB”或“弧AB”.
➢半圆
B ·O
A
C
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
A ·O1 C
探究新知
24.1 圆的有关性质/
【想一想】长度相等的弧是等弧吗? 如图,如果A︵B和C︵D的拉直长度都是10cm,平移并调整
小圆的位置,是否能使这两条弧完全重合?
可见这两条弧不可能完全重合
D
B
A
C
实际上这两条弧弯曲程度不同
A
“等弧”要区别于“长度相等的弧”
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知 素养考点 1 圆的定义的应用
24.1 圆的有关性质/
例1 矩形ABCD的对角线AC、BD相交于O. 求证:A、B、C、D在以O为圆心的同一圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C
∴OA=OB=OC=OD.
∴A、B、C、D在以O为圆心,以OA为半径的圆上.
B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的 墨线是运用了“直线外一点与直线上各点连接的所有线段中, 垂线段最短”的原理
C.将自行车的车架设计为三角形形状是运用了“三角形的稳 定性”的原理
圆的有关性质课件.ppt
解:
23÷2÷20=0.575cm
答: 这棵红衫树的半径每年增 加0.575cm
1.如图:CD为⊙O直径,AE交⊙O于B,且AB=OC, ∠A=20o,求∠DOE的度数.
赵州桥主桥拱的半径是多少?
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧 形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦 的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?
以OA为半径的圆上。
矩形--四点共圆
练一练 1.如何在操场上画一个半径是5m 的圆?说出你的理由
首先确定圆心, 然后用5米长的绳子一端固 定为圆心端,另一端系在一端尖木棒,木棒 以5米长尖端划动一周,所形成的图形就是 所画的圆.
根据圆的形成定义
练一练
2 你见过树木的年轮吗?从树木的年轮,可以 很清楚的看出树木生长的年龄,如果一棵20年 树龄的红杉树的树干直径是23cm,这棵红杉 树的半径每年增加多少?.
活 动 三 练习
1.如图,在⊙O中,弦AB的长为8cm,圆心O 到AB的距离为3cm,求⊙O的半径.
解: OE AB
A
E
B
AE 1 AB 1 8 4
22 在 Rt △AOE中
·
O
AO2 OE2 AE2
AO OE2 AE2 = 32 +42 =5cm
答:⊙O的半径为5cm.
2.如图,在⊙O中,AB、AC为互相垂直且相等的 两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形 ADOE是正方形.
圆的有关概念和性质
一石激起千层浪 奥运五环
乐在其中
圆的概念
如图,在一个平面内,线段OA绕它固定的一个
23÷2÷20=0.575cm
答: 这棵红衫树的半径每年增 加0.575cm
1.如图:CD为⊙O直径,AE交⊙O于B,且AB=OC, ∠A=20o,求∠DOE的度数.
赵州桥主桥拱的半径是多少?
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧 形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦 的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?
以OA为半径的圆上。
矩形--四点共圆
练一练 1.如何在操场上画一个半径是5m 的圆?说出你的理由
首先确定圆心, 然后用5米长的绳子一端固 定为圆心端,另一端系在一端尖木棒,木棒 以5米长尖端划动一周,所形成的图形就是 所画的圆.
根据圆的形成定义
练一练
2 你见过树木的年轮吗?从树木的年轮,可以 很清楚的看出树木生长的年龄,如果一棵20年 树龄的红杉树的树干直径是23cm,这棵红杉 树的半径每年增加多少?.
活 动 三 练习
1.如图,在⊙O中,弦AB的长为8cm,圆心O 到AB的距离为3cm,求⊙O的半径.
解: OE AB
A
E
B
AE 1 AB 1 8 4
22 在 Rt △AOE中
·
O
AO2 OE2 AE2
AO OE2 AE2 = 32 +42 =5cm
答:⊙O的半径为5cm.
2.如图,在⊙O中,AB、AC为互相垂直且相等的 两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形 ADOE是正方形.
圆的有关概念和性质
一石激起千层浪 奥运五环
乐在其中
圆的概念
如图,在一个平面内,线段OA绕它固定的一个
圆的有关性质——弧、弦、圆心角_PPT
∴ CD=AB
弦等
弧等
19
6.小结
1.请回顾本节课我们学习同圆或 等圆中,圆心角及其所对的弧、弦之 间的关系的学习过程.
2.怎样记忆圆心角定理呢? 要注意什么?
20
7.提升
如图,CD为⊙O的弦,在CD上取 CE=DF,连结OE、OF,并延长交⊙O 于点A、B.
((12))试求判证断:A△CO⌒=EBFD的⌒形状,并说明理由;
2)如果OAEB与=C⌒ODF,相⌒那等么吗?为A什B=,么CD? AOB CO。D
3)如果∠AOB=∠COD,那么 AB ,CD AB。=CD
(1) 圆心角相等
(2) 弧相等 (3) 弦相等 (4) 弦心距相等
知A E B
一 得
O· D
二三 C F 16
例1 如图,在⊙O中,A⌒B=A⌒C,∠ACB=60°,
一个角度.
30°
N
N′
15°
O
可以看出,点 N′在圆O上.
4
把圆 O 的半径 ON 绕圆心 O 旋转任意
一个角度.
60°
N′
N
30°
O
可以看出,点 N′也在圆O上.
5
把圆 O 的半径 ON 绕圆心 O 旋转任意
一°
O
可以看出,点 N′还在圆O上.
6
把圆 O 的半径 ON 绕圆心 O 旋转任意
证明: ∵ BC⌒=C⌒D=⌒DE
∴∠COB=∠COD=∠DOE =35A° ∴∠AOE=180°-3∠COD =75°
ED C B
O
弧等
圆心角等
18
3、如图,AD=BC,请比较AB与CD的大小.
解: ∵ AD=BC
24-1 圆的有关性质 课件(共60张PPT)
平分弦所对的两条弧。
知识梳理
知识点4:垂径定理的应用。
将垂径定理和勾股定理有机结合,化圆中问题为三角形问题。
“圆弧AB”或“弧AB”。圆的任意一条直径
的两个端点把圆分成两条弧,每一条弧都叫做
半圆(semi-circle)。
圆
能够重合的两个圆叫做等圆,容易
看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的
弧叫做等弧。
圆
概念辨析
直径是弦,弦是直径。这句话正确吗?
2
2
1
∠DOB。
2
圆周角
探究结论
分别测量图中所对的圆周角∠ACB和
圆心角∠AOB的度数,可以发现两角的
度数相同。
同弧所对的圆周角的度数等于这条弧所
对的圆心角的度数的一半。
圆周角
则有圆周角定理:一条弧所对的圆周角等
于它所对的圆心角的一半。
我们还可以得到推论:(1)同弧或等弧
进一步,我们还可以得到推论:平分弦(
不是直径)的直径垂直于弦,并且平分弦
所对的两条弧。
垂直于弦的直径
问题二
赵州桥(图右)是我国隋代建造的石拱桥,距
今约有1400年的历史,是我国古代人民勤劳
与智慧的结晶。它的主桥拱是圆弧形,它的跨
度(弧所对的弦的长)为37m,拱高(弧的
中点到弦的距离)为7.23m,求赵州桥主桥拱
8()。∵CD平分∠ACB,∴∠ACD=∠BCD,
∴∠AOD=∠BOD,∴AD=BD。又在Rt∆ABD中,
2
2
2
2
2
AD +BD =AB ,∴AD=BD= AB= ×10=5
知识梳理
知识点4:垂径定理的应用。
将垂径定理和勾股定理有机结合,化圆中问题为三角形问题。
“圆弧AB”或“弧AB”。圆的任意一条直径
的两个端点把圆分成两条弧,每一条弧都叫做
半圆(semi-circle)。
圆
能够重合的两个圆叫做等圆,容易
看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的
弧叫做等弧。
圆
概念辨析
直径是弦,弦是直径。这句话正确吗?
2
2
1
∠DOB。
2
圆周角
探究结论
分别测量图中所对的圆周角∠ACB和
圆心角∠AOB的度数,可以发现两角的
度数相同。
同弧所对的圆周角的度数等于这条弧所
对的圆心角的度数的一半。
圆周角
则有圆周角定理:一条弧所对的圆周角等
于它所对的圆心角的一半。
我们还可以得到推论:(1)同弧或等弧
进一步,我们还可以得到推论:平分弦(
不是直径)的直径垂直于弦,并且平分弦
所对的两条弧。
垂直于弦的直径
问题二
赵州桥(图右)是我国隋代建造的石拱桥,距
今约有1400年的历史,是我国古代人民勤劳
与智慧的结晶。它的主桥拱是圆弧形,它的跨
度(弧所对的弦的长)为37m,拱高(弧的
中点到弦的距离)为7.23m,求赵州桥主桥拱
8()。∵CD平分∠ACB,∴∠ACD=∠BCD,
∴∠AOD=∠BOD,∴AD=BD。又在Rt∆ABD中,
2
2
2
2
2
AD +BD =AB ,∴AD=BD= AB= ×10=5
圆的有关性质精选课件PPT
④.圆是轴对称图形,对称轴是直径
A.1个 B.2个
C.3个
D.4个
4.下列命题中正确的是( D
)
A.弦的垂线平分弦所对的弧;
B.平分弦的直径垂直于这条弦;
C.过弦的中点的直线必过圆心;
D.弦所对的两条弧的中点连线垂直平分弦 且过圆心;
双基训练
5. 如图,将半径为2cm的圆形纸片折叠后,圆弧 恰好经过圆心,则折痕AB的长为( C )
12.已知直径AB被弦CD分成AE=4,
EB=8,CD和AB成300角,则弦CD
的弦心距OF=___1_;CD=_2__3_5_.
D
F
A
B
C
EO
13.已知:如图,直径CD⊥AB,垂足为E .
⑴若半径R = 2 ,AB = 2 3 , 求OE、DE 的长.
⑵若半径R = 2 ,OE = 1 ,求AB、DE 的长.
/cztvr wgi/162391.html
/hohdahq /16301 6.ht ml
A
B
C
D
O
7.已知:⊙O中弦AB∥CD且AB=9cm,CD=12cm, ⊙O的直径为15cm,则弦AB,CD间的距离为
(C )
A.1.5cm
B.10.5cm;
B
·OOE D C
A
P
A
B
10. 同心圆中,大圆的弦AB交小圆于C,D,已知 AB=4,CD=2,AB的弦心距为1,则两个同心圆的
半径之比为( B)
A.3:2 B. 5: 2 C. 5 :2 D.5:4
11.已知:AB 和CD 是⊙O的两条弧,且 AB =2 CD ,则( C )
A.AB=2CD B.AB>2CD C.AB<2CD D.都不对
2圆的有关性质(第3课时)PPT课件(人教版)
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
N
N′
n°
O
性质:把圆绕圆心旋转任意一个角度后,仍与本来 的圆重合.(圆具有旋转不变性)
2.性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
N
N′
n°
O
我们把顶点在圆心的角叫做圆心角.如∠NON′是 圆 O 的一个圆心角.
3.探究
如图, 在⊙O 中,当圆心角∠AOB =∠A ` OB` 时,
又因为 AO=CO,BO=DO,
A
E
B D
所以 △AOB ≌ △COD.
又因为 OE 、OF 是 AB 与 CD 对应边上的高,
O F
所以 OE=OF.
C
6.例题
例1 如图,在⊙O 中, AB= AC,∠ACB =60°. 求证:∠AOB=∠BOC=∠AOC.
A
O
B
C
6.例题
例2 如图,AB 是⊙O 的直径,BC = CD = DE , ∠COD=35°,求∠AOE 的度数.
它们所对的弧AB和弧A`B`、弦AB和弦A`B` 相等吗?为
什么?
A' B
AB= A'B' AB=A'B'
B'
O
A
4.定理
这样,我们就得到下面的定理: 在同圆或等圆中,相等的圆心角所对的弧相等,所 对的弦也相等.
你能用几何符号表示出定理吗?
同样,还可以得到: 在同圆或等圆中,如果两条弧相 等,那么它们所对的圆心角__相__等__ ,
30°
N′NLeabharlann 15°O2.性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
60°
N′
N
N′
n°
O
性质:把圆绕圆心旋转任意一个角度后,仍与本来 的圆重合.(圆具有旋转不变性)
2.性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
N
N′
n°
O
我们把顶点在圆心的角叫做圆心角.如∠NON′是 圆 O 的一个圆心角.
3.探究
如图, 在⊙O 中,当圆心角∠AOB =∠A ` OB` 时,
又因为 AO=CO,BO=DO,
A
E
B D
所以 △AOB ≌ △COD.
又因为 OE 、OF 是 AB 与 CD 对应边上的高,
O F
所以 OE=OF.
C
6.例题
例1 如图,在⊙O 中, AB= AC,∠ACB =60°. 求证:∠AOB=∠BOC=∠AOC.
A
O
B
C
6.例题
例2 如图,AB 是⊙O 的直径,BC = CD = DE , ∠COD=35°,求∠AOE 的度数.
它们所对的弧AB和弧A`B`、弦AB和弦A`B` 相等吗?为
什么?
A' B
AB= A'B' AB=A'B'
B'
O
A
4.定理
这样,我们就得到下面的定理: 在同圆或等圆中,相等的圆心角所对的弧相等,所 对的弦也相等.
你能用几何符号表示出定理吗?
同样,还可以得到: 在同圆或等圆中,如果两条弧相 等,那么它们所对的圆心角__相__等__ ,
30°
N′NLeabharlann 15°O2.性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
60°
N′
圆的有关性质课件PPT
(2)由圆的定义可知:圆是一条封闭的曲线,不是圆面.确定圆的两
个条件是圆心和半径,其中圆心确定圆的位置,半径确定圆的大小.
4
教材新知精讲
知识点一
综合知识拓展
知识点二
例1 下列条件中,能确定圆的是(
)
A.以点O为圆心
B.以2 cm长为半径
C.以点O为圆心,以5 cm长为半径
D.经过已知点A
解析:根据圆的定义对各选项进行判断:A,点O为圆心,半径不确
知识点二
例2 如图,CD是☉O的直径,弦AB⊥CD于点E,∠BCD=30°,下列
结论:①AE=BE;②OE=DE;③AB=BC;④BE=
DE.其中正确的是
3
(
)
A.① B.①②③
C.①③
D.①②③④
20
教材新知精讲
知识点一
综合知识拓展
知识点二
解析:根据垂径定理以及等边三角形的性质和判定定理即可作出
中的弦有AB,BC,CE共三条.
答案:B
8
教材新知精讲
知识点一
综合知识拓展
知识点二
抓住“弦是端点在圆上的线段”是解决本题的关键.
9
教材新知精讲
知识点一
综合知识拓展
知识点二
例3 如图,在☉O中,半径有
有
,弦有
,劣弧有
有
.
,直径
,优弧
解析:根据半径、直径、弦、劣弧和优弧的定义分别求解.
答案:OA,OB,OC,OD AB AB,BC , , , ,
知识点二
知识点一圆的轴对称性
圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.
名师解读:不能错误地说成“圆的任何一条直径都是圆的对称轴”,
个条件是圆心和半径,其中圆心确定圆的位置,半径确定圆的大小.
4
教材新知精讲
知识点一
综合知识拓展
知识点二
例1 下列条件中,能确定圆的是(
)
A.以点O为圆心
B.以2 cm长为半径
C.以点O为圆心,以5 cm长为半径
D.经过已知点A
解析:根据圆的定义对各选项进行判断:A,点O为圆心,半径不确
知识点二
例2 如图,CD是☉O的直径,弦AB⊥CD于点E,∠BCD=30°,下列
结论:①AE=BE;②OE=DE;③AB=BC;④BE=
DE.其中正确的是
3
(
)
A.① B.①②③
C.①③
D.①②③④
20
教材新知精讲
知识点一
综合知识拓展
知识点二
解析:根据垂径定理以及等边三角形的性质和判定定理即可作出
中的弦有AB,BC,CE共三条.
答案:B
8
教材新知精讲
知识点一
综合知识拓展
知识点二
抓住“弦是端点在圆上的线段”是解决本题的关键.
9
教材新知精讲
知识点一
综合知识拓展
知识点二
例3 如图,在☉O中,半径有
有
,弦有
,劣弧有
有
.
,直径
,优弧
解析:根据半径、直径、弦、劣弧和优弧的定义分别求解.
答案:OA,OB,OC,OD AB AB,BC , , , ,
知识点二
知识点一圆的轴对称性
圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.
名师解读:不能错误地说成“圆的任何一条直径都是圆的对称轴”,
圆的有关性质ppt课件
7.1.4 圆周角定理及推论
(1)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相 等,都等于这条弧所对的圆心角的一半. (2)推论:半圆(直径)所对的圆周角是直角,90°的圆周角所 对 的弦是直径.
7.1.5 圆内接四边形
(1)定义:如果一个四边形的四个顶点在同一个圆上,那么这个 四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆. (2)性质:圆内接四边形的对角互补,并且任何一个外角都等于 它的内对角.
7.1.5 圆内接四边形
(1)定义:如果一个四边形的四个顶点在同一个圆上,那么这个 四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆. (2)性质:圆内接四边形的对角互补,并且任何一个外角都等于 它的内对角.
【例1】如图,在⊙O中, A,B是圆上的两点,已知∠AOB=40°,直 径CD∥AB,连接AC,则∠BAC= 35 度.
②经过切点且垂直于切线的直线必经过圆心. (3)切线长定理:从圆外一点可以引圆的两条切线,它们的切线 长相等.这一点和圆心的连线平分这两条切线的夹角.
【例1】在公园的O处附近有E、F、G、H四棵树,
位置如图所示(图中小正方形的边长均相等),现计划修建一座以
为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、
(3)正多边形的有关计算:
①边长:an=2Rn·sin180°/n
②周长:Pn=n·an
③边心距:rn=Rn·cos180°/n
④面积:Sn=
1 2
an·rn·n
⑤内角:n 2180
n
⑥外角:360
n
⑦中心角: 36n0(Rn为正多边形的半径,rn为边心距,an为边长)
7.3.2 圆的周长与弧长公式
《圆的有关性质》圆ppt实用课件
与圆有关的概念
弦 连接圆上任意两点的线段(如图AC)
叫做弦,
注意: 经过圆心的弦(如图中的AB)叫做直径.
1、弦和直径都是线段。 2、直径是弦,是经过圆心的特殊 弦,是圆中最长的弦但弦不一定 是直径.
B
O·
A
C
弧
圆 为上端任点意 的两 弧点 记间作的A⌒部B 分,叫读做作“圆圆弧弧,A简B称”或弧“.弧以A、B
从画圆的过程可以看出什么呢?
(1)圆上各点到定点(圆心O)的距离都等于定长 (半径r); (2)到定点的距离等于定长的点都在同一个圆上.
归纳:圆心为O、半径为r的圆可以看成是所有 到定点O的距离等于定长r 的点的集合.
动态:在一个平面内,线段OA绕它固定的一 个端点O旋转一周,另一个端点A所形成的图 形叫做圆.
AB”.
圆的任意一条直径的两个端点把圆分成两条弧, 每一条弧都叫做半圆.
B
O·
A
C
劣弧与优弧
小于半圆的弧叫做劣弧. (如图中的A⌒C) 大于半圆的弧叫做优弧. (用三个字母表示,如图中的A⌒CB)
B
O·
A
C
1.如何在操场上画一个半径是5m的圆? 说出你的理由
首先确定圆心, 然后用5米长的绳子一端固定为 圆心端,另一端系在一端尖木棒,木棒以5米长尖 端划动一周,所形成的图形就是所画的圆.
94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳]
圆的有关性质》(第3课时)课件
周长的推导
周长是由圆的直径和π值 相乘得到的,即周长 = πd,其中d是圆的直径。
圆的面积计算
圆的面积的定义
圆的面积是指圆所占平面的大小。
面积的计算公式
面积 = πr^2。
面积的推导
面积是由圆的半径和π值相乘得到的,即面积 = πr^2。
周长与面积的关系
周长与面积的关系
周长和面积是圆的重要属 性,它们之间存在一定的 关系。
割线的定义与性质
割线的定义
割线是与圆有两个公共点的直线 。
割线的性质
割线与圆心的距离大于半径,割线 与圆有两个交点。
割线的应用
在几何学中,割线常用于计算圆的 面积、周长等。
切线与割线的应用
切线与割线的性质在几何学中有着广泛的应用,如计算圆的面积、周长、弧长等。
在实际生活中,切线与割线的应用也十分常见,如建筑设计、机械制造等领域。
圆上两点之间的距离为直径
02
圆上任意两点之间的距离等于直径,直径是经过圆心的弦。
圆心到圆上任一点的距离相等
03
圆心到圆上任一点的距离都等于半径,半径是连接圆心和圆上
任意一点的线段。
圆的基本性质
01
直径所对的圆周角为直角
直径所对的圆周角等于直角,即90度。
02
弦心距定理
弦心距、半径和半弦长满足勾股定理,即弦心距的平方加上半径的平方
周长与面积的关联
周长的增加会导致面积的 增加,反之亦然。
周长与面积的差异
周长和面积的计算公式不 同,它们所代表的意义也 不同。
01
圆的切线与割线
切线的定义与判定
切线的定义
切线的性质
切线是与圆只有一个公共点的直线。
第9讲圆的基本性质复习课件(共46张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理的应用 例3 如图3-9-4所示,某窗户由矩形和弓形组成,已知 弓形的跨度AB=3 m,弓形的高EF=1 m,现计划安装玻璃, 请帮工程师求出弧AB所在圆O的半径.
全效优等生
图3-9-4
大师导航 归类探究 自主招生交流平台 思维训练
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧.
3.同圆或等圆中,两个圆心角、两条弧、两条弦、两个 弦心距中有一组量相等,它们所对应的其余各组量也分别相等.
确定圆的条件: 确定一个圆必须明确两个要素:①圆心(决定圆的位置); ②半径(决定圆的大小).
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∵PE⊥AB,∴AE=BE=12AB=12×4 2=2 2. 在 Rt△PBE 中,PB=3, ∴PE= 32-(2 2)2=1, ∴PD= 2PE= 2, ∴a=3+ 2.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理 1.与弦有关的题目,要求解边与角时,连结半径构造等 腰三角形是常用的辅助线. 2.求圆中的弦长时,通常作辅助线,由半径、弦的一半 以及弦心距构成直角三角形运用勾股定理进行求解.
【思路生成】根据垂径定理可得 AF=12AB,再表示出 AO, OF,然后利用勾股定理列式进行计算.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
解:∵弓形的跨度 AB=3 m,EF 为弓形的高, ∴OE⊥AB,∴AF=12AB=32 m, 设 AB 所在圆 O 的半径为 r,弓形的高 EF=1 m,∴AO =r,OF=r-1. 在 Rt△AOF 中,AO2=AF2+OF2, 即 r2=322+(r-1)2, 解得 r=183. 答:弧 AB 所在圆 O 的半径为183 m.
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理的应用 例3 如图3-9-4所示,某窗户由矩形和弓形组成,已知 弓形的跨度AB=3 m,弓形的高EF=1 m,现计划安装玻璃, 请帮工程师求出弧AB所在圆O的半径.
全效优等生
图3-9-4
大师导航 归类探究 自主招生交流平台 思维训练
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧.
3.同圆或等圆中,两个圆心角、两条弧、两条弦、两个 弦心距中有一组量相等,它们所对应的其余各组量也分别相等.
确定圆的条件: 确定一个圆必须明确两个要素:①圆心(决定圆的位置); ②半径(决定圆的大小).
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∵PE⊥AB,∴AE=BE=12AB=12×4 2=2 2. 在 Rt△PBE 中,PB=3, ∴PE= 32-(2 2)2=1, ∴PD= 2PE= 2, ∴a=3+ 2.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
垂径定理 1.与弦有关的题目,要求解边与角时,连结半径构造等 腰三角形是常用的辅助线. 2.求圆中的弦长时,通常作辅助线,由半径、弦的一半 以及弦心距构成直角三角形运用勾股定理进行求解.
【思路生成】根据垂径定理可得 AF=12AB,再表示出 AO, OF,然后利用勾股定理列式进行计算.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
解:∵弓形的跨度 AB=3 m,EF 为弓形的高, ∴OE⊥AB,∴AF=12AB=32 m, 设 AB 所在圆 O 的半径为 r,弓形的高 EF=1 m,∴AO =r,OF=r-1. 在 Rt△AOF 中,AO2=AF2+OF2, 即 r2=322+(r-1)2, 解得 r=183. 答:弧 AB 所在圆 O 的半径为183 m.
圆的有关性质()-PPT课件
一端栓在柱子
上,另一端栓
着一只羊,请
6
画出羊的活动
区域.
希望对您的工作和学习有所帮助!
使用说明
为了更好地方便您的理解和使用,发挥本文档的价值,请在使用本文档之前仔细阅读以下说明: 本资料突出重点,注重实效。贴近实战,注重品质。适合各个成绩层次的学生查漏补缺,学习效果翻倍。本文档为 PPT格式,您可以放心修改使用。祝孩子学有所成,金榜题名。 希望本文档能够对您有所帮助!!!感谢使用
从画圆的过程可以看出什么呢?
(1)圆上各点到定点(圆心O)的距离都等于定长 (半径r); (2)到定点的距离等于定长的点都在同一个圆上.
归纳:圆心为O、半径为r的圆可以看成是所有 到定点O的距离等于定长r 的点的集合.
把车轮做成圆形,车轮上各点到车 轮中心(圆心)的距离都等于车轮的半 径,当车轮在平面上滚动时,车轮中心 与平面的距离保持不变,因此,当车辆 在平坦的路上行驶时,坐车的人会感觉 到非常平稳,这也是车轮都做成圆形的 数学道理.
AB”.
圆的任意一条直径的两个端点把圆分成两条弧, 每一条弧都叫做半圆.
B
O·
A
C
劣弧与优弧
小于半圆的弧叫做劣弧. (如图中的A⌒C) 大于半圆的弧叫做优弧. (用三个字母表示,如图中的A⌒CB)
B
O·
A
C
1.如何在操场上画一个半径是5m的圆? 说出你的理由
首先确定圆心, 然后用5米长的绳子一端固定为 圆心端,另一端系在一端尖木棒,木棒以5米长尖 端划动一周,所形成的图形就是所画的圆.
希望对您的工作和学习有所帮助!
使用说明
为了更好地方便您的理解和使用,发挥本文档的价值,请在使用本文档之前仔细阅读以下说明: 本资料突出重点,注重实效。贴近实战,注重品质。适合各个成绩层次的学生查漏补缺,学习效果翻倍。本文档为 PPT格式,您可以放心修改使用。祝孩子学有所成,金榜题名。 希望本文档能够对您有所帮助!!!感谢使用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 如图,AB 是⊙O 的直径,AC 是弦,若∠ACO=32°,则∠COB 的度数等于 64°. 2.如图,⊙O 的直径 CD=10,弦 AB=8,AB⊥CD,垂足为 M,则 DM 的长为 8.
3.如图,△ABC 内接于⊙O,AB=BC,∠ABC=120°,AD 为⊙O 的直径,AD=6,那么 BD =3 3.
1.垂径定理的应用 用垂径定理进行计算或证明,常需作出圆心到弦的垂线段(即弦心距),则垂足为弦的中 点,再利用解半径、弦心距和弦的一半组成的直角三角形来达到求解的目的 . 2.圆心角、圆周角性质的应用. 3.圆心角、弧、弦、弦心距之间的关系定理的应用.
(1)(2010·重庆)如图,△ABC 是⊙O 的内接三角形,若∠ABC=70°,则∠AOC 的
∴AB=2OB=4OP=4 3 cm. (2)①∵AB 是半圆的直径,点 C 在半圆上, ∴∠ACB=90°.在 Rt△ABC 中, AC= AB2-BC2= 102-62=8 ②∵PE⊥AB,∴∠APE=90°. 又∠ACB=90°, ∴∠APE=∠ACB.又∵∠PAE=∠CAB, ∴△AEP∽△ABC,∴BPEC=AACP ,∴P6E=10×8 12,∴PE=145.
A.17 cm B.7 cm C.12 cm D.17 cm 或 7 cm
(4)(2010·南通)如图,⊙O 的直径 AB=4,点 C 在⊙O 上,∠ABC=30°,则 AC 的长是( )
A.1
B. 2
C. 3
D.2
【点拨】本组题主要考查圆的有关基本知识,掌握有关性质或定理是做好此类题的关键.
【解答】(1)∵∠ABC=70°,∴∠AOC=2∠ABC=2×70°=140°,故选 A.
1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心 距相等.
2.推论:同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等;(4)两条 弦的弦心距相等.四项中有一项成立,则其余对应的三项都成立.
考点四 圆心角与圆周角
1.定义:顶点在圆心上的角叫圆心角;顶点在圆上,角的两边和圆都相交的角叫圆周角. 2.性质 (1)圆心角的度数等于它所对弧的度数; (2)一条弧所对的圆周角的度数等于它所对圆心角的度数的一半; (3)同弧或等弧所对的圆周角相等.同圆或等圆中相等的圆周角所对的弧相等; (4)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
转.不.变.性...
考点二 垂径定理及推论 1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 2.推论 1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平 分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径,垂直平分弦,并且
平分弦所对的另一条弧.
考点三 圆心角、弧、弦、弦心距之间的关系
度数等于( )
A.140°
B.130°
C.120°
D.110 °
例 1(1)题
例 1(2)题
(2)(2010·哈尔滨)如图,AB是⊙O 的弦,半径 OA=2,∠AOB=120°,则弦 AB 的长是( ) A.2 2 B.2 3 C. 5 D.3 5
(3)(2010·襄樊)已知:⊙O 的半径为 13 cm,弦 AB∥CD,AB=24 cm,CD=10 cm,则 AB、CD 之间的距离为( )
则弦 CD 的长为( B )
3 A.2 cm
B.3 cm
C.2 3 cm
D.9 cm
(第 5 题)
(第 6 题)
6. 如图,在⊙O 中,∠ACB=∠BDC=60°,AC=2 3 cm.(1)求∠BAC 的度数;(2)求⊙O 的周长.
(2)如图,作 OE⊥AB 于 E,则 OE 平分 AB,即 AE=BE.
∵∠AOB=120°,∴∠AOE=60°,∴AE=OA·sin60°= 3. ∴AB=2AE=2 3,故选 B. (3)当两条平行弦在圆心同侧时,AB、CD 之间的距离为 7 cm,当两条平行弦在圆心异侧 时,AB、CD 之间的距离为 17 cm,故选 D. (4)∵AB 是⊙O 的直径,∴∠ACB=90°. 又∵∠ABC=30°,∴AC=12AB=2,故选 D.
(1)(2010·南通)如图,⊙O 的直径 AB 垂直于弦 CD,垂足 P 是 OB 的中点,CD=6 cm,求直径 AB 的长.
例 2(1)题
例 2(2)题
(2)(2009·南充)如图,半圆的直径 AB=10,点 C 在半圆上,BC=6. ①求弦 AC 的长;②若 P 为 AB 的中点,PE⊥AB 交 AC 于点 E,求 PE 的长.
(第 3 题)
(第 4 题)
4.如图,已知 CD 为⊙O 的直径,过点 D 的弦 DE 平行于半径 OA,若∠D 的度数是 50°,
则∠C 的度数是( A )
A.25°
B.40°
C.30°
D.50°
5.如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 E,∠CDB=30°,⊙O 的半径为 3 cm,
【点拨】(1)题考查垂径定理及其推论. (2)题主要考查“直径所对的圆周角为直角,勾股定理及三角形的相似判定和性质”,属 于综合题.仔细审题,明确已知和未知条件是关键.
【解答】(1)连结 OC、BC,则根据 AB⊥CD 且 P 是 OB 的中点,得 OC=BC. ∵OC=OB,∴OC=OB=BC,∴△BOC 为等边三角形,∴∠BOC=60°. 由垂径定理得 CP=12CD=12×6 cm=3 cm. 在 Rt△POC 中,tan∠COP=COPP= 3,∴OP= 3 cm
第六章 圆
第 25 讲 圆的有关性质
考点一 圆的定义及其性质 1.圆的定义有两种方式 (1)在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转 所形成的图形叫做圆.固定的端点叫圆心,线段 OA 叫做半径; (2)圆是到定点的距离等于定长的点的集合. 2.圆的对称性 (1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴; (2)圆是以圆心为对称中心的中心对称图形; (3)圆是旋转对称图形.圆绕圆心旋转任意角度,都能和原来的图形重Байду номын сангаас,这就是圆的旋.