东南大学信号与系统本科试卷答案
东南大学信号与系统试题含答案
东 南 大 学 考 试 卷(A 、B 卷)(答案附后)课程名称 信号与线性系统 考试学期 03-04-3得分适用专业 四系,十一系考试形式闭卷考试时间长度 120分钟一、简单计算题(每题8分):1、 已知某连续信号()f t 的傅里叶变换为21()23F j j ωωω=-+,按照取样间隔1T =对其进行取样得到离散时间序列()f k ,序列()f k 的Z 变换。
2、 求序列{}10()1,2,1k f k ==和2()1cos ()2f k k k πε⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的卷积和。
3、 已知某双边序列的Z 变换为21()1092F z z z =++,求该序列的时域表达式()f k 。
4、 已知某连续系统的特征多项式为:269111063)(234567+++++++=s s s s s s s s D试判断该系统的稳定情况,并指出系统含有负实部、零实部和正实部的根各有几个?5、 已知某连续时间系统的系统函数为:3232642()21s s s H s s s s +++=+++。
试给出该系统的状态方程。
6、 求出下面框图所示离散时间系统的系统函数。
)(k二、(12分)已知系统框图如图(a ),输入信号e(t)的时域波形如图(b ),子系统h(t)的冲激响应波形如图(c)所示,信号()f t 的频谱为()jn n F j eπωω+∞=-∞=∑。
图(a)y(t))(t fe(t)图(b)h(t)图(c)试:1) 分别画出)(t f 的频谱图和时域波形;2) 求输出响应y(t)并画出时域波形。
3) 子系统h(t)是否是物理可实现的?为什么?请叙述理由;三(12分)、已知电路如下图所示,激励信号为)()(t t e ε=,在t=0和t=1时测得系统的输出为1)0(=y ,5.0)1(-=e y 。
分别求系统的零输入响应、零状态响应、全响应、以及自然响应和受迫响应。
L=2HC=1F+_四(12分)、已知某离散系统的差分方程为)1()()1(3)2(2+=++-+k e k y k y k y 其初始状态为6)2(,2)1(-=--=-zi zi y y ,激励)()(k k e ε=;求:1) 零输入响应)(k y zi 、零状态响应)(k y zs 及全响应)(k y ;2) 指出其中的自由响应分量和受迫响应分量; 3) 判断该系统的稳定性。
信号与系统a答案
《信号与系统》期末试题A 参考答案及评分细则电子信息工程和通信工程专业 一、填空题(每空2分,部分正确得1分,共26分)1.2;2.01t j ej ωαω-+; 3.)()(32t u eett---; 4.22(2)(2)1s s s ++++-;5.)2()2(2---t u et ; 6.32(3)n u n --; 7. (3)(1)n u n ----; 8.单位圆内;9.1K >; 10.40 80; 11.0、2;二、解:425.0===TT s πωπ(1))(t f s 的频谱图和输出)(t r 的频谱图如图所示:(6分)(2)由图可知)(2)(ωπωF R =,故有)(2)(t f t r π=(2分)三、解:(本题10分)(1)2(2)()[(1)9](2)s s H s H s s -=+++( 2分)0(0)lim ()2s h sH s H +→∞=== (2 分)22(2)()[(1)9](2)s s H s s s -∴=+++ ( 1分)(2)幅频特性曲线如图所示:(3 分) 通频特性为带通。
( 2分)四、解:3212()()(2)zH z z z -=-- (1)收敛域的三种情况:2z >12z <122z << (2分)(2) 12()2z zH z z z =--- (2分)2z >时 12()[()2]()nnh n u n =- 系统因果不稳定 (2分) 12z <时 12()[()2](1)nn h n u n =-+-- 系统非因果不稳定 (2分)122z <<时12()()()2(1)nnh n u n u n =+-- 系统非因果稳定 (2分)五、求解各题1.(1)电路的S 域模型为:525)(2++=s s s H (3分)极、零点图如图所示: (2分)极点位于左半平面系统是稳定系统。
东 南 大 学 考 试 卷11-12-A答案
东 南 大 学 考 试 卷答案( A 卷)课程名称 信号与线性系统考试学期 11-12-3 得分适用专业信息科学与工程学院、吴健雄学院、理科班考试形式闭卷考试时间长度 120分钟一、简单计算或论述证明题(共7 题,共计56分)1、已知某LTI 连续因果系统的特征多项式为5432()2222D s s s s s s =+++++,试分析其特征根在s 左半开平面、虚轴以及s 右半开平面上的个数;并判断该系统的稳定性。
解:S 5 1 2 2S 4 1 2 2 S 3 )(0ϕ )(0ϕS 2 1 2 S 1 -4 0 S 0 2 0坐标轴左半平面2个根,右半平面3个根,所以该系统不稳定。
2、求序列1(){1,2,0,2,1;2,1,0,1,2}f k k =--=--和2(){1,2,1;1,0,1}f k k =-=-的卷积和。
解:-1 -2 0 2 1 -1 2 1 -1 -2 0 2 1 -2 -4 0 4 2 1 2 0 -2 -11 0 -5 -4 3 4 13、已知LTI 离散因果系统11(2)(1)()(1)2()66y k y k y k e k e k +++-=++,求该系统在激励()2,ke k k =-∞<<+∞作用下的输出响应。
解:61262)(-++=z z z z H ,2524)(2==z z H ,+∞<<-∞=k k y kzs ,22524)( 4、已知某系统函数为()9.5(0.5)(10)H z zz z =--求在以下两种收敛域:10z >和0.510z <<情况下系统的单位样值响应,并说明这两种情况下系统的稳定性与因果性。
解:10105.0105.0)(,102121---=-+-=>z z z k z k z H z ,)()105.0()(k k h kk ε-= 由此判断该系统不稳定,为因果系统。
东南大学信号与系统期中考试试卷及答案
F { f (t )} = 2 Sa (ω ) − 2 e
'
− jω
= jω F ( jω )
2 − jω F ( jω ) = [ Sa (ω ) − e ] jω
4。 计算卷积: 2 * t[ε(t+2)-ε(t-2)] 。 (5分)
2
f1 (t )
0
−2 2
t
f 2 (t )
0 2
t
= ∫ τ [ε (τ + 2) − ε (τ − 2)]2dτ
解: 引入辅助函数q(t), 得
d 3 q (t ) d 2 q (t ) dq ( t ) 4 5 + + + 6 q (t ) = e (t ) 3 2 dt dt dt dq ( t ) r (t ) = 7 + 8 q (t ) dt
7
e (t )
Σ
q ′′′
∫
-4 -5 -6
q ′′
∫
q′
(t ) = (t ) =
e
− 2 t
− 2 c
e
− 2 t
, t ≥
在输入为零时 r(0+)= r(0-)= 0,r´(0+)= r´(0-)= 2, 代入上列二式
c1 + c 2 = 0 , → − 2 c 2 = 2 ∴ r zi ( t ) = ( 1 − e
(2)系统转移算子为:
解法2:因 e(t)=5,(-∞<t<∞),故由直流稳态解,可设 r(t)=A (常数),代入系统方程,得 5A=3x5, ∴ r(t)= A =3
3. 利用傅里叶变换的性质求下列波形信号的傅里叶 变换。 (8分)
大学信号与系统习题答案
⼤学信号与系统习题答案§ 1.1 信号与系统信号(signal)消息(Message):在通信系统中,⼀般将语⾔、⽂字、图像或数据统称为消息。
信号(Signal):指消息的表现形式与传送载体。
信息(Information):⼀般指消息中赋予⼈们的新知识、新概念,定义⽅法复杂,将在后续课程中研究。
信号是消息的表现形式与传送载体,消息是信号的传送内容。
如电信号传送声⾳、图像、⽂字等。
电信号是应⽤最⼴泛的物理量,如电压、电流、电荷、磁通等。
系统(system)系统(system):由若⼲相互作⽤和相互依赖的事物组合⽽成的,具有稳定功能的整体。
如太阳系、通信系统【-----为传送消息⽽装设的全套技术设备(包括传输信道),其⽅框如下图所⽰:消息信号】、控制系统、经济系统、⽣态系统等。
系统可以看作是变换器、处理器。
电系统具有特殊的重要地位,某个电路的输⼊、输出是完成某种功能,如微分、积分、放⼤,也可以称系统。
在电⼦技术领域中,“系统”、“电路”、“⽹络”三个名词在⼀般情况下可以通⽤。
信号理论与系统理论信号理论信号分析:研究信号的基本性能,如信号的描述、性质等。
信号传输:通信的⽬的是为了实现消息的传输。
原始的光通信系统——古代利⽤烽⽕传送边疆警报;声⾳信号的传输——击⿎鸣⾦。
利⽤电信号传送消息。
1837年,莫尔斯(F.B.Morse)发明电报;1876年,贝尔(A.G.Bell)发明电话利⽤电磁波传送⽆线电信号。
1901年,马可尼(G.Marconi)成功地实现了横渡⼤西洋的⽆线电通信;全球定位系统GPS(Global Positioning System);个⼈通信具有美好的发展前景光纤通信带来了更加宽⼴的带宽。
信号的传输离不开信号的交换。
信号处理:对信号进⾏某种加⼯或变换。
其⽬的是:消除信号中的多余内容;滤除混杂的噪声和⼲扰;将信号变换成容易分析与识别的形式,便于估计和选择它的特征参量。
信号处理的应⽤已遍及许多科学技术领域。
信号与系统_东南大学中国大学mooc课后章节答案期末考试题库2023年
信号与系统_东南大学中国大学mooc课后章节答案期末考试题库2023年
1.两个线性时不变系统的级联构成的系统一定还是线性时不变的。
参考答案:
正确
2.(判断)卷积的方法只适用于线性时不变系统的分析 ( ) 。
参考答案:
错误
3.关于因果系统,下列说法不正确的是()
参考答案:
H(s)的零点在左半平面所对应的响应函数为衰减的。
即当t→∞时,响应均
趋于0;
4.关于抑制载波的调制与解调说法错误的是:()
参考答案:
抑制载波的调制与解调中的同步是指调制信号与已调信号之间是同步关系。
5.系统的冲激响应的函数形式与()
参考答案:
系统函数H(s)的极点位置有关
6.两个周期信号的和一定是周期信号。
参考答案:
错误
7.为使因果LTI连续系统是稳定的,要求其系统函数H(s)的极零点中()
参考答案:
全部极点都在左半平面。
信号与系统本科试题及答案
信号与系统本科试题及答案一、选择题(每题2分,共10分)1. 在信号与系统的分析中,下列哪一项不是连续时间信号的基本属性?A. 幅度B. 频率C. 相位D. 时间答案:D2. 一个线性时不变系统的最基本特点是:A. 输出唯一确定B. 系统参数随时间变化C. 对输入信号的响应是确定的D. 对任何复杂信号都能准确响应答案:C3. 下列哪个操作不会改变信号的频率内容?A. 时间平移B. 频率调制C. 振幅调制D. 时间缩放答案:A4. 对于一个理想的低通滤波器,其传递函数在频域中表现为:A. 低频信号通过,高频信号被阻挡B. 高频信号通过,低频信号被阻挡C. 所有信号都被阻挡D. 所有信号都通过答案:A5. 在信号与系统的分析中,卷积运算主要用于描述:A. 信号的能量分布B. 信号的频率分布C. 系统的冲激响应与输入信号之间的关系D. 信号的时域采样答案:C二、填空题(每题2分,共10分)6. 一个连续时间信号若满足 _________ 条件,则该信号是能量信号。
答案:信号的平方可积7. 采样定理指出,如果一个信号的频率内容完全位于低频带,那么该信号可以被其采样点的值唯一确定,采样频率应大于信号最高频率的_________ 倍。
答案:28. 拉普拉斯变换的一个重要性质是 _________ ,即线性时不变系统的输出是输入信号经过变换后乘以系统函数再进行逆变换的结果。
答案:线性9. 在离散时间信号处理中,离散傅里叶变换(DFT)可以用来计算信号的 _________ 表示。
答案:频谱10. 一个系统是因果系统的充分必要条件是其冲激响应 _________ 。
答案:在t=0之前为零三、简答题(每题10分,共20分)11. 简述信号的分类及其特点。
答案:信号可以分为连续时间信号和离散时间信号。
连续时间信号在整个时间轴上都有定义,如正弦波、指数信号等。
离散时间信号则在离散的时间点上有定义,如单位脉冲信号。
此外,信号还可以根据其是否可积、是否有界等属性进一步分类。
2020-2021某大学《信号与系统》期末课程考试试卷合集(含答案)
2020-2021《信号与系统》期末课程考试试卷适用专业: 考试日期:考试所需时间: 满分:100分一、应用冲激信号的抽样特性,求下列表示式的函数值。
(15分)dt t t e dtt t t f t )2()()5)()()10++∞-∞-∞-∞-⎰⎰δδ dt t t t dtt t t f )6()sin ()6)()()20πδδ-+∞-∞-∞-∞⎰⎰ dt t t t e dt t t u t t tj )]()([)7)2()()3000--∞-∞--∞-∞-⎰⎰δδδω dt t t u t t )2()()400--∞-∞⎰δ 二、绘出下列各时间函数的波形图。
(10分)1) t[u(t)-u(t-1)] 4) (t-1)u(t-1) 2) t ·u(t-1) 5) -(t-1)[u(t-1)] 3)t[u(t)-u(t-1)]+u(t-1)三、判断下列系统是否为线性的,时不变的,因果的?(15分))()()()2)()()1t u t e t r dtt de t r •==)1()()4)()](sin[)()3t e t r t u t e t r -== )()()6)2()()52t e t r t e t r ==ττττd e tt r d e tt r )(5)()8)()()7⎰⎰∞-=∞-= 四、求下列两组卷积(10分))()()(),1()()()1t f t f t s t u t u t f *=--=求)()()(),2()1()()2t f t f t s t u t u t f *=---=求五、求下列函数的拉氏变换,注意阶跃函数的跳变时间。
(10分))2()()1-=-t u e t f t )()()2)2(t u e t f t --= )2()()3)2(-=--t u e t f t )1()2sin()()4-=t u t t f)]2()1()[1()()5----=t u t u t t f六、求下列函数的拉普拉斯逆变换。
东南大学《信号与系统》期末试卷及习题集合集_wrapper
东南大学《信号与系统》目录东南大学《信号与系统》考试试卷(一) (2)东南大学《信号与系统》考试试卷(一)参考答案 (5)东南大学《信号与系统》考试试卷(二) (9)东南大学《信号与系统》考试试卷(二)参考答案 (14)东南大学《信号与系统》考试试卷(三) (21)东南大学《信号与系统》考试试卷(三)参考答案 (31)东南大学《信号与系统》考试试卷(四) (34)东南大学《信号与系统》考试试卷(四)参考答案 (55)东南大学《信号与系统》考试试卷(五) (57)东南大学《信号与系统》题库及参考答案 (63)东南大学《信号与系统》考试试卷(一)课程名称考试学期得分 适用专业 微电、物理、 考试形式 闭卷考试时间 120分钟姓名班级学号一、选择题(每小题可能有一个或几个正确答案,将正确的题号填入[ ]内) 1.f (5-2t )是如下运算的结果————————( ) (A )f (-2t )右移5 (B )f (-2t )左移5 (C )f (-2t )右移25 (D )f (-2t )左移252.已知)()(),()(21t u e t f t u t f at-==,可以求得=)(*)(21t f t f —————()(A )1-ate - (B )ate-(C ))1(1at e a -- (D )at e a-13.线性系统响应满足以下规律————————————( )(A )若起始状态为零,则零输入响应为零。
(B )若起始状态为零,则零状态响应为零。
(C )若系统的零状态响应为零,则强迫响应也为零。
(D )若激励信号为零,零输入响应就是自由响应。
4.若对f (t )进行理想取样,其奈奎斯特取样频率为f s ,则对)231(-t f 进行取样,其奈奎斯特取样频率为————————( )(A )3f s (B )s f 31 (C )3(f s -2) (D ))2(31-s f 5.理想不失真传输系统的传输函数H (jω)是 ————————( )(A )0j tKeω- (B )0t j Keω- (C )0t j Keω-[]()()c c u u ωωωω+--(D )00j t Keω- (00,,,c t k ωω为常数)6.已知Z 变换Z 1311)]([--=zn x ,收敛域3z >,则逆变换x (n )为——( )(A ))(3n u n(C )3(1)nu n -(B ))(3n u n -- (D ))1(3----n u n二.(15分)已知f(t)和h(t)波形如下图所示,请计算卷积f(t)*h(t),并画出f(t)*h(t)波形。
《信号与系统》习题参考答案
《信号与系统》习题参考答案(1)2—1(1) 01()()()()(1)()ta at x t h t x u t d e d e u t aτττττ∞---∞*=⋅-==-⎰⎰ (2) 00()()(cos sin )()x t h t t d ωτωτδττ∞-∞*=+⋅-⎰0000(cos sin )()cos sin t t t d t t ωωδττωω∞-∞=+⋅-=+⎰(3) 当0t <时 ()()0x t h t *=当01t ≤<时 20()()(1)2tt x t h t d t ττ*=+=+⎰当12t ≤<时 13()()(1)2x t h t d ττ*=+=⎰ 当23t ≤<时 12213()()(1)22t x t h t d t t ττ-*=+=-++⎰ 当3t ≥时 ()()0x t h t *= (4) 当0t <时 ()()0x t h t *=当0t ≥时 01()()sin 2(1cos 2)2tx t h t d t ττ*==-⎰ (5) 22222(2)2(4)241()()(2)2t t t t t t t x t h t e d e d e ee ττττ-----*=-=-+⎰⎰ (6)()x t at b =+11212()()()()()(2)3363tt x t h t a b d a tb t a t a bττδ-*=+++*--=++⎰2—2(1) [][][][2](2)[2]x n h n nu n n n u n δ*=*-=--(2) 10[][](2)[](21)[]nin i x n h n u n u n +=*==-∑(3) 当0n ≥时 1111[][]2()()232i n in i x n h n --=-∞*==∑ 当0n <时 111[][]2()223n i n i n i x n h n --=-∞*==⋅∑ (4) 当0n <时 [][]0x n h n *=当0n ≥时 110[][]()[]n n nin ii x n h n u n βααββα++-=-*==-∑(5) 当07n ≤≤时 071[][](1)[1(1)]2in i n x n h n -=-*=-=--∑ 当70n -≤≤时 71[][](1)[(1)1]2ni n i x n h n -=-*=-=--∑ 2—3(1) 12()()[(1)(1)][(5)(5)]x t x t u t u t t t δδ*=+--*++- (6)(4)(4)(6)u t u t u t u t =++--+-- (2) 123()()()x t x t x t **{[(6)(4)][(4)(6)]}*[u t u t u t u t =+-++---11()()]22t t δδ++- ( 6.5)( 4.5)( 5.5)( 3.5)( 3.5)( 5.5)u t u t u t u t u t u t =+-+++-++--- ( 4.5)( 6.5)u t u t +---(3) 1311()()[(1)(1)][()()]22x t x t u t u t t t δδ*=+--*++- ( 1.5)(0.5)(0.5)( 1.5)u t u t u t u t =+--++-- 2—4 0(3)331()(3)1t k k t tk k y t eu t k e e e e∞-----=-∞=-∞=-=⋅=-∑∑311A e-=- 2—5(1) 当2t ≥时 ()()0x t h t *= 当20t -<<时 11()()2t x t h t d t τ+-*==+⎰当02t <<时 11()()2t x t h t d t τ-*==-⎰(2) 当01t <<时 1()()22(1)tx t h t d t τ*==-⎰ 当10t -<<时 01()()22(1)2t tx t h t d d t t t ττ+*=+=-++=+⎰⎰当21t -<<-时 11()()2t x t h t d t τ+-*==+⎰当 1t ≥ 或 2t <-时 ()()0x t h t *=此题也可利用性质,先对()x t 积分,对()h t 微分,'()()()y t x t dt h t =*⎰(3) 当0t <时 (1)1()()1t x t h t e dt +∞--*==⎰当0t ≥时 1(1)(1)11()()22t t t t t x t h t e dt e dt e ++∞-----+*=+=-⎰⎰(4) 当t π< 或 5t π>时 ()()0x t h t *= 当3t ππ<<时 0()()sin 1cos t x t h t d t πττ-*==+⎰当35t ππ<<时 23()()sin 1cos t x t h t d t ππττ-*==--⎰(5) 当01t <<时 2211()()222()22x t h t t t t *=-=--当12t <≤时 2231()()264[2()]22x t h t t t t *=-+-=---()()x t h t *是以2为周期的周期函数 2—7(1) 111[][1]()[]()[1]22nn h n Ah n u n A u n ---=--111()[()()][1]()22nn n A u n n δδ-=+--=12A =(2) 111[][][][1][][]h n h n Ah n h n h n n δ---*-*-=*11[][][1]2h n n n δδ-∴=-- (3) 11[][][]2[[][1]][]nx n h n h n u n u n h n --**=--* 2[]2[[][4]]2[[1][5]]nn x n u n u n u n u n -∴=------2—8(1) 0()3()y t y t =(2) 00()()(2)y t y t y t =-- (3) 0()(1)y t y t =- (4) 0()()y t y t =-(5) 0()()dy t y t dt=(6) 202()()d y t y t dt =2—9 12111[][]()[]()[1]222n n x n h n u n u n -*=-+--1()([][1])[]2nu n u n n δ=---=1221[][][][]([][])*[]y n x n h n h n x n h n h n =**=* []*([][])[][]n n n n n u n u n u n u n δαβαβ=+=+ 2—10(1) 341201[][]((0.5))[3]2(1())[3]2n nn n x n x n u n u n ++=*=+=-+∑ (2) 4123[][][]2(1(0.5))[3]([][1])n x n x n x n u n n n δδ+**=-+*-- 43312(1(0.5))[3]2(1(0.5))[2]()[3]2n n n u n u n u n +++=-+--+=+ (3) 23[][][3]([][1])[3][2][3]x n x n u n n n u n u n n δδδ*=+*--=+-+=+ 2—11(1) 12345[][]([][][])[]h n h n h n h n h n h n =*-*+ (2) 34[][][1]h n h n nu n *=- 234[][][](1)[][1][]h n h n h nn u n n u n u n -*=+--= 12345[][]([][][])[]h n h n h n h n h n h n =*-*+514()([][3])*[][]2nu n u n u n hn =--+ 4[]6[1]7[2][]4[3]5[]6[1]7[2]4[3]n n u n n n n n u n n δδδδδδδ=+-+-++-=+-+---(1)'()()(2)(2)()(2)tt y t e x d x t y t x t τττ---∞=--+-=-+-⎰(2)()(2)t h t eu t --=- (2)当1t ≤时 ()0y t =当14t <≤时 1(2)(1)2()1t t y t e d e ττ+----==-⎰当4t >时 1(2)(4)(1)2()t t t t y t e d e e ττ+-------==-⎰2—13(1)213()()()()(1)[()](1)[()](1)h t h t h t u t t t u t t u t δδδ**=*-*-=-*-=-- 1213()()()()()()(1)h t h t h t h t h t u t u t =+**=--(2)1(10)1(02)()3(23)0t t t y t t t +-<<⎧⎪<<⎪=⎨-<<⎪⎪⎩其余2—14(1)因果、稳定 (2)非因果、非稳定 (3)非因果、稳定 (4)非因果、稳定 (5)非因果、稳定 (6)因果、稳定 (7)因果、非稳定 2—15(1)因果、稳定 (2)非因果、稳定 (3)非因果、非稳定 (4)非因果、稳定 (5)因果、非稳定 (6)非因果、稳定 (7)因果、稳定 2—16(1)对 (2)对()h t dt ∞-∞=+∞⎰(3)错 例如单位冲激响应(1)t δ-是因果的,但LTI 系统的逆系统(1)t δ+不是因果的。
大学科目《信号与系统》各章节习题答案
第一章 习 题1-1 画出下列各信号的波形:(1) f 1(t)=(2-e -t )U(t); (2) f 2(t)=e -t cos10πt×[U(t -1)-U(t-2)]。
答案(1))(1t f 的波形如图1.1(a )所示.(2) 因t π10cos 的周期s T 2.0102==ππ,故)(2t f 的波形如图题1.1(b)所示.1-2 已知各信号的波形如图题1-2所示,试写出它们各自的函数式。
答案)1()]1()([)(1-+--=t u t u t u t t f)]1()()[1()(2----=t u t u t t f)]3()2()[2()(3----=t u t u t t f1-3 写出图题1-3所示各信号的函数表达式。
答案2002121)2(21121)2(21)(1≤≤≤≤-⎪⎩⎪⎨⎧+-=+-+=+=t t t t t t t f)2()1()()(2--+=t u t u t u t f)]2()2([2sin )(3--+-=t u t u t t f π)3(2)2(4)1(3)1(2)2()(4-+---++-+=t u t u t u t u t u t f1-4 画出下列各信号的波形:(1) f 1(t)=U(t 2-1); (2) f 2(t)=(t-1)U(t 2-1);(3) f 3(t)=U(t 2-5t+6); (4)f 4(t)=U(sinπt)。
答案(1) )1()1()(1--+-=t u t u t f ,其波形如图题1.4(a)所示.(2))1()1()1()1()]1()1()[1()(2---+--=--+--=t u t t u t t u t u t t f 其波形如图题1.4(b)所示.(3))3()2()(3-++-=t u t u t f ,其波形如图1.4(c)所示.(4) )(sin )(4t u t f π=的波形如图题1.4(d)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T 。
东南大学(有10试题)
东南大学建筑系规划设计1995——1996城市规划设计1999城市规划原理1995——1998,2002中外建筑史和城建史2003中、外建筑史1991——1999,2001外国建筑史1991,1995——2000,2002中国建筑史1995——2001建筑构造1996,2002建筑技术(构造、结构)1998——1999,2002建筑设计1995——2000建筑设计基础2004建筑设计原理1995——1996建筑物理1999,2002素描1995——1998素描色彩1999素描与色彩画2002色彩画1995——1998西方美术史1999中、西美术史1997——1998中西美术史1995——1996,1998中西美术史及其理论1999创作与设计1999无线电工程系专业基础综合(信号与系统、数字电路)2004——2006专业基础综合(含信号与系统、计算机结构与系统、线性电子线路)2003 通信原理1994,1999——2003(1999有答案)信号与系统1997——2002数字电路与微机基础1998——2002模拟电子技术2000模拟电子线路1999——2002电磁场理论2001,2003——2004微机原理与应用1996——2000,2002(2002有答案)应用数学系高等代数1997——2005数学分析1995——2005概率论2003常微分方程2004物理系量子力学2001——2005普通物理2001——2005光学1997——1998,2000——2004热力学统计物理2001电磁场理论2001,2003——2004人文学院政治学原理2008法学理论2004法学综合(法理学)(含刑法学与刑事诉讼法学、宪法学、行政法学与行政诉讼法学)2004法学综合(民商法学)(含宪法学、法理学、行政法学与行政诉讼法学)2004 法学综合(宪法学与行政法学)(含刑法学与刑事诉讼法学、法理学、民商法学与民事诉讼法学)2004民商法学2004宪法和行政法学2004外语系二外日语1999——2004二外法语2000——2004(2003有答案)(注:2004年试卷共10页,缺第9页和第10页)二外德语2000——2002,2004二外俄语2000,2002基础英语1999——2002语言学1999——2002翻译与写作1999——2002基础英语与写作2003——2004(2003——2004有答案)语言学与翻译2003——2004英美文学与翻译2004(2004有答案)二外英语2004日语文学与翻译2004交通学院材料力学2003——2005材料力学(结)1995——2000材料力学(岩)2005结构力学1993——2006土力学及土质学1993——1997,1999——2005道路交通工程系统分析1994——2004(1994——1998,2003——2004有答案)电路分析基础1996——2004电路分析与自控原理2003交通工程学基础1992——2001生物信号处理1999——2003局部解剖学1996生理学1995——1997流行病学2005卫生综合2004——2005内科学1995——1998建筑研究所中外建筑史和城建史2003中、外建筑史1991——1999,2001外国建筑史1991,1995——2000,2002中国建筑史1995——2001建筑构造1996,2002建筑技术(构造、结构)1998——1999,2002建筑设计1995——2000建筑设计基础2004建筑设计原理1995——1996建筑物理1999,2002学习科学研究中心(无此试卷)远程教育学院计算机软件基础(含数据结构、操作系统、软件工程、编译原理、离散数学)2003 计算机专业基础2002,2004——2005计算机结构与逻辑设计2001年本科生期末考试试题离散数学考研试题集(含97——00年)10元编译原理1993——2001编译原理与操作系统2002操作系统1994——2001数据结构1992——2002机械工程系机械原理1993——2005机械设计2002——2004电路分析基础1996——2004电路分析与自控原理2003制冷原理2003——2004制冷原理与设备2000——2002材料力学2003——2005材料力学(结)1995——2000材料力学(岩)2005结构力学1993——2006材料力学2003——2005材料力学(结)1995——2000材料力学(岩)2005土力学及土质学1993——1997,1999——2005工程结构设计原理2005工程经济2003——2005工程流体力学1998——2005工程热力学2000——2004工程施工与管理2002工程力学2003——2005工程力学2002(样题)钢结构1997——1999环境微生物学2005水污染控制工程1997——2002流行病学2005普通化学1997——1998,2000——2005有机化学2004——2005卫生综合2004——2005管理原理1998——2005,2010(2010为回忆版)(注:2004年试卷共2页,缺第2页)自动控制系自动控制理论1997——2002自动控制原理2004高等代数1997——2005生物科学与医学工程系生物信号处理1999——2003现代生物学2003经济管理学院西方经济学1999——2003,2005,2010(2002——2003有答案)(注:2005、2010年试卷为回忆版)金融学基础2002——2005,2005答案管理原理1998——2005,2010(2010为回忆版)(注:2004年试卷共2页,缺第2页)管理学2000——2002,2005,2007(2000——2002有答案)现代管理学2003——2004,2010(2003有答案)(2010为回忆版)市场营销学1999,2000——2001高等代数1997——2005自动控制理论1997——2002自动控制原理2004运筹学2001体育系(无此试卷)仪器科学与工程系电路分析基础1996——2004电路分析与自控原理2003自动控制理论1997——2002自动控制原理2004电磁场理论2001,2003——2004微机系统与接口技术2001——2002微机原理与应用1996——2000,2002(2002有答案)公共卫生学院西方经济学1999——2003,2005,2010(2002——2003有答案)(注:2005、2010年试卷为回忆版)卫生综合2004——2005有机化学2004——2005分析化学1992——2005(1992——2005有答案)物理化学2004——2005物理化学(化)1998——2005物理化学(金材)2000,2002生物信号处理1999——2003局部解剖学1996生理学1996流行病学2005高等教育研究所(无此试卷)软件学院(无此试卷)集成电路学院模拟电子技术2000模拟电子线路1999——2002微机系统与接口技术2001——2002微机原理与应用1996——2000,2002(2002有答案)电磁场理论2001,2003——2004动力工程系结构力学1993——2006土力学及土质学1993——1997,1999——2005工程经济2003——2005工程流体力学1998——2005工程热力学2000——2004工程施工与管理2002热工自动调节原理2001——2004制冷原理2003——2004制冷原理与设备2000——2002电路分析基础1996——2004电路分析与自控原理2003传热学2000——2004普通化学1997——1998,2000——2005电子工程系物理化学2004——2005物理化学(化)1998——2005物理化学(金材)2000,2002半导体物理1996——2005,2010(2010为回忆版)模拟电子技术2000模拟电子线路1999——2002电子线路基础2001——2004电磁场理论2001,2003——2004高等代数1997——2005微机系统与接口技术2001——2002微机原理与应用1996——2000,2002(2002有答案)计算机科学与工程系计算机软件基础(含数据结构、操作系统、软件工程、编译原理、离散数学)2003 计算机专业基础2002,2004——2005计算机结构与逻辑设计2001年本科生期末考试试题离散数学考研试题集(含97——00年)10元编译原理1993——2001编译原理与操作系统2002操作系统1994——2001数据结构1992——2002材料科学与工程系物理化学2004——2005物理化学(化)1998——2005物理化学(金材)2000,2002材料力学2003——2005材料力学(结)1995——2000材料力学(岩)2005钢结构1997——1999金属学2003——2004金属学及热处理1999——2002,2005卫生综合2004——2005电气工程系电工基础2000——2006模拟电子技术2000模拟电子线路1999——2002微机原理与应用1996——2000,2002(2002有答案)电磁场理论2001,2003——2004化学化工系物理化学2004——2005物理化学(化)1998——2005物理化学(金材)2000,2002艺术学系素描1995——1998素描色彩1999素描与色彩画2002色彩画1995——1998西方美术史1999中、西美术史1997——1998中西美术史1995——1996,1998中西美术史及其理论1999创作与设计1999临床医学院生物信号处理1999——2003局部解剖学1996生理学1995——1997流行病学2005卫生综合2004——2005内科学1995——1998情报科学技术研究所(无此试卷)职业技术教育学院(无此试卷)英语(单考)1999——2000。
信号与系统考试题及答案
信号与系统考试题及答案**信号与系统考试题及答案**一、单项选择题(每题2分,共20分)1. 信号与系统中的信号指的是()。
A. 电信号B. 光信号C. 信息的传递方式D. 以上都是答案:D2. 离散时间信号的数学表示是()。
A. x(t)B. x(nT)C. x(t) = x(nT)答案:D3. 连续时间信号的数学表示是()。
A. x(t)B. x(nT)C. x(t) = x(nT)D. x(n)答案:A4. 系统的基本特性不包括()。
A. 线性B. 时不变性C. 因果性D. 非线性5. 卷积积分是()。
A. 线性时不变系统的输出B. 线性时变系统的输出C. 非线性时不变系统的输出D. 非线性时变系统的输出答案:A6. 傅里叶变换是()。
A. 时域信号到频域信号的变换B. 频域信号到时域信号的变换C. 时域信号到时域信号的变换D. 频域信号到频域信号的变换答案:A7. 拉普拉斯变换是()。
A. 时域信号到频域信号的变换B. 频域信号到时域信号的变换C. 时域信号到复频域信号的变换D. 频域信号到复频域信号的变换答案:C8. 采样定理是关于()。
A. 信号的采样B. 信号的重建C. 信号的滤波D. 信号的调制答案:A9. 奈奎斯特频率是()。
A. 信号的最高频率B. 信号的最低频率C. 采样频率的两倍D. 采样频率的一半答案:D10. 理想低通滤波器的频率响应是()。
A. H(f) = 1, |f| < f_cB. H(f) = 0, |f| < f_cC. H(f) = 1, |f| > f_cD. H(f) = 0, |f| > f_c答案:A二、填空题(每题2分,共20分)1. 信号可以分为______信号和______信号。
答案:连续时间,离散时间2. 系统的时不变性意味着如果输入信号发生时间平移,输出信号也会发生相同的时间平移,即系统对信号的响应不随时间变化而变化,这称为系统的______。
大学考试试卷《信号与系统》及参考答案
信号与系统一、单项选择题(本大题共46分,共 10 小题,每小题 4.599999 分)1. 若一因果系统的系统函数为则有如下结论——————————() A. 若,则系统稳定 B. 若H(s)的所有极点均在左半s平面,则系统稳定 C. 若H(s)的所有极点均在s平面的单位圆内,则系统稳定。
2. 连续信号,该信号的拉普拉斯变换收敛域为()。
A.B.C.D.3. 连续信号与的乘积,即*=( )A.B.C.D.4. 已知f(t),为求f(t0−at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A. f(-at)左移t0 B. f(-at) 右移tC. f(at) 左移D. f(at)右移5. 已知 f(t),为求f(t0-at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A.B. f(at) 右移t0 C. f(at) 左移t/a D. f(-at) 右移t/a6. 系统函数H(s)与激励信号X(s)之间——() A. 是反比关系; B. 无关系; C. 线性关系; D. 不确定。
7. 下列论断正确的为()。
A. 两个周期信号之和必为周期信号; B. 非周期信号一定是能量信号; C. 能量信号一定是非周期信号; D. 两个功率信号之和仍为功率信号。
8. 的拉氏反变换为()A.B.C.D.9. 系统结构框图如下,该系统单位冲激响应h(t)的表达式为()A.B.C.D.10. 已知,可以求得—————()A.B.C.D.二、多项选择题(本大题共18分,共 3 小题,每小题 6 分)1. 线性系统响应满足以下规律————————————() A. 若起始状态为零,则零输入响应为零。
B. 若起始状态为零,则零状态响应为零。
C. 若系统的零状态响应为零,则强迫响应也为零。
D. 若激励信号为零,零输入响应就是自由响应。
2. 1.之间满足如下关系———————()A.B.C.D.3. 一线性时不变因果系统的系统函数为H(s),系统稳定的条件是——()A. H(s)的极点在s平面的单位圆内B. H(s)的极点的模值小于1C. H (s)的极点全部在s平面的左半平面D. H(s)为有理多项式。
信号与系统考试题及答案
信号与系统考试题及答案# 信号与系统考试题及答案一、选择题(每题2分,共20分)1. 信号f(t)=3cos(2πt + π/3)的频率是:A. 1HzB. 2HzC. 3HzD. 4Hz答案:B2. 系统是线性时不变系统(LTI),如果满足以下条件:A. 系统对所有信号都有响应B. 系统对输入信号的线性组合有响应C. 系统对时间平移的输入信号有响应D. 系统对所有条件都有响应答案:B3. 如果一个信号是周期的,那么它的傅里叶级数表示中包含:A. 只有直流分量B. 只有有限个频率分量C. 无限多个频率分量D. 没有频率分量答案:B4. 拉普拉斯变换可以用来分析:A. 仅连续时间信号B. 仅离散时间信号C. 连续时间信号和离散时间信号D. 仅离散时间系统答案:C5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. 1/tD. e^(-st)答案:A6. 一个系统是因果系统,如果:A. 它的脉冲响应是零,对于所有t<0B. 它的输出总是零C. 它的输出在任何时候都不依赖于未来的输入D. 所有上述条件答案:A7. 傅里叶变换可以用来分析:A. 仅周期信号B. 非周期信号C. 周期信号和非周期信号D. 仅离散信号答案:B8. 一个信号x(t)通过一个线性时不变系统,输出y(t)是:A. x(t)的时移版本B. x(t)的反转版本C. x(t)的缩放版本D. x(t)的卷积答案:D9. 如果一个信号的傅里叶变换存在,那么它是:A. 周期的B. 非周期的C. 有限能量的D. 有限功率的答案:C10. 系统的频率响应H(jω)是输入信号X(jω)和输出信号Y(jω)的:A. 乘积B. 差C. 比值D. 和答案:C二、简答题(每题10分,共30分)1. 解释什么是卷积,并给出卷积的基本性质。
答案:卷积是信号处理中的一个重要概念,表示一个信号与另一个信号的加权叠加。
具体来说,如果有两个信号f(t)和g(t),它们的卷积定义为f(t)与g(-t)的乘积的积分,对所有时间t进行积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 已知某连续信号()f t 的傅里叶变换为21()23F j j ωωω=-+,按照取样间隔1T =对其进行取样得到离散时间序列()f k ,序列()f k 的Z 变换。
解法一:f(t)的拉普拉斯变换为2111)2)(1(1321)(2+-+=++=++=s s s s s s s F ,2111)(Re )(--===---=-=⎥⎦⎤⎢⎣⎡-=∑∑e z z e z z e z z K e z z s F s z F ni Ts i s s ni sT i i 解法二:f(t)=L -1{F(jw)}=(e -t - e -2t)ε(t)f(k)= (e -k- e -2k)ε(k)=)())()((21k e e kk ε--- F(z)=Z[f(k)]= 21-----e z zez z 2、 求序列{}10()1,2,1k f k ==和2()1cos ()2f k k k πε⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的卷积和。
解:f 1(k)={1,2,1}=δ(k)+2δ(k -1)+ δ(k -2)f 1(k)* f 2(k)= f 2(k)+ 2f 2(k -1)+ f 2(k -2) 3、已知某双边序列的Z 变换为21()1092F z z z =++,求该序列的时域表达式()f k 。
解:5.014.01)(+-+=z z z F ,两个单阶极点为-0.4、-0.5当收敛域为|z|>0.5时,f(k)=(( -0.4)k -1-( -0.5)k -1)ε(k -1)当收敛域为0.4<|z|<0.5时,f(k)= ( -0.4)k -1ε(k -1)+( -0.5)k -1ε( -k) 当收敛域为|z|<0.4时,f(k)= - ( -0.4)k -1ε(-k)+( -0.5)k -1ε( -k)点评:此题应对收敛域分别讨论,很多学生只写出第一步答案,即只考虑单边序列。
4、已知某连续系统的特征多项式为:269111063)(234567+++++++=s s s s s s s s D试判断该系统的稳定情况,并指出系统含有负实部、零实部和正实部的根各有几个?解 构作罗斯-霍维茨阵列611617s291036s3168385s2314s342(00)32s s s ++此时出现全零行,有辅助多项式34646,4,6s s +求导可得以代替全零行系数。
21322232s s s由罗斯-霍维茨数列可见,元素符号并不改变,说明s 右半平面无极点。
再由42320s s ++=令2s x =则有2320x x ++=可解得 1,2x =--相应地有1,2s ==±j 3,4s ==±这说明该系统的系统函数在虚轴上有四个单极点分别为土j 及土 所以系统含有三个负实部的根、四个零实部的根,无正实部的根。
点评:此题得分率很低。
很多学生对全零行不知如何处理。
5、已知某连续时间系统的系统函数为:3232642()21s s s H s s s s +++=+++。
试给出该系统的状态方程。
解:系统的微分方程为)(2)(4)(6)()()()(2)(t e t e t e t e t y t y t y t y +'+''+'''=+'+''+'''取原来的辅助变量q 及其各阶导数为状态变量并分别表示为1x q =、2'x q =、3''x q =、''''3x q =,于是,由此微分方程立即可以写出如下方程状态方程:⎪⎩⎪⎨⎧+---===)(2'''32133221t e x x x x x x x x 输出方程:)(436423213213t e x x x x x x x y +++=+++'=或者写成矩阵形式,上式即为e x x x x x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100211010100'''321321Be Ax ``[])(431321t e x x x y +⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=De C x6、求出下面框图所示离散时间系统的系统函数。
)(k解:06.05.03.22.01)3.021()(2+++=+++=z z z z z z H二、(12分)已知系统框图如图(a ),输入信号e(t)的时域波形如图(b ),子系统h(t)的冲激响应波形如图(c)所示,信号()f t 的频谱为()jn n F j eπωω+∞=-∞=∑。
图(a)y(t))(t fe(t)图(b)h(t)图(c)试:1) 分别画出)(t f 的频谱图和时域波形;2) 求输出响应y(t)并画出时域波形。
3) 子系统h(t)是否是物理可实现的?为什么?请叙述理由;解:1)根据傅立叶变换的性质得:∑∞-∞=-=n n t t f )2()(δ∑∞-∞=-=n n j F )()(πωδπω2)y(t)=[e(t)∙f(t)]*h(t)=[δ(t+2)+2δ(t)+ δ(t -2)] *h(t)= h(t+2)+2h(t)+ h(t -2)3)因h(t)是有始因果信号,所以子系统h(t)是物理可实现的。
点评:此题做对的非常少,大多数写不出f(t)的表达方式。
三(12分)、已知电路如下图所示,激励信号为)()(t t e ε=,在t=0和t=1时测得系统的输出为1)0(=y ,5.0)1(-=e y 。
分别求系统的零输入响应、零状态响应、全响应、以及自然响应和受迫响应。
L=2HC=1F+_解:1)电路满足KVL :得)(5.0)(5.0)(5.1)(t e t y t y t y '=+'+''2)系统函数为:5.05.15.0)(2++=s s ss H ,特征根为λ1=-0.5,λ2=-1 Y zs (s)=H(s)E(s)= s s s s 15.05.15.02∙++=115.01+-+s s零状态响应:y zs (t)=(e -0.5t -e -t )ε(t) y zs (0)=0,y zs (1)=(e -0.5 -e -1);y zi (0)= y(0) -y zs (0)=1,y zi (1)= y(1) -y zs (1)= -e -1 ; y zi (t)=(C 1e -0.5t +C 2e -t )ε(t),得C 1=0,C 2=1 零输入响应:y zi (t)= e -t ε(t); 全响应:y (t)= e -0.5t ε(t)点评:此题中很多学生把全响应初始条件当成零输入响应的初始值来解答,失去少部分分数。
四(12分)、已知某离散系统的差分方程为)1()()1(3)2(2+=++-+k e k y k y k y其初始状态为6)2(,2)1(-=--=-zi zi y y ,激励)()(k k e ε=; 求:1) 零输入响应)(k y zi 、零状态响应)(k y zs 及全响应)(k y ;2) 指出其中的自由响应分量和受迫响应分量; 3) 判断该系统的稳定性。
解:132)(2+-=z z zz H ,特征根为ν1=0.5,ν2=1 1) y zi (k)=(C 10.5k +C 2)ε(k); 代入初始条件得C 1=-2,C 2=2 零输入响应:y zi (k)= (2-20.5k )ε(k)Y zs (z)=H(z)E(z)= 22)1(15.01132-+---=-∙+-z z z z z z z z z z z =115.01+-+s s零状态响应:y zs (k)= (0.5k +k -1)ε(k) y zs (0)=0,y zs (1)=(e -0.5 -e -1); 全响应:y (k)= (1+k -0.5k )ε(k) 2)自由响应:(1 -0.5k )ε(k)受迫响应:k ε(k),严格地说是混合响应。
3)系统的特征根为ν1=0.5(单位圆内),ν2=1(单位圆上),所2系统临界稳定。
五(12分)、已知某离散时间系统的单位函数响应()cos ()2k h k k πε⎛⎫= ⎪⎝⎭。
1) 求其系统函数()H z ; 2) 粗略绘出该系统的幅频特性; 3) 画出该系统的框图。
解:1)系统函数为:121)(21)(21)(2)()2cos(22222222+=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+-=⎭⎬⎫⎩⎨⎧+⎭⎬⎫⎩⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+=⎭⎬⎫⎩⎨⎧---z z e z z e z z k e Z k e Z k e e Z k k Z j j k j k j k j k j ππππππεεεεπ1)(22+=z z z H2)系统的幅频特性为:|cos 2|1|1)()(||)(|22ωωωω=+=j j j e e e H3六、(10分)请叙述并证明Z 变换的卷积定理。
解:卷积定理设{})()(11z F k f Z =,{})()(22z F k f Z =,则{})()()(*)(2121z F z F k f k f Z =或用符号表示为:若)()(11z F k f ↔,)()(22z F k f ↔,则)()()(*)(2121z F z F k f k f ↔两序列卷积后z 变换的收敛区是原来两个Z 变换收敛区的重叠部分。
以上定理可根据卷积和及Z 变换的定义证明如下{}∑∑∑+∞-∞=+∞-∞=-+∞-∞=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=k j kj j k f j f z j k f j f Z k f k f Z )()()()()(*)(212121交换上式右方的取和次序,上式成为{}∑∑+∞-∞=+∞-∞=--=j k kj k f z j f k f k f Z )()()(*)(2121对上式右方第二个取和式应用式(8—15)的移序特性,则得{})()()()()(*)(212121z F z F z F zj f k f k f Z j j==∑+∞-∞=-点评:很多学生做不出此题,有的竟然连卷积定理内容都写不出。