高分子材料无卤阻燃剂的研究现状

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子材料无卤阻燃剂的研究现状

Research Status on Non-halogen Flame Retardants of Polymers

Kvof3122

黄 辉,曹家胜 Huang Hui, Cao Jiasheng

- 公安部上海消防研究所,上海 200032

- Shanghai Fire Research Institute of Ministry of Public Security, Shanghai 200032, China

摘 要 :综述了高分子材料无卤阻燃剂的种类和阻燃机理,重点介绍了无机物阻燃剂、无卤膨胀型阻燃剂、有机硅阻燃剂等无卤阻燃剂的开发和在高分子材料中的应用研究现状,并对无卤阻燃剂的发展方向进行了展望。

Abstract : Types and mechanisms of polymer non-halogen flame retardants were reviewed. Research status and applications of non-halogen flame retardants in polymers, such as inorganic flame retardants,

non-halogen intumescent flame retardants and organic silicon flame retardants, were introduced

mainly. In addition, development trends of non-halogen flame retardants were prospected.

关键词 :无卤阻燃剂;阻燃机理;研究现状

Key words : Non-halogen flame retardant; Flame retardant mechanism; Research status

文章编号:1005-3360(2011)06-0075-05

高分子材料品种越来越多,而常见的高分子材料基本上都是易燃的,因此阻燃技术受到全球性的关注,日益严格的防火安全标准和塑料产量的快速增长,使近年来全球阻燃剂的用量及销售市场一直呈增长的趋势。

目前,含卤阻燃剂(特别是溴系阻燃剂)被广泛用于高分子阻燃材料,并起到了较好的阻燃作用。然而人们对火灾现场深入研究后得出结论:虽然含卤阻燃剂的阻燃效果好,且添加量少,但是采用含卤阻燃剂的高分子材料在燃烧过程中会产生大量的有毒且具有腐蚀性的气体和烟雾,使人窒息而死,其危害性比大火本身更为严重。无卤阻燃剂具有环保、安全、抑烟、无毒和价廉等优点,因此,无卤阻燃剂的开发已经成为当前阻燃剂研究领域的热点[1-3]。在现有工业技术的条件下,无卤阻燃剂主要以无机阻燃剂、无卤膨胀型阻燃剂和有机硅阻燃剂为主。这3类阻燃剂燃烧时不发烟,不产生腐蚀性气体,被称为“绿色”阻燃剂。

1 无机阻燃剂

无机阻燃剂具有稳定性好,低毒或无毒,贮存

过程中不挥发、不析出,原料来源丰富,价格低廉等优点,兼具阻燃、填充双重功能,并对环境非常友好,是一类很有前途的阻燃剂,目前受到高度重视和普遍应用,成为阻燃市场的主流。无机阻燃剂主要包括氢氧化铝、氢氧化镁、无机磷系等。

1.1 金属水合物

在高分子材料阻燃的长期研究中,人们发现适合作为无卤阻燃剂的金属水合物以氢氧化铝(A1(OH)3)和氢氧化镁(Mg(OH)2)为主,这是因为A1(OH)3和Mg(OH)2具有填充、阻燃及抑制发烟三重功能。当其受热分解释放出结晶水,吸收大量的热量,产生的水蒸气降低了可燃性气体的浓度,并使材料与空气隔绝;同时生成的耐热金属氧化物(三氧化二铝和氧化镁)还会催化聚合物的热氧交联反应,在聚合物表面形成一层炭化膜,其会减弱材料燃烧时的传热、传质效应,从而不仅起到阻止燃烧的作用,还起到了消烟的作用。A1(OH)3分解温度范围为235~350℃,吸热量为968 J/g,由于其分解温度较低,因此作为阻燃剂通常只适用于加工温度较低的高分子材料。与A1(OH)3相比,Mg(OH)2具有更好的热稳定性,更高的促进基材成炭和更好

助剂

文献标识码 : A

中图分类号 :TQ314.24

收稿日期:75 2011-03-01

高分子材料无卤阻燃剂的研究现状

的提高氧指数的能力,分解温度高达340~490℃,能满足许多塑料树脂的混炼和加工成型,并可使添加Mg(OH)2的高分子材料能承受更高的加工温度,利于加快挤出速度,缩短模塑时间,同时在制备过程中无有害物质排放,因此可以在许多场合替代A1(OH)3。

A1(OH)3和Mg(OH)2都属于无机填充型阻燃剂,一般需要高填充量(50%以上)才能达到较好的阻燃效果;另外,其与高聚物的相容性较差,不易在高分子材料中分散,这些往往都会较大程度恶化高分子基体的加工性能和制品的物理机械性能,因此需要对其进行改性处理。目前对此类阻燃剂的处理方式主要有以下3种[4]:(1)超细化。阻燃剂粉体经过超细化后,粒子变小,比表面积增大,表面能增大,从而粒子表面的反应活性增强,不仅有利于粒子在高分子基体材料中的分散,而且能提高阻燃剂与高分子材料间的界面结合力,因此不仅会使阻燃剂充分发挥其阻燃作用,而且还可能会改善基体材料的加工成型性能和制品的力学性能。(2)表面改性处理。表面改性技术是提高粉体应用性能的关键技术之一。通过各种表面改性剂与阻燃剂颗粒表面化学反应和表面包覆处理来改变阻燃剂颗粒的表面状态,可以提高阻燃剂表面活性,使其表面产生新的物理、化学功能,从而改善阻燃剂与基体聚合物之间的亲和力,有利于阻燃剂在基体中的分散,提高材料的加工性能和力学性能。(3)复配处理。阻燃剂的复配技术主要是指利用阻燃剂之间的协同阻燃效应,将两种或两种以上的阻燃剂进行混配,制成复合阻燃剂使用,使其相互增效,取长补短,从而达到降低阻燃剂的用量,提高材料阻燃性能、加工性能和力学性能的目的。

1.2 无机磷

无机磷系阻燃剂主要指红磷,它是一种性能优良的阻燃剂,具有高效、抑烟、低毒的阻燃效果。其阻燃机理为:受热分解后形成具有极强脱水性的偏磷酸,从而使燃烧的聚合物表面炭化,炭化层既可以阻止可燃气体的放出,又具有吸热作用。另外,红磷与氧形成PO 自由基进入气相后,可捕捉大量H 和HO 自由基,但在使用时存在以下缺点:(1)由于红磷在使用时稳定性差,易燃易爆,易氧化成酸,与空气长期接触会放出剧毒磷化氢(PH3);(2)本身为红色,易使制品着色;(3)容易吸潮,与聚合物相容性较差。从而限制了其作为阻燃剂的广泛应用。

为了解决上述弊端,微胶囊化红磷是其作为阻燃剂研究的最主要方向之一[5]。红磷经微胶囊化处理后,一是可克服红磷性能上的缺点,消除红磷在贮运、加工过程中的隐患;二是白度化,淡化红磷的颜色,拓宽红磷的应用范围;三是可改善与基材的相容性,减小对基材力学性能的影响;四是可通过对囊材的选择,实现多种阻燃剂的复配,提高阻燃抑烟效能。

目前,美国、德国、日本、瑞士、英国等国家均有多种型号微胶囊红磷产品推向国际市场,如英国的Albright & Wilson公司的AMGARD CRP和AMGARD CPC系列稳定化处理的微胶囊红磷,这种微胶囊红磷使用量少,加入7%~10%(质量分数),聚烯烃的燃烧等级即可达到UL94 V—0级,而使用其他阻燃剂则至少要添加约35%(质量分数)。国内也对此进行了一定的研究,如湘潭大学、深圳益通生物化工公司、晨光化工研究院、天津阻燃技术研究所、杭州化工研究所等单位均有相关产品推出。黄兆阁等[6]采用Mg(OH)2包覆红磷作为无卤阻燃剂对聚丙烯(PP)进行阻燃改性研究。结果表明:将80%的Mg(OH)2和10%红磷复配具有明显的协同阻燃效果,使PP/Mg(OH)2/包覆红磷体系氧指数达到29%,且综合性能良好,并使体系的热释放速率、有效热烧热和质量损失速率大幅降低,从而进一步证实了该体系的阻燃效果。

1.3 其他无机阻燃剂

其他无机阻燃剂包括阻燃增效剂、阻燃抑烟剂以及一些用量较少的阻燃剂等,主要有:钼系化合物、硼酸盐、层状硅酸盐、锡系化合物(锡酸锌和羟基锡酸锌)等。

钼系化合物是迄今为止效果最好的抑烟剂,通常使用的是三氧化钼和钼酸铵。美国开发出不含铵的系列钼酸盐抑烟剂,能耐200℃以上的加工温度。目前,钼类化合物作为阻燃剂研究在我国尚处于起步阶段。

硼酸盐阻燃剂主要是指硼酸锌,早期主要作为锑系阻燃剂替代品用于含卤材料中,目前可作为阻燃抑制剂和消烟剂,并与其他阻燃剂复配用于聚烯烃。硼酸锌具有热稳定性好、粒度细、无毒、低水溶

76

相关文档
最新文档